JP3805617B2 - Cable fault detection device - Google Patents

Cable fault detection device Download PDF

Info

Publication number
JP3805617B2
JP3805617B2 JP2000351042A JP2000351042A JP3805617B2 JP 3805617 B2 JP3805617 B2 JP 3805617B2 JP 2000351042 A JP2000351042 A JP 2000351042A JP 2000351042 A JP2000351042 A JP 2000351042A JP 3805617 B2 JP3805617 B2 JP 3805617B2
Authority
JP
Japan
Prior art keywords
power supply
current
ground
specified value
ground line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000351042A
Other languages
Japanese (ja)
Other versions
JP2002159131A (en
Inventor
知之 山形
健七郎 三島
工 山根
秀樹 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000351042A priority Critical patent/JP3805617B2/en
Publication of JP2002159131A publication Critical patent/JP2002159131A/en
Application granted granted Critical
Publication of JP3805617B2 publication Critical patent/JP3805617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高圧交流電路に布設する相毎に金属製遮蔽体を有するケ−ブルの故障を検知するケーブル故障検出装置に関する。
【0002】
【従来の技術】
ここで従来のケーブル故障検出装置について説明する。図7は従来のケーブル故障検出装置のブロック構成図である。図7において、高圧交流電路1に布設された相ごとに金属製遮蔽体21を有するケーブル2に開閉器3を介して負荷4が接続されている。このケーブル故障検出装置は、各金属製遮蔽体21の接地線6−1の接地線電流を検出する電流検出手段5−1〜5−3の出力を入力とする各相接地線電流検出回路73と、各接地線6−1を一括接続して接地した一括接地線6−2の接地線電流を検出する電流検出手段5−4の出力を入力とする地絡検出回路72と、一括接地線6−2の接地線電流を検出する電流検出手段5−5の検出出力により電源接続部76を接続状態とすることにより電池電源75を定電圧電源部83を介して地絡検出回路72および各相接地線電流検出回路73に接続する電源駆動手段71と、地絡検出回路72の地絡事故検出動作により機械的または磁気的に表示器の表示状態を継続する第一の表示手段74−1と、計測値および事故経歴を表示する第二の表示手段74−2と、点検時に電源駆動手段71に信号を送り電源接続部76を所定時間接続するように動作させる手動操作のスイッチ手段77とで構成されている。なお、定電圧電源部83は、電源接続部76が接続状態のときに、電池電源75から電圧の供給を受け、一定の電圧を地絡検出回路72および各相接地線電流検出回路73に供給する。
【0003】
ケーブル2は、一例として導体部を中心(芯)とし、その外側に半導電層,絶縁体,半導電層,金属製遮蔽体21,テープ,シースが順に巻かれた構成である。金属製遮蔽体21はアルミや銅などの金属からなり、金属製遮蔽体21を接地し、そこに流れる接地線電流の大きさからケーブル2の劣化等を判断できる。ここでいう地絡事故とは、ケーブル2で発生し、ケーブル2の導体部と接地された金属製遮蔽体21とが接触してしまう状態となることであり、そのとき電流はケーブル2の導体部から金属製遮蔽体21に接続された接地線6−1,6−2を通り、地面に流れる。帰還電流はまわりの接地線からケーブル2に戻る。
【0004】
次に上記構成のケーブル故障検出装置の動作を説明する。地絡事故が発生した場合、地絡電流が金属製遮蔽体21の接地線6−1に流れ、それによる電流が零相電流として一括接地線6−2に流れる。一括接地線6−2に流れる零相電流を接地線電流を検出する電流検出手段5−5が検出し、その出力が第一の規定値(電源駆動用規定値)以上の場合、電源駆動手段71は電源接続部76を接続状態にして地絡検出回路72および各相接地線電流検出回路73に定電圧電源部83を介して電池電源75を接続する。そして零相電流が第二の規定値(事故検出用規定値)以上の場合、地絡検出回路72は地絡事故として検出し、その検出信号を第一の表示手段74−1および第二の表示手段74−2へ送る。この検出信号により第一の表示手段74−1では機械的または磁気的に表示状態を継続する表示器を電池電源75で動作させ、事故の発生を表示するとともに事故データを記録する。ここで、第一の表示手段74−1は、前述の表示器や事故データを記録する媒体などを備えたものである。なお、第二の規定値は第一の規定値より大きい値である。
【0005】
また、第一の表示手段74−1は、手動操作のスイッチ手段77から電源駆動手段71への信号による電源起動時に、表示器の正常動作確認として表示器を一旦動作させた後、表示復帰という動作をしたり、事故経歴の消去時には表示復帰の動作も行う。
【0006】
また、第二の表示手段74−2は、事故入力または手動操作のスイッチ手段77から電源駆動手段71への信号による電源起動時に、各相接地線電流検出回路73及び地絡検出回路72の計測結果及び事故経歴を表示する。
【0007】
なお、点検時に手動操作のスイッチ手段77から電源駆動手段71へ信号が送られると、電源駆動手段71は電流検出手段5−5からの入力にかかわらず、電源接続部76を接続状態にする。
【0008】
【発明が解決しようとする課題】
上記従来の構成では、地絡事故が発生するたびに電源駆動手段71が地絡検出回路72に電池電源75を接続するので、電池寿命に至るまで電源起動してしまい、点検時には電源起動することができないという課題があった。
【0009】
また、地絡事故が発生した場合に流れる地絡電流による零相電流が第二の規定値以上となって、その零相電流が継続した場合に、地絡検出回路72が動作したにもかかわらず電源駆動手段71により地絡検出回路72に電池電源75が接続されたままとなり、電池が不必要に消費されるという課題があった。
【0010】
また、地絡事故が発生した場合に流れる地絡電流による零相電流が地絡検出に至らず継続する場合には、電池寿命に至るまで電池電源75が接続されたままとなり、電池が不必要に消費されるという課題があった。
【0011】
また、地絡検出回路72の動作によって機械的または磁気的に表示状態を継続する表示器を電池電源75で動作させる場合、電池の瞬時大電流負荷時の電池電圧降下によりケーブル故障検出装置の動作が不安定となる課題があった。
【0012】
本発明は、上記課題を解決することができるケーブル故障検出装置を提供することを目的とするものであり、第一の目的は、点検時には電池電源により必ず電源起動することができるケーブル故障検出装置を提供することであり、第二の目的は、電池電源の電池が不必要に消費されるのを防止することができるケーブル故障検出装置を提供することであり、第三の目的は、表示器の動作により瞬時に大きな負荷電流が流れても安定した動作が可能となるケーブル故障検出装置を提供することである。
【0013】
【課題を解決するための手段】
本発明の請求項1記載のケーブル故障検出装置は、電池電源と、高圧交流電路に布設され相毎に金属製遮蔽体を有するケ−ブルの各金属製遮蔽体に接続された各接地線を一括して接地した一括接地線または前記各金属製遮蔽体に接続された各接地線に流れる接地線電流を検出する電流検出手段と、前記電流検出手段で検出した接地線電流が事故検出用規定値以上のときに地絡事故の検出を行う地絡検出回路と、前記電流検出手段で検出した接地線電流が前記事故検出用規定値より小さい値である電源駆動用規定値以上のときには前記電池電源を前記地絡検出回路に接続し、前記電源駆動用規定値未満のときには前記電池電源を前記地絡検出回路に非接続とする電源駆動手段とを備えたケ−ブル故障検出装置であって、前記電池電源の電池が点検のために確保すべき電源容量に至ると前記電流検出手段から前記電源駆動手段への入力を無効にし前記電池電源を非接続状態とするロック手段を設けたことを特徴とする。
【0014】
この請求項1の構成によれば、ロック手段を設け、電池電源が電池寿命に至る前に電源駆動手段をロックすることで、以後の事故入力に対して電池の消耗を防ぐ一方、点検時に電池電源により電源起動することができる。
【0015】
本発明の請求項2記載のケーブル故障検出装置は、電池電源と、高圧交流電路に布設され相毎に金属製遮蔽体を有するケ−ブルの各金属製遮蔽体に接続された各接地線を一括して接地した一括接地線または前記各金属製遮蔽体に接続された各接地線に流れる接地線電流を検出する電流検出手段と、前記電流検出手段で検出した接地線電流が事故検出用規定値以上のときに地絡事故の検出を行う地絡検出回路と、前記電流検出手段で検出した接地線電流が前記事故検出用規定値より小さい値である電源駆動用規定値以上のときには前記電池電源を前記地絡検出回路に接続し、前記電源駆動用規定値未満のときには前記電池電源を前記地絡検出回路に非接続とする電源駆動手段とを備えたケ−ブル故障検出装置であって、前記電流検出手段で検出した接地線電流が前記事故検出用規定値以上の状態が第一の特定時間継続したとき前記電流検出手段から前記電源駆動手段への入力を無効にし前記電池電源を非接続状態とするロック手段を設けたことを特徴とする。
【0016】
この請求項2の構成によれば、ロック手段を設け、地絡事故検出後の地絡電流継続に対し電源駆動手段をロックすることで、電池の不必要な消費をなくすことができる。
【0017】
本発明の請求項3記載のケーブル故障検出装置は、電池電源と、高圧交流電路に布設され相毎に金属製遮蔽体を有するケ−ブルの各金属製遮蔽体に接続された各接地線を一括して接地した一括接地線または前記各金属製遮蔽体に接続された各接地線に流れる接地線電流を検出する電流検出手段と、前記電流検出手段で検出した接地線電流が事故検出用規定値以上のときに地絡事故の検出を行う地絡検出回路と、前記電流検出手段で検出した接地線電流が前記事故検出用規定値より小さい値である電源駆動用規定値以上のときには前記電池電源を前記地絡検出回路に接続し、前記電源駆動用規定値未満のときには前記電池電源を前記地絡検出回路に非接続とする電源駆動手段とを備えたケ−ブル故障検出装置であって、前記電流検出手段で検出した接地線電流が前記電源駆動用規定値以上で前記事故検出用規定値未満の状態が第二の特定時間継続した後、前記電池電源の電池が点検のために確保すべき電源容量に至ると前記電流検出手段から前記電源駆動手段への入力を無効にし前記電池電源を非接続状態とするロック手段を設けたことを特徴とする。
【0018】
この請求項3の構成によれば、ロック手段を設け、地絡検出に至らない地絡電流の継続に対し、電池寿命に至る前に電源駆動手段をロックすることで、電池の不必要な消費をなくすことができる。
【0019】
本発明の請求項4記載のケーブル故障検出装置は、請求項1,請求項2または請求項3に記載のケ−ブル故障検出装置において、ロック手段はラッチングリレーを用い、ラッチングリレーにより電流検出手段から電源駆動手段への入力を無効にするようにしたことを特徴とする。このようにロック手段を構成できる。
【0024】
【発明の実施の形態】
(第1の実施の形態)
本発明の第1の実施の形態について図1および図2を用いて説明する。図1は第1の実施の形態のケーブル故障検出装置のブロック構成図、図2は同ケーブル故障検出装置の動作説明用のフロー図である。
【0025】
図1において、高圧交流電路1に布設された相ごとに金属製遮蔽体21を有するケーブル2に開閉器3を介して負荷4が接続されている。このケーブル故障検出装置は、各金属製遮蔽体21の接地線6−1の接地線電流を検出する電流検出手段5−1〜5−3の出力を入力とする各相接地線電流検出回路73と、各接地線6−1を一括接続して接地した一括接地線6−2の接地線電流を検出する電流検出手段5−4の出力を入力とする地絡検出回路72と、一括接地線6−2の接地線電流を検出する電流検出手段5−5の検出出力により電源接続部76を接続状態とすることにより電池電源75を定電圧電源部83を介して地絡検出回路72および各相接地線電流検出回路73に接続する電源駆動手段71と、地絡検出回路72の地絡事故検出動作により機械的または磁気的に表示器の表示状態を継続する第一の表示手段74−1と、計測値および事故経歴を表示する第二の表示手段74−2と、点検時に電源駆動手段71に信号を送り電源接続部76を所定時間接続するように動作させる手動操作のスイッチ手段77と、電源駆動手段71をロックするロック手段81とで構成されている。従来の構成との違いはロック手段81を設けたことであり、図7と同等のものには同一符号を付している。
【0026】
上記構成における動作を図2のフロー図を用いて説明する。地絡事故が発生した場合、地絡電流が金属製遮蔽体21の接地線6−1に流れ、それによる電流が零相電流として一括接地線6−2に流れる。一括接地線6−2に流れる零相電流を接地線電流を検出する電流検出手段5−5が検出し、その出力が第一の規定値(電源駆動用規定値)以上の場合、電源駆動手段71は電源接続部76を非接続状態から接続状態にして地絡検出回路72および各相接地線電流検出回路73に定電圧電源部83を介して電池電源75を接続する(ステップS11の電源起動)。また、電流検出手段5−5の出力が第一の規定値未満になると、電源駆動手段71は電源接続部76を接続状態から非接続状態にして地絡検出回路72および各相接地線電流検出回路73から電池電源75を切り離す。
【0027】
電流検出手段5−5の出力が第一の規定値以上となり、電池電源75が接続された(ステップS11の電源起動)場合について、以下説明する。電源駆動手段71では、電池電源75の電池使用開始からの累積動作時間を計算し(ステップS12)、その累積動作時間が電池の規定残存容量にいたる時間より小さいか否かを判定し(ステップS13)、電池の規定残存容量にいたる時間以上であれば、ロック手段81を制御する。この電源駆動手段71の制御によりロック手段81が電源駆動手段71をロックする(S14)。この電源駆動手段71をロックするということは、事故入力による電源起動をできなくすることであり、ロック手段81が電流検出手段5−5からの電源駆動手段71への入力を無効にする(電流検出手段5−5を電源駆動手段71から電気的に切り離す)ことにより、電源接続部76を非接続状態とすることである。したがって、電源駆動手段71がロックされると、以後の事故入力は無効となり、電池電源75の電池の消費はなくなる。なお、電池の規定残存容量とは、製品仕様で決まり、例えば、仕様で電池容量が「電池残存容量が30%で動作回数500回以上であること」とあれば、電池の規定残存容量を30%にする。
【0028】
また、上記の説明では、ステップS12からステップS14でロック手段81を制御するまでの処理を、電源駆動手段71により行うものとしたが、地絡検出回路72で行うようにしてもよい。
【0029】
なお、電源駆動手段71がロックされていない場合に、零相電流が第二の規定値(事故検出用規定値)以上になったとき、地絡検出回路72が地絡事故として検出し、その検出信号が第一の表示手段74−1および第二の表示手段74−2へ送られるのは、従来例で述べた通りである。
【0030】
また、電源駆動手段71がロックされている場合、点検時に手動操作のスイッチ手段77から電源駆動手段71へ信号が送られると、電源駆動手段71はロック手段81からの入力にかかわらず、電源接続部76を接続状態にし、このとき、電流検出手段5−5からの入力はロック手段81により無効にされたままである。
【0031】
第1の実施の形態によれば、電池電源75が電池寿命に至る前に、ロック手段81により電流検出手段5−5からの電源駆動手段71への入力(事故入力)を無効にすることにより電源駆動手段71をロックするので、点検時には手動操作のスイッチ手段77により電源を起動させ、事故経歴確認をすることができる。また、ロック手段81としてラッチングリレーを使用した場合、手動操作のスイッチ手段77により容易に電源駆動手段71のロックを解除することができる。ここで、ラッチングリレーは、コイルに通電して接点が動作したら、電流を切っても接点の状態が保持されるリレーである。
【0032】
また、ここでは一括接地線6−2に接続された接地線電流を検出する電流検出手段5−5の出力により電源起動する場合を記述したが、各相ケーブルの接地線6−1に接続された接地線電流を検出する電流検出手段5−1〜5−3の出力により電源駆動手段71に信号を送り、電源起動してもよい。
【0033】
上記のように、第一の規定値の比較対象として零相電流の代わりに各相ケーブルの接地線電流を比較対象としてもよいし、第二の規定値の比較対象についても零相電流の代わりに各相ケーブルの接地線電流を比較対象としてもよい。
【0034】
(第2の実施の形態)
第2の実施の形態について図3を用いて説明する。図3は第2の実施の形態のケーブル故障検出装置の動作説明用のフロー図である。第2の実施の形態の構成図については第1の実施の形態を示す図1と同様なのでその説明を省略する。
【0035】
次に動作を図3を用いて説明する。地絡事故が発生した場合、地絡電流が金属製遮蔽体21の接地線6−1に流れ、それによる電流が零相電流として一括接地線6−2に流れる。一括接地線6−2に流れる零相電流を接地線電流を検出する電流検出手段5−5が検出し、その出力が第一の規定値(電源駆動用規定値)以上の場合、電源駆動手段71は電源接続部76を非接続状態から接続状態にして地絡検出回路72および各相接地線電流検出回路73に定電圧電源部83を介して電池電源75を接続する(ステップS21の電源起動)。また、電流検出手段5−5の出力が第一の規定値未満になると、電源駆動手段71は電源接続部76を接続状態から非接続状態にして地絡検出回路72および各相接地線電流検出回路73から電池電源75を切り離す。
【0036】
電流検出手段5−5の出力が第一の規定値以上となり、電池電源75が接続された(ステップS21の電源起動)場合について、以下説明する。電源が起動すると、地絡検出回路72では、電流検出手段5−4からの零相電流を計測して第二の規定値(事故検出用規定値)と比較し(ステップS22,S23)、その零相電流が第二の規定値以上の場合、地絡事故と判断し、その検出信号を第一の表示手段74−1および第二の表示手段74−2へ送る(ステップS24)。
【0037】
地絡検出回路72は、事故検出動作後も、引き続き電流検出手段5−4からの零相電流を計測し、第二の規定値以上の零相電流が継続してるかどうかを判定する(ステップS25,S26)とともに、第二の規定値以上の零相電流の継続時間を算出し(ステップS27)、その算出した継続時間が予め定めた第一の特定時間になると、ロック手段81を制御する。この地絡検出回路72の制御によりロック手段81が電源駆動手段71をロックする(ステップS28,S29)。電源駆動手段71がロックされると、その後の地絡検出回路72および各相接地線電流検出回路73による不必要な電池の消費はなくなる。
【0038】
第2の実施の形態によれば、電源駆動手段71をロックすることにより、第二の規定値以上の零相電流の継続に対する地絡事故検出動作後の不必要な電池の消費をなくすことができる。また、ロック手段81としてラッチングリレーを使用した場合、手動操作のスイッチ手段77により容易に電源駆動手段71のロックを解除することができる。
【0039】
なお、上記の説明では、ステップS22からステップS29でロック手段81を制御するまでの処理を、地絡検出回路72により行うものとしたが、電源駆動手段71で行うようにしてもよい。
【0040】
また、ここでは第一の規定値および第二の規定値の比較対象として零相電流を用いたが、零相電流の代わりに各相ケーブルの接地線電流を比較対象としてもよい。
【0041】
(第3の実施の形態)
第3の実施の形態について図4を用いて説明する。図4は第3の実施の形態のケーブル故障検出装置の動作説明用のフロー図である。第3の実施の形態の構成図については第1の実施の形態を示す図1と同様なのでその説明を省略する。
【0042】
次に動作を図4を用いて説明する。地絡事故が発生した場合、地絡電流が金属製遮蔽体21の接地線6−1に流れ、それによる電流が零相電流として一括接地線6−2に流れる。一括接地線6−2に流れる零相電流を接地線電流を検出する電流検出手段5−5が検出し、その出力が第一の規定値(電源駆動用規定値)を以上の場合、電源駆動手段71は電源接続部76を非接続状態から接続状態にして地絡検出回路72および各相接地線電流検出回路73に定電圧電源部83を介して電池電源75を接続する(ステップS31の電源起動)。また、電流検出手段5−5の出力が第一の規定値未満になると、電源駆動手段71は電源接続部76を接続状態から非接続状態にして地絡検出回路72および各相接地線電流検出回路73から電池電源75を切り離す。
【0043】
電流検出手段5−5の出力が第一の規定値以上となり、電池電源75が接続された(ステップS31の電源起動)場合について、以下説明する。電源が起動すると、地絡検出回路72では電池使用開始からの累積動作時間を計算する(ステップS32)。次に、地絡検出回路72は電流検出手段5−4で検出される零相電流が第二の規定値(事故検出用規定値)未満であるかどうか判定する(ステップS33,S34)。そして、第二の規定値未満の零相電流が継続しているかどうかを判定するとともに、第二の規定値未満の零相電流の継続時間を算出し(ステップS35)、その算出した継続時間が予め定めた第二の特定時間になったかを判定する(ステップS36)。予め定めた第二の特定時間になった後、累積動作時間が電池の規定残存容量にいたる時間より小さいか否か判定する(ステップS37)。そして、累積動作時間が電池の規定残存容量にいたる時間以上である場合、地絡検出回路72はロック手段81を制御してロック手段81により電源駆動手段71をロックする(ステップS38)。電源駆動手段71がロックされると、第一の規定値以上で、第二の規定値未満の零相電流の継続に対する不必要な電池の消費はなくなる。
【0044】
第3の実施の形態によれば、地絡検出に至らない零相電流の継続に対し、電池寿命に至る前に電源駆動手段71をロックするので、不必要な電池の消費をなくすことができる。この実施の形態では、地絡検出には至っていないが、接地線電流(零相電流)の継続によりケーブルが劣化が進んでいることが判断できる。
【0045】
また、ロック手段81としてラッチングリレーを使用した場合、手動操作のスイッチ手段77により容易に電源駆動手段77のロックを解除することができる。
【0046】
なお、上記の説明では、ステップS32からステップS38でロック手段81を制御するまでの処理を、地絡検出回路72により行うものとしたが、電源駆動手段71で行うようにしてもよい。
【0047】
また、ここでは第一の規定値および第二の規定値の比較対象として零相電流を用いたが、零相電流の代わりに各相ケーブルの接地線電流を比較対象としてもよい。
【0048】
(第4の実施の形態)
第4の実施の形態について図5を用いて説明する。図5は第4の実施の形態のケーブル故障検出装置のブロック構成図である。
【0049】
図5において、高圧交流電路1に布設された相ごとに金属製遮蔽体21を有するケーブル2に開閉器3を介して負荷4が接続されている。このケーブル故障検出装置は、各金属製遮蔽体21の接地線6−1の接地線電流を検出する電流検出手段5−1〜5−3の出力を入力とする各相接地線電流検出回路73と、各接地線6−1を一括接続して接地した一括接地線6−2の接地線電流を検出する電流電流検出手段5−4の出力を入力とする地絡検出回路72と、一括接地線6−2の接地線電流を検出する電流検出手段5−5の検出出力により電源接続部82を接続状態とする電源駆動手段71と、地絡検出回路72の地絡事故検出動作により機械的または磁気的に表示器86の表示状態を継続する第一の表示手段74−1と、電池電源75と、ケ−ブル故障検出装置の定電圧電源部83と、電源駆動手段71によって接続状態と非接続状態とが切り替えられる電源接続部82と、ダイオ−ド84およびコンデンサ回路85とで構成されている。なお、図5では示していないが、図1の第二の表示手段74−2と、スイッチ手段77とが設けられてあってもよい。また、電源接続部82は、図1の電源接続部76と同様のものである。
【0050】
この第4の実施の形態では、電源接続部82が接続(導通)状態のときに、ダイオード84を介して電池電源75により充電されるコンデンサ回路85を設け、コンデンサ回路85の一端を表示器86に接続して表示器86をコンデンサ回路85の充電電圧により動作させるようにしている。また、電源接続部82を介して電池電源75に接続された定電圧電源部83は、電源接続部82が接続状態のときに、電池電源75から電圧の供給を受け、一定の電圧を地絡検出回路72および各相接地線電流検出回路73に供給する。
【0051】
上記構成における動作を説明する。地絡事故が発生した場合、地絡電流が金属製遮蔽体21の接地線6−1に流れ、それによる電流が零相電流として一括接地線6−2に流れる。一括接地線6−2に流れる零相電流を接地線電流を検出する電流検出手段5−5が検出し、その出力が第一の規定値(電源駆動用規定値)以上の場合、電源駆動手段71は電源接続部76を非接続(非導通)状態から接続状態に切替える。これにより、定電圧電源部83から地絡検出回路72および各相接地線電流検出回路73に電圧が供給されるとともに、コンデンサ回路85が充電される。そして電流検出手段5−4を介して検出された零相電流が第二の規定値(事故検出用規定値)以上の場合、地絡検出回路72は地絡事故と判断し、その検出信号を第一の表示手段74−1へ送る。この検出信号により第一の表示手段74−1では表示器86を動作させ、事故の発生を表示させる。この表示器86が動作すると瞬時に大きな負荷電流が流れるが、表示器86の電源電圧は充電されたコンデンサ回路85から供給されるので、瞬時の大きな負荷電流による電池電源75の電池電圧降下は小さくなる。
【0052】
第4の実施の形態によれば、表示器86の動作による瞬時大電流負荷時でも電池電源75を安定化することができ、それにより定電圧電源部83も安定するので、ケーブル故障検出装置の動作を安定化することができる。
【0053】
また、上記動作説明では、零相電流が第二の規定値以上になったときの地絡検出回路72による事故検出時に表示器86が動作する場合を記述したが、手動操作のスイッチ手段(図1のスイッチ手段77参照)による表示器86の点検による動作および事故経歴の消去に伴う復帰表示動作の場合も同様に電池電圧降下を小さくできる。
【0054】
また、ここでは第一の規定値および第二の規定値の比較対象として零相電流を用いたが、零相電流の代わりに各相ケーブルの接地線電流を比較対象としてもよい。
【0055】
また、ここでは表示器86の動作時、定電圧電源部83を安定させるために、電源接続部82と定電圧電源部83との間から定電圧電源部83と並列にダイオード84を介したコンデンサ回路85を接続し、コンデンサ回路85に充電された電圧を表示器用電源とする構成としたが、図6に示すように、電源接続部82と定電圧電源部83との間にダイオード84を挿入し、ダイオード84と定電圧電源部83との間から定電圧電源部83と並列にコンデンサ回路85を接続し、電源接続部82とダイオード84との間から表示器用電源を取り出す構成とすることで、定電圧電源部83を安定させ、ケーブル故障検出装置の動作を安定化させることも可能である。この図6の場合、表示器86の電源電圧は電池電源75から供給され、事故の発生により表示器86が動作すると瞬時に大きな負荷電流が流れ、電池電源75の電池電圧降下は大きくなるが、このとき定電圧電源部83にはコンデンサ回路85の充電電圧が供給されるので、定電圧電源部83を安定させ、ケーブル故障検出装置の動作を安定化させることが可能である。
【0056】
上記の図5や図6の第4の実施の形態の構成と、第1,第2または第3の実施の形態の構成とを組み合わせることにより、両方の効果を得ることができる。
【0057】
【発明の効果】
本発明の請求項1記載のケーブル故障検出装置によれば、電池電源の電池が規定残存容量に至ると電流検出手段から電源駆動手段への入力を無効にし電源駆動手段をロックするロック手段を設けたことを特徴とし、電池電源が電池寿命に至る前に電源駆動手段をロックすることができ、以後の事故入力に対して電池の消耗を防ぐ一方、点検時に電池電源により電源起動することができる。
【0058】
本発明の請求項2記載のケーブル故障検出装置によれば、電流検出手段で検出した接地線電流が事故検出用規定値以上の状態が第一の特定時間継続したとき電流検出手段から電源駆動手段への入力を無効にし電源駆動手段をロックするロック手段を設けたことを特徴とし、地絡事故検出後の地絡電流継続に対し電源駆動手段をロックすることで、電池の不必要な消費をなくすことができる。
【0059】
本発明の請求項3記載のケーブル故障検出装置によれば、電流検出手段で検出した接地線電流が電源駆動用規定値以上で事故検出用規定値未満の状態が第二の特定時間継続した後、電池電源の電池が規定残存容量に至ると電流検出手段から電源駆動手段への入力を無効にし電源駆動手段をロックするロック手段を設けたことを特徴とし、地絡検出に至らない地絡電流の継続に対し、電池寿命に至る前に電源駆動手段をロックすることで、電池の不必要な消費をなくすことができる。
【0060】
本発明の請求項4記載のケーブル故障検出装置によれば、請求項1,請求項2または請求項3に記載のケ−ブル故障検出装置において、ロック手段はラッチングリレーを用い、ラッチングリレーにより電流検出手段から電源駆動手段への入力を無効にするようにしたことを特徴とし、このようにロック手段を構成でき、また、手動操作のスイッチ手段によりロックの解除が容易に可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のケーブル故障検出装置のブロック構成図。
【図2】本発明の第1の実施の形態における動作説明用のフロー図。
【図3】本発明の第2の実施の形態における動作説明用のフロー図。
【図4】本発明の第3の実施の形態における動作説明用のフロー図。
【図5】本発明の第4の実施の形態のケーブル故障検出装置のブロック構成図。
【図6】本発明の第4の実施の形態のケーブル故障検出装置のブロック構成図。
【図7】従来のケーブル故障検出装置のブロック構成図。
【符号の説明】
1 高圧交流電路
2 ケーブル
21 金属製遮蔽体
3 開閉器
4 負荷
5−1〜5−3 電流検出手段
5−4〜5−5 電流検出手段
6−1 接地線
6−2 一括接地線
71 電源駆動手段
72 地絡検出回路
73 各相接地線電流検出回路
74−1 第一の表示手段
74−2 第二の表示手段
75 電池電源
76 電源接続部
77 スイッチ手段
81 ロック手段
82 電源接続部
83 定電圧電源部
84 ダイオード
85 コンデンサ回路
86 表示器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cable failure detection device that detects a failure of a cable having a metal shield for each phase laid on a high-voltage AC circuit.
[0002]
[Prior art]
Here, a conventional cable failure detection apparatus will be described. FIG. 7 is a block diagram of a conventional cable failure detection apparatus. In FIG. 7, a load 4 is connected via a switch 3 to a cable 2 having a metal shield 21 for each phase laid in the high-voltage AC circuit 1. This cable failure detection apparatus is a circuit for detecting the phase grounding line current that receives the outputs of the current detection means 5-1 to 5-3 for detecting the grounding line current of the grounding line 6-1 of each metal shield 21. 73, a ground fault detection circuit 72 that receives the output of the current detection means 5-4 that detects the ground line current of the collective ground line 6-2 that is grounded by connecting the ground lines 6-1 together, and collective grounding The battery power supply 75 is connected to the ground fault detection circuit 72 through the constant voltage power supply unit 83 by setting the power supply connection unit 76 to the connected state by the detection output of the current detection unit 5-5 that detects the ground line current of the line 6-2. Power supply driving means 71 connected to each phase ground line current detection circuit 73, and first display means 74 that mechanically or magnetically continues the display state of the display device by the ground fault detection operation of the ground fault detection circuit 72. -1 and second display to display measured values and accident history And stage 74-2 is configured to power connections 76 sends a signal to the power drive means 71 by the switching means 77 manually operated to operate to connect a predetermined time during inspection. The constant voltage power supply unit 83 is supplied with a voltage from the battery power supply 75 when the power supply connection unit 76 is in a connected state, and supplies a constant voltage to the ground fault detection circuit 72 and each phase ground line current detection circuit 73. Supply.
[0003]
As an example, the cable 2 has a configuration in which a conductor portion is a center (core), and a semiconductive layer, an insulator, a semiconductive layer, a metal shield 21, a tape, and a sheath are wound around the outside in that order. The metal shield 21 is made of a metal such as aluminum or copper, and the metal shield 21 is grounded, and the deterioration of the cable 2 can be determined from the magnitude of the ground line current flowing therethrough. The ground fault here means that the cable 2 is in a state where the conductor portion of the cable 2 and the grounded metal shield 21 are in contact with each other. Flows through the ground lines 6-1 and 6-2 connected to the metal shield 21 from the section to the ground. The feedback current returns to the cable 2 from the surrounding ground line.
[0004]
Next, the operation of the cable failure detection apparatus having the above configuration will be described. When a ground fault occurs, a ground fault current flows to the ground line 6-1 of the metal shield 21, and the resulting current flows to the collective ground line 6-2 as a zero-phase current. When the current detection means 5-5 for detecting the ground line current detects the zero-phase current flowing through the collective ground line 6-2, and the output is equal to or higher than the first specified value (specified value for power supply drive), the power supply drive means 71 connects the battery power source 75 to the ground fault detection circuit 72 and each phase ground line current detection circuit 73 through the constant voltage power source unit 83 with the power source connection unit 76 connected. When the zero-phase current is greater than or equal to the second specified value (accident detection specified value), the ground fault detection circuit 72 detects a ground fault and detects the detected signal as the first display means 74-1 and the second Send to display means 74-2. In response to this detection signal, the first display means 74-1 operates a display device that continues the display state mechanically or magnetically with the battery power source 75 to display the occurrence of the accident and record the accident data. Here, the 1st display means 74-1 is provided with the above-mentioned indicator, the medium which records accident data, etc. Note that the second specified value is larger than the first specified value.
[0005]
Further, the first display means 74-1 is referred to as display restoration after once operating the display as a normal operation check of the display at the time of power activation by a signal from the manually operated switch means 77 to the power supply drive means 71. When the accident history is deleted, the display is restored.
[0006]
Further, the second display means 74-2 is configured such that each phase grounding line current detection circuit 73 and ground fault detection circuit 72 is activated when the power is activated by a signal from the accident input or manual operation switch means 77 to the power supply drive means 71. Display measurement results and accident history.
[0007]
When a signal is sent from the manually operated switch unit 77 to the power source driving unit 71 at the time of inspection, the power source driving unit 71 puts the power source connecting unit 76 into a connected state regardless of the input from the current detecting unit 5-5.
[0008]
[Problems to be solved by the invention]
In the above-described conventional configuration, the power source driving means 71 connects the battery power source 75 to the ground fault detection circuit 72 every time a ground fault occurs, so that the power source is activated until the battery life is reached, and the power source is activated at the time of inspection. There was a problem that it was not possible.
[0009]
Further, when the zero-phase current due to the ground-fault current that flows when the ground-fault accident occurs exceeds the second specified value and the zero-phase current continues, the ground-fault detection circuit 72 operates. Therefore, there is a problem that the battery power source 75 remains connected to the ground fault detection circuit 72 by the power source driving means 71 and the battery is unnecessarily consumed.
[0010]
In addition, when the zero-phase current due to the ground fault current that flows in the event of a ground fault does not reach the ground fault detection, the battery power supply 75 remains connected until the battery life is reached, and the battery is unnecessary. There was a problem of being consumed.
[0011]
In addition, when the battery power supply 75 is used to operate a display device that continues the display state mechanically or magnetically by the operation of the ground fault detection circuit 72, the operation of the cable fault detection device is caused by the battery voltage drop when the battery is instantaneously loaded with a large current There was a problem that became unstable.
[0012]
The present invention has an object to provide a cable failure detection device that can solve the above-mentioned problems, and a first object is to provide a cable failure detection device that can always be powered on by a battery power source at the time of inspection. The second object is to provide a cable failure detection device that can prevent the battery of the battery power source from being consumed unnecessarily, and the third object is to provide an indicator. It is an object of the present invention to provide a cable failure detection device capable of stable operation even when a large load current flows instantaneously.
[0013]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a cable failure detection apparatus comprising: a battery power source; and grounding wires connected to each metal shield of a cable laid on a high-voltage AC circuit and having a metal shield for each phase. Current detection means for detecting a ground line current flowing in a collective ground line collectively grounded or each ground line connected to each of the metal shields, and a ground line current detected by the current detection means is used for accident detection. A ground fault detection circuit for detecting a ground fault when the value is equal to or greater than a value, and the battery when a ground line current detected by the current detection means is equal to or greater than a specified value for power supply driving that is smaller than the specified value for accident detection. A cable failure detection device comprising: a power source connected to the ground fault detection circuit; and a power source drive means for disconnecting the battery power source from the ground fault detection circuit when the power source is less than a specified value for driving the power source. The battery power The battery reaches the power capacity that should be reserved for inspection And invalidate the input from the current detection means to the power supply drive means. Locking means for disconnecting the battery power source Is provided.
[0014]
According to the configuration of the first aspect of the present invention, the lock means is provided, and the power supply drive means is locked before the battery power reaches the battery life, thereby preventing the battery from being consumed with respect to the subsequent accident input. The power supply can be activated by the power supply.
[0015]
According to a second aspect of the present invention, there is provided a cable fault detection apparatus comprising: a battery power source; and grounding wires connected to the respective metal shields of the cable laid on the high-voltage AC circuit and having a metal shield for each phase. Current detection means for detecting a ground line current flowing in a collective ground line collectively grounded or each ground line connected to each of the metal shields, and a ground line current detected by the current detection means is used for accident detection. A ground fault detection circuit for detecting a ground fault when the value is equal to or greater than a value, and the battery when a ground line current detected by the current detection means is equal to or greater than a specified value for power supply driving that is smaller than the specified value for accident detection. A cable failure detection device comprising: a power source connected to the ground fault detection circuit; and a power source drive means for disconnecting the battery power source from the ground fault detection circuit when the power source is less than a specified value for driving the power source. Detected by the current detection means Grounding wire current disables inputs from said current detecting means when said fault detection for a specified value or more state continues first specific time to said power drive means Locking means for disconnecting the battery power source Is provided.
[0016]
According to the second aspect of the present invention, unnecessary consumption of the battery can be eliminated by providing the locking means and locking the power supply driving means against the continuation of the ground fault current after the detection of the ground fault.
[0017]
According to a third aspect of the present invention, there is provided a cable fault detection device comprising: a battery power source; and a ground wire connected to each metal shield of a cable laid on a high-voltage AC circuit and having a metal shield for each phase. Current detection means for detecting a ground line current flowing in a collective ground line collectively grounded or each ground line connected to each of the metal shields, and a ground line current detected by the current detection means is used for accident detection. A ground fault detection circuit for detecting a ground fault when the value is equal to or greater than a value, and the battery when a ground line current detected by the current detection means is equal to or greater than a specified value for power supply driving that is smaller than the specified value for accident detection. A cable failure detection device comprising: a power source connected to the ground fault detection circuit; and a power source drive means for disconnecting the battery power source from the ground fault detection circuit when the power source is less than a specified value for driving the power source. Detected by the current detection means After the ground wire current state of less than the fault detection for a specified value in the supply voltage driving the specified value or more has continued a second specific time, the battery power supply The battery reaches the power capacity that should be reserved for inspection And invalidate the input from the current detection means to the power supply drive means. Locking means for disconnecting the battery power source Is provided.
[0018]
According to the third aspect of the present invention, by providing the locking means and locking the power supply driving means before the battery life is reached, against the continuation of the ground fault current that does not lead to the detection of the ground fault, unnecessary consumption of the battery is achieved. Can be eliminated.
[0019]
The cable failure detection device according to claim 4 of the present invention is the cable failure detection device according to claim 1, 2 or 3, wherein the locking means uses a latching relay, and the current detection means by the latching relay. The input to the power source drive means is invalidated. In this way, the locking means can be configured.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of the cable failure detection apparatus according to the first embodiment, and FIG. 2 is a flowchart for explaining the operation of the cable failure detection apparatus.
[0025]
In FIG. 1, a load 4 is connected via a switch 3 to a cable 2 having a metal shield 21 for each phase laid in the high-voltage AC circuit 1. This cable failure detection apparatus is a circuit for detecting the phase grounding line current that receives the outputs of the current detection means 5-1 to 5-3 for detecting the grounding line current of the grounding line 6-1 of each metal shield 21. 73, a ground fault detection circuit 72 that receives the output of the current detection means 5-4 that detects the ground line current of the collective ground line 6-2 that is grounded by connecting the ground lines 6-1 together, and collective grounding The battery power supply 75 is connected to the ground fault detection circuit 72 through the constant voltage power supply unit 83 by setting the power supply connection unit 76 to the connected state by the detection output of the current detection unit 5-5 that detects the ground line current of the line 6-2. Power supply driving means 71 connected to each phase ground line current detection circuit 73, and first display means 74 that mechanically or magnetically continues the display state of the display device by the ground fault detection operation of the ground fault detection circuit 72. -1 and second display to display measured values and accident history It comprises a stage 74-2, a manually operated switch means 77 that sends a signal to the power supply means 71 at the time of inspection and operates to connect the power supply connection portion 76 for a predetermined time, and a lock means 81 that locks the power supply means 71. Has been. The difference from the conventional configuration is that the locking means 81 is provided, and the same components as those in FIG.
[0026]
The operation in the above configuration will be described with reference to the flowchart of FIG. When a ground fault occurs, a ground fault current flows to the ground line 6-1 of the metal shield 21, and the resulting current flows to the collective ground line 6-2 as a zero-phase current. When the current detection means 5-5 for detecting the ground line current detects the zero-phase current flowing through the collective ground line 6-2, and the output is equal to or higher than the first specified value (specified value for power supply drive), the power supply drive means 71 connects the battery power supply 75 to the ground fault detection circuit 72 and each phase ground line current detection circuit 73 via the constant voltage power supply section 83 by changing the power supply connection section 76 from the non-connected state to the connected state (the power supply in step S11). Start-up). Further, when the output of the current detecting means 5-5 becomes less than the first specified value, the power supply driving means 71 changes the power supply connecting portion 76 from the connected state to the disconnected state, and the ground fault detection circuit 72 and each phase ground line current. The battery power source 75 is disconnected from the detection circuit 73.
[0027]
The case where the output of the current detection means 5-5 becomes equal to or higher than the first specified value and the battery power source 75 is connected (power activation in step S11) will be described below. The power source driving means 71 calculates the accumulated operation time from the start of battery use of the battery power source 75 (step S12), and determines whether or not the accumulated operation time is smaller than the time until the specified remaining capacity of the battery (step S13). If the time reaches the specified remaining capacity of the battery, the lock means 81 is controlled. Under the control of the power supply driving means 71, the locking means 81 locks the power supply driving means 71 (S14). Locking the power supply means 71 means that the power supply cannot be activated due to an accident input, and the lock means 81 invalidates the input from the current detection means 5-5 to the power supply means 71 (current By electrically disconnecting the detecting means 5-5 from the power supply driving means 71), the power supply connecting portion 76 is brought into a non-connected state. Therefore, when the power supply driving means 71 is locked, the subsequent accident input becomes invalid and the battery of the battery power supply 75 is not consumed. The specified remaining capacity of the battery is determined by the product specification. For example, if the battery capacity in the specification is “the remaining battery capacity is 30% and the number of operations is 500 times or more”, the specified remaining capacity of the battery is 30. %.
[0028]
In the above description, the processing from the step S12 to the control of the lock unit 81 in step S14 is performed by the power source drive unit 71, but may be performed by the ground fault detection circuit 72.
[0029]
When the power source driving means 71 is not locked and the zero-phase current becomes equal to or greater than the second specified value (specified value for accident detection), the ground fault detection circuit 72 detects that a ground fault has occurred. The detection signal is sent to the first display means 74-1 and the second display means 74-2 as described in the conventional example.
[0030]
Further, when the power supply driving means 71 is locked, when a signal is sent from the manually operated switch means 77 to the power supply driving means 71 during inspection, the power supply driving means 71 is connected to the power supply regardless of the input from the lock means 81. At this time, the input from the current detection means 5-5 is disabled by the lock means 81.
[0031]
According to the first embodiment, before the battery power supply 75 reaches the battery life, the lock means 81 invalidates the input (accident input) from the current detection means 5-5 to the power supply drive means 71. Since the power supply driving means 71 is locked, the power history can be checked by manually operating the switch means 77 at the time of inspection to check the accident history. When a latching relay is used as the lock unit 81, the power source drive unit 71 can be easily unlocked by the manually operated switch unit 77. Here, the latching relay is a relay that maintains the state of the contact even when the current is turned off when the contact is operated by energizing the coil.
[0032]
Further, here, the case where the power source is started by the output of the current detection means 5-5 for detecting the ground line current connected to the collective ground line 6-2 has been described, but it is connected to the ground line 6-1 of each phase cable. The power supply may be activated by sending a signal to the power supply drive means 71 by the outputs of the current detection means 5-1 to 5-3 for detecting the ground line current.
[0033]
As described above, the ground line current of each phase cable may be compared instead of the zero-phase current as the comparison target of the first specified value, and the zero-phase current is also compared for the comparison target of the second specified value. In addition, the ground line current of each phase cable may be used as a comparison target.
[0034]
(Second Embodiment)
A second embodiment will be described with reference to FIG. FIG. 3 is a flowchart for explaining the operation of the cable failure detection apparatus according to the second embodiment. Since the configuration diagram of the second embodiment is the same as that of FIG. 1 showing the first embodiment, the description thereof is omitted.
[0035]
Next, the operation will be described with reference to FIG. When a ground fault occurs, a ground fault current flows to the ground line 6-1 of the metal shield 21, and the resulting current flows to the collective ground line 6-2 as a zero-phase current. When the current detection means 5-5 for detecting the ground line current detects the zero-phase current flowing through the collective ground line 6-2, and the output is equal to or higher than the first specified value (specified value for power supply drive), the power supply drive means 71 connects the power source connecting unit 76 from the non-connected state to the connected state, and connects the battery power source 75 to the ground fault detecting circuit 72 and each phase ground line current detecting circuit 73 via the constant voltage power source unit 83 (the power source of step S21). Start-up). Further, when the output of the current detecting means 5-5 becomes less than the first specified value, the power supply driving means 71 changes the power supply connecting portion 76 from the connected state to the disconnected state, and the ground fault detection circuit 72 and each phase ground line current. The battery power source 75 is disconnected from the detection circuit 73.
[0036]
The case where the output of the current detection means 5-5 becomes equal to or higher than the first specified value and the battery power source 75 is connected (power activation in step S21) will be described below. When the power supply is activated, the ground fault detection circuit 72 measures the zero-phase current from the current detection means 5-4 and compares it with the second specified value (specified value for accident detection) (steps S22 and S23). If the zero-phase current is greater than or equal to the second specified value, it is determined that a ground fault has occurred, and the detection signal is sent to the first display means 74-1 and the second display means 74-2 (step S24).
[0037]
The ground fault detection circuit 72 continues to measure the zero-phase current from the current detection means 5-4 after the accident detection operation, and determines whether the zero-phase current equal to or greater than the second specified value continues (step). Along with S25 and S26), the duration of the zero-phase current equal to or greater than the second specified value is calculated (step S27), and the lock means 81 is controlled when the calculated duration reaches a predetermined first specific time. . Under the control of the ground fault detection circuit 72, the lock unit 81 locks the power source drive unit 71 (steps S28 and S29). When the power supply driving means 71 is locked, unnecessary battery consumption by the subsequent ground fault detection circuit 72 and each phase ground line current detection circuit 73 is eliminated.
[0038]
According to the second embodiment, by locking the power supply driving means 71, unnecessary battery consumption after the ground fault detection operation for the continuation of the zero-phase current exceeding the second specified value can be eliminated. it can. When a latching relay is used as the lock unit 81, the power source drive unit 71 can be easily unlocked by the manually operated switch unit 77.
[0039]
In the above description, the processing from the step S22 to the control of the lock unit 81 in step S29 is performed by the ground fault detection circuit 72, but may be performed by the power source drive unit 71.
[0040]
Here, the zero-phase current is used as a comparison target between the first specified value and the second specified value, but the ground line current of each phase cable may be used as a comparison target instead of the zero-phase current.
[0041]
(Third embodiment)
A third embodiment will be described with reference to FIG. FIG. 4 is a flowchart for explaining the operation of the cable failure detection apparatus according to the third embodiment. Since the configuration diagram of the third embodiment is the same as that of FIG. 1 showing the first embodiment, the description thereof is omitted.
[0042]
Next, the operation will be described with reference to FIG. When a ground fault occurs, a ground fault current flows to the ground line 6-1 of the metal shield 21, and the resulting current flows to the collective ground line 6-2 as a zero-phase current. When the current detection means 5-5 for detecting the ground line current detects the zero-phase current flowing through the collective ground line 6-2, and the output exceeds the first specified value (specified value for power supply drive), the power supply is driven. The means 71 connects the battery power source 75 to the ground fault detection circuit 72 and each phase ground line current detection circuit 73 via the constant voltage power source unit 83 by changing the power source connection unit 76 from the non-connected state to the connected state (in step S31). Power on). Further, when the output of the current detecting means 5-5 becomes less than the first specified value, the power supply driving means 71 changes the power supply connecting portion 76 from the connected state to the disconnected state, and the ground fault detection circuit 72 and each phase ground line current. The battery power source 75 is disconnected from the detection circuit 73.
[0043]
The case where the output of the current detection means 5-5 becomes equal to or higher than the first specified value and the battery power source 75 is connected (power activation in step S31) will be described below. When the power supply is activated, the ground fault detection circuit 72 calculates the accumulated operation time from the start of battery use (step S32). Next, the ground fault detection circuit 72 determines whether or not the zero-phase current detected by the current detection means 5-4 is less than the second specified value (accident detection specified value) (steps S33 and S34). Then, it is determined whether or not the zero-phase current less than the second specified value continues, the duration of the zero-phase current less than the second specified value is calculated (step S35), and the calculated duration is calculated. It is determined whether a predetermined second specific time has come (step S36). After the predetermined second specific time is reached, it is determined whether or not the accumulated operation time is shorter than the time to reach the specified remaining capacity of the battery (step S37). When the accumulated operation time is equal to or longer than the time required for the specified remaining capacity of the battery, the ground fault detection circuit 72 controls the lock unit 81 and locks the power source drive unit 71 by the lock unit 81 (step S38). When the power supply driving means 71 is locked, unnecessary battery consumption is eliminated for the continuation of zero-phase current that is greater than or equal to the first specified value and less than the second specified value.
[0044]
According to the third embodiment, since the power supply driving means 71 is locked before the battery life is reached with respect to the continuation of the zero-phase current that does not lead to the ground fault detection, unnecessary battery consumption can be eliminated. . In this embodiment, although the ground fault has not been detected, it can be determined that the cable has deteriorated due to the continuation of the ground line current (zero phase current).
[0045]
When a latching relay is used as the lock unit 81, the power source drive unit 77 can be easily unlocked by the manually operated switch unit 77.
[0046]
In the above description, the processing from the step S32 to the control of the lock unit 81 in step S38 is performed by the ground fault detection circuit 72, but may be performed by the power source drive unit 71.
[0047]
Here, the zero-phase current is used as a comparison target between the first specified value and the second specified value, but the ground line current of each phase cable may be used as a comparison target instead of the zero-phase current.
[0048]
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. FIG. 5 is a block diagram of a cable failure detection apparatus according to the fourth embodiment.
[0049]
In FIG. 5, a load 4 is connected via a switch 3 to a cable 2 having a metal shield 21 for each phase laid in the high-voltage AC circuit 1. This cable failure detection apparatus is a circuit for detecting the phase grounding line current that receives the outputs of the current detection means 5-1 to 5-3 for detecting the grounding line current of the grounding line 6-1 of each metal shield 21. 73, a ground fault detection circuit 72 that receives the output of the current / current detection means 5-4 for detecting the ground line current of the collective ground line 6-2 that is grounded by connecting the ground lines 6-1 together, The power supply drive means 71 for connecting the power supply connection portion 82 with the detection output of the current detection means 5-5 for detecting the ground line current of the ground line 6-2 and the ground fault detection operation of the ground fault detection circuit 72 Connected by the first display means 74-1 that continuously or magnetically continues the display state of the display 86, the battery power source 75, the constant voltage power source 83 of the cable failure detection device, and the power source drive means 71. And a power supply connection portion 82 that can be switched between a disconnected state and a disconnected state, Io - it is composed of a de 84 and the capacitor circuit 85. Although not shown in FIG. 5, the second display unit 74-2 and the switch unit 77 in FIG. 1 may be provided. Moreover, the power supply connection part 82 is the same as the power supply connection part 76 of FIG.
[0050]
In the fourth embodiment, a capacitor circuit 85 that is charged by the battery power source 75 via the diode 84 when the power supply connecting portion 82 is in a connected (conducting) state is provided, and one end of the capacitor circuit 85 is connected to the display 86. The display 86 is operated by the charging voltage of the capacitor circuit 85. Further, the constant voltage power supply unit 83 connected to the battery power supply 75 via the power supply connection unit 82 is supplied with a voltage from the battery power supply 75 when the power supply connection unit 82 is in a connected state, and a constant voltage is supplied to the ground. This is supplied to the detection circuit 72 and each phase ground line current detection circuit 73.
[0051]
The operation in the above configuration will be described. When a ground fault occurs, a ground fault current flows to the ground line 6-1 of the metal shield 21, and the resulting current flows to the collective ground line 6-2 as a zero-phase current. When the current detection means 5-5 for detecting the ground line current detects the zero-phase current flowing through the collective ground line 6-2, and the output is equal to or higher than the first specified value (specified value for power supply drive), the power supply drive means 71 switches the power supply connection part 76 from a non-connection (non-conduction) state to a connection state. As a result, a voltage is supplied from constant voltage power supply unit 83 to ground fault detection circuit 72 and each phase ground line current detection circuit 73, and capacitor circuit 85 is charged. If the zero-phase current detected via the current detection means 5-4 is equal to or greater than the second specified value (accident detection specified value), the ground fault detection circuit 72 determines that there is a ground fault and detects the detected signal. The data is sent to the first display means 74-1. In response to this detection signal, the first display means 74-1 operates the display 86 to display the occurrence of an accident. When the display 86 is operated, a large load current flows instantaneously. However, since the power supply voltage of the display 86 is supplied from the charged capacitor circuit 85, the battery voltage drop of the battery power supply 75 due to the instantaneous large load current is small. Become.
[0052]
According to the fourth embodiment, the battery power supply 75 can be stabilized even during an instantaneous large current load due to the operation of the display 86, and the constant voltage power supply unit 83 is also stabilized. The operation can be stabilized.
[0053]
In the above description of the operation, a case has been described in which the indicator 86 operates when an accident is detected by the ground fault detection circuit 72 when the zero-phase current becomes equal to or greater than the second specified value. Similarly, the battery voltage drop can be reduced in the case of the operation by inspection of the indicator 86 by the switch means 77 of 1) and the return display operation accompanying the deletion of the accident history.
[0054]
Here, the zero-phase current is used as a comparison target between the first specified value and the second specified value, but the ground line current of each phase cable may be used as a comparison target instead of the zero-phase current.
[0055]
Further, here, in order to stabilize the constant voltage power supply unit 83 during the operation of the display 86, a capacitor is interposed between the power supply connection unit 82 and the constant voltage power supply unit 83 through the diode 84 in parallel with the constant voltage power supply unit 83. Although the circuit 85 is connected and the voltage charged in the capacitor circuit 85 is used as the power supply for the display, a diode 84 is inserted between the power supply connection portion 82 and the constant voltage power supply portion 83 as shown in FIG. The capacitor circuit 85 is connected in parallel with the constant voltage power supply unit 83 from between the diode 84 and the constant voltage power supply unit 83, and the display power supply is taken out between the power supply connection unit 82 and the diode 84. It is also possible to stabilize the constant voltage power supply unit 83 and stabilize the operation of the cable failure detection device. In the case of FIG. 6, the power supply voltage of the display 86 is supplied from the battery power supply 75. When the display 86 is operated due to the occurrence of an accident, a large load current flows instantaneously, and the battery voltage drop of the battery power supply 75 increases. At this time, since the charging voltage of the capacitor circuit 85 is supplied to the constant voltage power supply unit 83, the constant voltage power supply unit 83 can be stabilized and the operation of the cable failure detection apparatus can be stabilized.
[0056]
By combining the configuration of the fourth embodiment in FIG. 5 and FIG. 6 described above with the configuration of the first, second, or third embodiment, both effects can be obtained.
[0057]
【The invention's effect】
According to the cable failure detection apparatus of the first aspect of the present invention, there is provided the lock means for invalidating the input from the current detection means to the power supply drive means and locking the power supply drive means when the battery of the battery power supply reaches the specified remaining capacity. The power supply drive means can be locked before the battery power reaches the end of its battery life, and it is possible to start up the power supply by the battery power supply at the time of inspection while preventing the battery from being consumed for subsequent accident inputs. .
[0058]
According to the cable fault detection apparatus of the second aspect of the present invention, when the state where the ground line current detected by the current detection means is equal to or greater than the specified value for accident detection continues for the first specific time, the current detection means to the power supply drive means. It is characterized by providing a lock means that disables input to the power supply and locks the power supply drive means, and locks the power supply drive means against continuation of the ground fault current after detection of a ground fault, thereby reducing unnecessary consumption of the battery. Can be eliminated.
[0059]
According to the cable fault detection device of the third aspect of the present invention, after the ground line current detected by the current detection means is equal to or greater than the power supply drive specified value and less than the accident detection specified value continues for the second specific time. A ground fault current that does not lead to ground fault detection, characterized by providing a lock means for disabling the input from the current detection means to the power drive means when the battery of the battery power source reaches the specified remaining capacity, and locking the power drive means In contrast, unnecessary power consumption of the battery can be eliminated by locking the power supply driving means before the battery life is reached.
[0060]
According to the cable fault detection device of claim 4 of the present invention, in the cable fault detection device of claim 1, claim 2 or claim 3, the locking means uses a latching relay, and the current is generated by the latching relay. It is characterized in that the input from the detection means to the power supply drive means is invalidated, and thus the lock means can be configured, and the lock can be easily released by the manually operated switch means.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram of a cable failure detection apparatus according to a first embodiment of the present invention.
FIG. 2 is a flowchart for explaining the operation in the first embodiment of the present invention.
FIG. 3 is a flowchart for explaining operations in the second embodiment of the present invention;
FIG. 4 is a flowchart for explaining the operation in the third embodiment of the present invention.
FIG. 5 is a block configuration diagram of a cable failure detection device according to a fourth embodiment of the present invention.
FIG. 6 is a block configuration diagram of a cable failure detection apparatus according to a fourth embodiment of the present invention.
FIG. 7 is a block diagram of a conventional cable failure detection device.
[Explanation of symbols]
1 High voltage AC circuit
2 Cable
21 Metal shield
3 Switch
4 Load
5-1-5-3 Current detection means
5-4 to 5-5 Current detection means
6-1 Ground wire
6-2 Collective grounding wire
71 Power supply means
72 Ground fault detection circuit
73 Each phase ground line current detection circuit
74-1 First display means
74-2 Second display means
75 Battery power
76 Power connection
77 Switch means
81 Locking means
82 Power connection
83 Constant voltage power supply
84 Diode
85 Capacitor circuit
86 Display

Claims (4)

電池電源と、
高圧交流電路に布設され相毎に金属製遮蔽体を有するケ−ブルの各金属製遮蔽体に接続された各接地線を一括して接地した一括接地線または前記各金属製遮蔽体に接続された各接地線に流れる接地線電流を検出する電流検出手段と、
前記電流検出手段で検出した接地線電流が事故検出用規定値以上のときに地絡事故の検出を行う地絡検出回路と、
前記電流検出手段で検出した接地線電流が前記事故検出用規定値より小さい値である電源駆動用規定値以上のときには前記電池電源を前記地絡検出回路に接続し、前記電源駆動用規定値未満のときには前記電池電源を前記地絡検出回路に非接続とする電源駆動手段とを備えたケ−ブル故障検出装置であって、
前記電池電源の電池が点検のために確保すべき電源容量に至ると前記電流検出手段から前記電源駆動手段への入力を無効にし前記電池電源を非接続状態とするロック手段を設けたことを特徴とするケ−ブル故障検出装置。
Battery power,
Connected to each ground shield wire collectively grounded each ground wire connected to each metal shield of the cable laid on the high-voltage AC circuit and having a metal shield for each phase, or connected to each metal shield. Current detecting means for detecting a ground line current flowing through each ground line;
A ground fault detection circuit for detecting a ground fault when the ground line current detected by the current detection means is equal to or greater than a specified value for fault detection;
When the ground line current detected by the current detection means is equal to or greater than a specified value for power supply driving, which is smaller than the specified value for accident detection, the battery power supply is connected to the ground fault detection circuit, and less than the specified value for driving the power supply. A cable failure detection device comprising power supply driving means for disconnecting the battery power supply from the ground fault detection circuit,
When the battery of the battery power supply reaches a power capacity that should be ensured for inspection, there is provided a lock means that disables the input from the current detection means to the power supply driving means and disconnects the battery power supply. A cable fault detection device.
電池電源と、
高圧交流電路に布設され相毎に金属製遮蔽体を有するケ−ブルの各金属製遮蔽体に接続された各接地線を一括して接地した一括接地線または前記各金属製遮蔽体に接続された各接地線に流れる接地線電流を検出する電流検出手段と、
前記電流検出手段で検出した接地線電流が事故検出用規定値以上のときに地絡事故の検出を行う地絡検出回路と、
前記電流検出手段で検出した接地線電流が前記事故検出用規定値より小さい値である電源駆動用規定値以上のときには前記電池電源を前記地絡検出回路に接続し、前記電源駆動用規定値未満のときには前記電池電源を前記地絡検出回路に非接続とする電源駆動手段とを備えたケ−ブル故障検出装置であって、
前記電流検出手段で検出した接地線電流が前記事故検出用規定値以上の状態が第一の特定時間継続したとき前記電流検出手段から前記電源駆動手段への入力を無効にし前記電池電源を非接続状態とするロック手段を設けたことを特徴とするケ−ブル故障検出装置。
Battery power,
Connected to each ground shield wire collectively grounded each ground wire connected to each metal shield of the cable laid on the high-voltage AC circuit and having a metal shield for each phase, or connected to each metal shield. Current detecting means for detecting a ground line current flowing through each ground line;
A ground fault detection circuit for detecting a ground fault when the ground line current detected by the current detection means is equal to or greater than a specified value for fault detection;
When the ground line current detected by the current detection means is equal to or greater than a specified value for power supply driving, which is smaller than the specified value for accident detection, the battery power supply is connected to the ground fault detection circuit, and less than the specified value for driving the power supply. A cable failure detection device comprising power supply driving means for disconnecting the battery power supply from the ground fault detection circuit,
When the ground line current detected by the current detection unit is equal to or greater than the specified value for accident detection continues for a first specific time, the input from the current detection unit to the power source drive unit is invalidated and the battery power source is not connected. A cable failure detection apparatus comprising a lock means for setting a state .
電池電源と、
高圧交流電路に布設され相毎に金属製遮蔽体を有するケ−ブルの各金属製遮蔽体に接続された各接地線を一括して接地した一括接地線または前記各金属製遮蔽体に接続された各接地線に流れる接地線電流を検出する電流検出手段と、
前記電流検出手段で検出した接地線電流が事故検出用規定値以上のときに地絡事故の検出を行う地絡検出回路と、
前記電流検出手段で検出した接地線電流が前記事故検出用規定値より小さい値である電源駆動用規定値以上のときには前記電池電源を前記地絡検出回路に接続し、前記電源駆動用規定値未満のときには前記電池電源を前記地絡検出回路に非接続とする電源駆動手段とを備えたケ−ブル故障検出装置であって、
前記電流検出手段で検出した接地線電流が前記電源駆動用規定値以上で前記事故検出用規定値未満の状態が第二の特定時間継続した後、前記電池電源の電池が点検のために確保すべき電源容量に至ると前記電流検出手段から前記電源駆動手段への入力を無効にし前記電池電源を非接続状態とするロック手段を設けたことを特徴とするケ−ブル故障検出装置であります。
Battery power,
Connected to each ground shield wire collectively grounded each ground wire connected to each metal shield of the cable laid on the high-voltage AC circuit and having a metal shield for each phase, or connected to each metal shield. Current detecting means for detecting a ground line current flowing through each ground line;
A ground fault detection circuit for detecting a ground fault when the ground line current detected by the current detection means is equal to or greater than a specified value for fault detection;
When the ground line current detected by the current detection means is equal to or greater than a specified value for power supply driving, which is smaller than the specified value for accident detection, the battery power supply is connected to the ground fault detection circuit, and less than the specified value for driving the power supply. A cable failure detection device comprising power supply driving means for disconnecting the battery power supply from the ground fault detection circuit,
After the ground line current detected by the current detecting means is not less than the specified value for power supply drive and less than the specified value for accident detection continues for a second specific time, the battery of the battery power supply is secured for inspection. The cable failure detection device is provided with a lock means for disabling the input from the current detection means to the power supply drive means when the power supply capacity is reached , so that the battery power supply is disconnected .
ロック手段はラッチングリレーを用い、前記ラッチングリレーにより前記電流検出手段から前記電源駆動手段への入力を無効にするようにしたことを特徴とする請求項1,請求項2または請求項3に記載のケ−ブル故障検出装置。 The locking means uses a latching relay, and the input from the current detection means to the power supply driving means is invalidated by the latching relay. Cable fault detection device.
JP2000351042A 2000-11-17 2000-11-17 Cable fault detection device Expired - Fee Related JP3805617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351042A JP3805617B2 (en) 2000-11-17 2000-11-17 Cable fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351042A JP3805617B2 (en) 2000-11-17 2000-11-17 Cable fault detection device

Publications (2)

Publication Number Publication Date
JP2002159131A JP2002159131A (en) 2002-05-31
JP3805617B2 true JP3805617B2 (en) 2006-08-02

Family

ID=18824166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351042A Expired - Fee Related JP3805617B2 (en) 2000-11-17 2000-11-17 Cable fault detection device

Country Status (1)

Country Link
JP (1) JP3805617B2 (en)

Also Published As

Publication number Publication date
JP2002159131A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
EP0410716B1 (en) Uninterruptible power supply
CN102576999B (en) System and method for polyphase ground-fault circuit-interrupters
US11198405B2 (en) In-vehicle backup circuit and in-vehicle backup device
JP2003512711A (en) Method and apparatus for controlling the switching connection between the electrical output of a fuel cell and an isolated electrical network
US6327124B1 (en) Low current ground fault relay
JP2873766B2 (en) Two-circuit power supply circuit device for vehicle
JP5104520B2 (en) Electric vehicle charging device
MXPA96005115A (en) Method and apparatus for transfer between sources of electrical energy that block adaptative transfer until the voltage of charge achieves a secure value
JP3805617B2 (en) Cable fault detection device
JP3059996B2 (en) Uninterruptible power system
US9509139B1 (en) Transfer switch for automatically switching neutrals for one or more loads between two electrical sources of power
JP2000175458A (en) Auxiliary power source unit for rolling stock
JP2595908Y2 (en) Leakage detection device for electric vehicles
WO2006103409A2 (en) Power supply circuit for lasers
JPH10201004A (en) Power supply for car
KR100460906B1 (en) Charging system controlling device of electric vehicle
JPH09229985A (en) Testing device for warning detection of insulation monitoring apparatus
JP3895067B2 (en) Uninterruptible power system
JP3287027B2 (en) Automatic fuse switching device
EP1069665A2 (en) Power transmission line and method of control
US20210184459A1 (en) Protection apparatus and method for an electric wheelchair
JP3360968B2 (en) Protective relay
JP3999917B2 (en) Klystron power supply
JPH0315235A (en) Uninterruptible power supply
CN111969559A (en) Voltage transformer cabinet fault protection device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees