JP3805410B2 - Flotation melting furnace - Google Patents

Flotation melting furnace Download PDF

Info

Publication number
JP3805410B2
JP3805410B2 JP21694395A JP21694395A JP3805410B2 JP 3805410 B2 JP3805410 B2 JP 3805410B2 JP 21694395 A JP21694395 A JP 21694395A JP 21694395 A JP21694395 A JP 21694395A JP 3805410 B2 JP3805410 B2 JP 3805410B2
Authority
JP
Japan
Prior art keywords
cooling water
segment
induction coil
crucible
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21694395A
Other languages
Japanese (ja)
Other versions
JPH08327244A (en
Inventor
英顕 只野
達男 武
満 藤田
研吾 貝沼
政喜 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP21694395A priority Critical patent/JP3805410B2/en
Priority to US08/701,094 priority patent/US5889813A/en
Publication of JPH08327244A publication Critical patent/JPH08327244A/en
Application granted granted Critical
Publication of JP3805410B2 publication Critical patent/JP3805410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、導電性の被溶解材を交番磁界中に置いて電磁誘導作用によって誘導加熱するとともに、所定の分布の磁界を生成して被溶解材に電磁力による浮揚力を与えて浮揚状態で溶解する浮揚溶解炉に関する。
【0002】
【従来の技術】
図4は従来例の構成図を示す。この図4において、1はるつぼ、2は上誘導コイル、3は下誘導コイル、4は冷却水通水路、5はるつぼ1の出湯穴、6はるつぼ1の出湯穴5に続く出湯管部、8は溶湯、11はるつぼ1を構成するセグメント、12はセグメント11間を絶縁する絶縁物を示す。この図3において、るつぼ1は冷却水通水路4を有する良導電金属製のセグメント11と、セグメント間を絶縁する絶縁物12とを周方向に積層して有底の円筒状に形成されその底部に溶湯を出す出湯穴5及びそれに続く出湯穴5より内径の大きい出湯管部6を持つように構成されている。また、るつぼ1の外径側に巻回された上誘導コイル2はるつぼ1内の金属を溶かし溶湯8にするとともに、溶湯8の側面に水平方向の電磁力を与えて浮揚した溶湯8を安定させている。下誘導コイル3は溶湯8を浮揚させるために大きな浮揚力を与えている。この出湯穴5の部分で穴径をすぼめて、出湯管部6では穴径を広げて下誘導コイル3により溶湯8に浮揚力を与える図4の例は本件出願人によって特願平6−41660号にて既に提案されている。
【0003】
図5は従来例のセグメントの外形図を示す。この図5において、4は冷却水通水路、9は冷却水接続管、10は冷却水接続口、11はセグメントを示す。この図5において、誘導コイルはるつぼとの径の差から下側から装着するしかなく、また、冷却水配管の接続はセグメント下部ではスペース的に困難であるために、最初は、冷却水接続管9、および冷却水接続口10をセグメントの延長線上に配置しておき、上誘導コイル2と、下誘導コイル3とをるつぼ胴部に装着してから、冷却水接続管9を外側に折り曲げて、冷却水配管と接続するようにしている。
【0004】
図6は出湯穴5の部分で穴径をすぼめて、出湯管部6では穴径を広げて溶湯に浮揚力を与える浮揚溶解炉の下誘導コイル3に電流を流した場合に、(a)るつぼ1誘導電流分布、(b)溶湯8誘導電流分布、(c)溶湯8に働く力の分布を示したものである。図中の○と□の記号は、下誘導コイル3によって、るつぼ1と溶湯8とに誘導される電流をしめしたもので、その記号の大きさが電流の大きさに比例し、○と□では電流の向きが逆であることを示す。また、溶湯に働く力は、矢印の長さがその大きさを表している。
【0005】
溶湯8とその溶湯8に対向するるつぼ1の部分の電流の向きは逆であるから溶湯8とるつぼ1との間に反発する電磁力が働き、この電磁力が溶湯8の重力より大きければ、出湯穴5があっても、溶湯8は出湯しない。出湯穴5付近の電磁力が小さいと溶湯8は自重に耐えきれなくなり、出湯穴5から出湯する。
出湯穴5の部分で穴径をすぼめたこの例では、出湯穴5の内表面に誘導電流が集中しており、また、溶湯8に誘導される電流も溶湯底部で大きくなっているので、溶湯8に働く力も大きくなる。この溶湯底部に働く浮揚力は、出湯管部6の内径を出湯穴5の内径と同じにして、下誘導コイル3に同じ大きさの電流を印加した場合の浮揚力と比較して、4〜5倍になるので、下誘導コイル3に流す電流を少なくしても溶湯8への浮揚力は充分に保たれる。
【0006】
上誘導コイル2と、下誘導コイル3とによるるつぼへの誘導電流により、るつぼが自己発熱する熱と、溶湯からるつぼへの輻射による熱はセグメント11内の冷却水通水路4を介して冷却水で冷却される。
【0007】
【発明が解決しようとする課題】
上記の構成において、炉容量の大型化、または、溶解時間を短縮して、生産性向上を計るために、上誘導コイル、および下誘導コイル、または、上誘導コイル、下誘導コイルのいずれかに投入する電力を大きくすると、上誘導コイルおよび下誘導コイルによりるつぼに誘導する電流の中で出湯穴近辺に集中する電流が増加して出湯穴近辺を過熱するために、上誘導コイル、および下誘導コイル、または、上誘導コイル、下誘導コイルのいずれかに投入できる電力の最大値が制限される問題がある。
【0008】
また、出湯穴近辺を過熱を抑えるために下誘導コイルに投入する電力を制限すると、炉容量を大きくする際に充分な浮揚力が与えられない問題がある。
従来例の冷却方法で出湯穴近辺の過熱を防止するためには冷却水通水路の径を大きくする必要があるが、上誘導コイルと溶湯との相対距離を変えないで冷却水通水路の径を大きくするためには、セグメントの周方向の長さを大きくする必要があるが、このことは溶湯全体に与える浮揚力を小さくするので、溶湯が浮揚しにくくなる問題がある。
【0009】
また、冷却水の流速を早くして通水量を増す方法は、冷却水の圧力損失が流速の2乗に比例すること、および、この種炉の冷却水の流速は13〜15m/secであり、炉出入り口での圧力損失が既に限界に近いことから問題がある。
また、セグメント下部の冷却水管を加熱して曲げ戻してからるつぼから上下誘導コイルを脱着するために、上下誘導コイル交換に時間がかかる問題がある。
【0010】
この発明の目的は、出湯穴部分の冷却を良くして上誘導コイル、および、下誘導コイルに投入できる電力を大きくして、大容量化、および、高速溶解でき、また万一、上誘導コイルを交換する場合でも容易に交換できる浮揚溶解炉を提供することにある。
【0011】
【課題を解決するための手段】
前記の目的を達成するためにこの発明の浮揚溶解炉は、長手方向に冷却水を通す冷却水通水路を有する良導電金属製のセグメントが周方向に絶縁物を介して積層されて有底の円筒状に形成されその底部に溶湯を出す出湯穴及びそれに続く出湯穴より内径の大きい出湯管部を有するるつぼと、るつぼの外径側に設けられた上誘導コイルと、出湯管部の外径側に設けられた下誘導コイルとを備えた浮揚溶解炉において、冷却水通水路は出湯穴の部分で内径側に迂回して形成し、この冷却水通水路の迂回部分はセグメントの外側より穿孔された溝部と、その溝部に冷却水通水路の迂回部分を形成するようにセグメントの外側から装着されてセグメントの外径部で溶着密封された台形の栓とで構成するものとする。
【0012】
また、上記において、台形の栓の先端部分は出湯管部の冷却水通水路より内径側になるように構成するものとする。
【0013】
また、上記において、台形の栓の流体との接触面は、良導電金属に、セラミック溶射、耐磨耗性金属の張り付け、耐磨耗性金属の接着のいずれか一つにより良導電金属素材以上の耐磨耗性を有するものとする。
【0014】
また、上記において、冷却水通水路の迂回部分は、冷却水の出側部分の断面積が冷却水の入り側部分の断面積より大きくなるように形成するものとする。
【0015】
また、上記において、セグメントの上部あるいは下部の少なくともいずれか一方に外径部からセグメント内の冷却水通路に通じる横孔を設け、その横孔の外周側にOリング溝を設けるとともに、横孔に接続して冷却水を給排水する後付け冷却管を設けて、るつぼに上下誘導コイルを装着してから後付け冷却管をセグメントに取付けて冷却水回路を形成するようにする。
【0016】
【作用】
セグメントの出湯穴に相当する部分は出湯穴の内径側に向かって尖っており、外径側から内径側に溝を堀り、その溝に先端が尖った台形の栓をして栓の先端部が出湯管部の通水路より内径側になるようにする。このようにして、冷却水通水路を出湯穴の内径側に迂回させることにより、冷却水通水路と出湯穴内径部分との熱伝導距離を短くする。また、栓の先端部が出湯管部の通水路より内径側になるようにして、迂回した水路内での水の淀みは無くなる。
【0017】
さらに、迂回路の入り側の断面積を出側の断面積より小さくすると、出側の部分が乱流域になり、その部分の通水路の熱伝達率が良くなる。
また、栓の通水路内の部分は、表皮効果によりほとんど誘導加熱されないので、その部分を硬度を良導電金属(銅)の硬度より高くすれば冷却水中に含まれる砂等による磨耗を防ぐことができる。
【0018】
なお、後付け冷却管は、Oリングを挟着してセグメントにねじで締結しているので、その着脱は容易である。
【0019】
【実施例】
図1はこの発明の一実施例の主要部の構成図を示す。この図1において、従来例と同一の符号を付けた部材はおおよそ同一の機能を有するのでその説明は省略する。この図1において、1はるつぼ、2は上誘導コイル、3は下誘導コイル、41は冷却水通水路、5はるつぼ1の出湯穴、6はるつぼ1の出湯穴5に続く出湯管部、7は冷却水迂回路を形成する栓、8は溶湯、11はるつぼ1を構成するセグメント、12はセグメント11間を絶縁する絶縁物を示す。この図1において、るつぼ1は長手方向に冷却水通水路4を有する良導電金属製のセグメント11と、セグメント間を絶縁する絶縁物12とを周方向に積層して有底の円筒状に形成されその底部に溶湯を出す出湯穴5及びそれに続く出湯穴5より内径の大きい出湯管部6を持つように構成されている。また、るつぼ1の外径側に巻回された上誘導コイル2はるつぼ1内の金属を溶かし溶湯8にするとともに、溶湯8の側面に水平方向の電磁力を与えて浮揚した溶湯8を安定させている。下誘導コイル3は溶湯8を浮揚させるために大きな浮揚力を与えている。
【0020】
冷却水通水路41は出湯穴5部分においてセグメント11の外側からセグメント11に開けられた溝10と、セグメント11の外径側からその溝10を密封するように溶着された台形の栓7とで出湯穴5の内径側に迂回して形成されている。この台形の栓7の先端部分は出湯管部6の冷却水通水路41より内径側になるように構成されている。実験によれば、冷却水通水路41を迂回させた場合(図1に示された実施例)と、迂回させない場合(図3に示された既提案)について、同じ電力を投入して、出湯穴5がるつぼの底部に繋がるるつぼの底部の近辺の温度上昇は、冷却水通水路41を迂回させた場合が70℃であったのに対し、迂回させない場合が170℃であった。冷却水通水路41を迂回させたことは、この部分への入熱量が迂回させない場合の約2.4倍になるまで、浮揚力を与える下誘導コイル3への投入電力、上誘導コイル2への溶解電力、または、両者の合計電力のいずれかを増加させることを可能にする。なお、台形の栓7には高速で流れる冷却水が衝突する。そこで、栓7は、冷却水との接触面の耐磨耗性を増すために、良導電金属に、セラミック溶射、耐磨耗性金属の張り付け、耐磨耗性金属の接着のいずれかの手段が施されている。
【0021】
出湯穴5の所で穴径をすぼめて、出湯管部で穴径を広げて、溶湯8に大きな浮揚力を与えること、および溶湯8が浮揚する説明は従来例に述べた通りなので省略する。
図2はこの発明の別の実施例の主要部の構成図を示す。この図2が図1と異なる点は、栓7を溝10内への冷却水の入り側にずらせることにより、冷却水通水路42の迂回路の出側の断面積を入り側の断面積より大きくした点である。このことにより、冷却水は迂回路の出側で乱流となり、出湯穴5部での熱伝逹を向上させる効果がある。なお、矢印は冷却水の流れ方向を示す。
【0022】
図3はこの発明の他の実施例の主要部の構成図を示す。この図3において、2は上誘導コイル、3は下誘導コイル、4はセグメント11の冷却水通水路、10は冷却水接続口、13は後付け冷却管、14はOリング溝を示す。この図3において、セグメント11の上部、および下部の外径部からセグメント11内の冷却水通路4に通じる横孔が開けられており、その横孔の外周側にOリング溝14と、セグメント11に後付け冷却管を取付けるためのねじ孔(図示せず)とを開けて、Oリング溝14にOリング(図示せず)を挿入して、後付け冷却管13で挟着して、後付け冷却管13に冷却水接続口10を取り付けて、冷却水接続口10に配管して冷却水回路を接続する。なお、後付け冷却管13の取り付けは、るつぼに上下誘導コイル2、3を装着してから行う。後付け冷却管13の使用はセグメント11の下部のみ、または、上部のみとし、セグメント上部、または、下部は従来例と同じにしても良い。
【0023】
【発明の効果】
この発明によれば、誘導電流が集中する出湯穴部分の冷却効果を高めるので上誘導コイルに投入する電力をその分大きくして、炉容量の大容量化、および、溶解時間を短縮し、生産性を向上させる効果がある。また、後付け冷却管は、Oリングを挟着してセグメントにねじで締結しているので、その着脱は容易であり、誘導コイルの交換時に交換時間が短縮できる効果がある。
【図面の簡単な説明】
【図1】 この発明の一実施例の主要部分の構成図
【図2】 この発明の別の実施例の主要部分の構成図
【図3】 この発明の他の実施例の主要部分の構成図
【図4】 従来例の構成図
【図5】 従来例の従来例のセグメントの外形図
【図6】 (a),(b),(c)は従来例のるつぼおよび溶湯に生じる誘導電流の分布および溶湯への電磁力の分布を示す図
【符号の説明】
1 るつぼ
2 上誘導コイル
3 下誘導コイル
4 冷却水通水路
5 出湯穴
6 出湯管部
7 栓
8 溶湯
11 セグメント
12 絶縁物
13 後付け冷却管
41、42 冷却水通水路
[0001]
[Industrial application fields]
In this invention, a conductive material to be melted is placed in an alternating magnetic field and is induction-heated by electromagnetic induction action, and a magnetic field having a predetermined distribution is generated to give the material to be melted a levitation force due to electromagnetic force. The present invention relates to a flotation melting furnace.
[0002]
[Prior art]
FIG. 4 shows a configuration diagram of a conventional example. In FIG. 4, 1 is a crucible, 2 is an upper induction coil, 3 is a lower induction coil, 4 is a cooling water passage, 5 is a tapping hole of the crucible 1, and 6 is a tapping pipe section following the tapping hole 5 of the crucible 1. 8 is a molten metal, 11 is a segment constituting the crucible 1, and 12 is an insulator for insulating the segments 11. In FIG. 3, a crucible 1 is formed in a cylindrical shape having a bottom by laminating a segment 11 made of a highly conductive metal having a cooling water passage 4 and an insulator 12 that insulates the segments in the circumferential direction. The hot water discharge hole 5 for discharging the molten metal and the hot water discharge pipe portion 6 having a larger inner diameter than the subsequent hot water discharge hole 5 are configured. Further, the upper induction coil 2 wound around the outer diameter side of the crucible 1 melts the metal in the crucible 1 to form the molten metal 8 and stabilizes the molten metal 8 floated by applying a horizontal electromagnetic force to the side surface of the molten metal 8. I am letting. The lower induction coil 3 gives a large levitation force to float the molten metal 8. The example shown in FIG. 4 in which the hole diameter is narrowed at the portion of the tap hole 5 and the hole diameter is widened at the tap pipe portion 6 and the levitation force is given to the molten metal 8 by the lower induction coil 3 is shown in Japanese Patent Application No. 6-41660 by the present applicant. Already proposed in the issue.
[0003]
FIG. 5 shows an external view of a conventional segment. In FIG. 5, 4 is a cooling water passage, 9 is a cooling water connection pipe, 10 is a cooling water connection port, and 11 is a segment. In FIG. 5, since the induction coil must be mounted from the lower side due to the difference in diameter with the crucible, and since it is difficult to connect the cooling water pipe in the space below the segment, the cooling water connecting pipe is initially used. 9 and the cooling water connection port 10 are arranged on the extension line of the segment, the upper induction coil 2 and the lower induction coil 3 are mounted on the crucible body, and then the cooling water connection pipe 9 is bent outward. It is connected to the cooling water piping.
[0004]
FIG. 6 shows a case where the hole diameter is reduced at the portion of the hot water outlet hole 5, and the current is passed through the lower induction coil 3 of the floating melting furnace in which the diameter of the hot water outlet pipe portion 6 is widened to give the molten metal a levitation force. The crucible 1 induced current distribution, (b) molten metal 8 induced current distribution, and (c) the distribution of force acting on the molten metal 8 are shown. The symbols ◯ and □ in the figure indicate the current induced in the crucible 1 and the molten metal 8 by the lower induction coil 3, and the size of the symbols is proportional to the magnitude of the current. Shows that the current direction is reversed. Further, the force acting on the molten metal is indicated by the length of the arrow.
[0005]
Since the direction of the current of the molten metal 8 and the portion of the crucible 1 facing the molten metal 8 is opposite, an electromagnetic force repelling between the molten metal 8 and the crucible 1 works, and if this electromagnetic force is greater than the gravity of the molten metal 8, Even if there is a tapping hole 5, the molten metal 8 does not pour out. When the electromagnetic force in the vicinity of the tap hole 5 is small, the molten metal 8 cannot withstand its own weight, and the hot water is discharged from the tap hole 5.
In this example in which the hole diameter is reduced at the portion of the tap hole 5, the induced current is concentrated on the inner surface of the tap hole 5, and the current induced in the melt 8 is also large at the bottom of the melt. The power to work on 8 also becomes large. The levitation force acting on the molten metal bottom is 4 to 4 in comparison with the levitation force when the inner diameter of the tapping pipe portion 6 is the same as the inner diameter of the tapping hole 5 and the same current is applied to the lower induction coil 3. Since it becomes five times, the levitation force to the molten metal 8 is sufficiently maintained even if the current flowing through the lower induction coil 3 is reduced.
[0006]
The heat generated by the crucible itself due to the induction current to the crucible by the upper induction coil 2 and the lower induction coil 3 and the heat generated by the radiation from the molten metal to the crucible are cooled via the cooling water passage 4 in the segment 11. Cooled by.
[0007]
[Problems to be solved by the invention]
In the above configuration, in order to increase the furnace capacity or shorten the melting time and improve productivity, either the upper induction coil and the lower induction coil, or the upper induction coil or the lower induction coil. When the electric power to be input is increased, the current concentrated in the vicinity of the tapping hole in the current induced in the crucible by the upper induction coil and the lower induction coil increases, and the vicinity of the tapping hole is overheated. There is a problem that the maximum value of electric power that can be supplied to the coil or any one of the upper induction coil and the lower induction coil is limited.
[0008]
In addition, if the power supplied to the lower induction coil is limited in order to suppress overheating in the vicinity of the tapping hole, there is a problem that sufficient levitation force cannot be given when the furnace capacity is increased.
In order to prevent overheating in the vicinity of the tap hole with the cooling method of the conventional example, it is necessary to increase the diameter of the cooling water passage, but the diameter of the cooling water passage without changing the relative distance between the upper induction coil and the molten metal. In order to increase the length, it is necessary to increase the circumferential length of the segment. However, this reduces the levitation force applied to the entire molten metal, and thus there is a problem that the molten metal is difficult to float.
[0009]
The method of increasing the water flow rate by increasing the flow rate of the cooling water is that the pressure loss of the cooling water is proportional to the square of the flow rate, and the flow rate of the cooling water in this seed furnace is 13 to 15 m / sec. There is a problem because the pressure loss at the furnace entrance and exit is already close to the limit.
In addition, since the upper and lower induction coils are removed from the crucible after the cooling water pipe at the lower part of the segment is heated and bent back, there is a problem that it takes time to replace the upper and lower induction coils.
[0010]
The object of the present invention is to improve the cooling of the tap hole and increase the power that can be supplied to the upper induction coil and the lower induction coil to increase the capacity and melt at high speed. It is an object of the present invention to provide a flotation melting furnace that can be easily replaced even when replacing.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the floatation melting furnace of the present invention has a bottomed structure in which segments made of a highly conductive metal having a cooling water passage for passing cooling water in the longitudinal direction are laminated via an insulator in the circumferential direction. A crucible having a tapping hole that is formed in a cylindrical shape and discharges the molten metal to the bottom thereof, and a tapping pipe portion that has a larger inner diameter than the tapping hole, an upper induction coil provided on the outer diameter side of the crucible, and an outer diameter of the tapping pipe portion In the levitation melting furnace with the lower induction coil provided on the side, the cooling water flow path is formed by detouring to the inner diameter side at the tap hole, and the detour part of this cooling water flow path is drilled from the outside of the segment And a trapezoidal plug that is mounted from the outside of the segment and welded and sealed at the outer diameter portion of the segment so as to form a bypass portion of the cooling water passage in the groove.
[0012]
Moreover, in the above, the tip part of the trapezoidal plug is configured to be closer to the inner diameter side than the cooling water passage of the hot water discharge pipe part.
[0013]
In addition, in the above, the contact surface with the fluid of the trapezoidal plug is not less than a highly conductive metal material by any one of ceramic spraying, adhesion of wear resistant metal, and adhesion of wear resistant metal to the highly conductive metal. It shall have the wear resistance of
[0014]
In the above description, the bypass portion of the cooling water passage is formed so that the sectional area of the outlet side portion of the cooling water is larger than the sectional area of the inlet portion of the cooling water.
[0015]
In addition, in the above, a horizontal hole leading from the outer diameter part to the cooling water passage in the segment is provided in at least one of the upper part or the lower part of the segment, and an O-ring groove is provided on the outer peripheral side of the horizontal hole, A retrofit cooling pipe for connecting and supplying cooling water is provided, and a vertical induction coil is attached to the crucible, and then the retrofit cooling pipe is attached to the segment to form a cooling water circuit.
[0016]
[Action]
The part corresponding to the tapping hole of the segment is pointed toward the inner diameter side of the tapping hole, a groove is dug from the outer diameter side to the inner diameter side, and a trapezoidal plug with a sharp tip is attached to the groove, and the tip of the plug So that it is closer to the inner diameter side than the water passage of the tap pipe. In this way, the heat conduction distance between the cooling water passage and the inner portion of the tap hole is shortened by bypassing the cooling water passage to the inner diameter side of the tap hole. Further, the stagnation of water in the detoured waterway is eliminated by making the tip of the stopper closer to the inner diameter side than the water passage of the tap water pipe part.
[0017]
Furthermore, when the cross-sectional area on the entry side of the detour is made smaller than the cross-sectional area on the exit side, the exit side part becomes a turbulent flow region, and the heat transfer coefficient of the water passage in that part is improved.
In addition, since the part in the water passage of the plug is hardly induction-heated due to the skin effect, if the part is made harder than the hardness of the good conductive metal (copper), it can prevent wear due to sand contained in the cooling water. it can.
[0018]
The retrofitted cooling pipe is easy to attach and detach because the O-ring is sandwiched and fastened to the segment with screws.
[0019]
【Example】
FIG. 1 is a block diagram showing the main part of an embodiment of the present invention. In FIG. 1, members denoted by the same reference numerals as those in the conventional example have approximately the same functions, and thus description thereof is omitted. In FIG. 1, 1 is a crucible, 2 is an upper induction coil, 3 is a lower induction coil, 41 is a cooling water passage, 5 is a tapping hole of the crucible 1, 6 is a tapping pipe section following the tapping hole 5 of the crucible 1, 7 is a plug forming a cooling water bypass, 8 is a molten metal, 11 is a segment constituting the crucible 1, and 12 is an insulator for insulating the segments 11 from each other. In FIG. 1, a crucible 1 is formed in a bottomed cylindrical shape by laminating a highly conductive metal segment 11 having a cooling water passage 4 in the longitudinal direction and an insulator 12 that insulates the segments in the circumferential direction. In addition, it is configured to have a hot water outlet hole 5 for discharging the molten metal at the bottom and a hot water outlet pipe part 6 having a larger inner diameter than the subsequent hot water outlet hole 5. Further, the upper induction coil 2 wound around the outer diameter side of the crucible 1 melts the metal in the crucible 1 to form the molten metal 8 and stabilizes the molten metal 8 floated by applying a horizontal electromagnetic force to the side surface of the molten metal 8. I am letting. The lower induction coil 3 gives a large levitation force to float the molten metal 8.
[0020]
The cooling water passage 41 is composed of a groove 10 formed in the segment 11 from the outside of the segment 11 in the tap hole 5 portion, and a trapezoidal plug 7 welded so as to seal the groove 10 from the outer diameter side of the segment 11. It is formed around the inner diameter side of the tap hole 5. The distal end portion of the trapezoidal plug 7 is configured to be closer to the inner diameter side than the cooling water passage 41 of the hot water discharge pipe portion 6. According to the experiment, when the cooling water passage 41 is bypassed (the embodiment shown in FIG. 1) and when it is not bypassed (the previously proposed proposal shown in FIG. 3), the same electric power is supplied to The temperature increase in the vicinity of the bottom of the crucible where the hole 5 is connected to the bottom of the crucible was 70 ° C. when the cooling water passage 41 was bypassed, whereas it was 170 ° C. when the bypass was not bypassed. The fact that the cooling water passage 41 is bypassed means that the input power to the lower induction coil 3 that gives levitation force to the upper induction coil 2 until the amount of heat input to this portion is about 2.4 times that in the case where the heat input is not bypassed. It is possible to increase either the melting power or the total power of both. The trapezoidal plug 7 collides with cooling water flowing at high speed. Therefore, in order to increase the wear resistance of the contact surface with the cooling water, the plug 7 is any means of ceramic spraying, adhesion of the wear resistant metal, and adhesion of the wear resistant metal to the highly conductive metal. Is given.
[0021]
Since the hole diameter is reduced at the tap hole 5 and the hole diameter is widened at the tap pipe portion to give a large levitation force to the molten metal 8 and the explanation that the molten metal 8 floats is omitted as it has been described in the prior art.
FIG. 2 is a block diagram showing the main part of another embodiment of the present invention. 2 differs from FIG. 1 in that the plug 7 is shifted to the inlet side of the cooling water into the groove 10 to change the sectional area of the outlet side of the bypass of the cooling water passage 42 into the sectional area of the inlet side. It is a larger point. As a result, the cooling water becomes turbulent on the exit side of the detour and has an effect of improving the heat transfer in the hot water outlet 5 part. The arrows indicate the flow direction of the cooling water.
[0022]
FIG. 3 is a block diagram showing the main part of another embodiment of the present invention. In FIG. 3, 2 is an upper induction coil, 3 is a lower induction coil, 4 is a cooling water passage for the segment 11, 10 is a cooling water connection port, 13 is a retrofit cooling pipe, and 14 is an O-ring groove. In FIG. 3, a horizontal hole leading from the upper and lower outer diameter portions of the segment 11 to the cooling water passage 4 in the segment 11 is opened, and an O-ring groove 14 and a segment 11 are formed on the outer peripheral side of the horizontal hole. A screw hole (not shown) for attaching a retrofitting cooling pipe is opened, an O-ring (not shown) is inserted into the O-ring groove 14, and sandwiched by the retrofitting cooling pipe 13. The cooling water connection port 10 is attached to 13, and the cooling water connection port 10 is piped to connect the cooling water circuit. The retrofitting cooling pipe 13 is attached after the upper and lower induction coils 2 and 3 are attached to the crucible. The retrofitted cooling pipe 13 may be used only in the lower part or the upper part of the segment 11, and the upper part or the lower part of the segment may be the same as the conventional example.
[0023]
【The invention's effect】
According to the present invention, since the cooling effect of the tap hole portion where the induced current is concentrated is increased, the power to be input to the upper induction coil is increased accordingly, the furnace capacity is increased, the melting time is shortened, and the production Has the effect of improving the performance. Further, since the retrofitted cooling pipe is fastened to the segment with an O-ring sandwiched between them, it is easy to attach and detach, and there is an effect that the exchange time can be shortened when exchanging the induction coil.
[Brief description of the drawings]
FIG. 1 is a block diagram of the main part of another embodiment of the present invention. FIG. 2 is a block diagram of the main part of another embodiment of the present invention. [Fig. 4] Configuration diagram of the conventional example [Fig. 5] Outline drawing of the segment of the conventional example of the conventional example [Fig. 6] (a), (b), (c) of the induced current generated in the crucible and the molten metal of the conventional example Diagram showing distribution and distribution of electromagnetic force on molten metal 【Explanation of symbols】
1 Crucible 2 Upper induction coil 3 Lower induction coil 4 Cooling water passage 5 Outlet hole 6 Outlet pipe portion 7 Plug 8 Molten metal 11 Segment 12 Insulator 13 Retrofitting cooling pipes 41 and 42 Cooling water passage

Claims (4)

長手方向に冷却水を通す冷却水通水路を有する良導電金属製のセグメントが周方向に絶縁物を介して積層されて有底の円筒状に形成されその底部に溶湯を出す出湯穴及びそれに続く出湯穴より内径の大きい出湯管部を有するるつぼと、るつぼの外径側に設けられた上誘導コイルと、出湯管部の外径側に設けられた下誘導コイルとを備えた浮揚溶解炉において、冷却水通水路は出湯穴の部分で内径側に迂回して形成し、この冷却水通水路の迂回部分はセグメントの外側より穿孔された溝部と、その溝部に冷却水通水路の迂回部分を形成するようにセグメントの外側から装着されてセグメントの外径部で溶着密封された台形の栓とで構成し、台形の栓の先端部分は出湯管部の冷却水通水路より内径側になるように構成することを特徴とする浮揚溶解炉。A segment made of a highly conductive metal having a cooling water passage for passing cooling water in the longitudinal direction is laminated with an insulator in the circumferential direction to form a bottomed cylindrical shape, followed by a tapping hole for discharging molten metal to the bottom. In a levitation melting furnace comprising a crucible having a tapping pipe portion having an inner diameter larger than a tapping hole, an upper induction coil provided on the outer diameter side of the crucible, and a lower induction coil provided on the outer diameter side of the tapping pipe portion The cooling water passageway is formed by detouring to the inner diameter side at the outlet hole, and the bypassing portion of the cooling water passageway is formed with a groove perforated from the outside of the segment, and a bypassing portion of the cooling water passageway in the groove portion. The trapezoidal plug is attached from the outside of the segment and welded and sealed at the outer diameter of the segment so as to form, and the tip of the trapezoidal plug is located on the inner diameter side of the cooling water passage of the outlet pipe portion. flotation solvent, characterized in that configured in The furnace. 請求項1に記載の浮揚溶解炉において、台形の栓の流体との接触面は、良導電金属に、セラミック溶射、耐磨耗性金属の張り付け、耐磨耗性金属の接着のいずれか一つにより良導電金属素材以上の耐磨耗性を有することを特徴とする浮揚溶解炉。2. The levitation melting furnace according to claim 1, wherein the contact surface of the trapezoidal plug with the fluid is any one of ceramic spraying, adhesion of wear-resistant metal, and adhesion of wear-resistant metal to a highly conductive metal. A floatation melting furnace characterized by having wear resistance higher than that of a highly conductive metal material. 請求項1または2に記載の浮揚溶解炉において、冷却水通水路の迂回部分は、冷却水の出側部分の断面積が冷却水の入り側部分の断面積より大きくなるように形成することを特徴とする浮揚溶解炉。3. The levitation melting furnace according to claim 1 or 2, wherein the detour portion of the cooling water passage is formed such that the cross-sectional area of the cooling water outlet side portion is larger than the cross-sectional area of the cooling water inlet side portion. A floating smelting furnace. 請求項1ないし3のいずれかに記載の浮揚溶解炉において、セグメントの上部あるいは下部の少なくともいずれか一方に外径部からセグメント内の冷却水通路に通じる横孔を設け、その横孔の外周側にOリング溝を設けるとともに、横孔に接続して冷却水を給排水する後付け冷却管を設けて、るつぼに上下誘導コイルを装着してから後付け冷却管をセグメントに取付けて冷却水回路を形成するようにしたことを特徴とする浮揚溶解炉。4. The floating melting furnace according to claim 1, wherein a horizontal hole is provided in at least one of an upper part and a lower part of the segment from the outer diameter part to the cooling water passage in the segment, and the outer peripheral side of the horizontal hole. In addition to providing an O-ring groove, a retrofitting cooling pipe for supplying and draining cooling water by connecting to a horizontal hole is provided, and an upper and lower induction coil is attached to the crucible, and then the retrofitting cooling pipe is attached to the segment to form a cooling water circuit. A levitation melting furnace characterized in that
JP21694395A 1995-03-31 1995-08-25 Flotation melting furnace Expired - Lifetime JP3805410B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21694395A JP3805410B2 (en) 1995-03-31 1995-08-25 Flotation melting furnace
US08/701,094 US5889813A (en) 1995-08-25 1996-08-21 Levitation melting furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-74988 1995-03-31
JP7498895 1995-03-31
JP21694395A JP3805410B2 (en) 1995-03-31 1995-08-25 Flotation melting furnace

Publications (2)

Publication Number Publication Date
JPH08327244A JPH08327244A (en) 1996-12-13
JP3805410B2 true JP3805410B2 (en) 2006-08-02

Family

ID=26416145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21694395A Expired - Lifetime JP3805410B2 (en) 1995-03-31 1995-08-25 Flotation melting furnace

Country Status (1)

Country Link
JP (1) JP3805410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948958A (en) * 2009-12-30 2011-01-19 陈静 Non-ferrous metal vacuum electromagnetic suspension distillatory refining method and equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774590B2 (en) * 2000-11-08 2011-09-14 シンフォニアテクノロジー株式会社 Induction heating melting furnace
SE529754C2 (en) * 2006-03-16 2007-11-13 Olcon Engineering Ab Destruction chamber with interchangeable inner splitter guard in the form of a large number, combined into one unit, easily manageable segments
KR101340877B1 (en) * 2012-02-14 2013-12-13 한국수력원자력 주식회사 Cold crucible and a steel sector assembly using an external cooling road
CN103008579B (en) * 2012-12-28 2014-12-03 哈尔滨工业大学 Continuous casting and directional solidification method of titanium aluminum alloy suspended cold crucible
CN104195476A (en) * 2014-09-26 2014-12-10 东莞台一盈拓科技股份有限公司 Method for manufacturing zirconium-based amorphous alloy with cold crucible smelting furnace device
FR3092656B1 (en) * 2019-02-07 2021-03-19 Inst Polytechnique Grenoble Cold crucible

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948958A (en) * 2009-12-30 2011-01-19 陈静 Non-ferrous metal vacuum electromagnetic suspension distillatory refining method and equipment

Also Published As

Publication number Publication date
JPH08327244A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
JP3805410B2 (en) Flotation melting furnace
JPH02274368A (en) Fire-resisting bonding device and induction coil therefor
PT94235B (en) ELECTROMAGNETIC VALVE FOR CONTROLLING FLUID DRAINING ON A PIPELINE FLOW
US9073145B2 (en) Electric induction impeder
JP3947584B2 (en) Cold crucible induction melting furnace
US5889813A (en) Levitation melting furnace
EP1954999A1 (en) Cooling element and method for manufacturing the same
EP0756910B1 (en) Continuous casting device
JP3150143B2 (en) Induction heating crucible
US20110174804A1 (en) Method and Melt Channels for Interrupting and Restoring the Melt Stream of Iron and Metal Melts in Tap Hole Channels of Blast Furnaces and Drainage Channels of Melt Furnaces
EP0990109B1 (en) Channel inductor
EP0135473A1 (en) Electrode assembly for arc furnaces
JP2573450Y2 (en) Liningless induction melting furnace
JP3351194B2 (en) Floating melting equipment
JP3407775B2 (en) Floating melting furnace
JP3129078B2 (en) Bottom hole tapping type flotation melting device
JP2604687Y2 (en) Electromagnetic levitation melting furnace
CN216745405U (en) Novel cored induction furnace structure
JPS6143827B2 (en)
US1824618A (en) Induction electric furnace
JP2972787B2 (en) Floating melting equipment
JPH03287890A (en) Smelt spout
BR112021022466B1 (en) MULTI-CHANNEL REFRIGERATED PANEL FOR BLAST FURNACE AND OTHER INDUSTRIAL FURNACES
JPS6192757A (en) Method and device for continuous casting
JPH09303968A (en) Induction melting furnace

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term