JP3810036B2 - An energy-saving system that recovers and uses factory waste heat at a carbonated beverage manufacturing plant that contains beer - Google Patents

An energy-saving system that recovers and uses factory waste heat at a carbonated beverage manufacturing plant that contains beer Download PDF

Info

Publication number
JP3810036B2
JP3810036B2 JP31424897A JP31424897A JP3810036B2 JP 3810036 B2 JP3810036 B2 JP 3810036B2 JP 31424897 A JP31424897 A JP 31424897A JP 31424897 A JP31424897 A JP 31424897A JP 3810036 B2 JP3810036 B2 JP 3810036B2
Authority
JP
Japan
Prior art keywords
cooling
heat
heating
water
beer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31424897A
Other languages
Japanese (ja)
Other versions
JPH11130195A (en
Inventor
憲光 若林
良典 秋鹿
正己 小浜
富士夫 小松
義史 川畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Showa Denko Gas Products Co Ltd
Original Assignee
Mayekawa Manufacturing Co
Showa Tansan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Showa Tansan Co Ltd filed Critical Mayekawa Manufacturing Co
Priority to JP31424897A priority Critical patent/JP3810036B2/en
Publication of JPH11130195A publication Critical patent/JPH11130195A/en
Application granted granted Critical
Publication of JP3810036B2 publication Critical patent/JP3810036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Devices For Dispensing Beverages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビールを含む炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステムに関する。
【0002】
【従来の技術】
飲用適の水に炭酸ガスを圧入したもの及びこれに甘味料、フレーバリングを加えたものに総称される炭酸水、クラブソーダやサイダー、コーラ、フルーツソーダ、クリームソーダ等の炭酸飲料の製造には、製品原水に炭酸ガスを圧入させて製品とするカーボネーションが行われるが、その際飲料水の品質を一定に保持するとともに、容器への充填時の泡立ちを防止し安定且つ連続的に行うため、冷却を介して前記原水を25℃程度より5℃程度に冷却する冷却工程を設けている。
また、上記炭酸ガスを圧入溶解させた製品を容器に充填するが、前記製品温度が7〜8℃の低温であるため、容器表面が結露し、段ボール等の梱包容器を破損させる恐れがある。上記梱包容器の破損を防止するため、製品を充填した容器を加熱器を介して温水もしくは蒸気により30℃付近まで昇温させる加熱工程を設けている。
【0003】
また、ビール製造時には、冷却工程を設けて熟成を終えた若ビールである熟成ビールを冷却により0〜−1℃に冷却し、蛋白質を凝固させ、これをろ過器でろ過して清澄度を高めてビールとしての製品を形成させている。これを樽詰めして樽生ビールをつくり、または容器に充填して壜詰め、缶詰めのビールをつくっている。
上記壜詰め、缶詰めビールの場合、ビール自身も貯酒以降充填し終えるまでは炭酸ガス保持のため低温に保持してあるため、充填時の容器表面はそのままでは露点以下となり、結露によるレッテル貼りに難渋するので加熱工程を設け、加熱器を介して湯シャワー等により露点温度以上に昇温させている。
【0004】
従来は、上記ビールを含む炭酸含飲料の製造における冷却工程と加熱工程とは完全に切り離して考えられていたため、前記冷却工程にはブラインクーラやチラーで行い、加熱工程は蒸気で行っており、そのため惹起されるエネルギー的損失は大きいものとなっていた。
【0005】
ところで、上記エネルギー的損失を解消するためには排熱回収を有効に行う必要がある。従来の排熱回収は一貫した系を形成する冷却工程では行われ、排熱回収冷却方法として例えば麦汁の排熱回収冷却方式が広く知られている。
上記排熱回収冷却方法は、前段の冷却系で約90〜72℃までの冷却を行い、中段の72〜33℃までの冷却は冷却水により行い、後段の冷却系で醗酵初期の約6℃まで冷却している。上記90〜72℃の前段冷却は一段目熱交換器を介して吸収冷凍機により排熱を回収し、回収した排熱により得られた15℃のブラインをターボ冷凍機を介して−5℃のブラインを形成させ、3段目、4段目の熱交換器を介して醗酵初期の約6℃の麦汁を得るようにしている。
また、中段冷却に使用する冷却水により熱回収を行い、後続する仕込み用湯として、また装置の殺菌洗浄用として有効利用を図っている。
【0006】
また、特公平7−4212号公報には、ビール製造を行う各種工程に熱源としてボイラーより発生する蒸気を利用するようにしたビール製造工程における熱利用方法が記載され、特に各種工程に必要な熱源である蒸気、温水、冷水をボイラより発生した蒸気を用いて作成し、熱エネルギーの有効利用を図った熱利用法が記載されている。即ち、多量の蒸気、冷水、温水が使用される「ビールの麦芽粉砕→糖化→ろ過→麦汁煮沸→麦汁冷却→麦汁ろ過→麦汁にいたる」のビール製造ラインに就いて、熱の有効利用方法が述べられている。
【0007】
上記熱利用方法は、一つの製造工程において製造に必要な熱である蒸気、温水、冷水の三つの形態に蒸気より作り出す方法に関するものである。然し、それは一貫した系における冷却から加熱、または加熱から冷却への熱の移動の間の熱収支の釣り合いを図り、その点より排熱回収を図ったものでない。
そのため、今尚排熱回収に困難を伴い利用可能レベルの排熱も破棄されている場合もある。
【0008】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みなされたもので、冷却と加熱の組合せを持つ生産段階に区分し各段階でのエネルギー収支の釣り合いを図り、エネルギー効率の向上を目指した、ビールを含む炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステムの提供を目的としたものである。
【0009】
そこで、従来までなおざりにされ且つ見逃されてきたビールを含む炭酸含飲料製造における、製品原水を0〜1℃に維持する冷却工程と、壜詰めないし缶詰め後の結露防止のための30℃程度に昇温させる加熱工程とを持つ生産段階において、冷却、加熱工程の間の熱の移動を関連させその間のエネルギー収支の釣り合いを図ったものでる。
【0010】
ところで、炭酸飲料の製造工程においては、まず飲用水と砂糖を混合して糖液をつくり、これに酸味料やフレーバリングを加え混合糖液である製品原水の形成が行われている。上記形成された製品原水に炭酸ガスを圧入して製品を形成する際には製品原水を1〜3℃程度に冷却維持する冷却工程が必要であり、また、製品の壜詰めないし缶詰めをして包装する際、容器表面の結露防止のため前記製品原水を充填した容器を略30℃程度に加熱する加熱工程を必要としている。そこで、上記冷却工程より加熱工程に至る間を一つの生産段階として取り扱うようにしたものである。
【0011】
また、ビールの製造工程においては、熟成ビールの凝固蛋白質のろ過及びろ過後の容器充填までに製品原水である前記熟成ビールを0〜1℃に冷却維持する冷却工程と、容器充填後の壜詰めないし缶詰め製品を略30℃に加熱する加熱工程とを一つの生産段階として取り扱うようにしたものである。
【0012】
【課題を解決するための手段】
そこで、本発明のビールを含む炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステムは、
ビールを含む炭酸含飲料の製造に際しての製品原水を冷ブラインで冷却する冷却工程と、製品の容器充填後に行う高温水にて露点温度まで加熱する加熱工程とを有し、前記冷却工程に使用する冷ブラインは加熱工程での排熱により作動する冷却部を介して得られた冷熱により構成した炭酸含飲料製造工場の工場排熱を回収利用する省エネルギーシステムを要旨とする
【0013】
そして、請求項1記載の発明上記加熱工程に使用する高温水の加熱を行う加温部と、
前記冷却工程の冷ブラインを冷却する冷却部を並設し、
前記加温部は工場排熱を熱源として駆動するヒートポンプサイクルで構成し、その凝縮器側の凝縮熱を利用して高温水を製造し、
一方冷却部は前記加熱工程の排熱を熱源として駆動するヒートポンプサイクルで構成し、その蒸発器側の蒸発冷熱を利用して冷ブラインで冷却するように構成したことを特徴とする。
【0014】
例えば、請求項1記載の冷却工程の前記工場排熱は、ビール製造工程における麦汁煮沸時の排熱(蒸気)である
【0015】
【0016】
また、請求項記載の発明は、上記加熱工程よりの加熱排水の奪熱を行う熱源側と前記冷却工程の冷ブラインを冷却する冷却側を有する吸着式若しくは吸収式冷凍機と、前記熱源側より排出された奪熱水の冷却を行う冷却塔を並設し、前記冷凍機の熱源側に加熱工程の加熱排水を熱源水として導入させ、前記熱源側で奪熱された奪熱水を冷却塔を介して前記冷凍機の冷却側に導入して更に冷却された冷ブライン水を冷却工程に導入するようにしたことを特徴とする。
【0017】
請求項1記載の発明は、前記加熱部を、圧縮式ヒートポンプにより構成するようにしたもので、炭酸飲料の場合は他の工程の工場排熱により作動し、またビールの場合は前記麦汁煮沸時の煮沸排熱蒸気により作動するようにしたもので、更に加えて工場排熱の持つ排熱エネルギーの添加により85〜90℃の高温水を得ることが出来る。
また、請求項1記載の発明は、請求項1記載の冷却部を、冷ブラインを媒体に使用する圧縮式ヒートポンプにより構成するようにしたもので、前記加熱工程での排熱により圧縮式ヒートポンプを作動させ、蒸発部より冷ブラインを得るようにし、該冷ブラインより冷却用冷熱を得るようにしたものである。この場合にはブライン蓄熱槽を設け、三方混合弁を介してブライン温度検出による自動冷却能力制御により、断続負荷に追従してビールを凍結手前の低温度に維持できるようにしてある。
【0018】
【作用】
本発明に係わるビール及び炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステムは、
ビールを含む炭酸含飲料製造時に際しての製品原水を冷ブラインで冷却する冷却工程と、製品の容器充填後に行う高温水にて露点温度まで加熱する加熱工程とを組み合わせた生産段階における熱収支の釣り合いを図ったもので、
本発明においては、上記加熱工程に使用する高温水の加熱エネルギーは、工場排熱 ( 例えばビール製造工程における麦汁煮沸時の排熱蒸気 ) を熱源として駆動するヒートポンプサイクルで構成し、その凝縮器側の凝縮熱を利用して高温水を製造するように構成し、
製品原水を冷ブラインで冷却する冷却工程に使用する冷熱エネルギーは、加熱工程での排熱により作動する冷却部を介して得られた冷熱、即ち加熱工程での熱の冷却部位への移動により構成するようにしてあるため、冷却工程と加熱工程との間の熱収支の釣り合いを図ることができる。
【0019】
また、前記冷却工程を、炭酸飲料の炭酸ガス圧入に際して行う冷却工程に特定した場合に、該冷却工程は水と砂糖を混合した混合糖液にフレーバリングを加えた混合糖液に炭酸ガスを圧入溶解させる場合、品質の安定と泡立ちを防止し安定且つ連続的に行うため、製品原水温度を凍結前の10℃以下に冷却し製品出口温度が1〜3℃を維持し、且つ変則的に断続供給される前記原水に対応すべく冷却能力制御可能のものが要求されているが本発明によればこれに対応できる。
【0020】
また前記冷却工程を、ビールろ過前より熟成ビールに対して行う冷却工程に特定した場合に、該冷却工程は、貯酒工程において熟成されたビールに凝固物の沈殿と炭酸ガスの沈静を図るために行われる工程で、−5℃前後のブラインを送りビールを凍結点近くまで冷却するもので冷却能力制御可能のものが要求されているが本発明によればこれに対応できる。
なお、上記冷却は、麦汁仕込み工程についで行われる麦汁の冷却には−6〜−4℃のブラインを使用し、醗酵工程、貯酒工程とにおいては−5〜−3℃のブラインを使用し、それぞれ麦汁や若ビールを0℃前後の冷却についで行われるものである。
【0021】
【0022】
また、請求項記載の発明は、前記冷却を、吸収式若しくは吸着冷凍機により構成するようにしたもので、加熱工程の温排水を熱源水として使用し、使用後の奪熱温水を冷却塔を介して冷却して吸着冷凍機の冷却側に導入して低温冷水を得るようにしたものである。この場合の冷却能力の調整は冷却塔を介して行うようにする。
【0023】
【0024】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は、本発明のビールを含む炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステムを炭酸飲料製造工場に適用した場合の概略の構成を示す図で、図2は本発明のビールを含む炭酸含飲料製造工場における工場排熱を回収利する省エネルギーシステムをビール製造工場に適用した場合の概略の構成を示す図で、図3は図1、図2の冷却部の別の実施例を示す図である。
【0025】
図1に示すように、本発明の省エネルギーシステムは、製品原水の冷却工程10aと、該冷却された原水への炭酸ガスを圧入するカーボネーション工程11aと、炭酸ガスを圧入された冷却原水からなる炭酸飲料の瓶詰め若しくは缶詰め工程12と、瓶詰め若しくは缶詰め後の加熱工程13と、包装工程14とよりなる最終生産段階において、工場排熱を導入して得られた高温水を加熱工程13へ出力する加熱部15aと、加熱工程13よりの加熱排水を導入して得られた冷ブラインを冷却工程10aへ出力する冷却部20aとより構成する。
【0026】
上記加熱部15aは圧縮機16aと凝縮器17aとよりなる圧縮式ヒートポンプ19aと熱交換器18aとよりなり、工場排熱(蒸気)圧縮機16aで圧縮して凝縮器17aより凝縮して温水を得るようにし更に前記温水を熱交換器18aを介して工場排熱により加熱した加熱工程に使用する高温水を得るようにしてある。
上記の場合、圧縮機駆動用動力費を必要とするが高温水を得るための加熱用蒸気ないし熱源は不用である。
【0027】
上記冷却20aは圧縮機21aと蒸発器22aとよりなる圧縮式ヒートポンプ23aと熱交換器24aとよりなり、加熱工程13での排熱を圧縮機21aで圧縮し蒸発器22aで前記冷却工程10aへ出力する冷ブラインと熱交換して−1〜1℃に冷却された冷ブラインを得て熱交換器24aで混合糖液を凍結前の低温に冷却するようにしてある。
なお、冷ブラインの循環路25aには図示してない蓄熱槽を設け、同じく不図示の三方混合弁を介して負荷が変動し混合糖液の供給が停止したときは冷ブラインを自動的にバイパスさせ、混合糖液の凍結を防止するようにしてある。
上記の場合、圧縮機駆動用動力費を必要とするが冷ブラインを得るための冷凍機は不用である。
【0028】
図2には、本発明のビールを含む炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステムをビール製造工場に適用した場合の概略の構成が示してあるが、この場合の省エネルギーシステムは図に見るように、熟成ビールの冷却工程10bと、ろ過工程11bと壜詰め若しくは缶詰め工程12と、加熱工程13と包装工程14とよりなる最終生産段階において、麦汁煮沸時の排熱蒸気を導入して得られた高温水を加熱工程13へ出力する加熱部15bと、加熱工程13よりの排熱を導入して得られた冷ブラインを冷却工程10bへ出力する冷却部20bとより構成する。
【0029】
上記加熱部15bは圧縮機16bと凝縮器17bよりなる圧縮式ヒートポンプ19bと熱交換器18bとよりなり、冷却工程の前段の麦汁煮沸時の排熱蒸気を圧縮機16bで圧縮してその圧縮蒸気を凝縮器17bで凝縮して温水を得るようにし更にその温水を熱交換器18bを介して麦汁煮沸時の排熱蒸気等の工場排熱により加熱して加熱工程に使用する高温水を得るようにしてある。
上記の場合、圧縮機駆動用動力費を必要とするが高温水を得るための加熱用蒸気ないし熱源は不用である。
【0030】
上記冷却20bは圧縮機21bと蒸発器22bとよりなる圧縮式ヒートポンプ23bと熱交換器24bとよりなり、加熱工程13での排熱を圧縮機21bへ導入し蒸発器22bの蒸発潜熱との熱交換により−1〜1℃の冷ブラインを得て熱交換器24bで製品原水である熟成ビールを凍結前の低温に冷却維持するようにしてある。
なお、冷ブラインの循環路25bには図示してない蓄熱槽を設け、同じく不図示の三方混合弁を介して負荷が変動し熟成ビールの供給が停止したときは冷ブラインを自動的にバイパスさせ、熟成ビールの凍結を防止するようにしてある。
上記の場合、圧縮機駆動用動力費を必要とするが冷ブラインを得るための冷凍機は不用である。
【0031】
図3には、図1、図2の冷却の別の実施例を示す図で、この場合は冷却部には図に示すように吸着式冷凍機30を使用し、該冷凍機の熱源側に加熱工程13の加熱排水を熱源水として導入させ、導入により奪熱された奪熱水を冷却塔31を介して吸着式冷凍機30の冷却側に導入して更に冷却されたブライン水を冷却工程10a、10bで使用するようにしたものである。
なお、上記以外に吸収式冷凍機を使用し、該冷凍機の再生器側に高温排水を導入させ、蒸発器側より冷水を得るようにしても良い。
【0032】
【発明の効果】
上記構成により、冷却工程と加熱工程とを持つ生産段階に区切り各段階において、ヒートポンプによる熱の移動を介して熱エネルギーの収支の釣り合いを図ることにより省エネルギーシステムを構築できる。
【図面の簡単な説明】
【図1】 本発明のビールを含む炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステムを炭酸飲料製造工場に適用した場合の概略の構成を示す図である。
【図2】 本発明のビールを含む炭酸含飲料製造工場における工場排熱を回収利する省エネルギーシステムをビール製造工場に適用した場合の概略の構成を示す図である。
【図3】 図1、図2の冷却の別の実施例を示す図である。
【符号の説明】
10a、10b 冷却工程
11a カーボネーション工程
11b ろ過工程
12 瓶詰め工程
13 加熱工程
14 包装工程
15a、15b 加熱
16a、16b 圧縮機
17a、17b 凝縮器
18a、18b、24a、24b 熱交換器
19a、19b、23a、23b 圧縮式ヒートポンプ
20a、20b 冷却部
21a、21b 圧縮機
22a、22b 蒸発器
25a、25b 冷ブライン循環路
30 吸着式冷凍機
31 冷却塔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energy saving system that recovers and uses factory waste heat in a carbonated beverage manufacturing factory containing beer.
[0002]
[Prior art]
For the production of carbonated beverages such as carbonated water, club soda, cider, cola, fruit soda, cream soda, etc., generically named those in which carbon dioxide gas is injected into potable water and sweeteners and flavorings added thereto In order to maintain the quality of the drinking water at a constant level and prevent foaming when filling the container, it is performed stably and continuously. A cooling step is provided for cooling the raw water from about 25 ° C. to about 5 ° C. via a cooling unit .
Further, the product in which the carbon dioxide gas is injected and dissolved is filled in a container. However, since the product temperature is a low temperature of 7 to 8 ° C., the container surface may condense, and the packaging container such as cardboard may be damaged. In order to prevent the packing container from being damaged, a heating process is provided in which the temperature of the container filled with the product is raised to about 30 ° C. with warm water or steam through a heater.
[0003]
Moreover, at the time of beer manufacture, the aged beer which is the young beer which provided the cooling process and finished ripening is cooled to 0-1 degreeC with a cooling part , protein is solidified, this is filtered with a filter, and a clarity is improved. It is raised to form products as beer. These are stuffed into barrels to make draft beer, or filled into containers and brewed to make canned beer.
In the case of the above-mentioned stuffed and canned beer, the beer itself is kept at a low temperature to keep the carbon dioxide gas until it is filled after storage. Therefore, a heating step is provided, and the temperature is raised above the dew point temperature by a hot water shower or the like through a heater.
[0004]
Conventionally, since the cooling step and the heating step in the production of the carbonated beverage containing beer were considered to be completely separated, the cooling step is performed with a brine cooler or a chiller, and the heating step is performed with steam, Therefore, the energy loss caused is large.
[0005]
By the way, in order to eliminate the energy loss, it is necessary to effectively perform exhaust heat recovery. Conventional exhaust heat recovery is performed in a cooling process that forms a consistent system. For example, a waste heat recovery cooling system for wort is widely known as an exhaust heat recovery cooling method.
In the above exhaust heat recovery cooling method, cooling to about 90-72 ° C. is performed in the former cooling system, cooling to 72-33 ° C. in the middle stage is performed with cooling water, and about 6 ° C. in the early stage of fermentation in the latter cooling system. It has cooled to. The pre-cooling at 90 to 72 ° C. recovers exhaust heat by an absorption refrigerator through a first stage heat exchanger, and converts a 15 ° C. brine obtained by the recovered exhaust heat to −5 ° C. through a turbo refrigerator. Brine is formed and wort at about 6 ° C. at the initial stage of fermentation is obtained through the third and fourth stage heat exchangers.
In addition, heat recovery is performed with cooling water used for middle stage cooling, and effective use is made as hot water for subsequent charging and for sterilization washing of the apparatus.
[0006]
Japanese Patent Publication No. 7-4212 discloses a heat utilization method in a beer production process in which steam generated from a boiler is used as a heat source in various processes for producing beer, and particularly a heat source necessary for various processes. A heat utilization method is described in which steam, hot water, and cold water are produced using steam generated from a boiler to effectively use heat energy. In other words, for a beer production line in which a large amount of steam, cold water, and hot water is used, beer malt grinding → saccharification → filtration → wort boiling → wort cooling → wort filtration → wort. An effective usage method is described.
[0007]
The heat utilization method relates to a method for producing steam, hot water, and cold water, which are heat necessary for production, in one production process from steam. However, it balances the heat balance during cooling-to-heating or heat-to-cooling heat transfer in a consistent system and is not intended to recover exhaust heat.
For this reason, there are cases where the exhaust heat at a usable level is still discarded due to difficulties in recovering the exhaust heat.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems.It is divided into production stages having a combination of cooling and heating, and balances the energy balance at each stage to improve the energy efficiency. The purpose is to provide an energy-saving system that recovers and uses factory waste heat at beverage manufacturing plants.
[0009]
Therefore, in the production of carbonated beverages containing beer, which has been neglected and overlooked so far, the cooling process of maintaining raw product water at 0 to 1 ° C., and about 30 ° C. for preventing condensation after bottling or canning In the production stage having a heating process for raising the temperature, the heat transfer between the cooling and heating processes is related to balance the energy balance between them.
[0010]
By the way, in the manufacturing process of carbonated beverages, first, drinking water and sugar are mixed to make a sugar solution, and then acid raw materials and flavoring are added to form raw product water that is a mixed sugar solution. When carbon dioxide gas is injected into the formed raw product water to form a product, a cooling process for maintaining the raw product water at about 1 to 3 ° C. is necessary. When packaging, a heating step of heating the container filled with the raw product water to about 30 ° C. is necessary to prevent condensation on the surface of the container. Therefore, the period from the cooling process to the heating process is handled as one production stage.
[0011]
In the beer production process, the aging beer, which is the raw water of the product, is cooled and maintained at 0 to 1 ° C. until filtration of the coagulated protein of the aged beer and the filling of the container after the filtration, and the filling of the koji after filling the container The heating process of heating the canned product to about 30 ° C. is handled as one production stage.
[0012]
[Means for Solving the Problems]
Therefore, an energy-saving system that recovers and uses factory exhaust heat in a carbonated beverage-containing factory that contains beer of the present invention,
It has a cooling process that cools raw product water at the time of production of carbonated beverages containing beer with cold brine, and a heating process that heats up to dew point temperature with high-temperature water that is performed after filling the container of the product, and is used for the cooling process The gist of the cold brine to be recovered is the energy saving system that collects and uses the factory waste heat of the carbonated beverage manufacturing factory constituted by the cold heat obtained through the cooling section that is operated by the exhaust heat in the heating process .
[0013]
And invention of Claim 1 is a heating part which heats the high temperature water used for the said heating process,
A cooling unit for cooling the cold brine in the cooling step is provided side by side,
The heating unit is composed of a heat pump cycle that drives the factory exhaust heat as a heat source, uses the condensation heat on the condenser side to produce high-temperature water,
On the other hand, the cooling unit is configured by a heat pump cycle that is driven by using the exhaust heat of the heating process as a heat source, and is configured to be cooled by cold brine using the evaporative cold heat on the evaporator side .
[0014]
For example , the factory exhaust heat in the cooling process according to claim 1 is exhaust heat (steam) during boiling of wort in the beer manufacturing process .
[0015]
[0016]
Further, the invention described in claim 3 is an adsorption or absorption refrigerator having a heat source side for removing heat from the heated waste water from the heating step and a cooling side for cooling the cold brine in the cooling step, and the heat source side. A cooling tower that cools the discharged heat removal water is installed side by side, and heating wastewater from the heating process is introduced as heat source water to the heat source side of the refrigerator, and the heat removal water deprived on the heat source side is cooled. Cold brine water introduced to the cooling side of the refrigerator through the tower and further cooled is introduced into the cooling step .
[0017]
The invention according to claim 1 is configured such that the heating unit is configured by a compression heat pump. In the case of a carbonated beverage, the heating unit is operated by factory exhaust heat in another process, and in the case of beer, the wort is boiled. It operates with boiling exhaust heat steam at the time, and in addition, 85-90 ° C. high temperature water can be obtained by addition of exhaust heat energy possessed by factory exhaust heat.
The invention according to claim 1 is configured such that the cooling unit according to claim 1 is configured by a compression heat pump that uses cold brine as a medium, and the compression heat pump is configured by exhaust heat in the heating step. The cold brine is operated to obtain cold brine from the evaporation section, and cooling cold heat is obtained from the cold brine. In this case, a brine heat storage tank is provided, and beer can be maintained at a low temperature before freezing following an intermittent load by automatic cooling capacity control by detecting the brine temperature via a three-way mixing valve.
[0018]
[Action]
An energy-saving system that recovers and uses factory waste heat in a beer and carbonated beverage manufacturing plant according to the present invention,
The heat balance in the production stage that combines the cooling process of cooling the raw product water with cold brine during the production of carbonated beverages containing beer and the heating process of heating to dew point temperature with high-temperature water after filling the container of the product It ’s a balance,
In the present invention, the heating energy of the high-temperature water used in the heating step is constituted by a heat pump cycle that is driven using factory exhaust heat ( for example, exhaust heat steam at the time of boiling wort in the beer manufacturing process ) as a heat source, and the condenser Configured to produce hot water using the heat of condensation on the side ,
The cooling energy used in the cooling process of cooling the raw product water with cold brine is constituted by the cooling energy obtained through the cooling section that is activated by the exhaust heat in the heating process, that is, the movement of the heat in the heating process to the cooling part. Therefore, the balance of heat balance between the cooling process and the heating process can be achieved.
[0019]
Moreover, the cooling step, when identified in the cooling step performed during carbon dioxide injection of carbonated beverages, the cooling step is pressing the carbon dioxide in the mixed sugar solution plus flavoring in mixed sugar solution obtained by mixing water and sugar When dissolving, in order to prevent quality stability and bubbling stably and continuously, the product raw water temperature is cooled below 10 ° C before freezing, the product outlet temperature is maintained at 1 to 3 ° C, and irregularly intermittent Although the thing which can control cooling capacity is requested | required to respond | correspond to the said raw | natural water supplied , according to this invention, it can respond.
[0020]
Also the cooling process, when identified in the cooling process to be performed on beer matured beer from prefiltration, the cooling process, in order to calm the precipitate and the carbon dioxide gas of coagulum beer aged in storage step In the process to be performed, a brine of around −5 ° C. is sent to cool the beer to near the freezing point and a cooling capacity controllable is required, but the present invention can cope with this.
In addition, the cooling uses -6 to -4 ° C brine for cooling the wort performed after the wort preparation step, and uses -5 to -3 ° C brine in the fermentation process and the storage process. In each case, the wort and the young beer are cooled to about 0 ° C.
[0021]
[0022]
The invention of claim 3, wherein the said cooling section, in which was configured from the absorption or adsorption chiller, using the thermal discharge heating step as a heat source water, cooled ablative heat the hot water after use It is cooled through a tower and introduced into the cooling side of an adsorption refrigerator to obtain low-temperature cold water. In this case, the cooling capacity is adjusted through a cooling tower.
[0023]
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
FIG. 1 is a diagram showing a schematic configuration when an energy-saving system that recovers and uses factory exhaust heat in a carbonated beverage manufacturing factory containing beer according to the present invention is applied to the carbonated beverage manufacturing factory, and FIG. 2 shows the beer according to the present invention. a diagram showing a schematic structure in the case of applying the energy-saving system for a factory exhaust heat to a recovery interest in beer production plant in carbonate含飲fees manufacturing plant comprising, 3 1, another embodiment of the cooling unit of FIG. 2 It is a figure which shows an example.
[0025]
As shown in FIG. 1, the energy saving system of the present invention includes a cooling process 10a for product raw water, a carbonation process 11a for injecting carbon dioxide gas into the cooled raw water, and a cooling raw water into which carbon dioxide gas has been injected. In the final production stage consisting of a carbonated beverage bottling or canning process 12, a heating process 13 after bottling or canning, and a packaging process 14, high-temperature water obtained by introducing factory waste heat is output to the heating process 13. The heating part 15a and the cooling part 20a which outputs the cold brine obtained by introduce | transducing the heating waste_water | drain from the heating process 13 to the cooling process 10a are comprised.
[0026]
Is the heating portion 15a becomes more and compression heat pump 19a and the heat exchanger 18a to become more a compressor 16a and the condenser 17a, and more condensed compressed to the condenser 17a by the compressor 16a factory exhaust heat (steam) further the hot water so as to obtain hot water through the heat exchanger 18a are to obtain hot water used for heating process of heating the factory exhaust heat.
In the above case, the power cost for driving the compressor is required, but a heating steam or heat source for obtaining high-temperature water is unnecessary.
[0027]
The above cooling unit 20a becomes more and compression heat pump 23a and the heat exchanger 24a to become more a compressor 21a and the evaporator 22a, compresses the exhaust heat in the heating step 13 in the compressor 21a evaporation Hatsuki 22a in the cooling step and cold brine heat exchanger output to 10a are the mixed sugar solution to be cooled to a low temperature before freezing in the heat exchanger 24a to obtain a cooled cold Bly down to -1 to 1 ° C..
In addition, a heat storage tank (not shown) is provided in the cold brine circulation path 25a, and the cold brine is automatically bypassed when the supply of the mixed sugar solution is stopped due to a load change through a three-way mixing valve (not shown). To prevent freezing of the mixed sugar solution.
In the above case, the power cost for driving the compressor is required, but a refrigerator for obtaining cold brine is unnecessary.
[0028]
FIG. 2 shows a schematic configuration when the energy saving system for recovering and using the factory exhaust heat in the carbonated beverage manufacturing factory containing beer of the present invention is applied to the beer manufacturing factory. In this case, the energy saving system is as follows. As shown in the figure, in the final production stage consisting of the cooling process 10b for the aged beer, the filtration process 11b, the stuffing or canning process 12, the heating process 13 and the packaging process 14, the exhaust heat steam at the boiling of wort is A heating unit 15b that outputs the high-temperature water obtained by introduction to the heating step 13 and a cooling unit 20b that outputs the cold brine obtained by introducing the exhaust heat from the heating step 13 to the cooling step 10b are configured. .
[0029]
Is the heating unit 15b becomes more and compression heat pump 19b and the heat exchanger 18b consisting of a condenser 17b and the compressor 16b, compressed to the compression of the preceding waste heat steam during wort boiling cooling step by the compressor 16b Steam is condensed in the condenser 17b to obtain hot water, and the warm water is heated by the factory exhaust heat such as exhaust heat steam at the time of boiling wort through the heat exchanger 18b, and high temperature water used for the heating process is obtained. To get.
In the above case, the power cost for driving the compressor is required, but a heating steam or heat source for obtaining high-temperature water is unnecessary.
[0030]
The cooling unit 20b includes a compression heat pump 23b including a compressor 21b and an evaporator 22b, and a heat exchanger 24b. The cooling unit 20b introduces the exhaust heat in the heating process 13 into the compressor 21b, and the evaporation latent heat of the evaporator 22b. A cold brine of −1 to 1 ° C. is obtained by heat exchange, and the aged beer, which is the raw product water, is cooled and maintained at a low temperature before freezing in the heat exchanger 24b.
In addition, a heat storage tank (not shown) is provided in the cold brine circulation path 25b, and the cold brine is automatically bypassed when the load changes and the supply of the aged beer is stopped via a three-way mixing valve (not shown). The aging beer is prevented from freezing.
In the above case, the power cost for driving the compressor is required, but a refrigerator for obtaining cold brine is unnecessary.
[0031]
FIG. 3 is a diagram showing another embodiment of the cooling unit of FIGS. 1 and 2, in which case the cooling unit uses an adsorption refrigeration machine 30 as shown in the figure, and the heat source side of the refrigeration unit The heated waste water of the heating step 13 is introduced as heat source water, and the deprived heat water deprived by the introduction is introduced to the cooling side of the adsorption refrigeration machine 30 through the cooling tower 31 to further cool the cold brine water. It is used in the cooling steps 10a and 10b.
In addition to the above, an absorption refrigerator may be used, and high-temperature waste water may be introduced to the regenerator side of the refrigerator, and cold water may be obtained from the evaporator side.
[0032]
【The invention's effect】
With the above configuration, an energy saving system can be constructed by balancing the balance of thermal energy through heat transfer by a heat pump at each stage divided into production stages having a cooling process and a heating process.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration when an energy-saving system that recovers and uses factory waste heat in a carbonated beverage manufacturing factory containing beer according to the present invention is applied to a carbonated drink manufacturing factory.
FIG. 2 is a diagram showing a schematic configuration when an energy-saving system for recovering factory exhaust heat in a carbonated beverage manufacturing factory containing beer according to the present invention is applied to a beer manufacturing factory.
FIG. 3 is a diagram showing another embodiment of the cooling unit of FIGS. 1 and 2;
[Explanation of symbols]
10a, 10b Cooling step 11a Carbonation step 11b Filtration step 12 Bottling step 13 Heating step 14 Packaging step 15a, 15b Heating unit 16a, 16b Compressor 17a, 17b Condenser 18a, 18b, 24a, 24b Heat exchanger 19a, 19b, 23a, 23b Compression heat pump 20a, 20b Cooling unit 21a, 21b Compressor 22a, 22b Evaporator 25a, 25b Cold brine circulation path 30 Adsorption refrigeration machine 31 Cooling tower

Claims (3)

ビールを含む炭酸含飲料の製造時に際しての製品原水を冷ブラインで冷却する冷却工程と、製品の容器充填後に行う高温水にて露点温度まで加熱する加熱工程とを有し、前記冷却工程に使用する冷ブラインは加熱工程での排熱により作動する冷却部を介して得られた冷熱により構成した炭酸含飲料製造工場の工場排熱を回収利用する省エネルギーシステムであって、
上記加熱工程に使用する高温水の加熱を行う加温部と、
前記冷却工程の冷ブラインを冷却する冷却部を並設し、
前記加温部は工場排熱を熱源として駆動するヒートポンプサイクルで構成し、その凝縮器側の凝縮熱を利用して高温水を製造し、
一方冷却部は前記加熱工程の排熱を熱源として駆動するヒートポンプサイクルで構成し、その蒸発器側の蒸発冷熱を利用して冷ブラインで冷却するように構成したことを特徴とするビールを含む炭酸含飲料製造工場の工場排熱を回収利用する省エネルギーシステム。
It has a cooling process that cools raw product water at the time of production of carbonated beverages containing beer with cold brine, and a heating process that heats up to dew point temperature with high-temperature water that is performed after filling the container of the product, and is used for the cooling process The cold brine is an energy-saving system that collects and uses the factory waste heat of the carbonated beverage manufacturing factory configured by the cold heat obtained through the cooling section that is operated by the exhaust heat in the heating process,
A heating unit for heating the high-temperature water used in the heating step;
A cooling unit for cooling the cold brine in the cooling step is provided side by side,
The heating unit is composed of a heat pump cycle that drives the factory exhaust heat as a heat source, uses the condensation heat on the condenser side to produce high-temperature water,
On the other hand, the cooling unit is configured by a heat pump cycle that is driven by using the exhaust heat of the heating process as a heat source, and is configured to be cooled by cold brine using the evaporative cold heat on the evaporator side. An energy-saving system that recovers and uses factory waste heat from beverage-containing manufacturing plants.
前記工場排熱は、ビール製造工程における麦汁煮沸時の排熱である請求項1記載のビールを含む炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステム。 The factory exhaust heat, energy saving system for recovering use of plant waste heat in carbonate含飲fees manufacturing plant including a beer according to claim 1, wherein the exhaust heat during wort boiling in the beer production process. ビールを含む炭酸含飲料の製造時に際しての製品原水を冷ブラインで冷却する冷却工程と、製品の容器充填後に行う高温水にて露点温度まで加熱する加熱工程とを有し、前記冷却工程に使用する冷ブラインは加熱工程での排熱により作動する冷却部を介して得られた冷熱により構成した炭酸含飲料製造工場の工場排熱を回収利用する省エネルギーシステムであって、
上記加熱工程に使用する高温水の加熱を行う加温部と、
前記冷却工程の冷ブラインを冷却する冷却部を並設し、
前記加温部は工場排熱を熱源として駆動するヒートポンプサイクルで構成し、その凝縮器側の凝縮熱を利用して高温水を製造し、
一方冷却部は上記加熱工程よりの加熱排水の奪熱を行う熱源側と前記冷却工程の冷ブラインを冷却する冷却側を有する吸着式若しくは吸収式冷凍機と、前記熱源側より排出された奪熱水の冷却を行う冷却塔により構成し、
前記冷凍機の熱源側に加熱工程の加熱排水を熱源水として導入させ、前記熱源側で奪熱された奪熱水を冷却塔を介して前記冷凍機の冷却側に導入して更に冷却された冷ブライン水を冷却工程に導入するようにしたビールを含む炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステム。
It has a cooling process that cools raw product water at the time of production of carbonated beverages containing beer with cold brine, and a heating process that heats up to dew point temperature with high-temperature water that is performed after filling the container of the product, and is used for the cooling process The cold brine is an energy-saving system that collects and uses the factory waste heat of the carbonated beverage manufacturing factory configured by the cold heat obtained through the cooling section that is operated by the exhaust heat in the heating process,
A heating unit for heating the high-temperature water used in the heating step;
A cooling unit for cooling the cold brine in the cooling step is provided side by side,
The heating unit is composed of a heat pump cycle that drives the factory exhaust heat as a heat source, uses the condensation heat on the condenser side to produce high-temperature water,
On the other hand, the cooling unit has an adsorption type or absorption type refrigerator having a heat source side for depriving the heated waste water from the heating step and a cooling side for cooling the cold brine in the cooling step, and the deprived heat discharged from the heat source side. Consists of a cooling tower that cools the water,
Heated wastewater from the heating process was introduced as heat source water to the heat source side of the refrigerator, and the deprived water removed from the heat source side was introduced to the cooling side of the refrigerator through a cooling tower and further cooled. An energy-saving system that recovers and uses factory waste heat in a carbonated beverage manufacturing factory that contains beer that has been introduced with cold brine water into the cooling process .
JP31424897A 1997-10-30 1997-10-30 An energy-saving system that recovers and uses factory waste heat at a carbonated beverage manufacturing plant that contains beer Expired - Fee Related JP3810036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31424897A JP3810036B2 (en) 1997-10-30 1997-10-30 An energy-saving system that recovers and uses factory waste heat at a carbonated beverage manufacturing plant that contains beer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31424897A JP3810036B2 (en) 1997-10-30 1997-10-30 An energy-saving system that recovers and uses factory waste heat at a carbonated beverage manufacturing plant that contains beer

Publications (2)

Publication Number Publication Date
JPH11130195A JPH11130195A (en) 1999-05-18
JP3810036B2 true JP3810036B2 (en) 2006-08-16

Family

ID=18051074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31424897A Expired - Fee Related JP3810036B2 (en) 1997-10-30 1997-10-30 An energy-saving system that recovers and uses factory waste heat at a carbonated beverage manufacturing plant that contains beer

Country Status (1)

Country Link
JP (1) JP3810036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9061390B2 (en) 2010-02-24 2015-06-23 Zeneral Heatpump Industry Co., Ltd. Production line system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173561B2 (en) * 2008-04-30 2013-04-03 サントリーホールディングス株式会社 Container heat treatment equipment
DE102009055300A1 (en) * 2009-12-23 2011-06-30 Krones Ag, 93073 Apparatus and method for recovering energy
KR102312232B1 (en) * 2016-01-19 2021-10-14 엘지전자 주식회사 A fermentation device
CN107619310B (en) * 2017-09-08 2023-04-28 国能龙源电力技术工程有限责任公司 System and method for recycling coastal power plant warm water
JP7326079B2 (en) * 2019-09-12 2023-08-15 三菱重工サーマルシステムズ株式会社 Beverage product manufacturing system
JP7358131B2 (en) * 2019-09-12 2023-10-10 三菱重工サーマルシステムズ株式会社 refrigerant cooling system
CN110849012B (en) * 2019-09-30 2020-08-18 西安交通大学 Carbon dioxide thermoelectric energy storage device and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9061390B2 (en) 2010-02-24 2015-06-23 Zeneral Heatpump Industry Co., Ltd. Production line system

Also Published As

Publication number Publication date
JPH11130195A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
Deshpande et al. Freeze concentration of fruit juices
JP3810036B2 (en) An energy-saving system that recovers and uses factory waste heat at a carbonated beverage manufacturing plant that contains beer
CN103013728B (en) Domestic full-automatic beer home-brewing machine
CN101664214B (en) Ultrasonic synergetic crystal growing fruit juice freezing and concentrating method and equipment thereof
US4388857A (en) Apparatus for the continuous cooking of wort
CZ291236B6 (en) Process for preparing a fermented malt beverage
CN104886702A (en) A clarified and concentrated fruit juice preparation method
CN112961741A (en) Hot beer capable of being heated and drunk on ice and preparation process thereof
CN112499676A (en) Intermittent vacuum crystallization ferrous sulfate process and preparation system
CN106333020A (en) Black tea beverage making method
CN110373288A (en) A kind of honey sweet osmanthus pilsner brewing method
US5075123A (en) Process and apparatus for removing alcohol from beverages
CN219063807U (en) Energy-saving device for recycling waste heat ice making
CZ23696A3 (en) Process of preliminary cooling of water for brewing beer and apparatus for making the same
CN102283284A (en) Transcritical carbon dioxide heat pump milk disinfecting and cooling system and method
CN105800716A (en) Sea water desalination system and method achieved by means of condensate waste heat of refrigeration system
CN1749389A (en) Full heat utilizing device of beer pasteurizing
JP2006038301A (en) Cooling system
JPS63279780A (en) Brewing equipment
CN1196386A (en) Optimizing technology for producing beer
CN216776010U (en) Sterilization process water cyclic utilization system
CN219259961U (en) Distilled equipment for white spirit production
CN1028113C (en) Storing method of yellow rice wine with large vessel
JPS62241A (en) Production of instant drink
CN113616080A (en) Cold and hot sharing flavor beverage extraction system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees