JP3806373B2 - Paragraph structure of axial turbine - Google Patents

Paragraph structure of axial turbine Download PDF

Info

Publication number
JP3806373B2
JP3806373B2 JP2002203557A JP2002203557A JP3806373B2 JP 3806373 B2 JP3806373 B2 JP 3806373B2 JP 2002203557 A JP2002203557 A JP 2002203557A JP 2002203557 A JP2002203557 A JP 2002203557A JP 3806373 B2 JP3806373 B2 JP 3806373B2
Authority
JP
Japan
Prior art keywords
blade
gap
axial
arc
flow turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002203557A
Other languages
Japanese (ja)
Other versions
JP2004044496A (en
Inventor
澄生 内田
良典 田中
廣和 白井
浩史 皐月
和幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002203557A priority Critical patent/JP3806373B2/en
Publication of JP2004044496A publication Critical patent/JP2004044496A/en
Application granted granted Critical
Publication of JP3806373B2 publication Critical patent/JP3806373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気タービン等軸流タービンの段落構造に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
蒸気タービン等軸流タービンの段落構造として、例えば図4に示すように、静翼100 と動翼101 とが交互にギャップGを有して多段的に配置されてなるものがある。
【0003】
ところが、このような軸流タービンの段落構造にあっては、翼列間にギャップ(キャビティ)Gがあるため、このギャップG内で発生する渦と主流とが干渉しミキシング損失を増加させると共に、後流翼(動翼101 )の入口条件に影響を与え、翼性能を悪化させているという問題点があった。
【0004】
本発明は、前述した状況に鑑みてなされたもので、単純な翼形状により翼列間のギャップ内での渦の発生を効果的に抑制して翼性能の向上が図れる軸流タービンの段落構造を提供することを目的とする。
【0005】
【課題を解決するための手段】
斯かる目的を達成するための本発明に係る軸流タービンの段落構造は、静翼と動翼とが交互にギャップを有して多段的に配置されてなる軸流タービンの段落構造において、前記静翼の内側及び外側プラットフォームの下流側端面のギャップ入口部に流体流れ方向に沿ってオーバーハング部を設けると共に、このオーバーハング部に対向する前記動翼の内側及び外側プラットフォームの上流側端面のギャップ入口部にR部を設け、かつ前記静翼の内側及び外側プラットフォームの裏面側に前記動翼の内側及び外側プラットフォームに設けた前記R部に沿うようなR部を設けたたことを特徴とする。
【0006】
また、前記R部は、1円弧突起であることを特徴とする。
【0007】
また、前記R部の曲率半径Rと前記ギャップの隙間Lとの間に、R/L=0.1〜0.5の関係式が成り立つことを特徴とする。
【0008】
また、前記R部の円弧とその後流側の動翼付け根の前縁R部の円弧とは翼長方向に交わらないことを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明に係る軸流タービンの段落構造を実施例により図面を用いて詳細に説明する。
【0010】
[実施例]
図1は本発明の一実施例を示す蒸気タービンの要部断面図、図2は同じくハブ側とチップ側の構造説明図、図3は蒸気タービンの概略構成縦断面図である。
【0011】
図3に示すように、軸流タービンとしての蒸気タービンは、ケーシング1とロータ(回転体)2とにより形成され、このロータ2はタービン軸3とこのタービン軸3に固定されて同タービン軸3とともに回転する動翼4とを備えている。
【0012】
前記動翼4の蒸気(流体)の流れ方向上流側に静翼5が配置され、この静翼5は前記ケーシング1に支持されている。
【0013】
前記静翼5及び動翼4は、ケーシング1とタービン軸3との間に形成された拡大流通路6内に交互にギャップGを有して多段的に配置される。
【0014】
従って、ケーシング1の内部に供給された蒸気は、図中矢印で示すように、拡大流通路6を膨張しながら流れ、静翼5を通過噴出される蒸気により動翼4が作動され、ロータ2を回転させることになる。
【0015】
そして、本実施例では、図1に示すように、前記静翼5の内側、外側プラットフォーム5a、5bの下流側端面のギャップ入口部に蒸気流れ方向に沿ってオーバーハング部7を設けると共に、このオーバーハング部7に対向する前記動翼4の内側、外側プラットフォーム4a、4bの上流側端面のギャップ入口部にR部8を設けている。
【0016】
図示例では、前記R部8は、1円弧突起で形成されているが、突起では無く単に内側、外側プラットフォーム4a、4bの上流側端面の角部が取れた形状でも良い。
【0017】
また、図2に示すように、前記R部8の曲率半径Rと前記ギャップGの隙間Lとの間に、R/L=0.1〜0.5の関係式が成り立つようになっている。
【0018】
図示例では、オーバーハング部7の裏面側R部の曲率半径R1も前記ギャップGの隙間Lとの間に、R1/L=0.1〜0.5の関係式が成り立つようになっている。
【0019】
また、前記R部8の曲率半径Rの円弧(軌跡)とその後流側の動翼付け根の前縁R部の曲率半径R2の円弧(軌跡)とは翼長方向に交わらないようになっている。
【0020】
また、上流側の静翼5の内側、外側プラットフォーム5a、5bと下流側の動翼4の内側、外側プラットフォーム4a、4bは、図2の(a)中の破線で示す同一直線上に設けられる(ラインオンライン)。従って、前記オーバーハング部7及びR部8も前記直線の外側に位置される。
【0021】
このようにして本実施例では、前記オーバーハング部7とR部8とで翼間のギャップGを可及的に減少させると共に蒸気の主流を上流側から下流側へ積極的に導くようにしたので、ギャップGでの渦の発生を抑制して渦と主流との干渉を低減できる。
【0022】
これにより、ミキシング損失(流体損失)の増加を回避して翼性能の向上が図れ、タービン全体の性能が向上される。
【0023】
また、前記R部8は1円弧突起で形成すると共に、前記R部8の曲率半径Rの円弧(軌跡)とその後流側の動翼付け根の前縁R部の曲率半径R2の円弧(軌跡)とは翼長方向に交わらないようにしたので、比較的単純な翼形状で済み、旋盤による加工コストが小さくて済む。
【0024】
また、前記R部8の曲率半径Rと前記ギャップGの隙間Lとの間に、R/L=0.1〜0.5の関係式が成り立つように、またオーバーハング部7の裏面側R部の曲率半径R1も前記ギャップGの隙間Lとの間に、R1/L=0.1〜0.5の関係式が成り立つように設定したので、ギャップGでの渦の発生を抑制しつつロータ2等の軸方向の熱膨張も効果的に吸収できる。
【0025】
尚、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲で各種変更が可能であることはいうまでもない。また、本発明は蒸気タービンに限らずガスタービン等の軸流タービンにも適用できる。
【0026】
【発明の効果】
以上、詳細に説明したように、本発明の請求項1に係る発明は、静翼と動翼とが交互にギャップを有して多段的に配置されてなる軸流タービンの段落構造において、前記静翼の内側及び外側プラットフォームの下流側端面のギャップ入口部に流体流れ方向に沿ってオーバーハング部を設けると共に、このオーバーハング部に対向する前記動翼の内側及び外側プラットフォームの上流側端面のギャップ入口部にR部を設け、かつ前記静翼の内側及び外側プラットフォームの裏面側に前記動翼の内側及び外側プラットフォームに設けた前記R部に沿うようなR部を設けたので、単純な翼形状により翼列間のギャップ内での渦の発生を効果的に抑制して翼性能の向上が図れる。
【0027】
本発明の請求項2に係る発明は、前記R部は、1円弧突起であるので、比較的単純な翼形状で済み、旋盤による加工コストが小さくて済む。
【0028】
本発明の請求項3に係る発明は、前記R部の曲率半径Rと前記ギャップの隙間Lとの間に、R/L=0.1〜0.5の関係式が成り立つので、ギャップでの渦の発生を抑制しつつロータ等の軸方向の熱膨張も効果的に吸収できる。
【0029】
本発明の請求項4に係る発明は、前記R部の円弧とその後流側の動翼付け根の前縁R部の円弧とは翼長方向に交わらないので、比較的単純な翼形状で済み、旋盤による加工コストが小さくて済む。
【図面の簡単な説明】
【図1】本発明の一実施例を示す蒸気タービンの要部断面図である。
【図2】同じくハブ側とチップ側の構造説明図である。
【図3】蒸気タービンの概略構成縦断面図である。
【図4】従来の蒸気タービンの要部断面図である。
【符号の説明】
1 ケーシング
2 ロータ
3 タービン軸
4 動翼
4a 内側プラットフォーム
4b 外側プラットフォーム
5 静翼
5a 内側プラットフォーム
5b 外側プラットフォーム
6 拡大流通路
7 オーバーハング部
8 R部
G ギャップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a paragraph structure of an axial flow turbine such as a steam turbine.
[0002]
[Prior art and problems to be solved by the invention]
As a stage structure of an axial flow turbine such as a steam turbine, for example, as shown in FIG. 4, a stationary blade 100 and a moving blade 101 are alternately arranged in multiple stages with gaps G.
[0003]
However, in such a stage structure of an axial turbine, since there is a gap (cavity) G between the cascades, the vortex generated in the gap G interferes with the main flow to increase mixing loss, There was a problem that the inlet condition of the wake (the moving blade 101) was affected and the blade performance was deteriorated.
[0004]
The present invention has been made in view of the above-described situation, and the axial structure of an axial flow turbine capable of effectively suppressing the generation of vortices in a gap between blade rows and improving blade performance by a simple blade shape. The purpose is to provide.
[0005]
[Means for Solving the Problems]
In order to achieve such an object, the axial structure of the axial turbine according to the present invention is the axial structure of the axial turbine in which the stationary blades and the moving blades are arranged in multiple stages with gaps alternately. An overhang portion is provided along a fluid flow direction at a gap inlet portion of the downstream end surface of the inner and outer platforms of the stationary blade, and a gap between the upstream end surfaces of the inner and outer platforms of the moving blade facing the overhang portion. An R portion is provided at an inlet portion, and an R portion is provided along the R portion provided on the inner and outer platforms of the moving blade on the inner surface of the stationary blade and on the back side of the outer platform. .
[0006]
In addition, the R portion is a single arc projection.
[0007]
Further, a relational expression of R / L = 0.1 to 0.5 is established between the radius of curvature R of the R portion and the gap L of the gap.
[0008]
Further, the arc of the R portion and the arc of the leading edge R portion of the downstream blade root of the rotor blade do not intersect in the blade length direction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the paragraph structure of an axial turbine concerning the present invention is explained in detail using an example using a drawing.
[0010]
[Example]
FIG. 1 is a cross-sectional view of a main part of a steam turbine showing an embodiment of the present invention, FIG. 2 is a structural explanatory view of the hub side and the tip side, and FIG. 3 is a schematic longitudinal cross-sectional view of the steam turbine.
[0011]
As shown in FIG. 3, the steam turbine as an axial flow turbine is formed by a casing 1 and a rotor (rotating body) 2, and the rotor 2 is fixed to the turbine shaft 3 and the turbine shaft 3, and the turbine shaft 3. And a rotating blade 4 that rotates together.
[0012]
A stationary blade 5 is disposed upstream of the moving blade 4 in the flow direction of steam (fluid), and the stationary blade 5 is supported by the casing 1.
[0013]
The stationary blades 5 and the moving blades 4 are arranged in multiple stages with gaps G alternately in an enlarged flow passage 6 formed between the casing 1 and the turbine shaft 3.
[0014]
Therefore, the steam supplied to the inside of the casing 1 flows while expanding in the enlarged flow passage 6 as indicated by arrows in the figure, and the moving blade 4 is actuated by the steam ejected through the stationary blade 5, whereby the rotor 2 Will be rotated.
[0015]
In this embodiment, as shown in FIG. 1, an overhang portion 7 is provided along the steam flow direction at the gap inlet portion of the downstream end face of the inside and outside platforms 5a and 5b of the stationary blade 5, and this An R portion 8 is provided at the gap inlet portion on the upstream end face of the inner and outer platforms 4a and 4b of the rotor blade 4 facing the overhang portion 7.
[0016]
In the illustrated example, the R portion 8 is formed by one arc protrusion, but it may be a shape in which the corners of the upstream side end surfaces of the inner and outer platforms 4a and 4b are removed instead of the protrusion.
[0017]
As shown in FIG. 2, a relational expression of R / L = 0.1 to 0.5 is established between the radius of curvature R of the R portion 8 and the gap L of the gap G. .
[0018]
In the illustrated example, the relational expression R1 / L = 0.1 to 0.5 is established between the curvature radius R1 of the back surface side R portion of the overhang portion 7 and the gap L of the gap G. .
[0019]
The arc (trajectory) of the radius of curvature R of the R portion 8 and the arc (trajectory) of the radius of curvature R2 of the leading edge R portion of the root of the moving blade on the downstream side do not intersect in the blade length direction. .
[0020]
Further, the inside of the upstream stationary blade 5, the outside platforms 5a, 5b and the inside of the downstream moving blade 4, the outside platforms 4a, 4b are provided on the same straight line shown by the broken line in FIG. (Line Online). Accordingly, the overhang portion 7 and the R portion 8 are also located outside the straight line.
[0021]
In this way, in the present embodiment, the gap H between the blades is reduced as much as possible by the overhang portion 7 and the R portion 8, and the main flow of steam is positively guided from the upstream side to the downstream side. Therefore, the generation of vortices in the gap G can be suppressed and interference between the vortices and the mainstream can be reduced.
[0022]
Thereby, an increase in mixing loss (fluid loss) can be avoided and blade performance can be improved, and the performance of the entire turbine is improved.
[0023]
In addition, the R portion 8 is formed by a single arc projection, and an arc (trajectory) of the radius R of the R portion 8 and an arc (trajectory) of the curvature radius R2 of the leading edge R portion of the moving blade root on the downstream side. Since it does not intersect with the blade length direction, a relatively simple blade shape can be used, and the processing cost by a lathe can be reduced.
[0024]
Further, a relational expression of R / L = 0.1 to 0.5 is established between the radius of curvature R of the R portion 8 and the gap L of the gap G, and the back side R of the overhang portion 7. The curvature radius R1 of the portion is set so that the relational expression R1 / L = 0.1 to 0.5 is established between the gap G and the gap L of the gap G, so that the generation of vortices in the gap G is suppressed. The axial thermal expansion of the rotor 2 and the like can also be effectively absorbed.
[0025]
Needless to say, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the present invention is not limited to the steam turbine but can be applied to an axial flow turbine such as a gas turbine.
[0026]
【The invention's effect】
As described above in detail, the invention according to claim 1 of the present invention is the above-described paragraph structure of an axial-flow turbine in which the stationary blades and the moving blades are arranged in multiple stages with gaps alternately. An overhang portion is provided along a fluid flow direction at a gap inlet portion of a downstream end surface of the inner and outer platforms of the stationary blade, and a gap between the upstream end surfaces of the inner and outer platforms of the moving blade facing the overhang portion. Since the R part is provided at the inlet part and the R part is provided along the R part provided on the inner and outer platforms of the moving blades on the back surface side of the inner and outer platforms of the stationary blade , a simple blade shape This effectively suppresses the generation of vortices in the gap between the blade rows and improves blade performance.
[0027]
In the invention according to claim 2 of the present invention, since the R portion is a single arc projection, a relatively simple blade shape is sufficient, and the processing cost by a lathe can be reduced.
[0028]
In the invention according to claim 3 of the present invention, a relational expression of R / L = 0.1 to 0.5 is established between the curvature radius R of the R portion and the gap L of the gap. The thermal expansion in the axial direction of the rotor or the like can be effectively absorbed while suppressing the generation of vortices.
[0029]
In the invention according to claim 4 of the present invention, the arc of the R portion and the arc of the leading edge R portion of the moving blade root on the downstream side do not intersect in the blade length direction, so a relatively simple blade shape is sufficient. The processing cost with a lathe is small.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a steam turbine showing an embodiment of the present invention.
FIG. 2 is a structural explanatory view of the hub side and the chip side in the same manner.
FIG. 3 is a longitudinal sectional view of a schematic configuration of a steam turbine.
FIG. 4 is a cross-sectional view of a main part of a conventional steam turbine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Casing 2 Rotor 3 Turbine shaft 4 Rotor blade 4a Inner platform 4b Outer platform 5 Stator blade 5a Inner platform 5b Outer platform 6 Expanded flow path 7 Overhang part 8 R part G Gap

Claims (4)

静翼と動翼とが交互にギャップを有して多段的に配置されてなる軸流タービンの段落構造において、
前記静翼の内側及び外側プラットフォームの下流側端面のギャップ入口部に流体流れ方向に沿ってオーバーハング部を設けると共に、
このオーバーハング部に対向する前記動翼の内側及び外側プラットフォームの上流側端面のギャップ入口部にR部を設け、
かつ前記静翼の内側及び外側プラットフォームの裏面側に前記動翼の内側及び外側プラットフォームに設けた前記R部に沿うようなR部を設けたことを特徴とする軸流タービンの段落構造。
In the stage structure of the axial flow turbine in which the stationary blades and the moving blades are arranged in multiple stages with gaps alternately,
Providing an overhang along the fluid flow direction at the gap inlet of the downstream end face of the inner and outer platforms of the stationary blade,
An R portion is provided at the gap inlet portion of the upstream end surface of the inner and outer platforms of the rotor blade facing the overhang portion,
And the stage structure of the axial-flow turbine characterized by providing the R part which followed the said R part provided in the inner side of the said moving blade, and the outer platform on the inner surface of the said stationary blade, and the back surface side of the outer platform .
前記R部は、1円弧突起であることを特徴とする請求項1記載の軸流タービンの段落構造。  The paragraph structure of the axial-flow turbine according to claim 1, wherein the R portion is one arc projection. 前記R部の曲率半径Rと前記ギャップの隙間Lとの間に、R/L=0.1〜0.5の関係式が成り立つことを特徴とする請求項1又は2記載の軸流タービンの段落構造。  The axial flow turbine according to claim 1, wherein a relational expression of R / L = 0.1 to 0.5 is established between a radius of curvature R of the R portion and a gap L of the gap. Paragraph structure. 前記R部の円弧とその後流側の動翼付け根の前縁R部の円弧とは翼長方向に交わらないことを特徴とする請求項1,2又は3記載の軸流タービンの段落構造。  The axial structure of the axial flow turbine according to claim 1, 2 or 3, wherein the arc of the R portion and the arc of the leading edge R portion of the root of the rotor blade on the downstream side do not intersect in the blade length direction.
JP2002203557A 2002-07-12 2002-07-12 Paragraph structure of axial turbine Expired - Lifetime JP3806373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203557A JP3806373B2 (en) 2002-07-12 2002-07-12 Paragraph structure of axial turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203557A JP3806373B2 (en) 2002-07-12 2002-07-12 Paragraph structure of axial turbine

Publications (2)

Publication Number Publication Date
JP2004044496A JP2004044496A (en) 2004-02-12
JP3806373B2 true JP3806373B2 (en) 2006-08-09

Family

ID=31709394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203557A Expired - Lifetime JP3806373B2 (en) 2002-07-12 2002-07-12 Paragraph structure of axial turbine

Country Status (1)

Country Link
JP (1) JP3806373B2 (en)

Also Published As

Publication number Publication date
JP2004044496A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP5017064B2 (en) Trifolia tip cavity airfoil
JP3621216B2 (en) Turbine nozzle
JP4876043B2 (en) Flared tip turbine blade
JP5289694B2 (en) Turbine airfoil curved squealer tip with tip shelf
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
JP4953976B2 (en) Reverse tip baffle airfoil
JP5442190B2 (en) Similar tip baffle airfoil
JP5264058B2 (en) Fixed turbine airfoil
JP2007085340A (en) Angel wing seal, stator, and rotor for turbine blade, and method for selecting wing seal contour
JP2010196563A (en) Transonic blade
JP2006342804A (en) Turbine airfoil with variable compound fillet
JPH10274001A (en) Turbulence promotion structure of cooling passage of blade inside gas turbine engine
JP2008019856A (en) Fan blade and turbofan engine assembly
JP2005337258A (en) Rotor blade
JP2008248701A (en) Wall of turbo machine, and turbo machine
JP2008051096A (en) Cascade tip baffle aerofoil
JPH04262002A (en) Stationary blade structure for steam turbine
JP2008157240A (en) Aerofoil having improved cooling slot structure
JP2011528081A (en) Axial flow turbomachine with low gap loss
JP2008215091A (en) Turbine blade
JPH0424523B2 (en)
EP2791472B2 (en) Film cooled turbine component
JP3806373B2 (en) Paragraph structure of axial turbine
JP2010236487A (en) Turbine blade
JPH0960501A (en) Turbine moving blade

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R151 Written notification of patent or utility model registration

Ref document number: 3806373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term