JP3805437B2 - Process for producing cyclopropanecarbaldehyde - Google Patents
Process for producing cyclopropanecarbaldehyde Download PDFInfo
- Publication number
- JP3805437B2 JP3805437B2 JP23388496A JP23388496A JP3805437B2 JP 3805437 B2 JP3805437 B2 JP 3805437B2 JP 23388496 A JP23388496 A JP 23388496A JP 23388496 A JP23388496 A JP 23388496A JP 3805437 B2 JP3805437 B2 JP 3805437B2
- Authority
- JP
- Japan
- Prior art keywords
- cyclopropanecarbaldehyde
- reaction
- dihydrofuran
- producing
- day
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、シクロプロパンカルバルデヒドの製造方法に関する。本発明により提供されるシクロプロパンカルバルデヒドは、医薬、農薬の合成中間体として、例えば、除草剤として有用なN−(シクロプロピルメチル)−2,6−ジニトロ−N−プロピル−4−(トリフルオロメチル)ベンゼンアミンの合成中間体として有用である。
【0002】
【従来の技術】
従来、シクロプロパンカルバルデヒドの製造方法としては、2,3−ジヒドロフランを気相において375℃に加熱し、熱転位させる方法が知られている[ジャーナル オブ アメリカン ケミカル ソサエティ(Journal of American Chemical Society)、69巻、3002頁(1947年)参照]。かかる文献には、500℃以上の高温で反応を行った場合には、副生成物であるクロトンアルデヒドが増加し、また、生成したシクロプロパンカルバルデヒドがプロピレンと一酸化炭素に熱分解するなどの副反応が起こり、シクロプロパンカルバルデヒドの収率が低下することが記載されている。一方、上記の製法の問題点を解決するために、400〜525℃の範囲、より好ましくは420〜485℃の範囲で異性化反応を行う方法が提案されている[米国特許明細書第4275238号参照]。
【0003】
【発明が解決しようとする課題】
上記米国特許明細書においては、実施例2では460℃、実施例3では480℃で異性化反応を行っているが、この時の空時収率を求めると、実施例2では0.7トン/m3 ・日、実施例3では1.7トン/m3 ・日といずれも低い。したがって、上記米国特許明細書記載の方法にしたがって工業的にシクロプロパンカルバルデヒドを製造する場合には、反応装置を大きくせざるを得ないという問題点を有していた。
しかして、本発明の目的は、選択性を保持しつつ、高い生産性で、シクロプロパンカルバルデヒドを工業的に有利に製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明によれば、上記の目的は、2,3−ジヒドロフランを、大気圧下、気相において50%以下の転化率で、530℃〜700℃に加熱することを特徴とするシクロプロパンカルバルデヒドの製造方法を提供することにより達成される。
【0005】
【発明の実施の形態】
本発明における反応は、大気圧下、530℃〜700℃、好ましくは560℃〜600℃の範囲の温度で行われる。530℃より低い温度では、本発明のような高い空時収率は達成されない。また、反応温度を700℃より高い温度にするには特殊な装置が必要となり、好ましくない。
【0006】
上記の熱反応に用いる装置は、均一に加熱できるように工夫されていればどのような装置であってもよく、例えば、セラミックボールを充填したステンレス製反応管や充填剤を電磁誘導により加熱できる反応管などが用いられる。
【0007】
2,3−ジヒドロフランは、予め加熱し、気化させて熱反応装置に導入される。
【0008】
本発明によれば、選択性を低下させることなく生産性を高めることができ、シクロプロパンカルバルデヒドの空時収率は従来法の0.7〜1.7トン/m3 ・日から1桁高い約10トン/m3 ・日以上にも達する。
【0009】
【実施例】
以下、実施例により本発明をさらに詳しく説明するが、本発明は実施例により何ら限定されるものではない。
【0010】
実施例1
セラミックボールを充填した加熱領域の容積が110ccのステンレス製反応管を電気炉により加熱し、ここに蒸発器を用いてガス化させた2,3−ジヒドロフランを120g/hrの速度で導入した。反応管内の最高温度が560℃になるように調整し、反応後のガスは凝縮器を用いて捕集した。温度が安定した後の30分間に、シクロプロパンカルバルデヒド16.4gを含む反応液58.8gを得た。2,3−ジヒドロフランの転化率は32.6%、シクロプロパンカルバルデヒドの選択率は83.8%、空時収率は7.2t/m3・日であった。
【0011】
実施例2
反応管内の最高温度が565℃になるように調整し、蒸発器を用いてガス化させた2,3−ジヒドロフランを145g/hrの速度で導入した以外は実施例1と同様に反応を行った結果、シクロプロパンカルバルデヒド22.0gを含む反応液71.1gを得た。2,3−ジヒドロフランの転化率は37.6%、シクロプロパンカルバルデヒドの選択率は80.6%、空時収率は9.6t/m3 ・日であった。
【0012】
実施例3
反応管内の最高温度が567℃になるように調整し、蒸発器を用いてガス化させた2,3−ジヒドロフランを150g/hrの速度で導入した以外は実施例1と同様に反応を行った結果、シクロプロパンカルバルデヒド22.9gを含む反応液73.5gを得た。2,3−ジヒドロフランの転化率は38.0%、シクロプロパンカルバルデヒドの選択率は80.3%、空時収率は10.0t/m3 ・日であった。
【0013】
実施例4
反応管内の最高温度が570℃になるように調整し、蒸発器を用いてガス化させた2,3−ジヒドロフランを200g/hrの速度で導入した以外は実施例1と同様に反応を行った結果、シクロプロパンカルバルデヒド28.0gを含む反応液97.5gを得た。2,3−ジヒドロフランの転化率は33.7%、シクロプロパンカルバルデヒドの選択率は83.1%、空時収率は12.2t/m3 ・日であった。
【0014】
実施例5
反応管内の最高温度が580℃になるように調整し、蒸発器を用いてガス化させた2,3−ジヒドロフランを291g/hrの速度で導入した以外は実施例1と同様に反応を行った結果、シクロプロパンカルバルデヒド41.1gを含む反応液142.9gを得た。2,3−ジヒドロフランの転化率は34.9%、シクロプロパンカルバルデヒドの選択率は80.7%、空時収率は17.8t/m3・日であった。
【0015】
実施例6
反応管内の最高温度が586℃になるように調整し、蒸発器を用いてガス化させた2,3−ジヒドロフランを460g/hrの速度で導入した以外は実施例1と同様に反応を行った結果、シクロプロパンカルバルデヒド67.5gを含む反応液225.4gを得た。2,3−ジヒドロフランの転化率は35.9%、シクロプロパンカルバルデヒドの選択率は81.8%、空時収率は29.5t/m3・日であった。
【0016】
実施例7
反応管内の最高温度が590℃になるように調整し、蒸発器を用いてガス化させた2,3−ジヒドロフランを500g/hrの速度で導入した以外は実施例1と同様に反応を行った結果、シクロプロパンカルバルデヒド77.8gを含む反応液242.5gを得た。2,3−ジヒドロフランの転化率は39.1%、シクロプロパンカルバルデヒドの選択率は79.6%、空時収率は34.0t/m3・日であった。
【0017】
【発明の効果】
本発明によれば、選択性を保持しつつ、高い生産性で、シクロプロパンカルバルデヒドを工業的に有利に製造することができる。[0001]
[Industrial application fields]
The present invention relates to a process for producing cyclopropanecarbaldehyde. The cyclopropane carbaldehyde provided by the present invention is an intermediate for the synthesis of pharmaceuticals and agricultural chemicals, for example, N- (cyclopropylmethyl) -2,6-dinitro-N-propyl-4- (tri-methyl) useful as a herbicide. It is useful as an intermediate for the synthesis of (fluoromethyl) benzeneamine.
[0002]
[Prior art]
Conventionally, as a method for producing cyclopropanecarbaldehyde, a method in which 2,3-dihydrofuran is heated to 375 ° C. in a gas phase and thermally rearranged is known [Journal of American Chemical Society]. 69, 3002 (1947)]. According to this document, when the reaction is performed at a high temperature of 500 ° C. or higher, crotonaldehyde as a by-product increases, and the produced cyclopropanecarbaldehyde is thermally decomposed into propylene and carbon monoxide. It is described that side reactions occur and the yield of cyclopropanecarbaldehyde decreases. On the other hand, in order to solve the problems of the above-mentioned production method, a method of performing an isomerization reaction in the range of 400 to 525 ° C., more preferably in the range of 420 to 485 ° C. has been proposed [US Pat. No. 4,275,238. reference].
[0003]
[Problems to be solved by the invention]
In the above US patent specification, the isomerization reaction is carried out at 460 ° C. in Example 2 and at 480 ° C. in Example 3. When the space time yield at this time is determined, 0.7 ton in Example 2 is obtained. / M 3 · day, and in Example 3, 1.7 ton / m 3 · day are both low. Therefore, in the case of producing cyclopropane carbaldehyde industrially according to the method described in the above-mentioned US patent specification, there has been a problem that the reactor must be enlarged.
Thus, an object of the present invention is to provide a method for producing cyclopropanecarbaldehyde industrially advantageously with high productivity while maintaining selectivity.
[0004]
[Means for Solving the Problems]
According to the present invention, the above object is achieved by heating 2,3-dihydrofuran to 530 ° C. to 700 ° C. at a conversion rate of 50% or less in the gas phase under atmospheric pressure. This is achieved by providing a method for producing aldehyde.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The reaction in the present invention is performed under atmospheric pressure at a temperature in the range of 530 ° C to 700 ° C, preferably 560 ° C to 600 ° C. At temperatures below 530 ° C., high space time yields as in the present invention are not achieved. In addition, a special apparatus is required to make the reaction temperature higher than 700 ° C., which is not preferable.
[0006]
The apparatus used for the thermal reaction may be any apparatus as long as it can be heated uniformly. For example, a stainless steel reaction tube filled with a ceramic ball or a filler can be heated by electromagnetic induction. A reaction tube or the like is used.
[0007]
2,3-dihydrofuran is preheated and vaporized before being introduced into the thermal reactor.
[0008]
According to the present invention, productivity can be increased without reducing selectivity, and the space-time yield of cyclopropanecarbaldehyde is one digit from 0.7 to 1.7 tons / m 3 · day of the conventional method. It reaches about 10 tons / m 3 · day or more.
[0009]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by an Example.
[0010]
Example 1
A stainless steel reaction tube having a heating area of 110 cc filled with ceramic balls was heated by an electric furnace, and 2,3-dihydrofuran gasified using an evaporator was introduced at a rate of 120 g / hr. The maximum temperature in the reaction tube was adjusted to 560 ° C., and the gas after the reaction was collected using a condenser. In 30 minutes after the temperature was stabilized, 58.8 g of a reaction solution containing 16.4 g of cyclopropanecarbaldehyde was obtained. The conversion rate of 2,3-dihydrofuran was 32.6%, the selectivity of cyclopropanecarbaldehyde was 83.8%, and the space-time yield was 7.2 t / m 3 · day.
[0011]
Example 2
The reaction was conducted in the same manner as in Example 1 except that the maximum temperature in the reaction tube was adjusted to 565 ° C., and 2,3-dihydrofuran gasified using an evaporator was introduced at a rate of 145 g / hr. As a result, 71.1 g of a reaction solution containing 22.0 g of cyclopropanecarbaldehyde was obtained. The conversion of 2,3-dihydrofuran was 37.6%, the selectivity for cyclopropanecarbaldehyde was 80.6%, and the space-time yield was 9.6 t / m 3 · day.
[0012]
Example 3
The reaction was carried out in the same manner as in Example 1 except that the maximum temperature in the reaction tube was adjusted to 567 ° C., and 2,3-dihydrofuran gasified using an evaporator was introduced at a rate of 150 g / hr. As a result, 73.5 g of a reaction solution containing 22.9 g of cyclopropanecarbaldehyde was obtained. The conversion of 2,3-dihydrofuran was 38.0%, the selectivity for cyclopropanecarbaldehyde was 80.3%, and the space-time yield was 10.0 t / m 3 · day.
[0013]
Example 4
The reaction was carried out in the same manner as in Example 1 except that the maximum temperature in the reaction tube was adjusted to 570 ° C., and 2,3-dihydrofuran gasified using an evaporator was introduced at a rate of 200 g / hr. As a result, 97.5 g of a reaction solution containing 28.0 g of cyclopropanecarbaldehyde was obtained. The conversion of 2,3-dihydrofuran was 33.7%, the selectivity of cyclopropanecarbaldehyde was 83.1%, and the space-time yield was 12.2 t / m 3 · day.
[0014]
Example 5
The reaction was carried out in the same manner as in Example 1 except that the maximum temperature in the reaction tube was adjusted to 580 ° C., and 2,3-dihydrofuran gasified using an evaporator was introduced at a rate of 291 g / hr. As a result, 142.9 g of a reaction solution containing 41.1 g of cyclopropanecarbaldehyde was obtained. The conversion of 2,3-dihydrofuran was 34.9%, the selectivity for cyclopropanecarbaldehyde was 80.7%, and the space-time yield was 17.8 t / m 3 · day.
[0015]
Example 6
The reaction was carried out in the same manner as in Example 1 except that the maximum temperature in the reaction tube was adjusted to 586 ° C., and 2,3-dihydrofuran gasified using an evaporator was introduced at a rate of 460 g / hr. As a result, 225.4 g of a reaction solution containing 67.5 g of cyclopropanecarbaldehyde was obtained. The conversion of 2,3-dihydrofuran was 35.9%, the selectivity for cyclopropanecarbaldehyde was 81.8%, and the space-time yield was 29.5 t / m 3 · day.
[0016]
Example 7
The reaction was carried out in the same manner as in Example 1 except that the maximum temperature in the reaction tube was adjusted to 590 ° C., and 2,3-dihydrofuran gasified using an evaporator was introduced at a rate of 500 g / hr. As a result, 242.5 g of a reaction solution containing 77.8 g of cyclopropanecarbaldehyde was obtained. The conversion of 2,3-dihydrofuran was 39.1%, the selectivity for cyclopropanecarbaldehyde was 79.6%, and the space-time yield was 34.0 t / m 3 · day.
[0017]
【The invention's effect】
According to the present invention, cyclopropanecarbaldehyde can be industrially advantageously produced with high productivity while maintaining selectivity.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23388496A JP3805437B2 (en) | 1996-09-04 | 1996-09-04 | Process for producing cyclopropanecarbaldehyde |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23388496A JP3805437B2 (en) | 1996-09-04 | 1996-09-04 | Process for producing cyclopropanecarbaldehyde |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1077242A JPH1077242A (en) | 1998-03-24 |
JP3805437B2 true JP3805437B2 (en) | 2006-08-02 |
Family
ID=16962077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23388496A Expired - Fee Related JP3805437B2 (en) | 1996-09-04 | 1996-09-04 | Process for producing cyclopropanecarbaldehyde |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3805437B2 (en) |
-
1996
- 1996-09-04 JP JP23388496A patent/JP3805437B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1077242A (en) | 1998-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2504299B1 (en) | Process for preparing 1,1,2,3-tetrachloropropene | |
JPS63267736A (en) | Manufacture of tetrafluoroethylene and hexafluoropropylene | |
JPS6134414B2 (en) | ||
US4171316A (en) | Preparation of maleic anhydride using a crystalline vanadium(IV)bis(metaphosphate) catalyst | |
US4287375A (en) | Process of converting ethylbenzene to styrene by catalytic dehydrogenation | |
US5493061A (en) | Process for the conversion of phenol to hydroquinone and catechol | |
JP3805437B2 (en) | Process for producing cyclopropanecarbaldehyde | |
JPS63255242A (en) | Production of asymmetric aliphatic ketone | |
JPS62255463A (en) | Useful utilization of water in catalytic conversion of formamide to isocyanate | |
US4261905A (en) | Method for preparing furfuryl alcohol | |
US3313840A (en) | Process for the production of the dinitriles of fumaric acid and maleic acid | |
US5126478A (en) | Multi-stage process with adiabatic reactors for preparing alkyl glyoxylates | |
US3970710A (en) | Process for making trifluoroethanol | |
US2399361A (en) | Manufacture of cyanogen | |
JPS5835168B2 (en) | Hexafluoroisobutylene noseihou | |
US3542520A (en) | Modified "deacon" process | |
US2697026A (en) | Manufacture of hydrazine | |
JPS611662A (en) | Manufacture of (trifluoromethyl)pyridine | |
US3575992A (en) | Vapor phase production of dichlorocyanopyridines | |
US1938609A (en) | Production of diphenyl from benzene | |
Martin et al. | Solid-state reactions of VO (H 2 PO 4) 2 and (NH 4) 2 VOP 2 O 7 in the presence of ammonia | |
HU213537B (en) | Processes for the preparation of 2,3,5,6-tetrachloro-pyridine | |
JPH02255519A (en) | Preparation of hydrogen cyanide | |
JPS6131085B2 (en) | ||
JPH03181451A (en) | Production of n-vinylformamide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060510 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |