JP3810015B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP3810015B2
JP3810015B2 JP2004027994A JP2004027994A JP3810015B2 JP 3810015 B2 JP3810015 B2 JP 3810015B2 JP 2004027994 A JP2004027994 A JP 2004027994A JP 2004027994 A JP2004027994 A JP 2004027994A JP 3810015 B2 JP3810015 B2 JP 3810015B2
Authority
JP
Japan
Prior art keywords
time
mechanical shutter
shutter
still image
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004027994A
Other languages
Japanese (ja)
Other versions
JP2004153864A (en
Inventor
則行 井浦
知行 倉重
直樹 山本
宅哉 今出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004027994A priority Critical patent/JP3810015B2/en
Publication of JP2004153864A publication Critical patent/JP2004153864A/en
Application granted granted Critical
Publication of JP3810015B2 publication Critical patent/JP3810015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Description

本発明は、ビデオカメラ等の撮像装置に係り、特に静止画の映像信号を生成するときの露光制御に関する。   The present invention relates to an imaging apparatus such as a video camera, and more particularly to exposure control when generating a video signal of a still image.

ビデオカメラは、信号処理のディジタル化に伴ない、多種多様な機能が開発されている一方で、ディジタルの映像信号を容易に出力できることから、コンピュ−タなどの映像入力手段として注目されつつある。コンピュ−タなどの取り扱う映像は、静止画が一般的であり静止画の映像信号を得るために、現在では民生用のカメラ一体型VTRを用いてカメラ一体型VTRから出力される動画像のうちの任意の1フィ−ルドないし1フレ−ム分の映像信号をメモリ等に記録する。メモリ等に記録された映像信号は、静止画としてコンピュ−タに入力される。なお、ビデオカメラにおいて、適正露出の静止画を出力する技術が提案されている(例えば、特許文献1参照)。
特開平2−288679号公報
Video cameras have been attracting attention as video input means for computers and the like because various functions have been developed along with the digitization of signal processing, but digital video signals can be easily output. The video handled by a computer or the like is generally a still image, and in order to obtain a video signal of a still image, currently, among the moving images output from a camera-integrated VTR using a consumer-use camera-integrated VTR The video signal for one arbitrary field or one frame is recorded in a memory or the like. The video signal recorded in the memory or the like is input to the computer as a still image. A technique for outputting a still image with proper exposure in a video camera has been proposed (see, for example, Patent Document 1).
JP-A-2-288679

しかし、以下に示す問題から上記画像入力方法は好ましい方法ではない。   However, the image input method is not a preferable method because of the following problems.

(1)自動制御系を静止画にも対応できるようにする…一般的なビデオカメラでは映像信号を用いて露光制御を行なっている。すなわち、被写体の照度を検出する検出器を別個には有しておらず、映像信号から検出してそれぞれの制御部にフィ−ドバックしている。しかしながら、静止画の映像信号から検出しても、検出した静止画にフィ−ドバックできない。   (1) Making an automatic control system compatible with still images. In general video cameras, exposure control is performed using video signals. That is, it does not have a separate detector for detecting the illuminance of the subject, but is detected from the video signal and fed back to each control unit. However, even if it detects from the video signal of a still picture, it cannot feed back to the detected still picture.

(2)一般的な撮像素子を用いてフレ−ムの静止画を生成できるようにする…一般的な撮像素子は、画素の信号を一度しか読み出せない破壊読み出しであり、しかも垂直方向に隣接する2つの画素の信号を混合して読みだす画素混合方式である。上記読み出し方式のままで信号処理を行なうと、画素数に見合った解像度の静止画は生成できない。   (2) A still image of a frame can be generated using a general imaging device. A general imaging device is a destructive readout in which a pixel signal can be read only once and is adjacent in the vertical direction. This is a pixel mixing method in which signals from two pixels are mixed and read out. If signal processing is performed in the above readout method, a still image having a resolution corresponding to the number of pixels cannot be generated.

本発明は、これらの問題を解決し、通常のビデオカメラ(アイリス及び信号処理)で、フルフレームの静止画を撮像することを目的とする。   An object of the present invention is to solve these problems and to capture a full frame still image with a normal video camera (iris and signal processing).

上記問題点(1)を解決するため本発明は、入射光の一部を遮断する光量制限手段、入射光を画素ごとに光電変換するとともに、該画素で光電変換された電荷を任意の時間に掃き捨てるシャッタ機能を有する固体撮像素子、該固体撮像素子で光電変換された信号を映像信号として出力する信号処理手段、及び該光量制限手段及び該固体撮像素子の該シャッタ機能を制御することにより露光量を調節するとともに、静止画撮影時には、それ以前の動画撮影時に規定された露光量で該光量制限手段及び該シャッタ機能の露光制御を行なう露光制御手段を有する。   In order to solve the above problem (1), the present invention provides a light amount limiting means for blocking a part of incident light, photoelectrically converting incident light for each pixel, and charge converted by the pixel at an arbitrary time. A solid-state imaging device having a shutter function to be swept away, a signal processing means for outputting a signal photoelectrically converted by the solid-state imaging device as a video signal, an exposure by controlling the shutter function of the light quantity limiting means and the solid-state imaging element In addition to adjusting the amount, exposure control means for performing exposure control of the light amount limiting means and the shutter function with an exposure amount specified at the time of previous moving image shooting at the time of still image shooting.

上記問題点(2)を解決するため本発明では、さらに前記信号処理手段は、前記固体撮像素子が画素の信号を独立して出力している時と、画素混合して出力している時とで異なった信号処理により映像信号を生成する。   In order to solve the above problem (2), in the present invention, the signal processing means further includes a case where the solid-state imaging device outputs pixel signals independently and a case where pixel signals are mixed and output. A video signal is generated by different signal processing.

上記(1)の問題点を解決する手段によれば、動画撮像時の検出結果を記憶しておき、その検出結果を基に静止画を生成するように動作する。   According to the means for solving the problem (1), the detection result at the time of moving image capturing is stored, and an operation is performed to generate a still image based on the detection result.

また、上記(2)の問題点を解決する手段によれば、静止画撮像時には撮像素子の駆動方法を変えて画素の信号を混合せずに読み出され、信号処理回路に静止画の映像信号が入力されたときに信号処理の内容が静止画用に切り替わる。   Further, according to the means for solving the problem (2), at the time of taking a still image, the pixel signal is read without mixing by changing the driving method of the image sensor, and the video signal of the still image is read to the signal processing circuit. When is input, the signal processing content is switched to still image.

本発明によれば、静止画撮像時に正確な露光制御を行なうことができ、高画質な静止画を撮像することが出来る撮像装置を提供することができる。   According to the present invention, it is possible to provide an imaging apparatus that can perform accurate exposure control when capturing a still image and can capture a high-quality still image.

以下、本発明を図を用いて説明する。   Hereinafter, the present invention will be described with reference to the drawings.

図1は本発明の第1の実施形態に係る撮像装置の構成図である。同図において、101はレンズ、102はメカシャッタ、103は撮像素子、104はアンプ、105はA/D変換器、106は映像信号処理回路、107はカメラ制御回路、108はメカシャッタ制御回路、109は撮像素子駆動回路、110はシャッタボタンである。撮像素子103の具体例を図2に示す。図2において、201はホトダイオ−ド、202は垂直CCD、203は水平CCDであり、gr、mg、cy、yeはホトダイオ−ド201の各々の表面に配された色フィルタで、grはグリ−ン、mgはマゼンタ、cyはシアン、yeはイエロ−の色フィルタであることを示す。このような色フィルタが配されたホトダイオ−ドは一般に画素と呼ばれている。レンズ101を通して入力された光は、メカシャッタ制御回路108により絞り値Fが制御されたメカシャッタ102を通して撮像素子103に入力され、撮像素子103の表面に配されたホトダイオ−ド201で光電変換され、垂直CCD202内で画素混合され、水平CCD203を経由して出力される。撮像素子103の出力信号は、アンプ104で増幅され、A/D変換器105でディジタル信号に変換され、映像信号処理回路106に入力される。映像信号処理回路106は、入力された信号をNTSC等の映像信号に変換して出力すると共に被写体の輝度情報等をカメラ制御回路107に出力する。カメラ制御回路107は、被写体の輝度情報をもとに映像信号処理回路106の出力が所望の輝度レベルになるようにメカシャッタ制御回路108を制御し、メカシャッタ102の絞り値を変化させ、また、必要に応じて撮像素子駆動回路109を制御し、撮像素子103が有する電子シャッタスピ−ドを制御する。   FIG. 1 is a configuration diagram of an imaging apparatus according to the first embodiment of the present invention. In the figure, 101 is a lens, 102 is a mechanical shutter, 103 is an image sensor, 104 is an amplifier, 105 is an A / D converter, 106 is a video signal processing circuit, 107 is a camera control circuit, 108 is a mechanical shutter control circuit, 109 is An image sensor driving circuit 110 is a shutter button. A specific example of the image sensor 103 is shown in FIG. In FIG. 2, 201 is a photodiode, 202 is a vertical CCD, 203 is a horizontal CCD, gr, mg, cy and ye are color filters arranged on the respective surfaces of the photodiode 201, and gr is a green color. , Mg indicates magenta, cy indicates cyan, and ye indicates a yellow color filter. A photodiode provided with such a color filter is generally called a pixel. The light input through the lens 101 is input to the image sensor 103 through the mechanical shutter 102 whose aperture value F is controlled by the mechanical shutter control circuit 108, is photoelectrically converted by the photodiode 201 disposed on the surface of the image sensor 103, and is vertically Pixels are mixed in the CCD 202 and output via the horizontal CCD 203. The output signal of the image sensor 103 is amplified by the amplifier 104, converted into a digital signal by the A / D converter 105, and input to the video signal processing circuit 106. The video signal processing circuit 106 converts the input signal into a video signal such as NTSC and outputs it, and outputs luminance information of the subject to the camera control circuit 107. The camera control circuit 107 controls the mechanical shutter control circuit 108 so that the output of the video signal processing circuit 106 has a desired luminance level based on the luminance information of the subject, changes the aperture value of the mechanical shutter 102, and is necessary. Accordingly, the image sensor driving circuit 109 is controlled to control the electronic shutter speed of the image sensor 103.

次に、電子シャッタについて簡単に説明する。図3は、撮像素子103のポテンシャルを模式的に表した図である。同図において、301は撮像素子103に蓄えられた電荷、302は読み出しゲ−ト、303は基板電圧、304はwell、305はチャネルストッパである。ホトダイオ−ド201により光電変換された電荷は、読み出しゲ−ト302とwell304の間に図に示すように蓄えられる。撮像素子103に撮像素子駆動回路109から電荷掃き出しパルスが供給されると、基板電圧303のポテンシャルが下がる。すると、図4に示すように基板電圧303に引き込まれる形でwell304のポテンシャルが下がる。すると、電荷301は、基板電圧303の部分に掃き捨てられる。チャネルストッパ305は、隣の画素に対応する垂直CCD202からの電荷の漏れ込みを阻止するためのものである。   Next, the electronic shutter will be briefly described. FIG. 3 is a diagram schematically showing the potential of the image sensor 103. In this figure, 301 is a charge stored in the image sensor 103, 302 is a readout gate, 303 is a substrate voltage, 304 is a well, and 305 is a channel stopper. The charge photoelectrically converted by the photodiode 201 is stored between the read gate 302 and the well 304 as shown in the figure. When a charge sweeping pulse is supplied from the image sensor drive circuit 109 to the image sensor 103, the potential of the substrate voltage 303 decreases. Then, as shown in FIG. 4, the potential of the well 304 is lowered while being pulled by the substrate voltage 303. Then, the charge 301 is swept away to the portion of the substrate voltage 303. The channel stopper 305 is for preventing leakage of charges from the vertical CCD 202 corresponding to the adjacent pixel.

この構成において、シャッタボタン110を押すことによりカメラ制御回路107からシャッタクロ−ズの制御信号がメカシャッタ制御回路108に入力され、メカシャッタ制御回路108によってメカシャッタ102は、所定の時間後にクロ−ズ状態となる。メカシャッタ102がクロ−ズ状態となるまでに撮像素子103に入力された光は、上記動作と同様に撮像素子103に配されたホトダイオ−ド201によって光電変換され、メカシャッタ102がクロ−ズ状態の間に垂直CCD202を経由して水平CCD203へ転送し、撮像素子駆動回路109より供給される水平走査パルスに同期して電圧変換されて出力される。この時、撮像素子103は、ホトダイオ−ド201から1度信号を読み出すと、ホトダイオ−ド201に信号が残らない、いわゆる破壊読み出しであるので、一般的な読み出し方法である画素混合読み出しをすると、フレ−ムの情報が失われてしまう。   In this configuration, when the shutter button 110 is pressed, a shutter close control signal is input from the camera control circuit 107 to the mechanical shutter control circuit 108. The mechanical shutter control circuit 108 causes the mechanical shutter 102 to enter the closed state after a predetermined time. Become. The light input to the image sensor 103 until the mechanical shutter 102 is closed is photoelectrically converted by the photodiode 201 disposed in the image sensor 103 in the same manner as the above operation, and the mechanical shutter 102 is in the closed state. The data is transferred to the horizontal CCD 203 via the vertical CCD 202, and is subjected to voltage conversion in synchronization with the horizontal scanning pulse supplied from the image sensor driving circuit 109 and output. At this time, when the image sensor 103 reads the signal once from the photodiode 201, no signal remains in the photodiode 201, so-called destructive readout. The frame information is lost.

以下、画素混合読み出しの説明をする。撮像素子103は、シャッタボタン110が押されるまで、特開昭63−114487号公報に記載されているように、垂直方向に隣接する2つの画素信号を混合して読み出す、いわゆる画素混合方式で信号を読み出す。   Hereinafter, pixel mixed readout will be described. The image sensor 103 is a so-called pixel mixing method that reads and mixes two adjacent pixel signals in the vertical direction as described in JP-A-63-114487 until the shutter button 110 is pressed. Is read.

図5は、画素混合読み出し時における垂直転送パルスと、垂直CCD202における信号電荷の転送のタイミングチャ−トを示したものである。同図において垂直転送パルス1の3値パルスが高レベルになることでgr、mgの行のホトダイオ−ド201から、垂直転送パルス3の3値パルスが高レベルになることでcy、yeの行のホトダイオ−ド201からそれぞれ垂直CCD202に信号電荷が転送される。垂直CCD202に転送された信号電荷は、図5に示す通りに垂直CCD202内で混合され、水平CCD203に転送され、撮像素子103から出力される。   FIG. 5 shows a vertical transfer pulse at the time of pixel mixed readout and a signal charge transfer timing chart in the vertical CCD 202. In the figure, when the ternary pulse of the vertical transfer pulse 1 becomes a high level, the photo diode 201 of the row of gr and mg starts from the photodiode 201 of the row of the vertical transfer pulse 3, and when the ternary pulse of the vertical transfer pulse 3 becomes a high level, the rows of cy and yes. Signal charges are transferred from the photodiode 201 to the vertical CCD 202 respectively. The signal charges transferred to the vertical CCD 202 are mixed in the vertical CCD 202 as shown in FIG. 5, transferred to the horizontal CCD 203, and output from the image sensor 103.

ところが、静止画撮像時において上記した画素混合読み出しを行なうと、撮像素子103の垂直方向の画素数に見合った解像度を得ることが出来ないので、静止画撮像時には、以下に示す独立読み出しを行なう。図6は、独立読み出し時における垂直転送パルスと、垂直CCD202における信号電荷の転送のタイミングチャ−トを示したものである。同図において垂直転送パルス1、及び垂直転送パルス3の3値パルスが高レベルになる周期は、図6に示す通り1フィ−ルドおきである。よって垂直転送パルス1の3値パルスが高レベルになるフィ−ルドでは、gr、mgの行のホトダイオ−ド201からのみ信号電荷が垂直CCD202に転送され、次の1フィ−ルドでは、垂直転送パルス3の3値パルスが高レベルになることで、cy、mgの行のホトダイオ−ド201からのみ垂直CCD202に信号電荷が転送される。垂直CCD202に転送された信号電荷は、1フィ−ルド期間ですべて水平CCD203に転送されてしまうので、上記した画素混合読み出し方式の様に、隣りあったホトダイオ−ド201の信号電荷が混合されることはなく、1つのホトダイオ−ドに対して1つの信号を得ることができる。以下、水平CCD203に転送された信号電荷は、撮像素子駆動回路109より供給される水平走査パルスに同期して撮像素子103から出力される。撮像素子103の出力信号は、アンプ104で増幅され、A/D変換器105でディジタル信号に変換され、映像信号処理回路106に入力される。映像信号処理回路106は、入力された信号を映像信号に変換して出力する。ただし、上記独立読み出しをするにあたり、上記gr、mgの行のホトダイオ−ドの露光量と、cy、yeの行のホトダイオ−ドの露光量を等しくするために、静止画撮像のための露光を開始した時から、少なくとも上記信号を読み出し終えるまでの期間は、メカシャッタ102を全閉状態にしなければならない。さらに、撮像素子103に対する露光量は、前フィ−ルドに撮像素子103が有するホトダイオ−ド201が光電変換した信号電荷を垂直CCD202に転送した直後からメカシャッタ102が全閉状態になるまでに撮像素子103に入射した光量である。   However, if the above-described pixel mixture readout is performed at the time of still image capturing, the resolution corresponding to the number of pixels in the vertical direction of the image sensor 103 cannot be obtained. Therefore, the following independent readout is performed at the time of still image capturing. FIG. 6 shows a vertical transfer pulse at the time of independent reading and a timing chart of signal charge transfer in the vertical CCD 202. In FIG. 6, the period when the ternary pulses of the vertical transfer pulse 1 and the vertical transfer pulse 3 become high level is every other field as shown in FIG. Therefore, in the field where the ternary pulse of the vertical transfer pulse 1 is at a high level, the signal charge is transferred to the vertical CCD 202 only from the photo diode 201 of the gr and mg rows, and in the next one field, the vertical transfer is performed. When the ternary pulse of pulse 3 becomes high level, signal charges are transferred to the vertical CCD 202 only from the photodiodes 201 in the cy and mg rows. Since the signal charges transferred to the vertical CCD 202 are all transferred to the horizontal CCD 203 in one field period, the signal charges of the adjacent photodiodes 201 are mixed as in the above-described pixel mixture reading method. In other words, one signal can be obtained for one photodiode. Hereinafter, the signal charge transferred to the horizontal CCD 203 is output from the image sensor 103 in synchronization with the horizontal scanning pulse supplied from the image sensor drive circuit 109. The output signal of the image sensor 103 is amplified by the amplifier 104, converted into a digital signal by the A / D converter 105, and input to the video signal processing circuit 106. The video signal processing circuit 106 converts the input signal into a video signal and outputs it. However, in performing the independent reading, in order to make the exposure amount of the photodiodes in the gr and mg rows equal to the exposure amount of the photodiodes in the cy and yes rows, exposure for still image capturing is performed. The mechanical shutter 102 must be fully closed for at least a period from the start to the end of reading of the signal. Further, the amount of exposure for the image sensor 103 is determined immediately after the signal charge photoelectrically converted by the photodiode 201 of the image sensor 103 is transferred to the vertical CCD 202 immediately before the mechanical shutter 102 is fully closed. This is the amount of light incident on 103.

図7は、メカシャッタ102の絞り値に対する撮像素子103への露光量を示したグラフである。本実施形態のビデオカメラの露光制御ではシャッタボタン110が押されるまでは通常のビデオカメラと同様の動作を行っている。すなわち1フィールド期間撮像素子103に蓄積した電荷を毎フィールド読出し、信号処理回路で生成した輝度信号から露光量を計算して所定の露光量となるようにメカシャッタ制御回路108でメカシャッタ102の絞りを制御する。撮像素子103の露光は、電子シャッタを使用しない場合、ホトダイオード201から垂直CCD202への電荷転送を行う時刻t1〜t4からそれぞれ開始されるので、時刻t3〜t4の間でシャッタボタン110が押されたとすると、時刻t4から静止画生成のための露光が開始される。この時、Aで示した面積(露光量)が、現在撮像している被写体に対する適正な露光量であったとする。静止画撮像時に適正な露光量を得るためには、時刻t4〜t5期間の露光量であるBで示した面積とAで示した面積が等しくなるようにメカシャッタ102を動作させれば、静止画撮像時においても適正な露光量を得ることが出来る。   FIG. 7 is a graph showing the exposure amount to the image sensor 103 with respect to the aperture value of the mechanical shutter 102. In the exposure control of the video camera of this embodiment, the same operation as that of a normal video camera is performed until the shutter button 110 is pressed. That is, the electric charge accumulated in the image sensor 103 for one field period is read out every field, the exposure amount is calculated from the luminance signal generated by the signal processing circuit, and the mechanical shutter control circuit 108 controls the diaphragm of the mechanical shutter 102 so that the predetermined exposure amount is obtained. To do. When the electronic shutter is not used, the exposure of the image sensor 103 is started from time t1 to t4 when charge transfer from the photodiode 201 to the vertical CCD 202 is performed. Therefore, it is assumed that the shutter button 110 is pressed between time t3 and t4. Then, exposure for generating a still image is started from time t4. At this time, it is assumed that the area (exposure amount) indicated by A is an appropriate exposure amount for the subject currently being imaged. In order to obtain an appropriate exposure amount at the time of still image capturing, the mechanical shutter 102 is operated so that the area indicated by B and the area indicated by A, which are the exposure amounts during the period of time t4 to t5, are equalized. An appropriate exposure amount can be obtained even during imaging.

次に、本発明の第2の実施形態を図を用いて説明する。   Next, a second embodiment of the present invention will be described with reference to the drawings.

前述の第1の実施形態で図1に示した撮像装置において、動画撮像時信号中の雑音成分は、毎フィ−ルド毎に位相が異なり、人間の目で平滑化されるため、信号中の雑音成分は、あまり気にならなかった。しかし、静止画の場合、上記平滑化が行なわれないので、静止画撮像時においては、従来の動画を撮像する撮像装置よりもS/Nを向上させる必要がある。   In the imaging apparatus shown in FIG. 1 in the first embodiment described above, the noise component in the moving image imaging signal has a different phase for each field and is smoothed by the human eye. The noise component did not bother me much. However, in the case of a still image, since the above smoothing is not performed, it is necessary to improve the S / N ratio at the time of capturing a still image as compared with an imaging device that captures a conventional moving image.

上記S/Nを向上させる手段を図3を用いて以下に示す。同図においてホトダイオ−ド201により光電変換された電荷は、読み出しゲ−ト302とwell304の間に図に示すように蓄えられる。動画読み出し時においては、1フィ−ルドに1回垂直転送パルス1及び3の3値パルスが高レベルになることで読み出しゲ−ト302のポテンシャルが下がり、上記電荷301が垂直CCD202に転送される。この時、図に示した読み出しゲ−トのポテンシャルが垂直転送パルス1の3値パルスが高レベルになることで下がったとすれば、垂直方向に隣接する画素が有する読み出しゲ−トのポテンシャルは、垂直転送パルス3の3値パルスが高レベルになることによって下がるものとする。上記方法で読み出された電荷301は、上方ないし下方に隣接するホトダイオ−ドで光電変換された電荷と垂直CCD202内で混合される。静止画撮像時においては、読み出しを開始する1フィ−ルド目には、垂直転送パルス1の3値パルスのみを高レベルとして、2フィ−ルド目に垂直転送パルス3の3値パルスのみを高レベルとすることで上記画素混合を行なわずに電荷301を読みだす。この時、電荷301が読み出しゲ−ト302とwell304の間から溢れないかぎり1つの画素に対して動画撮像時よりも多くの量の電荷301を蓄積しても、垂直CCD202及び水平CCD203は、電荷の転送が可能である。上記方法に基づき撮像素子103により多くの電荷を蓄積することで、S/Nが向上する。   Means for improving the S / N will be described below with reference to FIG. In the figure, the charge photoelectrically converted by the photodiode 201 is stored between the readout gate 302 and the well 304 as shown in the figure. At the time of moving image reading, the vertical transfer pulse 1 and 3 ternary pulse once in a field goes high, thereby lowering the potential of the read gate 302 and transferring the charge 301 to the vertical CCD 202. . At this time, if the potential of the readout gate shown in the figure is lowered by the ternary pulse of the vertical transfer pulse 1 becoming high level, the potential of the readout gate of the pixels adjacent in the vertical direction is It is assumed that the ternary pulse of the vertical transfer pulse 3 is lowered by the high level. The charges 301 read out by the above method are mixed in the vertical CCD 202 with the charges photoelectrically converted by the photodiodes adjacent above or below. At the time of still image capturing, only the ternary pulse of the vertical transfer pulse 1 is set to the high level in the first field where reading starts, and only the ternary pulse of the vertical transfer pulse 3 is set to the high level in the second field. By setting the level, the charge 301 is read without performing the pixel mixing. At this time, as long as the charge 301 does not overflow between the readout gate 302 and the well 304, the vertical CCD 202 and the horizontal CCD 203 are charged even if a larger amount of charge 301 is accumulated in one pixel than in the moving image capturing. Can be transferred. By accumulating a large amount of charges in the image sensor 103 based on the above method, the S / N is improved.

次に、本発明の第3の実施形態を図を用いて説明する。   Next, a third embodiment of the present invention will be described with reference to the drawings.

本発明の第3の実施形態に係る撮像装置の構成は、前述の第1の実施形態と共通であるので、図1を用いて説明する。また、第1の実施形態と共通する部分については、その説明を省略する。上記実施形態に示した様に、静止画を撮像する場合、撮像素子103により多くの光を入射させ、より多くの電荷を蓄積した方がS/Nは有利である。以下、撮像素子103に蓄積させる電荷の量を動画撮像時の1.5倍として静止画撮像時の露光制御について説明する。   The configuration of the imaging apparatus according to the third embodiment of the present invention is the same as that of the first embodiment, and will be described with reference to FIG. Further, description of portions common to the first embodiment is omitted. As shown in the above-described embodiment, when capturing a still image, it is more advantageous to have more light incident on the image sensor 103 and accumulate more charge. Hereinafter, exposure control during still image capturing will be described with the amount of charge accumulated in the image sensor 103 being 1.5 times that during moving image capturing.

図8は、本実施形態におけるメカシャッタ102の絞り値に対する撮像素子103への露光量とホトダイオ−ド201から垂直CCD202への電荷の転送タイミングを示す図である。上記撮像装置において、静止画撮像動作に入る前には、第1の実施形態で述べたように一般的なビデオカメラと同様の露光制御を行なう。ここでは簡単のため動画撮像の時間を3フィ−ルド分しか示さないが、動画を撮像する時間の長さは、上記露光制御が十分安定するまでの任意の長さであり、その後シャッタボタン110が押されるまでの時間である。上記動画の露光制御が安定した後、図8のtsに示す時刻にシャッタボタン110が押されたとすると、カメラ制御回路107からシャッタクロ−ズの制御信号がメカシャッタ制御回路108に入力され、メカシャッタ制御回路108によってメカシャッタ102は、次のフィ−ルドの先頭つまり時刻t4から閉鎖動作を開始する。すなわち静止画撮像のための露光は、時刻t4から開始される。この時メカシャッタ102は、慣性を持たずに一定速度で直線的に絞り値を変化し、現在の絞り量から3フィ−ルドの時間で閉鎖したとする。また、図8に示すように時刻t4以降メカシャッタ102が閉鎖するまで垂直転送パルス1及び3の3値パルスを停止し、ホトダイオ−ド201からの電荷の読み出しを停止する。上記条件によれば、前述の第1の実施形態と同様に静止画撮像時の露光量すなわちBで示した面積は、動画撮像時の露光量、すなわちAで示した面積の1.5倍となり、図8に示す時刻t3からt4期間の露光量の1.5倍の露光量を撮像素子103に与えることができる。上記方法でt4〜t7期間に撮像素子103に入射した光は、光電変換されてメカシャッタ102が閉鎖した後のt7、t8のタイミングで各々1回ずつ垂直転送パルス1、3の3値パルスを高レベルにして、上記した独立読み出しにより撮像素子103から出力される。ただし、独立読み出しをしたので、映像信号処理回路106は、信号処理を静止画用に切り替えて入力された信号を映像信号に変換して出力する。また、この時撮像素子103に蓄えられた信号電荷は、動画撮像時の1.5倍であるので以後の信号処理における信号増幅の総量は、動画撮像時の1/1.5倍にすれば良い。   FIG. 8 is a diagram showing the exposure amount to the image sensor 103 with respect to the aperture value of the mechanical shutter 102 and the transfer timing of charges from the photodiode 201 to the vertical CCD 202 in this embodiment. In the imaging apparatus, before entering a still image imaging operation, exposure control similar to that of a general video camera is performed as described in the first embodiment. Here, for the sake of simplicity, only the time for capturing a moving image is shown for three fields, but the length of time for capturing a moving image is an arbitrary length until the exposure control is sufficiently stabilized, and then the shutter button 110. Is the time until is pressed. If the shutter button 110 is pressed at the time indicated by ts in FIG. 8 after the moving image exposure control is stabilized, a shutter close control signal is input from the camera control circuit 107 to the mechanical shutter control circuit 108, and mechanical shutter control is performed. By the circuit 108, the mechanical shutter 102 starts the closing operation from the beginning of the next field, that is, from the time t4. That is, exposure for still image capturing starts from time t4. At this time, it is assumed that the mechanical shutter 102 changes its aperture value linearly at a constant speed without inertia, and closes in 3 fields from the current aperture amount. Further, as shown in FIG. 8, the ternary pulses of the vertical transfer pulses 1 and 3 are stopped until the mechanical shutter 102 is closed after time t4, and the reading of charges from the photodiode 201 is stopped. According to the above conditions, the exposure amount at the time of still image capturing, that is, the area indicated by B, is 1.5 times the exposure amount at the time of moving image capturing, that is, the area indicated by A, as in the first embodiment. , An exposure amount that is 1.5 times the exposure amount during the period from time t3 to time t4 shown in FIG. The light incident on the image sensor 103 during the period from t4 to t7 by the above method is increased in the ternary pulse of the vertical transfer pulses 1 and 3 once each at the timings t7 and t8 after the photoelectric conversion and the mechanical shutter 102 is closed. The level is output from the image sensor 103 by the independent reading described above. However, since the independent reading is performed, the video signal processing circuit 106 switches the signal processing to a still image, converts the input signal into a video signal, and outputs the video signal. In addition, since the signal charge stored in the image sensor 103 at this time is 1.5 times that at the time of moving image capturing, the total amount of signal amplification in the subsequent signal processing should be 1 / 1.5 times that at the time of moving image capturing. good.

また、上記t4〜t7期間に撮像された映像信号は、1度しか読み出すことが出来ないので、読み出したら図示しないメモリ等の記録手段に記録し、必要に応じてコンピュ−タ機器等に静止画として出力する。   Further, since the video signal picked up during the period from t4 to t7 can be read only once, it is recorded in a recording means such as a memory (not shown) when read, and a still image is stored in a computer device or the like as necessary. Output as.

次に、本発明の第4の実施形態を図を用いて説明する。   Next, a fourth embodiment of the present invention will be described with reference to the drawings.

本発明の第4の実施形態に係る撮像装置の構成は、前述の第1及び3の実施形態と共通であるので、図1を用いて説明する。また、第1及び3の実施形態と共通する部分については、説明を省略する。本実施形態においても、撮像素子103に蓄積させる電荷の量を動画撮像時の1.5倍として静止画撮像時の露光制御について説明する。   The configuration of the imaging apparatus according to the fourth embodiment of the present invention is the same as that of the first and third embodiments described above, and will be described with reference to FIG. Further, description of portions common to the first and third embodiments is omitted. Also in the present embodiment, the exposure control during still image capturing will be described with the amount of charge accumulated in the image sensor 103 being 1.5 times that during moving image capturing.

図9は、本実施形態におけるメカシャッタ102の絞り値に対する撮像素子103への露光量と、ホトダイオ−ド201から垂直CCD202への電荷の転送タイミングを示す図である。本実施形態において、前述の第3の実施形態と異なる点は、被写体の照度がより高く、撮像素子103への露光量が前述の第3の実施形態の半分であることである。上記撮像装置において、静止画撮像動作に入る前には、第1の実施形態で述べたように一般的なビデオカメラと同様の露光制御を行なう。動画の露光制御が安定した後、図9のtsに示す時刻にシャッタボタン110が押されたとすると、静止画撮像のための露光は、時刻t4から開始される。この時メカシャッタ102は、前述の第3の実施形態と同様に慣性を持たずに一定速度で直線的に絞り値を変化する。すなわち、メカシャッタ102が閉鎖するまでに要する時間も半分となり、1.5フィ−ルドとなる。この時、前述の第1の実施形態と同様に、シャッタボタン110が押された次のフィ−ルドすなわち時刻t4からメカシャッタ102を閉鎖させたとすると、静止画撮像のための露光量を時刻t3〜時刻t4の動画撮像時に行なっていた露光制御による露光量の1.5倍にすることが出来ない。そこで、シャッタボタン110が押されても、カメラ制御回路107は、以下に示す方法で決まる一定の時間シャッタクロ−ズの制御信号をメカシャッタ制御回路108に出力しない。   FIG. 9 is a diagram showing the exposure amount to the image sensor 103 with respect to the aperture value of the mechanical shutter 102 and the transfer timing of charges from the photodiode 201 to the vertical CCD 202 in this embodiment. This embodiment differs from the third embodiment described above in that the illuminance of the subject is higher and the exposure amount to the image sensor 103 is half that of the third embodiment described above. In the imaging apparatus, before entering a still image imaging operation, exposure control similar to that of a general video camera is performed as described in the first embodiment. If the shutter button 110 is pressed at the time indicated by ts in FIG. 9 after the moving image exposure control is stabilized, exposure for still image capturing starts at time t4. At this time, the mechanical shutter 102 linearly changes the aperture value at a constant speed without inertia as in the third embodiment. That is, the time required until the mechanical shutter 102 is closed is also halved to 1.5 fields. At this time, as in the first embodiment described above, if the mechanical shutter 102 is closed from the next field after the shutter button 110 is pressed, that is, the time t4, the exposure amount for still image capturing is set to the time t3. It is not possible to reduce the exposure amount by the exposure control performed at the time of moving image capturing at time t4 to 1.5 times. Therefore, even when the shutter button 110 is pressed, the camera control circuit 107 does not output the shutter close control signal to the mechanical shutter control circuit 108 for a fixed time determined by the following method.

図10は、シャッタボタン110が押されてから、カメラ制御回路107が上記一定時間を計算し、シャッタクロ−ズの制御信号をメカシャッタ制御回路108に出力するまでの一連の動作を示す流れ図である。シャッタボタン110が押されると、シャッタクロ−ズの制御信号がカメラ制御回路107に入力され、カメラ制御回路107は、メカシャッタ102の現在の絞り値を判定し、現在のメカシャッタ102の絞り値から、メカシャッタ102が閉鎖するまでに要する時間を計算する。そして、動画撮像時に行っていた露光制御による露光量の1.5倍の露光量を静止画撮像時に与えるためにメカシャッタ102の閉鎖動作をどれだけ遅らせれば良いかを計算する。カメラ制御回路107は、シャッタボタン110が押されてから、上記計算で得られた時間後にメカシャッタ制御回路108にシャッタクロ−ズの制御信号を出力し、メカシャッタ102を閉鎖させる。なお、図示しないが、カメラ制御回路107は、メカシャッタ102の絞り値を認識する手段を有し、現在の露光量と、メカシャッタ102が閉鎖するまでに要する時間から、撮像素子103への露光量を静止画撮像時に動画撮像時の1.5倍の露光量を与えるために必要な上記一定時間を計算する手段を有する。本実施形態においては、上記一定時間を1フィ−ルドとすることで、前述の第1の実施形態と同様に図9に示す静止画撮像時の露光量すなわちBで示した面積は、動画撮像時の露光量、すなわちAで示した面積の1.5倍となり、時刻t3からt4期間の露光量の1.5倍の露光量を撮像素子103に与えることができる。上記方法でt4〜メカシャッタ102が閉鎖するまでに撮像素子103に入射した光は、光電変換されてメカシャッタ102が閉鎖した後のt7、t8のタイミングで各々1回ずつ垂直転送パルス1、3の3値パルスを高レベルにして、上記した独立読み出しにより撮像素子103から出力される。ただし、独立読み出しをしたので、映像信号処理回路106は、信号処理を静止画用に切り替えて入力された信号を映像信号に変換して出力する。また、この時撮像素子103に蓄えられた信号電荷は、動画撮像時の1.5倍であるので以後の信号処理における信号増幅の総量は、動画撮像時の1/1.5倍にすれば良い。   FIG. 10 is a flowchart showing a series of operations from when the shutter button 110 is pressed until the camera control circuit 107 calculates the predetermined time and outputs a shutter close control signal to the mechanical shutter control circuit 108. . When the shutter button 110 is pressed, a shutter close control signal is input to the camera control circuit 107. The camera control circuit 107 determines the current aperture value of the mechanical shutter 102, and from the current aperture value of the mechanical shutter 102, The time required until the mechanical shutter 102 is closed is calculated. Then, how much the closing operation of the mechanical shutter 102 should be delayed in order to give an exposure amount of 1.5 times the exposure amount by the exposure control performed at the time of moving image capturing at the time of still image capturing is calculated. The camera control circuit 107 outputs a shutter close control signal to the mechanical shutter control circuit 108 after the time obtained by the above calculation after the shutter button 110 is pressed, and closes the mechanical shutter 102. Although not shown, the camera control circuit 107 has means for recognizing the aperture value of the mechanical shutter 102, and calculates the exposure amount to the image sensor 103 from the current exposure amount and the time required until the mechanical shutter 102 is closed. Means for calculating the above-mentioned fixed time required to give an exposure amount 1.5 times that at the time of moving image capturing at the time of still image capturing. In the present embodiment, by setting the fixed time to one field, the exposure amount at the time of still image capturing shown in FIG. The exposure amount at the time, that is, 1.5 times the area indicated by A, and an exposure amount 1.5 times the exposure amount from the time t3 to the time t4 can be given to the image sensor 103. The light incident on the image sensor 103 from t4 until the mechanical shutter 102 is closed by the above method is subjected to photoelectric conversion and the vertical transfer pulses 1 and 3 are each once at timings t7 and t8 after the mechanical shutter 102 is closed. The value pulse is set to a high level and is output from the image sensor 103 by the independent reading described above. However, since the independent reading is performed, the video signal processing circuit 106 switches the signal processing to a still image, converts the input signal into a video signal, and outputs the video signal. In addition, since the signal charge stored in the image sensor 103 at this time is 1.5 times that at the time of moving image capturing, the total amount of signal amplification in the subsequent signal processing should be 1 / 1.5 times that at the time of moving image capturing. good.

また、上記t4〜メカシャッタ102が閉鎖するまでに撮像された映像信号は、1度しか読み出すことが出来ないので、読み出したら図示しないメモリ等の記録手段に記録し、必要に応じてコンピュ−タ機器等に静止画として出力する。   Since the video signal picked up from the time t4 to the time when the mechanical shutter 102 is closed can be read only once, it is recorded in a recording means such as a memory (not shown) when read, and a computer device if necessary. Etc. as a still image.

静止画撮像時において動画撮像時の露光量の1.5倍の露光量を得ることが出来る。なお、上記一定時間は、さらに被写体が明るく、さらに露光量が少ない場合は、上記一定時間がそれに応じて長くなることは、言うまでもない。なお、前述の第3の実施形態同様、図9に示すように時刻t4以降メカシャッタ102が閉鎖するまで垂直転送パルス1及び3の3値パルスを停止し、ホトダイオ−ド201からの電荷の読み出しを停止する。   At the time of still image capturing, an exposure amount that is 1.5 times the exposure amount at the time of moving image capturing can be obtained. Needless to say, when the subject is brighter and the amount of exposure is smaller, the predetermined time becomes longer accordingly. As in the third embodiment described above, as shown in FIG. 9, the ternary pulses of the vertical transfer pulses 1 and 3 are stopped until the mechanical shutter 102 is closed after time t4, and the charge is read out from the photodiode 201. Stop.

次に、本発明の第5の実施形態を図を用いて説明する。   Next, a fifth embodiment of the present invention will be described with reference to the drawings.

本実施形態は、前述の第3の実施形態と共通する部分があり、異なる部分について説明する。本実施形態においても、撮像素子103に蓄積させる電荷の量を動画撮像時の1.5倍として静止画撮像時の露光制御について説明する。   The present embodiment has parts in common with the third embodiment described above, and different parts will be described. Also in the present embodiment, the exposure control during still image capturing will be described with the amount of charge accumulated in the image sensor 103 being 1.5 times that during moving image capturing.

図11は、本実施形態におけるメカシャッタ102の絞り値に対する撮像素子103への露光量と、ホトダイオ−ド201から垂直CCD202への電荷の転送タイミング及び撮像素子駆動回路109から供給される電荷掃き捨てパルスのタイミングを示す図である。本実施形態において、前述の第3の実施形態と異なる点は、被写体の照度がより低く、撮像素子103への露光量が前述の第3の実施形態の2倍であることである。上記撮像装置において、静止画撮像動作に入る前には、第1の実施形態で述べたように一般的なビデオカメラと同様の露光制御を行なう。動画の露光制御が安定した後、図11のtsに示す時刻にシャッタボタン110が押されたとすと、静止画撮像のための露光は、時刻t4から開始される。この時メカシャッタ102は、前述の第3の実施形態と同様に慣性を持たずに一定速度で直線的に絞り値を変化する。すなわち、メカシャッタ102が閉鎖するまでに要する時間も2倍となり、6フィ−ルドとなる。この時、シャッタボタン110が押された次のフィ−ルドすなわち時刻t4からメカシャッタ102を閉鎖させたとすると、静止画撮像のための露光量は、時刻t3〜時刻t4の動画撮像時に行なっていた露光制御による露光量の3倍になってしまう。そこで、シャッタボタン110が押されて、時刻t4からメカシャッタ102が閉鎖動作を行なっている最中に、カメラ制御回路107は、以下に示す方法で決まる一定の時間撮像素子103が有する電子シャッタ機能によりホトダイオ−ド201に蓄積した電荷を掃き捨てる。   FIG. 11 shows the exposure amount to the image sensor 103 with respect to the aperture value of the mechanical shutter 102 in this embodiment, the charge transfer timing from the photodiode 201 to the vertical CCD 202, and the charge sweep pulse supplied from the image sensor drive circuit 109. It is a figure which shows the timing of. This embodiment is different from the third embodiment described above in that the illuminance of the subject is lower and the exposure amount to the image sensor 103 is twice that in the third embodiment described above. In the imaging apparatus, before entering a still image imaging operation, exposure control similar to that of a general video camera is performed as described in the first embodiment. If the shutter button 110 is pressed at the time indicated by ts in FIG. 11 after the moving image exposure control is stabilized, exposure for still image capturing is started from the time t4. At this time, the mechanical shutter 102 linearly changes the aperture value at a constant speed without inertia as in the third embodiment. That is, the time required until the mechanical shutter 102 is closed is doubled to 6 fields. At this time, if the mechanical shutter 102 is closed from the next field when the shutter button 110 is pressed, that is, the time t4, the exposure amount for still image capturing is the exposure performed at the time of moving image capturing from the time t3 to the time t4. It becomes 3 times the exposure amount by control. Therefore, while the mechanical shutter 102 is closing from the time t4 when the shutter button 110 is pressed, the camera control circuit 107 uses the electronic shutter function of the imaging element 103 for a certain time determined by the following method. The charge accumulated in the photodiode 201 is swept away.

図12は、シャッタボタン110が押されてから、カメラ制御回路107が上記一定時間を計算し、シャッタクロ−ズの制御信号をメカシャッタ制御回路108に出力するまでの一連の動作を示す流れ図である。シャッタボタン110が押されると、シャッタクロ−ズの制御信号がカメラ制御回路107に入力され、カメラ制御回路107は、メカシャッタ102の現在の絞り値を判定し、現在のメカシャッタ102の絞り値から、メカシャッタ102が閉鎖するまでに要する時間を計算する。そして、動画撮像時に行っていた露光制御による露光量の1.5倍の露光量を静止画撮像時に与えるために上記電子シャッタ機能による電荷の掃き出しを時刻t4からどれだけ行なえば良いかを計算する。カメラ制御回路107は、シャッタボタン110が押されてから、時刻t4からメカシャッタ102を閉鎖させるためにメカシャッタ制御回路108にシャッタクロ−ズの制御信号を出力し、同時に上記計算で得られた時間、撮像素子駆動回路109を制御し、撮像素子103に電荷掃き捨てパルスを供給させる。なお、図示しないが、カメラ制御回路107は、メカシャッタ102の絞り値を認識する手段を有し、現在の露光量と、メカシャッタ102が閉鎖するまでに要する時間から、撮像素子103への露光量を静止画撮像時に動画撮像時の1.5倍の露光量を与えるために必要な上記一定時間を計算する手段を有する。本実施形態においては、上記一定時間を略2フィ−ルドとすることで、静止画撮像時において動画撮像時の露光量の1.5倍の露光量を得ることが出来る。なお、上記一定時間は、さらに被写体が暗く、さらに露光量が多い場合は、上記一定時間がそれに応じて長くなることは、言うまでもない。   FIG. 12 is a flowchart showing a series of operations from when the shutter button 110 is pressed until the camera control circuit 107 calculates the predetermined time and outputs a shutter close control signal to the mechanical shutter control circuit 108. . When the shutter button 110 is pressed, a shutter close control signal is input to the camera control circuit 107. The camera control circuit 107 determines the current aperture value of the mechanical shutter 102, and from the current aperture value of the mechanical shutter 102, The time required until the mechanical shutter 102 is closed is calculated. Then, it is calculated how much charge should be swept out from the time t4 by the electronic shutter function in order to give an exposure amount 1.5 times the exposure amount by the exposure control performed at the time of moving image capturing at the time of still image capturing. . The camera control circuit 107 outputs a shutter close control signal to the mechanical shutter control circuit 108 to close the mechanical shutter 102 from time t4 after the shutter button 110 is pressed, and at the same time, the time obtained by the above calculation, The image sensor driving circuit 109 is controlled to supply the image sensor 103 with a charge sweeping pulse. Although not shown, the camera control circuit 107 has means for recognizing the aperture value of the mechanical shutter 102, and calculates the exposure amount to the image sensor 103 from the current exposure amount and the time required until the mechanical shutter 102 is closed. Means for calculating the above-mentioned fixed time required to give an exposure amount 1.5 times that at the time of moving image capturing at the time of still image capturing. In the present embodiment, by setting the fixed time to approximately 2 fields, it is possible to obtain an exposure amount that is 1.5 times the exposure amount during moving image capturing during still image capturing. Needless to say, if the subject is darker and the amount of exposure is larger, the predetermined time becomes longer accordingly.

また、上記t4〜メカシャッタ102が閉鎖するまでに撮像された映像信号は、1度しか読み出すことが出来ないので、読み出したら図示しないメモリ等の記録手段に記録し、必要に応じてコンピュ−タ機器等に静止画として出力される。なお、前述の第3の実施形態同様、図11に示すように時刻t4以降メカシャッタ102が閉鎖するまで垂直転送パルス1及び3の3値パルスを停止し、ホトダイオ−ド201からの電荷の読み出しを停止する。   Since the video signal picked up from the time t4 to the time when the mechanical shutter 102 is closed can be read only once, it is recorded in a recording means such as a memory (not shown) when read, and a computer device if necessary. Etc. as a still image. As in the third embodiment described above, as shown in FIG. 11, the ternary pulses of the vertical transfer pulses 1 and 3 are stopped until the mechanical shutter 102 is closed after time t4, and the charge is read from the photodiode 201. Stop.

次に、本発明の第6の実施形態を図を用いて説明する。   Next, a sixth embodiment of the present invention will be described with reference to the drawings.

図13は本発明の第6の実施形態に係る撮像装置の構成図であり、前述の第1の実施形態と共通する部分には同じ番号を付け、説明を省略する。同図において、1301はメカシャッタ、1302はEEPROM(電気的に書き替え可能なROM)であり、前述の第3、4及び5の実施形態においてメカシャッタ102は、慣性を持たずに一定速度で直線的に絞り値が変化するものとしていたが、上記メカシャッタ1301は、慣性を持っている。すなわち、シャッタボタン110が押されてシャッタクロ−ズの制御信号がメカシャッタ制御回路108に入力された後にメカシャッタ1301が行なうシャッタ閉鎖動作は、図14に示す軌跡をたどる。図14に示す軌跡は、メカシャッタ1301の種類によって異なり、また同一の種類のメカシャッタでも、個々のバラツキ等で、必ずしも同一ではない。そこで、用いたメカシャッタ1301の閉鎖動作時の軌跡をEEPROM1302に予め記録しておく。図14には、メカシャッタ1301の絞り値が3種類の場合しか示していないが、必要に応じて任意の各絞り値におけるメカシャッタ1301の閉鎖動作の軌跡をEEPROM1302に記録する。上記EEPROM1302に記録するデ−タは、生産工程における自動調整時に記録してもよい。   FIG. 13 is a configuration diagram of an imaging apparatus according to the sixth embodiment of the present invention. The same reference numerals are given to the same parts as those in the first embodiment, and the description will be omitted. In the figure, 1301 is a mechanical shutter, 1302 is an EEPROM (electrically rewritable ROM), and in the third, fourth and fifth embodiments described above, the mechanical shutter 102 is linear at a constant speed without inertia. However, the mechanical shutter 1301 has inertia. That is, the shutter closing operation performed by the mechanical shutter 1301 after the shutter button 110 is pressed and the shutter close control signal is input to the mechanical shutter control circuit 108 follows the locus shown in FIG. The trajectory shown in FIG. 14 differs depending on the type of the mechanical shutter 1301, and even the same type of mechanical shutter is not necessarily the same due to individual variations. Therefore, the locus during the closing operation of the mechanical shutter 1301 used is recorded in the EEPROM 1302 in advance. FIG. 14 shows only three types of aperture values of the mechanical shutter 1301, but the locus of the closing operation of the mechanical shutter 1301 at each arbitrary aperture value is recorded in the EEPROM 1302 as necessary. The data recorded in the EEPROM 1302 may be recorded during automatic adjustment in the production process.

なお、上記任意の各絞り値におけるメカシャッタ1301の閉鎖動作の軌跡は、その他の記録手段に記録してもよい。   Note that the locus of the closing operation of the mechanical shutter 1301 at each arbitrary aperture value may be recorded in other recording means.

以下、本実施形態においての静止画撮像時の露光制御を説明する。前述の第1、3、4及び5の実施形態と同様に静止画撮像動作をする前には、一般的なビデオカメラと同様の動画を撮像し、一般的なビデオカメラが行なっている露光制御を行なう。図15,16,17は、本実施形態において静止画撮像を行なう場合の各メカシャッタ1301の絞り値に対する撮像素子103への露光量と、ホトダイオ−ド201から垂直CCD202への電荷の転送タイミングを示す図であり、図18は、シャッタボタン110が押されてからの静止画撮像時における露光制御動作を示す流れ図である。   Hereinafter, exposure control during still image capturing in the present embodiment will be described. Similar to the first, third, fourth, and fifth embodiments described above, before performing a still image capturing operation, a moving image similar to a general video camera is captured and exposure control performed by the general video camera is performed. To do. 15, 16, and 17 show the exposure amount to the image sensor 103 with respect to the aperture value of each mechanical shutter 1301 and the transfer timing of charges from the photodiode 201 to the vertical CCD 202 when still image capturing is performed in the present embodiment. FIG. 18 is a flowchart showing an exposure control operation when a still image is captured after the shutter button 110 is pressed.

図18に示すように、動画の露光制御が安定した後、任意のタイミングtsでシャッタボタン110が押されると、カメラ制御装置107は現在のメカシャッタ1301の絞り値に対応する閉鎖動作の軌跡をEEPROM1302から読み出す。そして、EEPROM1302からのデ−タをもとに、静止画撮像時において、動画撮像時に行なった露光制御による露光量の1.5倍の露光量を与えるために、図15に示すように前述の第4の実施形態で行なったシャッタ閉鎖動作を遅らせる方法を用いるか、また、図16に示すように前述の第5の実施形態で行なった電子シャッタによる電荷の掃き出しを行なうか、図17に示すようにまた前述の第3の実施形態で行なったように時刻t4からシャッタ閉鎖動作を行なうかを判定する。上記判定結果が前述の第4の実施形態と同様にシャッタ閉鎖動作を遅らせるであったなら、カメラ制御回路107は図18で示すaを選択し、時刻t4からシャッタ閉鎖動作をどれだけ遅らせるかを計算し、時刻t4から得られた計算時間後すなわち図15に示す時刻tssにシャッタクロ−ズの制御信号をメカシャッタ制御回路に出力する。また、上記判定結果が前述の第5の実施形態と同様に電子シャッタによる電荷の掃き出しを行なうであったら、図18で示すbを選択し、カメラ制御回路107は、静止画撮像のための露光開始時間である時刻t4から電子シャッタによる電荷の掃き出しを行なう時間を計算し、時刻t4にシャッタクロ−ズの制御信号をメカシャッタ制御回路108に出力し、同時に上記計算で得られた時間だけ撮像素子駆動回路109を制御し、撮像素子103に蓄積した電荷の掃き出しを行なわせる。また、上記した2つ以外、すなわちシャッタ閉鎖動作を遅らせる必要も、電子シャッタによる電荷の掃き出しも行なう必要が無い場合には、図18で示すcを選択し、前述の第3の実施形態のように時刻t4からシャッタクロ−ズの制御信号をメカシャッタ制御回路108に出力し、メカシャッタ1301を閉鎖させる。   As shown in FIG. 18, after the exposure control of the moving image is stabilized, when the shutter button 110 is pressed at an arbitrary timing ts, the camera control device 107 displays the locus of the closing operation corresponding to the current aperture value of the mechanical shutter 1301 in the EEPROM 1302. Read from. Then, based on the data from the EEPROM 1302, in order to give an exposure amount 1.5 times the exposure amount by the exposure control performed at the time of moving image capturing at the time of still image capturing, as shown in FIG. The method of delaying the shutter closing operation performed in the fourth embodiment is used, or the electric charge is swept out by the electronic shutter performed in the above-described fifth embodiment as shown in FIG. As described above, it is determined whether the shutter closing operation is performed from time t4 as in the third embodiment. If the determination result is that the shutter closing operation is delayed as in the fourth embodiment, the camera control circuit 107 selects a shown in FIG. 18 and determines how much the shutter closing operation is delayed from time t4. After the calculation time obtained from time t4, that is, at time tss shown in FIG. 15, a shutter close control signal is output to the mechanical shutter control circuit. Further, if the determination result is that the electric shutter sweeps out the electric charge as in the fifth embodiment, b shown in FIG. 18 is selected, and the camera control circuit 107 performs exposure for taking a still image. The time for sweeping out charges by the electronic shutter is calculated from time t4 which is the start time, and a shutter close control signal is output to the mechanical shutter control circuit 108 at time t4. The drive circuit 109 is controlled to sweep out the charge accumulated in the image sensor 103. In addition to the above two cases, that is, when it is not necessary to delay the shutter closing operation or to sweep out the electric charge by the electronic shutter, c shown in FIG. 18 is selected, as in the above-described third embodiment. At time t4, a shutter close control signal is output to the mechanical shutter control circuit 108 to close the mechanical shutter 1301.

なお、図示しないが、カメラ制御回路107は、メカシャッタ1301の絞り値を認識する手段を有し、現在の露光量と、EEPROM1302より与えられるデ−タから、撮像素子103への露光量を静止画撮像時に動画撮像時の1.5倍とするために、上記方法のいづれかの方法を用いれば良いかを判定する手段と、シャッタ閉鎖動作を遅らせる時間の計算手段及び電子シャッタによる電荷の掃き出し時間を計算する手段を有する。また、上記t4〜メカシャッタ1301が閉鎖するまでに撮像された映像信号は、1度しか読み出すことが出来ないので、読み出したら図示しないメモリ等の記録手段に記録し、必要に応じてコンピュ−タ機器等に静止画として出力する。なお、前述の第3、4、5の実施形態同様、図15、16、17に示すように時刻t4以降メカシャッタ102が閉鎖するまで垂直転送パルス1及び3の3値パルスを停止し、ホトダイオ−ド201からの電荷の読み出しを停止する。   Although not shown, the camera control circuit 107 has means for recognizing the aperture value of the mechanical shutter 1301, and calculates the exposure amount to the image sensor 103 from the current exposure amount and the data supplied from the EEPROM 1302. Means for determining whether any one of the above methods should be used in order to set the time for taking a moving picture to 1.5 times when taking a picture, calculating means for delaying the shutter closing operation, and the charge sweep time by the electronic shutter. Have means for calculating. Since the video signal picked up from the time t4 until the mechanical shutter 1301 is closed can be read out only once, it is recorded in a recording means such as a memory (not shown) when read out, and the computer equipment is used as necessary. Etc. as a still image. As in the third, fourth and fifth embodiments, the ternary pulses of the vertical transfer pulses 1 and 3 are stopped until the mechanical shutter 102 is closed after time t4 as shown in FIGS. The reading of charges from the node 201 is stopped.

本発明の実施形態に係る撮像素子の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the image pick-up element which concerns on embodiment of this invention. 本発明の実施形態に係る撮像素子の具体例を示す図である。It is a figure which shows the specific example of the image pick-up element which concerns on embodiment of this invention. 本発明の実施形態に係る撮像素子のポテンシャルを示す図である。It is a figure which shows the potential of the image pick-up element which concerns on embodiment of this invention. 本発明の実施形態に係る撮像素子のポテンシャルを示す図である。It is a figure which shows the potential of the image pick-up element which concerns on embodiment of this invention. 本発明の実施形態に係る撮像素子の駆動を示すタイミングチャートである。6 is a timing chart illustrating driving of an image sensor according to an embodiment of the present invention. 本発明の実施形態に係る撮像素子の駆動を示すタイミングチャートである。6 is a timing chart illustrating driving of an image sensor according to an embodiment of the present invention. 本発明の実施形態に係る撮像素子への露光量を示す図である。It is a figure which shows the exposure amount to the image pick-up element which concerns on embodiment of this invention. 本発明の実施形態に係る撮像素子への露光量と撮像素子の駆動を示す図である。It is a figure which shows the exposure amount to the image pick-up element which concerns on embodiment of this invention, and the drive of an image pick-up element. 本発明の実施形態に係る撮像素子への露光量と撮像素子の駆動を示す図である。It is a figure which shows the exposure amount to the image pick-up element which concerns on embodiment of this invention, and the drive of an image pick-up element. 本発明の実施形態に係る流れ図である。3 is a flowchart according to an embodiment of the present invention. 本発明の実施形態に係る撮像素子への露光量と撮像素子の駆動を示す図である。It is a figure which shows the exposure amount to the image pick-up element which concerns on embodiment of this invention, and the drive of an image pick-up element. 本発明の実施形態に係る流れ図である。3 is a flowchart according to an embodiment of the present invention. 本発明の実施形態に係る撮像装置の回路構成を示すブロック図である。1 is a block diagram illustrating a circuit configuration of an imaging apparatus according to an embodiment of the present invention. 本発明の実施形態に係るメカシャッタの閉鎖動作の軌跡を示す図である。It is a figure which shows the locus | trajectory of the closing operation | movement of the mechanical shutter which concerns on embodiment of this invention. 本発明の実施形態に係る撮像素子への露光量と撮像素子の駆動を示す図である。It is a figure which shows the exposure amount to the image pick-up element which concerns on embodiment of this invention, and the drive of an image pick-up element. 本発明の実施形態に係る撮像素子への露光量と撮像素子の駆動を示す図である。It is a figure which shows the exposure amount to the image pick-up element which concerns on embodiment of this invention, and the drive of an image pick-up element. 本発明の実施形態に係る撮像素子への露光量と撮像素子の駆動を示す図である。It is a figure which shows the exposure amount to the image pick-up element which concerns on embodiment of this invention, and the drive of an image pick-up element. 本発明の実施形態に係る流れ図である。3 is a flowchart according to an embodiment of the present invention.

符号の説明Explanation of symbols

101 レンズ
102 メカシャッタ
103 撮像素子
104 アンプ
105 A/D変換器
106 映像信号処理回路
107 カメラ制御回路
108 メカシャッタ制御回路
109 撮像素子駆動回路
110 シャッタボタン
201 ホトダイオード
202 垂直CCD
203 水平CCD
301 電荷
302 読み出しカード
303 基板電圧
304 well
305 チャネルストッパ
1301 メカシャッタ
1302 EEPROM
DESCRIPTION OF SYMBOLS 101 Lens 102 Mechanical shutter 103 Image pick-up element 104 Amplifier 105 A / D converter 106 Image signal processing circuit 107 Camera control circuit 108 Mechanical shutter control circuit 109 Image pick-up element drive circuit 110 Shutter button 201 Photo diode 202 Vertical CCD
203 Horizontal CCD
301 Charge 302 Reading card 303 Substrate voltage 304 well
305 Channel stopper 1301 Mechanical shutter 1302 EEPROM

Claims (1)

メカシャッタと、
入射光を画素ごとに光電変換するとともに、該画素で光電変換された電荷を任意の時間に掃き捨てる電子シャッタ機能を有する固体撮像素子と、
該固体撮像素子で光電変換された信号を動画または静止画の映像信号として出力する信号処理手段と、
該メカシャッタの閉鎖に要する時間の情報を記憶する記憶手段と、
該記憶手段に記憶された該メカシャッタの閉鎖に要する時間の情報を用いて該固体撮像素子の該電子シャッタ機能を制御して静止画撮像の露光時間の開始を決め、該メカシャッタの閉鎖により静止画撮像の露光時間の終了を決めることにより静止画の露光時間制御をし、かつ、静止画の露光量を動画の露光量より多くなるように制御する露光制御手段と、
備えたことを特徴とする撮像装置。
Mechanical shutter,
A solid-state imaging device having an electronic shutter function that photoelectrically converts incident light for each pixel and sweeps away the charge photoelectrically converted by the pixel at an arbitrary time;
Signal processing means for outputting a signal photoelectrically converted by the solid-state imaging device as a video signal of a moving image or a still image ;
Storage means for storing information on the time required to close the mechanical shutter;
Using the information on the time required to close the mechanical shutter stored in the storage means, the electronic shutter function of the solid-state imaging device is controlled to determine the start of exposure time for still image capturing, and the still image is captured by closing the mechanical shutter. Exposure control means for controlling the exposure time of the still image by determining the end of the exposure time of the imaging, and controlling the exposure amount of the still image to be larger than the exposure amount of the moving image ;
Imaging apparatus characterized by comprising a.
JP2004027994A 2004-02-04 2004-02-04 Imaging device Expired - Lifetime JP3810015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027994A JP3810015B2 (en) 2004-02-04 2004-02-04 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027994A JP3810015B2 (en) 2004-02-04 2004-02-04 Imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004000563A Division JP3810014B2 (en) 2004-01-05 2004-01-05 Imaging device

Publications (2)

Publication Number Publication Date
JP2004153864A JP2004153864A (en) 2004-05-27
JP3810015B2 true JP3810015B2 (en) 2006-08-16

Family

ID=32464223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027994A Expired - Lifetime JP3810015B2 (en) 2004-02-04 2004-02-04 Imaging device

Country Status (1)

Country Link
JP (1) JP3810015B2 (en)

Also Published As

Publication number Publication date
JP2004153864A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US20050083419A1 (en) Image sensing apparatus and image sensor for use in image sensing apparatus
JP4877359B2 (en) Solid-state imaging device and imaging device
US20060103742A1 (en) Image capture apparatus and image capture method
US6839084B1 (en) Image pickup apparatus capable of switching modes based on signals from photoelectric conversion pixels
US20080143862A1 (en) Image capturing apparatus
US20070263111A1 (en) Solid-state image pickup device capable of compensating for vertical shading caused by dark current
JP2007288131A (en) Solid-state imaging element, solid-state imaging device and its driving method
US8169511B2 (en) Imaging apparatus and photographing control method
US8102438B2 (en) Imaging device
JP2007134806A (en) Solid-state imaging element
JP2006108889A (en) Solid-state image pickup device
JP4272095B2 (en) Imaging device
JP3117056B2 (en) Imaging device
US7791654B2 (en) Digital still camera and method of controlling same with controlled charge sweep-out
JP3810015B2 (en) Imaging device
JP3810016B2 (en) Imaging device
JP3810014B2 (en) Imaging device
JP3888553B2 (en) Video and still image capturing method
JP3566633B2 (en) Imaging device
JP4071804B2 (en) Imaging method
JP4724138B2 (en) Imaging device
JP4814749B2 (en) Solid-state imaging device
JP2003234964A (en) Digital camera
JP2010166396A (en) Method of driving image sensor
JP4810566B2 (en) Imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350