JP3808170B2 - Steam overheat reducer, steam generator and boiler - Google Patents

Steam overheat reducer, steam generator and boiler Download PDF

Info

Publication number
JP3808170B2
JP3808170B2 JP13651897A JP13651897A JP3808170B2 JP 3808170 B2 JP3808170 B2 JP 3808170B2 JP 13651897 A JP13651897 A JP 13651897A JP 13651897 A JP13651897 A JP 13651897A JP 3808170 B2 JP3808170 B2 JP 3808170B2
Authority
JP
Japan
Prior art keywords
spray
steam
tube
pipe
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13651897A
Other languages
Japanese (ja)
Other versions
JPH10325509A (en
Inventor
巌 日下
祥一 武田
利則 重中
弘師 吉崎
耕一 豊嶋
淳夫 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP13651897A priority Critical patent/JP3808170B2/en
Publication of JPH10325509A publication Critical patent/JPH10325509A/en
Application granted granted Critical
Publication of JP3808170B2 publication Critical patent/JP3808170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Nozzles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ボイラなどの蒸気発生装置における蒸気過熱低減技術に係り、特に蒸気配管内を流通する高温高圧の蒸気の過熱を低減する装置に関する。
【0002】
【従来の技術】
ボイラの給水、蒸気系統図を図11に示す。図11において、給水ポンプ21からの給水は高圧給水過熱器22、節炭器23、火炉水壁24及び過熱器25を経て過熱蒸気となり、高圧タービン26で使用される。該高圧タービン26で仕事をした蒸気は再熱器27で再加熱された後、中低圧タービン28で使用される。該中低圧タービン28で仕事をした蒸気は復水器29に送られて復水された後、復水ポンプ30で復水脱塩装置31に供給されて脱塩処理された後、復水昇圧ポンプ32で低圧給水過熱器33に供給され、さらに脱気器34で脱気され、その後再びボイラに供給される。
【0003】
ここで、蒸気過熱低減器10が過熱器25または再熱器27の蒸気温度制御に使用されている。図11において過熱器25側、再熱器27側の蒸気過熱低減器10への給水はそれぞれ給水ポンプ21の後流側、中段から行っている。この位置から給水を行うのは、給水ポンプ21に障害を与えることなく揚程を確保することができるようにするためである。
【0004】
また、図12にガスタービン41からの排ガスの熱を回収して蒸気を発生させ、蒸気タービン56、65で仕事をさせる複合プラントに使用される排熱回収ボイラの給水、蒸気系統図を示す。図12において、低圧給水ポンプ51からの給水は給水管52を経て低圧節炭器43に供給されて加熱され、低圧ドラム給水管53から低圧ドラム45に供給される一方、高圧給水ポンプ57から高圧給水管58、高圧節炭器46を経て高圧ドラム48に供給される。該高圧ドラム48で分離された蒸気はドラム蒸気出口管61を経て過熱器49に送られて過熱蒸気となり、高圧主蒸気管62より高圧蒸気タービン56で使用される。該高圧蒸気タービン56で仕事をした蒸気は低温再熱器63から再熱器50に送られて再加熱された後、高温再熱管64から低圧蒸気タービン65に送られて使用される。
【0005】
ここでも、蒸気過熱低減器10が過熱器49または再熱器50の蒸気温度制御に使用されている。
また、図示していないが、タービン蒸気系統においても、蒸気過熱低減器が蒸気温度制御に使用される。
【0006】
従来よりボイラにおいて使用されている蒸気過熱低減器を図8(a)〜(c)に示す。このうち、図8(a)は片持ち型のノズルステム管1によるものを示し、図8(b)は両端支持型のノズルステム管1によるものを示す。また、図8(c)は、蒸気配管9と該蒸気配管9に配されたノズルステム管1を蒸気流の下流側から見た断面図を示し、スプレー噴霧孔2と蒸気配管9との位置関係を示す図である。ここで、片持ち型とは、ノズルステム管1を蒸気配管9内に配したときにノズルステム管1の一端を蒸気配管9で支持する構造のものをいい、これに対して両端支持型とは、ノズルステム管1の両端を蒸気配管9で支持する構造のものをいう。
【0007】
図8(a)〜(c)に示すように、ノズルステム管1にはスプレー噴霧孔2が蒸気流に対して後流側で、かつ蒸気配管9の横断面の中心部またはその近傍に設けてあり、図示していない給水系統から給水の一部を抽水し、前記ノズルステム管1を経てスプレー噴霧孔2から、例えば500℃以上の蒸気流内に噴霧した場合に、スプレー後の微粒化された液滴を蒸気流内にほぼ均一に噴霧することで、蒸気温度の偏差を抑制し、平均的に蒸気温度を低減している。
【0008】
しかしながら、図8(a)〜(c)に示す何れのノズルステム管1も高速で流通する蒸気流の中に突出して設けられるため、ノズルステム管1の背面(蒸気流の後流側)には負圧部が生じ、スプレー後の噴霧液滴の一部が前記負圧部に巻き戻され、液滴となってノズルステム管1外表面に付着する。
【0009】
このとき、スプレー流量が多い場合には、ノズルステム管1内を流通する水による冷却が順次行われ、ノズルステム管1外表面の昇温が抑えられるため、ノズルステム管1外表面に液滴が付着しても温度差が小さく構造上強度面での支障は生じない。
【0010】
ここで、ボイラ負荷(%)の変化によるスプレー水の流量(トン/時)の特性を概念的に図9(c)に示す。図9(c)に示すように、スプレー水の流量はプラント運用条件によって大幅に変化する。すなわち、スプレー水の流量はボイラ負荷が低負荷である時には、最低流量であり、ボイラ負荷が上昇し、例えば30〜40(%)以上になった場合には増加し、さらに80〜90(%)以上の高運転負荷帯では再び最低流量となる。
【0011】
これらの特性は、例えば、図11に示すボイラにおいては、図9(a)に示すようなボイラ負荷に対するGR(排ガス再循環量)に基づき決まり、また図12に示す排熱回収ボイラでは図9(b)に示すようなガスタービンからの排ガス特性に基づき決まるものである。
【0012】
このとき、図9(c)に示すように高運転負荷帯においては、スプレー流量が少量となるが、従来の蒸気過熱低減器10においてノズルステム管1の冷却が十分行えず、ノズルステム管1の外表面が過度に昇温することに起因する問題があった。
【0013】
【発明が解決しようとする課題】
過熱器または再熱器の蒸気過熱低減器は、蒸気温度が例えば、400℃〜500℃以上の温度にさらされる蒸気流内に配置され、約100℃〜150℃前後の給水がスプレー水として供給される。
【0014】
図9に示すように高運転負荷帯においては、スプレー水の流量が少量となるため、従来のノズルステム管1ではノズルステム管1内の流速が2cm/secまで低速になり管表面温度の冷却が不十分となる。
【0015】
上記従来技術のうち、図8(b)に示す両端支持型のノズルステム管1において、高負荷運転時にスプレー流量が少量の場合には、図10(b)に示すように、ノズルステム管1の内部の水の流通が低流速となることにより、流入側とは反対側のノズルステム管1の閉止端部に達する前に、スプレー噴霧孔2へのショートパスが生じ、このためノズルステム管1の閉止端部に水の停滞域が生じる。該停滞域では、ノズルステム管1の外部を流通する高温の蒸気流により沸騰し、気泡が生じる。このため図10(a)のスプレー流量が少流量の場合でのノズルステム管1の外壁温度(℃)の特性図に示すように、前記気泡による伝熱阻害のためにノズルステム管1の閉止端部の外表面が異常に昇温することになり、前記ノズルステム管1の外表面への噴霧液滴の付着による温度差が大きい(300℃以上)ことによる急冷による熱衝撃や、ノズルステム管1の外表面の長手方向での温度差によるハンピング現象など、ノズルステム管1に多大の熱応力が発生する。
【0016】
また、従来技術のうち、図8(a)に示す片持ち型のノズルステム管1においては、ノズルステム管1の端部とスプレー噴霧孔2との位置関係からノズルステム管1の端部に水の停滞域が生じることは少ないが、図8(a)に示すように蒸気流の偏流により、噴霧液滴の巻き戻りが発生しやすく、高負荷運転気にスプレー水の流量が少量の場合には、ノズルステム管1内部の水の流通が低流速となることにより、ノズルステム管1の外表面が昇温したところに、集中的に噴霧液滴が付着することになり熱衝撃などの熱応力が発生する。
【0017】
さらに、負荷変化、蒸気温度制御に伴うスプレー水の流量の変動により、噴霧液滴の付着量、付着範囲が変化するため、ノズルステム管1への熱応力が繰り返し作用することになり、最悪の場合には疲労破壊に至ることになる。試算では、数千時間、約半年、の運転でノズルステム管1の表面に亀裂が生じる。
【0018】
前記に示すように、従来技術においてはスプレー流量が少なくなった場合に、蒸気過熱低減器におけるノズルステム管の外表面が異常昇温を防止することについての配慮が不足しており、熱応力に基づく疲労破壊に至る問題があった。
【0019】
本発明の課題は、高運転負荷時にスプレー流量が少なくなった場合にも、ノズルステム管全体を冷却することで熱応力の発生を防止でき、全負荷帯において安全に使用できる蒸気過熱低減器、該蒸気過熱低減器を備えた蒸気発生器またはボイラを提供することにある。
【0020】
【課題を解決するための手段】
本発明の上記課題は、冷却水噴霧用のスプレー噴霧孔が設けられているノズルステム管を蒸気配管内に配置した蒸気過熱低減器において、前記ノズルステム管は先端部を塞いだ閉止部を有する内管と該内管を内部に配置した前記スプレー噴霧孔が設けられた外管とからなり、内管には該内管に流入した冷却水噴霧用のスプレー水を外管に向けて流出させる流出孔をスプレー水の流入側と該流入側とは反対側の閉止部側よりに設けた蒸気過熱低減器により解決される。
【0021】
ここで、前記流出孔は内管の中心軸線を含む平面内で、該中心軸線に直交する線に対して前記スプレー噴霧孔の方向に0度から90度の角度で傾斜させて穿孔して設けることで流出孔からのスプレー水は外管のスプレー噴霧孔に向けてスムーズに流れることができる。また前記流出孔は内管の中心軸線に対して垂直方向の断面内で、前記内管の径方向に対して0度から90度の角度で傾斜させて穿孔して設けると流出孔からのスプレー水は旋回流となってスプレー噴霧孔に向けてスムーズに流れる。さらに、流出孔の周りの内管外表面には外管のスプレー噴霧孔の方向に、該流出孔からのスプレー水を誘導する螺旋状のスパイラルフィンを設けることで、流出孔からのスプレー水はスプレー噴霧孔に向けてスムーズに流すことができる。
【0022】
さらに内管の先端の閉止部と内管のスプレー水入口部基部にも流出孔を設けておくと、外管と内管との間隙部でのスプレー水の停滞の発生を防止することができる。
また、特に前記内管がスプレー噴霧孔を挟んで伸延して設けられる場合には、前記流出孔を前記スプレー噴霧孔を挟んでそれぞれ少なくとも1個設ける。
【0024】
また、本発明は前記蒸気過熱低減器を蒸気温度制御に使用する蒸気発生装置、または蒸気過熱器と再熱器を備えたボイラにおいて、前記蒸気過熱低減器を過熱器および/または再熱器の蒸気温度制御に使用するボイラも含まれる。
【0025】
【作用】
本発明によれば、蒸気過熱低減器のノズルステム管を、先端部を塞いだ内管と、前記スプレー噴霧孔が設けられて前記内管の外側に配される外管からなる二重管構造とし、内管には該内管に流入したスプレー水を外管に対して流出させる流出孔をスプレー水の流入側と該流入側とは反対側の閉止部側よりに設けたので、スプレー水が少流量になった場合でも管内での流速を早めることができ、ノズルステム管の隅々を流れてスプレー噴霧孔へ至る流れを形成することができる。従って、本発明のノズルステム管は、その全体を冷却することができるので、蒸気流れに対してノズルステム管背面側にスプレー噴霧液滴が付着しても熱応力が生じることがない。
【0026】
【発明の実施の形態】
本発明の実施の形態の蒸気過熱低減器を図面と共に説明する。
図1に本発明の実施の形態の蒸気過熱低減器に用いるノズルステム管1の一例を示すが、片持ち型、両端支持型でのいずれでも良い。図1において、ノズルステム管1は内管3と外管4からなる二重管構造であり、外管4の一側面にはスプレー噴霧孔2が設けられている。該スプレー噴霧孔2は、噴霧されたスプレー水の微細化された液滴が蒸気流内にほぼ均等に広がるように、蒸気配管(図示せず)内に配置された場合に前記スプレー噴霧孔2は、蒸気配管の中心軸線を含む平面内またはその近傍に一列状または二列以上の複数列状に設けられている。
【0027】
内管2と外管3との間の間隙は、内管2の先端部と外管3の先端部との間隙も含めて、該間隙に停滞部が生じないようにするために、できるだけ小さくすることが望ましいが、給水中にスケールなどが含まれていた場合に、該スケールにより、前記間隔が閉塞されるのを防止する必要があるので、約3mm以上とすることが望ましい。
また、内管3には、図示していない給水系統からの一部の給水からなるスプレー水が外管4に対して流出する流出孔5、6を設けている。図2(図1のA−A線断面図)と図3(図1の部分拡大図)に流出孔5、6部分の詳細を示す。
【0028】
図1に示すように、流出孔5、6は外管4に設けられたスプレー噴霧孔2を挟む位置に設けられていて、図3に示すように、このうち流出孔6は内管3のスプレー水の流入側とは反対側の塞がれた閉止端部側よりに、流出孔5は内管3のスプレー水の流入側よりに設けられている。そして流出孔5、6共に内管3の中心軸線を含む平面内で該中心軸線に直交する垂線に対して、前記スプレー噴霧孔の方向に0度から90度の角度(θ)に傾斜させて穿孔して設けられている。
【0029】
また、図2に流出孔6の例で示すように、流出孔5、6はともに内管3の中心軸線に対して垂直方向(内管3の径方向)の断面内で、内管3の径方向に対しても0度〜90度の傾斜角度(δ)を有するように設けられている。
このように流出孔5、6が前記所定の傾斜角度を有するように内管3に設けられているので、内管3から流出する流出水は内管3の外周方向に向けて螺旋状に流出すると同時に外管4ののスプレー噴霧孔2に向けて流出水が流れる。
【0030】
ここで、流出孔5、6は孔加工が可能であれば、図1に示すようにできるだけ内管3の端部に近づけて設けることが望ましい。すなわち、流出孔は内管3のスプレー水の流入側とは反対側の閉止した端部近傍、流出孔はスプレー水が流入する内管3の基部近傍にそれぞれ設けることが望ましい。
【0031】
しかしながら、前記孔加工が容易に行えない場合には、図4に示すように、図1と同様な流出孔5、6の他に流出孔7を前記閉止した先端部内の内管3の軸方向に設け、また、流出孔8を内管3の基部に内管の軸に対して垂直方向(径方向)に設けることが望ましい。
これらの流出孔5〜8は、給水中にスケールなどが含まれていた場合の閉塞防止を考慮して約3mm径以上とすることが望ましい。
【0032】
前記構成とすることにより、内管3に流入したスプレー水はそれぞれの流出孔5〜8から流速を速めた噴流となって、内管3と外管4の間隙部に噴出される。このうち、流出孔5、6からの噴流はスプレー噴霧孔2に向かう内管円周方向の旋回流となり、内管3と外管4の間隙部に沿って流れるので、外管4との伝熱効率を向上させることができる。また、図4に示す流出孔7、8は内管3と外管4の間隙部において前記旋回流が及ばないデットスペースにスプレー水の一部を噴出させて、前記旋回流の流れに至る流れを形成することができるので、スプレー水の停滞部の発生を防止できる。
【0033】
また、前記流出孔7、8からのスプレー水は内管3と外管4の間隙部に生じやすい停滞部の発生が防止でき、後流の流出孔5、6からのスプレー水の旋回流により撹拌されるに十分な流出量で供給されれば良く、単一の孔からなる流出孔7からの流出量は流出孔5または流出孔6の一つの流出孔からの流出量の半分程度で十分であり、また複数の流出孔群からなる流出孔8群からの流出量も流出孔5または流出孔6の一つの流出孔からの流出量の半分程度で十分であり、流出孔7、8の穿孔方向は内管3の中心軸線への垂線に対して所定の傾斜角度を設けてもよく、孔の形状、数を任意に設定しても構わない。
【0034】
前記内管3と外管4の間隙部の大きさと流出孔5〜8の相互の間隔と配置位置は、内管3と外管4との間隙部を流れるスプレー水の流速が0.3m/min以上となるように設けることが望ましい。この流速以下では、停滞流や沸騰が発生しやすい。
【0035】
また、流出孔5、6はそれぞれ内管3の中心軸線に対して垂直面にある円周方向にそれぞれ2個以上または3個以上設けることが望ましい。
また、流出孔5、6は内管3の中心軸線に直交する方向(径方向)に穿孔してもよく、図3に示すように内管3の中心軸線に直交する方向(径方向)に対してスプレー噴霧孔2側に0〜90度の範囲で傾いた角度θを穿孔してもよい。要するに、流出孔5、6の配置、孔の傾斜角度はスプレー水の旋回効果を上げることと、スプレー水の流れが相互に干渉しない程度の流路幅を持たせることにより、澱みのない流れを形成し、内管3と外管4の間隙部内での流動抵抗を少なくするような配慮に基づいて設ける。
また、スプレー噴霧孔2を挟んで設けた流出孔5、6からの旋回方向は、同一方向でも相互に逆方向でもよい。
【0036】
図1から図4に示すノズルステム管1においては、管内の流速を0.3〜30m/minに確保することができ、ノズルステム管1の管内への熱伝達も十分に行えて、ノズルステム管1の外表面と付着する噴霧液滴との温度差を200度以下に抑えることができるので、過大な熱応力が発生することがない。
【0037】
図5に示す実施の形態では、流出孔5、6は旋回流を生じやすくするように、スプレー噴霧孔を挟んで内管3の円周上に均等に分割してそれぞれ2段設けている。また図5(b)の図5(a)のA−A線断面図、図5(c)の図5(a)のB−B線断面図に示すように、前後2段に配置される流出孔5、6が互いに内管3の径方向に60度位相をずらして設けられており、スプレー噴霧孔2から離れた位置に配置された流出孔5、6からのスプレー水の旋回流が減速した付近に、スプレー噴霧孔2から近い位置に配置された流出孔5、6からスプレー水を流出させることにより、前記旋回流を加速するようにしている。
【0038】
また、前後2段に配置される流出孔5、6が互いに内管3の径方向に60度位相をずらした例を図5に示しているが、前記位相差がない位置に配置しても良く、流出孔6からのスプレー水の旋回流が流出孔5からのスプレー水の旋回流を加速する位置に流出孔5、6が配置されていれば良い。
また、流出孔5、6はそれぞれ内管3の径方向の同一円周上に分割して配置しなくても内管3の長手方向(内管の軸方向)に順次ずらして螺旋状に配置してもよい。
【0039】
また図5には示していないが、図4で説明した閉止部のある内管先端部の流出孔7及び内管基部の流出孔8を設けても良い。流出孔7、8からのスプレー水は内管3と外管4の間隙部に生じる可能性のあるスプレー水が停滞することを防止して、かつ後流の流出孔5、6からのスプレー水の旋回流により撹拌されるに十分な流出量で供給されれば良い。また、流出孔7、8の穿孔方向は内管3の中心軸線をに直交する平面に対して所定の傾斜角度を設けてもよく、孔の形状、数を任意に設定しても良い。
図5に示すノズルステム管1によれば流出孔5、6からのスプレー水の旋回流の流路を特定の位置に形成できるので、外管4の冷却をより確実に行うことができる。
【0040】
また、図6に示すノズルステム管1は、内管3の外周にスパイラルフィン11を設けている。該スパイラルフィン11はスプレー噴霧孔2を挟んで、内管3の両端から外管4のスプレー噴霧孔2の近傍まで溶接などにより取り付け、スプレー噴霧孔2の位置近傍とその前後には取り付けない。また、流出孔5、6は内管3のスプレー水入口側基部と、内管3の先端側において、それぞれスパイラルフィン11の根元に設ける。
【0041】
前記スパイラルフィン11は、内管3のスプレー水入口側基部と内管3の先端側とでその螺旋の回転方向を逆にしてもよく、あるいは同一にしてもよい。図6に示すノズルステム管1も図1、図4、図5に示すノズルステム管1と同様の効果が得られるが、さらに図6に示すノズルステム管1によればスパイラルフィン11があるので、スプレー水の旋回流の流路位置を固定できるので、外管4の冷却をより確実に行うことができる。また図6には示していないが、図4で説明した閉止部のある内管先端部の流出孔7及び内管先端部の流出孔8を設けても良い。
【0042】
また、図7に示すノズルステム管1は、片持ち型のものであるが、スプレー噴霧孔2を外管4の端部近傍に設け、ノズルステム管1を内管3と外管4の二重管とし、内管3には流出孔5、6を内管基部と中央部に設けることにより、スプレー水が少流量の場合でも、管内流速を高めると共に、内管3と外管4の間隙部を流出孔5、6からの旋回流と流出孔7、8からの補助流により停滞なく流れを形成することができるので、ノズルステム管1を十分に冷却することができる。この図7に示すノズルステム管1も図5に示すノズルステム管1のように前後2段の流出孔5、6を設けるかまたは図6に示すようにスパイラルフィン11を設けても良い。
【0043】
【発明の効果】
本発明によれば、蒸気過熱低減器のノズルステム部の全体を、運転状態に係わらず所定の温度に冷却するので、スプレー噴霧液滴が蒸気流による巻き戻りによりノズルステム管外表面に付着しても、過剰な熱応力が発生せず、疲労破壊を防止することができるので、設備の安全性を向上できると共に、従来は半年程度での交換が必要であったがこれを大幅に延長することができるので経済的効果も生じる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の蒸気過熱低減器の断面図を示す。
【図2】 図1の蒸気過熱低減器の内管に設けたスプレー噴霧孔の内管の軸方向の断面図を示す。
【図3】 図1の蒸気過熱低減器の内管に設けたスプレー噴霧孔の内管の軸に対して垂直方向の断面図を示す。
【図4】 本発明の実施の形態の蒸気過熱低減器の断面図を示す。
【図5】 本発明の実施の形態の蒸気過熱低減器を示す。
【図6】 本発明の実施の形態の蒸気過熱低減器を示す。
【図7】 本発明の実施の形態の片持ち型のノズルステム管を有する蒸気過熱低減器を示す。
【図8】 従来の蒸気過熱低減器を示す。
【図9】 ボイラ負荷とスプレー流量の関係などの特性図を示す。
【図10】 従来の蒸気過熱低減器の断面図およびノズルステム管外表面の温度分布特性図を示す。
【図11】 本発明が適用されるボイラの給水、蒸気系統図を示す。
【図12】 本発明が適用される排熱回収ボイラの給水、蒸気系統図を示す。
【符号の説明】
1 ノズルステム管 2 スプレー噴霧孔
3 内管 4 外管
5〜8 流出孔 9 蒸気管
10 蒸気過熱低減器 11 スパイラルフィン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for reducing steam overheating in a steam generator such as a boiler, and more particularly to an apparatus for reducing overheating of high-temperature and high-pressure steam circulating in a steam pipe.
[0002]
[Prior art]
A boiler water supply and steam system diagram is shown in FIG. In FIG. 11, the feed water from the feed water pump 21 becomes superheated steam through the high pressure feed water superheater 22, the economizer 23, the furnace water wall 24 and the superheater 25, and is used in the high pressure turbine 26. The steam that has worked in the high-pressure turbine 26 is reheated in the reheater 27 and then used in the medium- and low-pressure turbine 28. The steam that has worked in the intermediate / low pressure turbine 28 is sent to a condenser 29 to be condensed, and then supplied to a condensate demineralizer 31 by a condensate pump 30 and subjected to desalination, and then the condensate pressure is increased. It is supplied to the low pressure feed water superheater 33 by the pump 32, further deaerated by the deaerator 34, and then supplied again to the boiler.
[0003]
Here, the steam superheat reducer 10 is used for steam temperature control of the superheater 25 or the reheater 27. In FIG. 11, water is supplied to the steam superheat reducer 10 on the superheater 25 side and the reheater 27 side from the downstream side and the middle stage of the water supply pump 21, respectively. The reason for supplying water from this position is to ensure the head without causing any obstacle to the water supply pump 21.
[0004]
FIG. 12 shows a water supply and steam system diagram of an exhaust heat recovery boiler used in a combined plant that recovers the heat of exhaust gas from the gas turbine 41 to generate steam and performs work by the steam turbines 56 and 65. In FIG. 12, the feed water from the low-pressure feed pump 51 is supplied to the low-pressure economizer 43 through the feed pipe 52 and heated, supplied to the low-pressure drum 45 from the low-pressure drum feed pipe 53, It is supplied to the high-pressure drum 48 through the water supply pipe 58 and the high-pressure economizer 46. The steam separated by the high-pressure drum 48 is sent to the superheater 49 through the drum steam outlet pipe 61 to become superheated steam, and is used in the high-pressure steam turbine 56 from the high-pressure main steam pipe 62. The steam that has worked in the high-pressure steam turbine 56 is sent from the low-temperature reheater 63 to the reheater 50 and reheated, and then sent from the high-temperature reheat pipe 64 to the low-pressure steam turbine 65 for use.
[0005]
Again, the steam superheat reducer 10 is used for steam temperature control of the superheater 49 or the reheater 50.
Although not shown, a steam superheat reducer is also used for steam temperature control in the turbine steam system.
[0006]
A steam superheat reducer conventionally used in boilers is shown in FIGS. Among these, FIG. 8A shows the case with the cantilever type nozzle stem tube 1, and FIG. 8B shows the case with the both end support type nozzle stem tube 1. FIG. 8C shows a cross-sectional view of the steam pipe 9 and the nozzle stem pipe 1 arranged in the steam pipe 9 as viewed from the downstream side of the steam flow, and the positions of the spray spray holes 2 and the steam pipe 9. It is a figure which shows a relationship. Here, the cantilever type refers to a structure in which one end of the nozzle stem tube 1 is supported by the steam pipe 9 when the nozzle stem pipe 1 is disposed in the steam pipe 9. Means a structure in which both ends of the nozzle stem tube 1 are supported by the steam pipe 9.
[0007]
As shown in FIGS. 8 (a) to 8 (c), the spray spray hole 2 is provided in the nozzle stem tube 1 on the downstream side with respect to the steam flow and at or near the center of the cross section of the steam pipe 9. When a part of the water supply is extracted from a water supply system (not shown) and sprayed through the nozzle stem tube 1 from the spray spray hole 2 into a steam flow of, for example, 500 ° C. or more, atomization after spraying By spraying the droplets almost uniformly in the steam flow, deviation of the steam temperature is suppressed, and the steam temperature is reduced on average.
[0008]
However, since any nozzle stem tube 1 shown in FIGS. 8A to 8C is provided so as to protrude into the steam flow that circulates at a high speed, it is provided on the back surface of the nozzle stem tube 1 (the downstream side of the steam flow). A negative pressure portion is generated, and a part of the sprayed droplet after spraying is rewound onto the negative pressure portion, and becomes a droplet and adheres to the outer surface of the nozzle stem tube 1.
[0009]
At this time, when the spray flow rate is large, cooling with water flowing in the nozzle stem tube 1 is sequentially performed, and the temperature rise on the outer surface of the nozzle stem tube 1 is suppressed. Even if it adheres, the temperature difference is small and there is no problem in terms of strength in terms of structure.
[0010]
Here, the characteristic of the flow rate (ton / hour) of the spray water according to the change of the boiler load (%) is conceptually shown in FIG. As shown in FIG. 9C, the flow rate of the spray water varies greatly depending on the plant operating conditions. That is, the flow rate of spray water is the minimum flow rate when the boiler load is low, and increases when the boiler load increases, for example, 30-40 (%) or more, and further 80-90 (% ) The minimum flow rate again in the high operating load range.
[0011]
For example, in the boiler shown in FIG. 11, these characteristics are determined based on the GR (exhaust gas recirculation amount) with respect to the boiler load as shown in FIG. 9A, and in the exhaust heat recovery boiler shown in FIG. It is determined based on the exhaust gas characteristics from the gas turbine as shown in (b).
[0012]
At this time, as shown in FIG. 9 (c), the spray flow rate is small in the high operating load zone, but the conventional steam superheat reducer 10 cannot sufficiently cool the nozzle stem tube 1 and the nozzle stem tube 1 There was a problem caused by excessive temperature rise of the outer surface of the film.
[0013]
[Problems to be solved by the invention]
The superheater or reheater steam superheat reducer is placed in a steam stream where the steam temperature is exposed to a temperature of, for example, 400 ° C. to 500 ° C. or more, and feed water of about 100 ° C. to 150 ° C. is supplied as spray water. Is done.
[0014]
As shown in FIG. 9, since the flow rate of the spray water is small in the high operating load zone, the flow rate in the nozzle stem tube 1 is reduced to 2 cm / sec in the conventional nozzle stem tube 1 and the tube surface temperature is cooled. Is insufficient.
[0015]
Among the above-described conventional techniques, in the both end support type nozzle stem tube 1 shown in FIG. 8B, when the spray flow rate is small during high load operation, as shown in FIG. 10B, the nozzle stem tube 1 As a result of the low flow rate of water inside the nozzle, a short path to the spray spray hole 2 occurs before reaching the closed end of the nozzle stem tube 1 on the side opposite to the inflow side. A stagnant region of water is produced at the closed end of 1. In the stagnation region, the water is boiled by a high-temperature steam flow that flows outside the nozzle stem tube 1, and bubbles are generated. Therefore, as shown in the characteristic diagram of the outer wall temperature (° C.) of the nozzle stem tube 1 when the spray flow rate is small in FIG. 10A, the nozzle stem tube 1 is closed due to the heat transfer inhibition by the bubbles. The outer surface of the end portion is abnormally heated, and a thermal shock due to rapid cooling due to a large temperature difference (300 ° C. or more) due to adhesion of spray droplets to the outer surface of the nozzle stem tube 1 or nozzle stem A great amount of thermal stress is generated in the nozzle stem tube 1 such as a humping phenomenon due to a temperature difference in the longitudinal direction of the outer surface of the tube 1.
[0016]
Further, among the conventional techniques, in the cantilever type nozzle stem tube 1 shown in FIG. 8A, due to the positional relationship between the end of the nozzle stem tube 1 and the spray spray hole 2, Water stagnation is unlikely to occur, but as shown in Fig. 8 (a), when the flow of spray droplets tends to unwind due to the drift of the steam flow, and the flow rate of spray water is small in high-load operating air In this case, since the flow of water inside the nozzle stem tube 1 becomes a low flow velocity, the spray droplets are concentrated on the outer surface of the nozzle stem tube 1 when the temperature rises. Thermal stress is generated.
[0017]
Furthermore, the amount of spray droplets attached and the range of attachment change due to the change in the flow rate of the spray water accompanying the load change and steam temperature control, so that the thermal stress on the nozzle stem tube 1 repeatedly acts, which is the worst In some cases, it will lead to fatigue failure. In trial calculation, cracks occur on the surface of the nozzle stem tube 1 after several thousand hours of operation for about half a year.
[0018]
As described above, in the prior art, when the spray flow rate is reduced, the outer surface of the nozzle stem tube in the steam superheat reducer is not sufficiently considered to prevent abnormal temperature rise, and the thermal stress is reduced. There was a problem that led to fatigue failure.
[0019]
The subject of the present invention is a steam superheat reducer that can prevent the occurrence of thermal stress by cooling the entire nozzle stem tube even when the spray flow rate is reduced at high operating loads, and can be used safely in all load zones, It is providing the steam generator or boiler provided with this steam superheat reducer.
[0020]
[Means for Solving the Problems]
The subject of the present invention is a steam superheat reducer in which a nozzle stem tube provided with a spray spray hole for spraying cooling water is disposed in a steam pipe, wherein the nozzle stem tube has a closed portion that closes a tip portion. An inner pipe and an outer pipe having the inner pipe disposed therein and provided with the spray spray hole are provided. The inner pipe causes cooling water spray sprayed into the inner pipe to flow out toward the outer pipe. This can be solved by a steam superheat reducer in which the outflow holes are provided from the inflow side of the spray water and the closing portion side opposite to the inflow side .
[0021]
Here, the outflow hole in a plane including a center axis of the inner tube, perforating is inclined at an angle of 90 degrees from 0 degrees in the direction of the spraying holes against a straight line perpendicular to said central axis By providing, the spray water from the outflow hole can smoothly flow toward the spray spray hole of the outer tube. In addition, if the outflow hole is provided in a cross section perpendicular to the central axis of the inner pipe and inclined at an angle of 0 to 90 degrees with respect to the radial direction of the inner pipe, the spray from the outflow hole is provided. Water becomes a swirling flow and flows smoothly toward the spray spray hole. Furthermore, by providing a spiral spiral fin for guiding the spray water from the outflow hole in the direction of the spray spray hole of the outer pipe on the outer surface of the inner pipe around the outflow hole, the spray water from the outflow hole is It can flow smoothly toward the spray hole.
[0022]
Furthermore, if an outflow hole is also provided in the closing portion at the tip of the inner tube and the spray water inlet portion base of the inner tube, it is possible to prevent occurrence of stagnation of the spray water in the gap between the outer tube and the inner tube. .
In particular, when the inner pipe is provided extending across the spray spray hole, at least one outflow hole is provided across the spray spray hole.
[0024]
The present invention also provides a steam generator using the steam superheat reducer for steam temperature control, or a boiler having a steam superheater and a reheater, wherein the steam superheat reducer is a superheater and / or a reheater. A boiler used for steam temperature control is also included.
[0025]
[Action]
According to the present invention, the nozzle stem tube of the steam superheat reducer includes a double tube structure comprising an inner tube with a closed end and an outer tube provided with the spray spray hole and disposed outside the inner tube. The inner pipe is provided with outflow holes through which the spray water flowing into the inner pipe flows out of the outer pipe from the inflow side of the spray water and the closing portion side opposite to the inflow side. Even when the flow rate becomes small, the flow velocity in the tube can be increased, and a flow can be formed that flows through the corners of the nozzle stem tube to the spray spray hole. Therefore, since the entire nozzle stem tube of the present invention can be cooled, thermal stress does not occur even if spray spray droplets adhere to the back side of the nozzle stem tube with respect to the vapor flow.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
A steam superheat reducer according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a nozzle stem tube 1 used in a steam superheat reducer according to an embodiment of the present invention, but either a cantilever type or a both-end support type may be used. In FIG. 1, the nozzle stem tube 1 has a double tube structure including an inner tube 3 and an outer tube 4, and a spray hole 2 is provided on one side surface of the outer tube 4. The spray spray holes 2 are arranged when the spray spray holes 2 are arranged in a steam pipe (not shown) so that the atomized droplets of sprayed spray water spread almost uniformly in the steam flow. Are provided in a single plane or in a plurality of rows in two or more rows within or near a plane including the central axis of the steam pipe.
[0027]
The gap between the inner tube 2 and the outer tube 3 is as small as possible in order to prevent a stagnant portion from occurring in the gap, including the gap between the tip of the inner tube 2 and the tip of the outer tube 3. However, when a scale or the like is included in the water supply, it is necessary to prevent the interval from being blocked by the scale.
Further, the inner pipe 3 is provided with outflow holes 5 and 6 through which spray water composed of a part of water supply from a water supply system (not shown) flows out to the outer pipe 4. Details of the outflow holes 5 and 6 are shown in FIG. 2 (cross-sectional view taken along line AA in FIG. 1) and FIG. 3 (partially enlarged view of FIG. 1).
[0028]
As shown in FIG. 1, the outflow holes 5, 6 are provided at positions sandwiching the spray spray hole 2 provided in the outer tube 4, and among these, the outflow hole 6 is formed in the inner tube 3. The outflow hole 5 is provided from the inflow side of the spray water of the inner tube 3 from the closed closed end side opposite to the inflow side of the spray water. Both the outflow holes 5 and 6 are inclined at an angle (θ) of 0 ° to 90 ° in the direction of the spray spray hole with respect to a perpendicular perpendicular to the central axis in a plane including the central axis of the inner tube 3. Perforated.
[0029]
Further, as shown in the example of the outflow hole 6 in FIG. 2, the outflow holes 5 and 6 are both in the cross section perpendicular to the central axis of the inner tube 3 (in the radial direction of the inner tube 3). It is provided so as to have an inclination angle (δ) of 0 to 90 degrees with respect to the radial direction.
Thus, since the outflow holes 5 and 6 are provided in the inner tube 3 so as to have the predetermined inclination angle, the outflow water flowing out from the inner tube 3 flows out spirally toward the outer peripheral direction of the inner tube 3. At the same time, the effluent water flows toward the spray spray hole 2 of the outer tube 4.
[0030]
Here, it is desirable that the outflow holes 5 and 6 be provided as close to the end of the inner tube 3 as possible as shown in FIG. That is, the outflow hole 6 is preferably provided in the vicinity of the closed end of the inner pipe 3 opposite to the inflow side of the spray water, and the outflow hole 5 is provided in the vicinity of the base of the inner pipe 3 into which the spray water flows.
[0031]
However, if the hole machining cannot be performed easily, as shown in FIG. 4, the axial direction of the inner tube 3 in the distal end portion where the outflow hole 7 is closed in addition to the outflow holes 5 and 6 similar to FIG. In addition, it is desirable to provide the outflow hole 8 at the base portion of the inner tube 3 in a direction perpendicular to the axis of the inner tube (radial direction).
These outflow holes 5 to 8 are preferably about 3 mm in diameter or more in consideration of prevention of blockage when scales are included in the water supply.
[0032]
With this configuration, the spray water that has flowed into the inner pipe 3 is jetted into the gap between the inner pipe 3 and the outer pipe 4 as a jet flow with an increased flow velocity from the respective outflow holes 5 to 8. Among these, the jet flow from the outflow holes 5 and 6 becomes a swirl flow in the circumferential direction of the inner tube toward the spray spray hole 2 and flows along the gap between the inner tube 3 and the outer tube 4. Thermal efficiency can be improved. Moreover, the outflow holes 7 and 8 shown in FIG. 4 flow part of the spray water into the dead space where the swirling flow does not reach in the gap between the inner tube 3 and the outer tube 4 to reach the swirling flow. Therefore, the occurrence of the stagnation part of the spray water can be prevented.
[0033]
Further, the spray water from the outflow holes 7 and 8 can prevent the stagnant portion that is likely to occur in the gap between the inner pipe 3 and the outer pipe 4, and the swirling flow of the spray water from the rear outflow holes 5 and 6 It is only necessary to supply with a sufficient amount of outflow to be agitated, and the amount of outflow from the outflow hole 7 consisting of a single hole may be about half of the outflow amount from the outflow hole 5 or one outflow hole of the outflow hole 6. Also, the outflow amount from the outflow hole group 8 consisting of a plurality of outflow hole groups is sufficient to be about half of the outflow amount from one outflow hole of the outflow hole 5 or the outflow hole 6. The perforation direction may be provided with a predetermined inclination angle with respect to the perpendicular to the central axis of the inner tube 3, and the shape and number of the holes may be arbitrarily set.
[0034]
The size of the gap between the inner pipe 3 and the outer pipe 4, the distance between the outflow holes 5 to 8 and the arrangement position are such that the flow rate of the spray water flowing through the gap between the inner pipe 3 and the outer pipe 4 is 0.3 m / It is desirable to provide it to be at least min. Below this flow velocity, stagnant flow and boiling are likely to occur.
[0035]
In addition, it is preferable that two or more outflow holes 5 and 6 are provided in the circumferential direction in the plane perpendicular to the central axis of the inner tube 3.
Further, the outflow holes 5 and 6 may be drilled in a direction (radial direction) perpendicular to the central axis of the inner tube 3, and in a direction (radial direction) perpendicular to the central axis of the inner tube 3 as shown in FIG. 3. On the other hand, an angle θ inclined in the range of 0 to 90 degrees may be drilled on the spray spray hole 2 side. In short, the arrangement of the outflow holes 5, 6 and the inclination angle of the holes increase the swirling effect of the spray water, and the flow width is such that the flow of the spray water does not interfere with each other. It is formed on the basis of consideration to reduce the flow resistance in the gap between the inner tube 3 and the outer tube 4.
Moreover, the turning direction from the outflow holes 5 and 6 provided across the spray spray hole 2 may be the same direction or opposite directions.
[0036]
In the nozzle stem tube 1 shown in FIGS. 1 to 4, the flow rate in the tube can be secured to 0.3 to 30 m / min, and heat transfer to the inside of the nozzle stem tube 1 can be sufficiently performed. Since the temperature difference between the outer surface of the tube 1 and the sprayed droplets adhering thereto can be suppressed to 200 degrees or less, excessive thermal stress is not generated.
[0037]
In the embodiment shown in FIG. 5, the outflow holes 5, 6 are equally divided on the circumference of the inner tube 3 across the spray spray holes so as to easily generate a swirl flow, and are provided in two stages. Further, as shown in the sectional view taken along the line AA in FIG. 5A in FIG. 5B and the sectional view taken along the line BB in FIG. 5A in FIG. The outflow holes 5 and 6 are provided 60 degrees out of phase with each other in the radial direction of the inner tube 3, and the swirling flow of the spray water from the outflow holes 5 and 6 disposed at a position away from the spray spray hole 2 is generated. The swirling flow is accelerated by causing the spray water to flow out from the outflow holes 5 and 6 disposed near the spray spray hole 2 in the vicinity of the decelerated.
[0038]
5 shows an example in which the outflow holes 5 and 6 arranged in two stages in the front and rear are shifted from each other by 60 degrees in the radial direction of the inner tube 3. However, the outflow holes 5 and 6 may be arranged at positions where there is no phase difference. The outflow holes 5 and 6 should just be arrange | positioned in the position where the swirling flow of the spray water from the outflow hole 6 accelerates the swirling flow of the spray water from the outflow hole 5.
Further, the outflow holes 5 and 6 are arranged in a spiral manner by sequentially shifting in the longitudinal direction of the inner tube 3 (the axial direction of the inner tube) without being divided and arranged on the same circumference in the radial direction of the inner tube 3. May be.
[0039]
Although not shown in FIG. 5, the outflow hole 7 at the distal end portion of the inner tube and the outflow hole 8 in the inner tube base portion having the closing portion described in FIG. 4 may be provided. The spray water from the outflow holes 7 and 8 prevents stagnation of the spray water that may be generated in the gap between the inner pipe 3 and the outer pipe 4, and the spray water from the rear outflow holes 5 and 6 It is sufficient to supply with a sufficient amount of outflow to be agitated by the swirling flow. Further, the perforation direction of the outflow holes 7 and 8 may be provided with a predetermined inclination angle with respect to a plane orthogonal to the central axis of the inner tube 3, and the shape and number of the holes may be arbitrarily set.
According to the nozzle stem tube 1 shown in FIG. 5, since the flow path of the swirling flow of the spray water from the outflow holes 5 and 6 can be formed at a specific position, the outer tube 4 can be cooled more reliably.
[0040]
Further, the nozzle stem tube 1 shown in FIG. 6 is provided with a spiral fin 11 on the outer periphery of the inner tube 3. The spiral fin 11 is attached by welding or the like from both ends of the inner tube 3 to the vicinity of the spray spray hole 2 of the outer tube 4 with the spray spray hole 2 interposed therebetween, and is not attached in the vicinity of the position of the spray spray hole 2 and before and after. The outflow holes 5 and 6 are provided at the base of the spiral fin 11 at the spray water inlet side base portion of the inner tube 3 and the distal end side of the inner tube 3, respectively.
[0041]
The spiral fin 11 may have the spiral rotating direction reversed or the same at the spray water inlet side base portion of the inner tube 3 and the distal end side of the inner tube 3. The nozzle stem tube 1 shown in FIG. 6 can achieve the same effect as the nozzle stem tube 1 shown in FIGS. 1, 4 and 5, but the nozzle stem tube 1 shown in FIG. Since the flow path position of the swirling flow of the spray water can be fixed, the outer tube 4 can be cooled more reliably. Moreover, although not shown in FIG. 6, you may provide the outflow hole 7 of the inner pipe front-end | tip part with the closing part demonstrated in FIG. 4, and the outflow hole 8 of an inner pipe front-end | tip part.
[0042]
Although the nozzle stem tube 1 shown in FIG. 7 is a cantilever type, the spray spray hole 2 is provided in the vicinity of the end of the outer tube 4, and the nozzle stem tube 1 is composed of the inner tube 3 and the outer tube 4. The inner tube 3 is provided with outflow holes 5 and 6 in the inner tube base and the central portion, so that the flow rate in the tube is increased and the gap between the inner tube 3 and the outer tube 4 is increased even when the spray water has a small flow rate. Since the flow can be formed without stagnation by the swirling flow from the outflow holes 5 and 6 and the auxiliary flow from the outflow holes 7 and 8, the nozzle stem tube 1 can be sufficiently cooled. The nozzle stem tube 1 shown in FIG. 7 may also be provided with two-stage outflow holes 5 and 6 like the nozzle stem tube 1 shown in FIG. 5, or may be provided with the spiral fin 11 as shown in FIG.
[0043]
【The invention's effect】
According to the present invention, the entire nozzle stem portion of the steam superheat reducer is cooled to a predetermined temperature regardless of the operating state, so that spray spray droplets adhere to the outer surface of the nozzle stem tube by rewinding by the steam flow. However, since excessive thermal stress does not occur and fatigue failure can be prevented, the safety of the equipment can be improved, and in the past, replacement was required in about half a year, but this was greatly extended. Economic effects are also produced.
[Brief description of the drawings]
FIG. 1 shows a cross-sectional view of a steam superheat reducer according to an embodiment of the present invention.
2 is a cross-sectional view in the axial direction of the inner tube of a spray spray hole provided in the inner tube of the steam superheat reducer of FIG. 1;
3 is a cross-sectional view perpendicular to the axis of the inner tube of the spray hole provided in the inner tube of the steam superheat reducer of FIG.
FIG. 4 is a cross-sectional view of a steam superheat reducer according to an embodiment of the present invention.
FIG. 5 shows a steam superheat reducer according to an embodiment of the present invention.
FIG. 6 shows a steam superheat reducer according to an embodiment of the present invention.
FIG. 7 shows a steam superheat reducer having a cantilevered nozzle stem tube according to an embodiment of the present invention.
FIG. 8 shows a conventional steam superheat reducer.
FIG. 9 is a characteristic diagram showing the relationship between boiler load and spray flow rate.
FIG. 10 shows a sectional view of a conventional steam superheat reducer and a temperature distribution characteristic diagram of the outer surface of the nozzle stem tube.
FIG. 11 shows a water supply and steam system diagram of a boiler to which the present invention is applied.
FIG. 12 shows a water supply and steam system diagram of an exhaust heat recovery boiler to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nozzle stem pipe 2 Spray spray hole 3 Inner pipe 4 Outer pipe 5-8 Outflow hole 9 Steam pipe 10 Steam overheat reducer 11 Spiral fin

Claims (4)

冷却水噴霧用のスプレー噴霧孔が設けられているノズルステム管を蒸気配管内に配置した蒸気過熱低減器において、前記ノズルステム管は先端部を塞いだ閉止部を有する内管と該内管を内部に配置した前記スプレー噴霧孔が設けられた外管とからなり、内管には該内管に流入した冷却水噴霧用のスプレー水を外管に向けて流出させる流出孔をスプレー水の流入側と該流入側とは反対側の閉止部側よりに設けたことを特徴とする蒸気過熱低減器。  In a steam superheat reducer in which a nozzle stem pipe provided with a spray spray hole for cooling water spray is arranged in a steam pipe, the nozzle stem pipe has an inner pipe having a closed portion with a tip portion closed, and the inner pipe. It consists of an outer pipe provided with the spray spray hole arranged inside, and the inner pipe has an outflow hole through which the spray water for cooling water spray flowing into the inner pipe flows out toward the outer pipe. The steam superheat reducer is provided on the side opposite to the inflow side from the closing part side. 前記流出孔は内管の中心軸線を含む平面内で、該中心軸線に直交する直線に対して、前記スプレー噴霧孔の方向に0度から90度の角度で傾斜させて穿孔して設けたことを特徴とする請求項1記載の蒸気過熱低減器。  The outflow hole is provided in a plane including the central axis of the inner tube, and is inclined and inclined at an angle of 0 to 90 degrees in the direction of the spray spray hole with respect to a straight line perpendicular to the central axis. The steam superheat reducer according to claim 1. 前記流出孔は内管の中心軸線に対して垂直方向の断面内で、前記内管の径方向に対して0度から90度の角度で傾斜させて穿孔して設けたことを特徴とする請求項1記載の蒸気過熱低減器。  The outflow hole is provided by being drilled at an angle of 0 to 90 degrees with respect to the radial direction of the inner tube in a cross section perpendicular to the central axis of the inner tube. Item 2. A steam superheat reducer according to Item 1. 前記内管外表面に螺旋状のスパイラルフィンを設けたことを特徴とする請求項1から3のいずれかに記載の蒸気過熱低減器。 The steam superheat reducer according to any one of claims 1 to 3, wherein spiral outer fins are provided on the outer surface of the inner tube.
JP13651897A 1997-05-27 1997-05-27 Steam overheat reducer, steam generator and boiler Expired - Lifetime JP3808170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13651897A JP3808170B2 (en) 1997-05-27 1997-05-27 Steam overheat reducer, steam generator and boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13651897A JP3808170B2 (en) 1997-05-27 1997-05-27 Steam overheat reducer, steam generator and boiler

Publications (2)

Publication Number Publication Date
JPH10325509A JPH10325509A (en) 1998-12-08
JP3808170B2 true JP3808170B2 (en) 2006-08-09

Family

ID=15177058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13651897A Expired - Lifetime JP3808170B2 (en) 1997-05-27 1997-05-27 Steam overheat reducer, steam generator and boiler

Country Status (1)

Country Link
JP (1) JP3808170B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200471814Y1 (en) * 2009-12-31 2014-03-18 코오롱글로텍주식회사 Steam spewing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200471814Y1 (en) * 2009-12-31 2014-03-18 코오롱글로텍주식회사 Steam spewing apparatus

Also Published As

Publication number Publication date
JPH10325509A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
US6530208B1 (en) Steam cooled gas turbine system with regenerative heat exchange
JPS62218732A (en) Gas turbine combustor
US9593598B2 (en) Steam conditioning system
US20040261417A1 (en) Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
US5924389A (en) Heat recovery steam generator
JPH08505694A (en) Steam superheat reducer
US5946901A (en) Method and apparatus for improving gas flow in heat recovery steam generators
AU2004270132B2 (en) Aerodynamic noise abatement device and method for air-cooled condensing systems
JP3808170B2 (en) Steam overheat reducer, steam generator and boiler
US20040069244A1 (en) Once-through evaporator for a steam generator
JP2018063072A (en) Heat exchanger
JP2002102628A (en) Gas-liquid separator
JP4673765B2 (en) Turbine exhaust system
JPH07301366A (en) Butterfly valve
JP2018141452A (en) Steam turbine system
JP5978435B2 (en) Condenser
JPH116604A (en) Temperature reducer
JPS6318141A (en) Temperature reducer for gas turbine
JP2002371807A (en) Turbine equipment and steam converting device
JPH0498089A (en) Condenser
JPH1114007A (en) Reheat steam temperature controller of boiler
JP2680497B2 (en) Steam turbine casing exhaust chamber cooling device
SE1930144A1 (en) An attemperator for a steam-based plant and a method for assembly of such an attemperator
CN117570744A (en) Multi-water-source recovery water supplementing condensation structure of condenser and control method
JPH1194204A (en) Boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term