JP3804124B2 - Fluid control valve control device - Google Patents

Fluid control valve control device Download PDF

Info

Publication number
JP3804124B2
JP3804124B2 JP29233396A JP29233396A JP3804124B2 JP 3804124 B2 JP3804124 B2 JP 3804124B2 JP 29233396 A JP29233396 A JP 29233396A JP 29233396 A JP29233396 A JP 29233396A JP 3804124 B2 JP3804124 B2 JP 3804124B2
Authority
JP
Japan
Prior art keywords
valve
drive circuit
fluid
voltage
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29233396A
Other languages
Japanese (ja)
Other versions
JPH10132125A (en
Inventor
行則 尾崎
茂 岩永
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29233396A priority Critical patent/JP3804124B2/en
Publication of JPH10132125A publication Critical patent/JPH10132125A/en
Application granted granted Critical
Publication of JP3804124B2 publication Critical patent/JP3804124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、流路中を流れるガス流体の流れを開閉制御するガスメータに内蔵する遮断弁の制御方法に関する。
【0002】
【従来の技術】
従来この種の制御方法としては、特開平5−71656号公報に示すようなものがあった。以下、その構成について図面を参照して説明する。図21は従来の弁制御方法のブロック図である。1はステッピングモータ、2は回転数等の検出器、3は比較器、4はマイクロコンピュータ、5は駆動部、6は電源である。制御方法は、開弁時(又は閉弁時)弁体(図示せず)に加わる逆方向の流体圧力が大きいのでマイクロコンピュータ4からの信号で駆動部5を働かせてステッピングモータ1をモータ推力を得るため減速ドライブ(広いパルス幅を印加)して、一定時間後には加速ドライブ(狭いパルス幅を印加)に切換えていた。また、閉弁時(又は開弁時)には定速トライブ(等パルス幅を印加)を行っていた。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の制御方法はパルスを変化させる制御のためステッピングモータを対象とした制御に限定されるという課題を有していた。また上下移動して流路を開閉する弁の閉成動作においては減速ドライブの後、一定時間後には加速ドライブするために弁の閉止力が十分得られないという課題を有していた。
【0004】
【課題を解決するための手段】
前記課題を解決するため本発明の流体制御弁制御装置は、流体が流れる流路の途中に形成した弁座と、この流体流動方向上流側からこの弁座を開閉する弁部と、前記弁部を駆動するモータと、前記流路を流れる被検出流体の流量を計測する流量計測手段と、前記流量計測手段からの信号を演算処理する演算処理部と、前記演算処理部からの信号を入力して前記モータへ駆動信号を出力する駆動回路と、前記駆動回路からの出力電圧を可変する電圧制御手段と、前記弁座に対する弁部の開閉状態を検出する弁開閉検出手段と、電池電源部とを具備し、
(1)流体圧が逆方向に加わる前記弁部の開成動作時には、弁開閉検出手段を介して弁部が弁座を開いた位置に達したか否かを検出して、まだ閉位置にあるときには駆動回路からの出力電圧を大に、閉位置から開位置になると駆動回路からの出力電圧を小さく、
(2)流路を流れる流体量が設定値を超え、流体圧が順方向に加わる前記弁部の閉成動作時には、弁開閉検出手段を介して弁部が弁座を閉じた位置に達したか否かを検出して、まだ開位置にあるときには駆動回路からの出力電圧を小に、開位置から閉位置になると駆動回路からの出力電圧を大きく
なるように設定した。
【0005】
一般に弁部においては、流体の入口と出口の位置や方向の関係で弁部の開閉動作に際し、弁体の移動方向に対して流体の流れによる流体圧が順方向に作用する場合と逆方向に作用する場合がある。従って、基本的に弁体の開成動作に要する力やエネルギーと閉成動作に必要とする力やエネルギーは異なる。
【0006】
本発明は開成動作,閉成動作それぞれに要する力に対応して駆動電圧を変化させて駆動手段を動作し弁部の開閉制御を行うものであり、駆動手段としてはパルス駆動モータ(ステッピングモータ)の他直流モータなど多くのモータを制御することができる。また、駆
動手段の消費電力を小さくすることができ、電池電源の容量を小さくすることが可能となる。
【0007】
【発明の実施の形態】
前記課題を解決するために本発明の流体制御弁制御装置は、流体が流れる流路の途中に形成した弁座と、この流体流動方向上流側からこの弁座を開閉する弁部と、前記弁部を駆動するモータと、前記流路を流れる被検出流体の流量を計測する流量計測手段と、前記流量計測手段からの信号を演算処理する演算処理部と、前記演算処理部からの信号を入力して前記モータへ駆動信号を出力する駆動回路と、前記駆動回路からの出力電圧を可変する電圧制御手段と、前記弁座に対する弁部の開閉状態を検出する弁開閉検出手段と、電池電源部とを具備し、
(1)流体圧が逆方向に加わる前記弁部の開成動作時には、弁開閉検出手段を介して弁部が弁座を開いた位置に達したか否かを検出して、まだ閉位置にあるときには駆動回路からの出力電圧を大に、閉位置から開位置になると駆動回路からの出力電圧を小さく、
(2)流路を流れる流体量が設定値を超え、流体圧が順方向に加わる前記弁部の閉成動作時には、弁開閉検出手段を介して弁部が弁座を閉じた位置に達したか否かを検出して、まだ開位置にあるときには駆動回路からの出力電圧を小に、開位置から閉位置になると駆動回路からの出力電圧を大きく
なるように設定した。
また、流体が流れる流路の途中に形成した弁座と、この流体流動方向上流側からこの弁座を開閉する弁部と、前記弁部を駆動するモータと、前記流路を流れる被検出流体の流量を計測する流量計測手段と、前記流量計測手段からの信号を演算処理する演算処理部と、前記演算処理部からの信号を入力して前記モータへ駆動信号を出力する駆動回路と、前記駆動回路からの出力電圧を可変する電圧制御手段と、前記弁座に対する弁部の開方向、および閉方向動作時間をそれぞれカウントするタイマ手段と、電池電源部とを具備し、
(1)流体圧が逆方向に加わる前記弁部の開成動作時には、タイマ手段を介して弁部が弁座を開いた位置に達したか否かを時間的に検出して、まだ閉位置にある計時状態では駆動回路からの出力電圧を大に、閉位置から開位置になる計時状態では駆動回路からの出力電圧を小さく、
(2)流路を流れる流体量が設定値を超え、流体圧が順方向に加わる前記弁部の閉成動作時には、タイマ手段を介して弁部が弁座を閉じた位置に達したか否かを時間的に検出して、まだ開位置にある計時状態では駆動回路からの出力電圧を小に、開位置から閉位置になる計時状態では駆動回路からの出力電圧を大きく
なるように設定した。
【0008】
演算処理部は流量計測手段による計測値を処理するとともに、各種の弁部駆動制御信号を駆動回路へ出力する。駆動回路は入力した信号により駆動回路を動作させ弁部の開閉制御を行う。一般に弁部においては、流体の入口と出口の位置や方向の関係で弁部の開閉動作に際し、弁体の移動方向に対して液体の流れによる流体圧が順方向に作用する場合と逆方向に作用する場合がある。従って基本的に弁体の開成動作に要する力やエネルギーと閉成動作に必要とする力やエネルギーは異なる。本発明は、開成動作,閉成動作それぞれに要する力に対応して駆動電圧を変化させて駆動手段を動作し弁部の開閉制御を行うものであり、駆動手段としてはパルス駆動モータ(ステッピングモータ)の他直流モータなど多くのモータを制御することができる。また、駆動手段の消費電力を小さくすることができ、電池電源の容量を小さくすることが可能となる。
【0009】
以下、本発明の実施例について図面を参照して説明する。なお、実施例1から4において、同等の構成要素については、同一符号を付し一部説明を省略する。
【0010】
(実施例1)
図1は本発明の実施例1のガスメータの構成図である。また図2は同ガスメータのブロック図である。図3,図4は同ガスメータ弁部の弁開時の断面図、図5は同ガスメータ弁部の弁閉時の断面図である。図6は同ガスメータの弁部の弁閉動作時の動作のフローチャート、図7は同ガスメータの弁部の弁開動作時の動作フローチャートである。
【0011】
図1,図2において、7はガスメータのハウジングであり、ハウジング7の内部には、入口8と出口9を連通する流路10が構成されている。流路10には流路10を開閉する弁部11と、弁部11を駆動する駆動手段であるステッピングモータ12と、流路10を流れる被検出流体であるガスの流量を計測する流量計測手段13と、流量計測手段13からの信号を演算処理する演算処理部14と、演算処理部からの信号を入力して駆動手段のステッピングモータ12へ駆動信号を出力する駆動回路15と、駆動回路15からのパルス(以降パルスは省略)出力電圧を可変する電圧制御手段16と、電池電源部17とで構成されている。18は流量を表示する表示手段である。
【0012】
図3から図5において、入口継手19、出口継手20を有する弁部11の内部にはステッピングモータ12の回転を直動に変換する直動変換部21と、この直動変換部21に接続され上下に移動し、弁座22に当接して弁閉状態となる弁体23が設けられている。
【0013】
図6,図7において、ステップ1は流量計測動作、ステップ2は流量積算動作、ステップ3は演算処理部14に記憶されている積算流量の設定値と流量積算された値を比較する動作、ステップ4は弁の閉成を命令する弁閉成信号出力動作、ステップ5はある電圧Aで駆動手段であるステッピングモータ12を駆動する動作、ステップ6は弁部11の閉成状態を示す。
【0014】
ステップ7は弁の開成を命令する弁開成信号出力動作、ステップ8はある電圧Bで、駆動手段であるステッピングモータ12を駆動する動作、ステップ9は弁部11の開成状態を示す。
【0015】
次に以上の構成における動作、作用について図1から図7により説明する。先ず図6に示す弁部11の弁閉動作について説明すると、通常ガスメータ内部に内蔵された弁部11の弁体23は開成状態にあり、ステップ1で、流量計測が行われている。ステップ2ではこの流量計測された値をもとに演算処理部14で流量積算が行われている。
【0016】
ステップ3でこの流量積算された値が演算処理部14に記憶されている積算流量の設定値と比較されており、流量積算の値が演算処理部14に記憶されている積算流量の設定値より大きい場合は異常と判断し、ステップ4で演算処理部14から弁閉成信号が出力され、ステップ5で駆動回路15からステッピングモータ12へ電圧Aが印加され、ステッピングモータ12を駆動する。
【0017】
ステッピングモータ12の回転は直動変換部21より直動に変換されて弁体23が移動し弁座22に当接することでステップ6の弁閉成状態となる。この時にはガスメータの弁部11で流路10が閉塞されるため器具側(図示せず)へはガスが流れない状態となる。次に図7に示す弁体の弁開動作について説明すると、器具側で異常がないと判断されると、ステップ7で弁の開成を命令する弁開成信号が演算処理部14から出力され、ステップ8で駆動回路15からステッピングモータ12へ電圧Bが印加され、ステッピングモータが駆動する。
【0018】
ステッピングモータ12の回転は直動変化部21により直動に変換されて弁体23が移動し弁座22から離脱しステップ9の弁開成状態となる。即ち図3から図5に示す本実施例の様な弁部11においては開成動作時にはガスの流れる方向と弁体23の移動方向が逆
になり、弁開方向と逆のガス圧を弁体23が受けることにより、弁開動作に必要な力は大きくなるが、弁閉成動作時は入口継手19から出口継手20側に向かって流れるガスの流れと同方向に弁体23が移動するめ、ガスの流れによる圧力を弁体23が弁閉方向に受けることにより、弁体23を閉成する方向力が作用し、弁体23の閉成に必要な力は小さくなり、開成動作時に比べ低電圧で駆動することができる。この低電圧とは電池電源部17の最大出力電圧(例えば3V)以下を示している。
【0019】
一般に弁の動作電圧設計値としては、電池電源部17の時間経過による出力電圧低下特性、温度特性、ガス圧力等を考慮し、電池電源部17の最大出力電圧が例えば3Vの場合、2V以下で弁が開成可能なように設計される。また、閉成時の動作電圧としては開成時の電圧以下で動作されるものである。
【0020】
以上のように、弁開成動作と弁閉成動作に要する力やエネルギーが異なるため、本実施例では各々の動作に必要な力やエネルギーに応じて駆動電力を変化させて対応するよう制御するもので弁開成動作,弁閉成動作に要する消費電力を低減することが可能となり、電池電源部17の容量を小さくすることができる。
【0021】
また、本実施例は駆動電圧を変化させて制御するので、ステッピングモータ12の他直流モータにも適用することが可能である。
【0022】
(実施例2)
図8は本発明の実施例2のガスメータ構造図である。また図9は同ガスメータのブロック図である。図10は同ガスメータの弁部の弁開成動作時の動作フローチャート、図11は同ガスメータの弁部の弁閉動作時の動作フローチャート、図12は同ガスメータの弁部の他の弁閉動作時の動作フローチャートである。
【0023】
実施例1と異なる点は、図8から図12において時間をカウントするタイマ手段24を設けたことと、高電圧で駆動手段であるステッピングモータ12を駆動する動作、ステップ10、タイマ手段24と所定時間をカウントする動作ステップ11、低電圧で駆動手段であるステッピングモータ12を駆動する動作ステップ12、低電圧、且つ一定電圧で駆動手段であるステッピングモータ12を駆動する動作35がステップ13の各動作プログラムを有していることである。
【0024】
次に以上の構成における動作,作用について説明する。図10に示す弁部11の開成動作について説明すると、ステップ7で弁の開成を命令する弁開成信号が演算処理部14から出力されステップ10で、高電圧による駆動信号が演算処理部14から出力された駆動回路15からステッピングモータ12へ高電圧が印加され高電圧による駆動が行われ、同時にステップ11でタイマ手段24が作動し、所定時間(弁が開成するのに十分な時間)がカウントされ経過すると、ステップ12で低電圧による駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ低電圧が印加され、低電圧による駆動が行われ、直動変換部21により弁体23が移動し弁座22から離脱しステップ9の弁開成状態に至る。
【0025】
この動作においては弁部11を開成するとき弁体の移動方向と逆にガスの流れによるガス圧力が作用するので、当初は高電圧による強い駆動力で開成駆動し、弁開に十分な時間が経過した後弁体23が移動しガスの流れにより作用を受ける圧力の付勢力が十分小さくなった時、低電圧による駆動に切替えるよう制御することにより、弁の開成に要する駆動手段の消費電力を低減することができる。
【0026】
次に図11に示す弁部11の閉成動作,作用について説明すると、ステップ3の設定値
との比較動作においてステップ2で演算処理部14で行った流量積算の値が演算処理部14に記憶されている積算流量の設定値より大きい場合には、ステップ4で演算処理部14から弁閉成信号が出力されステップ12で、低電圧による駆動信号が演算処理部から出力され駆動回路15からステッピングモータ12へ低電圧が印加され、低電圧による駆動が行われる。
【0027】
同時にステップ11でタイマ手段24により所定時間(弁が閉成するのに十分な時間)がカウントされ経過すると、ステップ10で高電圧による駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ高電圧が印加され高電圧による強い力での駆動が行われ、直動変換部21により弁体23が弁座22に強い力で当接しステップ9の弁閉成状態に至る。
【0028】
この弁の閉成動作においては弁体23の移動方向とガス圧力の作用する方向が同じであり弁の閉成動作の殆んどは低電圧による駆動を行い、最後の段階のみ高電圧の強い駆動を行うことによって、消費電力の低減とともに、弁体23を弁座22に対して強い力で閉成することができ、弁のシール性能を向上させることができる。
【0029】
次に図12に示す弁部11の閉成動作、作用について説明すると、ステップ3の設定値との比較動作においてステップ2で演算処理部14が行った流量積算の値が演算処理部14に記憶されている積算流量の設定値より大きい場合には、ステップ4で弁閉成信号が出力され、ステップ13で低電圧、且つ一定電圧による駆動信号を演算処理部14が出力し、駆動回路15からステッピングモータ12へ低電圧、且つ一定電圧が印加され低電圧、且つ一定電圧による駆動が行われる。
【0030】
同時にステップ11でタイマ手段24により所定時間(弁が閉成するのに十分な時間)がカウントされ経過すると、高電圧による駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ高電圧が印加され高電圧による強い力での駆動が行われ直動変換部21によりすでに弁座22に当接している弁体23をさらに強く弁座22に付勢した状態でステップ9の弁閉成に至る。
【0031】
この一定電圧が印加される場合の電池電源部17の構成としては、複数の電池電源が接続を切換えて使用される場合がある。この動作においては電池電源部17の通常の出力電圧に比べ低い一定電圧(例えば電池1本)が印加され一定時間が経過すると、前記一定電圧以上(例えば複数電池直列接続)の電圧が印加される。
【0032】
このような制御動作により、安定した駆動特性を得ることができ駆動手段の低電圧化が図れ、また、弁部11のシール性能の向上が図れる。また、本実施例は駆動電圧を変えて制御しているのでステッピングモータ12の他直流モータにも適用することが可能である。
【0033】
(実施例3)
図13は本発明の実施例3のガスメータの構成図である。また図14は同ガスメータのブロック図である。図15は同ガスメータの弁部の弁開動作時の動作フローチャート、図16は同ガスメータの弁部の弁開動作時の動作フローチャート、図17は同ガスメータの弁部の他の弁閉動作時の動作フローチャートである。
【0034】
実施例1、2と異なる点は、図13から図17において弁部1の開閉を検出する弁開閉検出手段25を設けたことと、弁部11の開成状態を検出する動作ステップ14、弁部11の閉成状態を検出する動作ステップ15を有していることである。
【0035】
なお、弁開閉検出手段25は流量計測手段13の信号を演算処理部14で処理し流れの有無を判定することにより弁部11の開閉状態を検出するものである。
次に以上の構成における動作,作用について説明する。図15に示す弁部11の開成動作について説明すると、ステップ7で弁の開成を命令する弁開成信号が演算処理部14から出力され、ステップ10で高電圧による駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ高電圧が印加され高電圧による駆動が行われ、直動変換部21により弁体23が移動する。次にステップ14で弁部11の開成状態を検出する弁開成?動作が行われ、弁体23が開成していることが検出されると、ステップ12で低電圧による駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ低電圧が印加され低電圧による駆動をつづけ直動変換部21により弁体23が移動しステップ9の弁開成に至る。
【0036】
この動作においては弁部11を開成するとき当初は弁体23がガス圧力に対向して移動するため高電圧による強い駆動を必要とするが弁体23が僅かに開成すると、弁体23の受けるガスの流れによるガス圧力の作用が小さくなる。
【0037】
従って、弁体23が僅かに開成したことを弁開閉検出手段25で検出し、直ちに低電圧による駆動に切替えるよう制御することにより弁開成に要する駆動手段の消費電力を低減することができる。
【0038】
次に図16に示す弁部11の閉成動作、作用について説明すると、ステップ3の設定値との比較動作においてステップ2で演算処理部14で行った流量積算の値が演算処理部14に記憶されている積算流量の設定値より大きい場合には、ステップ4で演算処理部14より弁閉成信号が出力されステップ12で低電圧による駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ低電圧が印加されステッピングモータ12が低電圧で駆動し、直動変換部21により弁体23が弁座22に向かって移動する。
次にステップ15で弁開閉検出手段25により弁部11の閉成状態弁閉成?を検出し、弁体23が閉成していることが検出されると、高電圧による駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ高電圧が印加されステッピングモータ12は高電圧の強い力で駆動し直動変換部21によりすでに弁座22に当接している弁体23をさらに弁座22に強く付勢した状態でステップ9の弁閉成に至る。
【0039】
この作用により弁部11のシール特性を向上させることができる。また、弁閉成動作に要する駆動手段の消費電力を低減することができる。
【0040】
次に図17に示す弁部11の閉成動作,作用について説明すると、ステップ3の設定値との比較動作においてステップ2で演算処理部14で行った流量積算の値が演算処理部14に記憶されている積算流量の設定値より大きい場合には、ステップ4で演算処理部14より弁閉成信号が出力されステップ13で低電圧、且つ一定電圧による駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ低電圧、且つ一定電圧が印加され、ステッピングモータ12が低電圧、且つ一定電圧で駆動し直動変換部21により弁体23が弁座22に向かって移動する。
次にステップ15で弁開閉検出手段25により、弁部11の閉成状態を検出する弁閉成?を検出し、弁体23が閉成していることが検出されると、ステップ10で高電圧による駆動信号が演算処理部14から出力される。駆動回路15からステッピングモータ12へ高電圧が印加される。
【0041】
この弁閉成動作において、弁閉成動作の当初から弁体23が移動し弁座22に当接する間は電池電源部17の通常の出力電圧に比べ低い安定した一定電圧が印加され弁体23が
弁座22に当接地して閉成していることが検出された後ステッピングモータ12を高電圧の強い力で駆動しすでに弁座22に当接している弁体23をさらに強く弁座22に付勢した状態で弁閉成ステップ9に至る。従って部体11のシール性能を向上させるとともに、弁閉動作に要する駆動手段の消費電力削減ができる。
【0042】
また、本実施例は駆動電圧を変えて制御しているのでステッピングモータ12の他直流モータにも適用することが可能である。
【0043】
(実施例4)
図18は本発明の実施例4のガスメータの構成図である。また図19は同ガスメータのブロック図である。図20は同ガスメータ弁部の閉成動作時の動作フローチャートである。
【0044】
次に図20に示す弁体11の閉成動作、作用について説明すると、ステップ3の設定値との比較動作においてステップ2で演算処理部14で行った流量積算の値が演算処理部14に記憶されている積算流量の設定値より大きい場合には、ステップ4で演算処理部14より弁閉成信号が出力されステップ13で低電圧且つ一定電圧による駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ低電圧で且つ一定電圧が印加されステッピングモータ12が低電圧で且つ一定電圧で駆動し、直動変換部21より弁体23が弁座22に当接しステップ9で弁部11が閉成される。
【0045】
この弁閉成動作においてはガスの流れによる電圧が弁体23の移動方向と同方向に作用するので弁体23を閉成するのに強い力は不要であり最低必要な消費電力で弁体23を移動し閉成動作することができる。
【0046】
また本実施例は駆動電圧を変化させて制御しているのでステッピングモータ12の他直流モータの制御にも適用することができる。
【0047】
以上説明した各実施例の技術的意義をまとめると以下次の通りとなる。
【0048】
(1)弁部の開成動作時と閉成動作時の駆動手段の駆動電力を異なる電圧となるように制御することにより、弁開および弁閉に各々必要な力に対応した電圧で駆動させることができるため、駆動手段に要する消費電力を小さくすることができる。その結果、電池電源部の容量を小さくすることができる。また、電圧を変化させて制御するパルス駆動モータの他直流モータを制御することが可能となる。
【0049】
(2)弁部の開成動作時初期は駆動手段を高電圧で駆動し、所定時間経過した後にタイマ手段で低電圧による駆動に切替えて駆動するよう制御するので、弁開動作に要する駆動手段の消費電力を低減することができる。
【0050】
(3)弁部の閉成動作時初期と駆動手段を低電圧で駆動し、タイマ手段により所定時間経過した後に駆動手段を高電圧で駆動するよう制御することにより、弁開成時から弁閉動作を行う間の消費電力が小さくなり、所定時間経過した弁閉成状態で高電圧による強い力で駆動することにより弁閉時の弁体の弁座への付勢力が大きくなり弁部のシール性能が向上する。
【0051】
(4)弁部の閉成動作時初期は低電圧、且つ一定電圧で駆動手段を駆動し、タイマ手段により所定時間経過した後に高電圧による強い力で駆動手段を駆動することにより、弁閉動作において安定した駆動特性を得ることが出来ると共に、消費電力が低減できる。更に弁閉時の弁体の弁座への付勢力が大きくなり弁部のシール性能が向上する。
【0052】
(5)弁体の開成動作時初期は駆動手段を高電圧で駆動し、弁開閉検出手段で弁部の開状態を検出し、弁体が僅かに開成し弁体に逆方向に作用していた流体の付勢力が小さくなった状態で低電圧で駆動するよう制御するため弁開成動作に要する駆動手段の消費電力を低減することができる。
【0053】
(6)弁部の閉成動作時初期は駆動手段を低電圧で駆動し、弁開閉検出手段で弁閉状態を検出し弁体が閉成したことを検出すると駆動手段を高電圧で駆動するよう制御することにより、弁閉動作に要する駆動手段の消費電力を低減すると共に弁閉成状態での弁体の弁座への付勢力が大きくなり弁シール性能を向上することができる。
【0054】
(7)弁部の閉成動作時初期は低電圧、且つ一定電圧で駆動手段を駆動し、弁開閉検出手段で弁閉状態を検出し弁が閉成したことを検出した後に駆動手段を高電圧で駆動するよう制御することにより、安定した低電力駆動を行うことができると共に、弁閉動作に要する駆動手段の消費電力を低減することができる。また、弁開成状態での弁体の弁座に対する付勢力が大きくなり弁シール性能を向上することができる。
【0055】
(8)弁部の閉成動作時は低電圧、且つ一定電圧で駆動手段を駆動することにより、必要最小限の電圧で駆動するため低消費電力化が図れる。
【0056】
【発明の効果】
このように本発明によれば、弁部の開成動作時と閉成動作時の駆動手段の駆動電力を異なる電圧となるように制御することにより、弁開および弁閉に各々必要な力に対応した電圧で駆動させることができるため、駆動手段に要する消費電力を小さくし、その結果として、電池電源部の容量を小さくすることができるものである。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるガスメータの構成図
【図2】 同ガスメータのブロック図
【図3】 同ガスメータの弁部の弁開時の断面図
【図4】 同ガスメータの弁部の弁開時の断面図
【図5】 同ガスメータの弁部の弁閉時の断面図
【図6】 同ガスメータの弁部の弁閉動作時の動作フローチャート
【図7】 同ガスメータの弁部の弁開動作時の動作フローチャート
【図8】 本発明の実施例2におけるガスメータの構成図
【図9】 同ガスメータのブロック図
【図10】 同ガスメータの弁部の弁開動作時の動作フローチャート
【図11】 同ガスメータの弁部の弁閉動作時の動作フローチャート
【図12】 同ガスメータの弁部の他の弁閉動作時の動作フローチャート
【図13】 本発明の実施例3におけるガスメータの構成図
【図14】 同ガスメータのブロック図
【図15】 同ガスメータの弁部の弁開動作時の動作フローチャート
【図16】 同ガスメータの弁部の弁閉動作時の動作フローチャート
【図17】 同ガスメータの弁部の他の弁閉動作時の動作フローチャート
【図18】 本発明の実施例4におけるガスメータの構成図
【図19】 同ガスメータのブロック図
【図20】 同ガスメータの弁閉動作時の動作フローチャート
【図21】 従来の弁制御方法におけるブロック図
【符号の説明】
10 流路
11 弁部
12 ステッピングモータ(駆動手段)
13 流量計測手段
14 演算処理部
15 駆動回路
16 電圧制御手段
17 電池電源部
19 入口継手
20 出口継手
21 直動変換部
22 弁座
23 弁体
24 タイマ手段
25 弁開閉検出手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a control method for a shutoff valve built in a gas meter that controls opening and closing of a flow of a gas fluid flowing in a flow path.
[0002]
[Prior art]
  Conventionally, this type of control method has been disclosed in Japanese Patent Laid-Open No. 5-71656. The configuration will be described below with reference to the drawings. FIG. 21 is a block diagram of a conventional valve control method. Reference numeral 1 is a stepping motor, 2 is a detector such as the number of revolutions, 3 is a comparator, 4 is a microcomputer, 5 is a drive unit, and 6 is a power source. The control method is such that when the valve is opened (or when the valve is closed), the fluid pressure in the reverse direction applied to the valve element (not shown) is large. Therefore, the drive unit 5 is actuated by a signal from the microcomputer 4 to drive the motor thrust of the stepping motor 1. In order to obtain this, deceleration driving (applying a wide pulse width) was performed, and after a certain time, switching to acceleration driving (applying a narrow pulse width) was made. Further, constant speed tribe (applying equal pulse width) was performed when the valve was closed (or opened).
[0003]
[Problems to be solved by the invention]
  However, the conventional control method has a problem that it is limited to control for a stepping motor because of control for changing a pulse. Further, in the closing operation of the valve that moves up and down to open and close the flow path, there is a problem that the valve closing force cannot be obtained sufficiently because the acceleration driving is performed after a certain time after the deceleration driving.
[0004]
[Means for Solving the Problems]
  To solve the above problemsThe fluid control valve control device of the present invention includes a valve seat formed in the middle of a flow path through which a fluid flows, a valve portion that opens and closes the valve seat from the upstream side in the fluid flow direction, a motor that drives the valve portion, A flow rate measuring means for measuring the flow rate of the fluid to be detected flowing through the flow path, an arithmetic processing unit for arithmetically processing a signal from the flow rate measuring means, and a signal input from the arithmetic processing unit to drive the motor Drive circuit, voltage control means for varying the output voltage from the drive circuit, valve open / close detection means for detecting the open / closed state of the valve part with respect to the valve seat, and a battery power supply part,
  (1) During the opening operation of the valve portion where the fluid pressure is applied in the reverse direction, it is detected whether the valve portion has reached the position where the valve seat is opened via the valve opening / closing detection means, and is still in the closed position. Sometimes the output voltage from the drive circuit is increased, and when the closed position is changed to the open position, the output voltage from the drive circuit is decreased.
  (2) During the closing operation of the valve portion in which the amount of fluid flowing through the flow path exceeds the set value and fluid pressure is applied in the forward direction, the valve portion has reached the position where the valve seat is closed via the valve opening / closing detection means The output voltage from the drive circuit is reduced when it is still in the open position, and the output voltage from the drive circuit is increased when the position is changed from the open position to the closed position.
  Was set to be.
[0005]
  In general, in the valve part, when the valve part is opened and closed due to the position and direction of the inlet and outlet of the fluid, the fluid pressure due to the flow of fluid acts in the reverse direction relative to the moving direction of the valve body. May work. Therefore, the force and energy required for the opening operation of the valve body are basically different from the force and energy required for the closing operation.
[0006]
The present invention controls the opening and closing of the valve by operating the driving means by changing the driving voltage corresponding to the force required for each of the opening operation and the closing operation, and the pulse driving motor (stepping motor) is used as the driving means. Many motors such as other DC motors can be controlled. Also driving
The power consumption of the moving means can be reduced, and the capacity of the battery power source can be reduced.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
  In order to solve the above problems, the present inventionThe fluid control valve control device includes a valve seat formed in the middle of a flow path through which a fluid flows, a valve section that opens and closes the valve seat from the upstream side in the fluid flow direction, a motor that drives the valve section, and the flow path A flow rate measuring means for measuring the flow rate of the fluid to be detected flowing through the fluid, an arithmetic processing section for arithmetically processing a signal from the flow rate measuring means, and a signal from the arithmetic processing section being input and a drive signal being output to the motor A drive circuit; voltage control means for varying an output voltage from the drive circuit; valve open / close detection means for detecting an open / closed state of the valve section with respect to the valve seat; and a battery power supply section.
  (1) During the opening operation of the valve portion where the fluid pressure is applied in the reverse direction, it is detected whether the valve portion has reached the position where the valve seat is opened via the valve opening / closing detection means, and is still in the closed position. Sometimes the output voltage from the drive circuit is increased, and when the closed position is changed to the open position, the output voltage from the drive circuit is decreased.
  (2) During the closing operation of the valve portion in which the amount of fluid flowing through the flow path exceeds the set value and fluid pressure is applied in the forward direction, the valve portion has reached the position where the valve seat is closed via the valve opening / closing detection means The output voltage from the drive circuit is reduced when it is still in the open position, and the output voltage from the drive circuit is increased when the position is changed from the open position to the closed position.
  Was set to be.
In addition, a valve seat formed in the middle of the flow path of the fluid, a valve section that opens and closes the valve seat from the upstream side in the fluid flow direction, a motor that drives the valve section, and a fluid to be detected that flows in the flow path A flow rate measuring means for measuring the flow rate of the flow rate, an arithmetic processing unit for arithmetically processing a signal from the flow rate measuring means, a drive circuit for inputting a signal from the arithmetic processing unit and outputting a drive signal to the motor, Voltage control means for varying the output voltage from the drive circuit, timer means for counting the opening direction and the closing direction operation time of the valve part with respect to the valve seat, and a battery power supply part,
  (1) During the opening operation of the valve portion where the fluid pressure is applied in the reverse direction, it is detected in time whether or not the valve portion has reached the position where the valve seat is opened via the timer means, and the valve portion is still in the closed position. In a certain timekeeping state, the output voltage from the drive circuit is large, and in the timekeeping state from the closed position to the open position, the output voltage from the drive circuit is small.
  (2) Whether or not the valve portion has reached the position where the valve seat is closed via the timer means during the closing operation of the valve portion in which the amount of fluid flowing through the flow path exceeds the set value and fluid pressure is applied in the forward direction. In the timed state that is still in the open position, the output voltage from the drive circuit is reduced, and in the timed state that is changed from the open position to the closed position, the output voltage from the drive circuit is increased.
  Was set to be.
[0008]
  The arithmetic processing unit processes the measurement value by the flow rate measuring means and outputs various valve unit drive control signals to the drive circuit. The drive circuit operates the drive circuit according to the input signal to perform opening / closing control of the valve unit. In general, in the valve part, when the valve part opens and closes depending on the position and direction of the inlet and outlet of the fluid, the fluid pressure due to the flow of the liquid acts in the reverse direction relative to the moving direction of the valve body. May work. Therefore, basically, the force and energy required for the opening operation of the valve body are different from the force and energy required for the closing operation. The present invention controls the opening and closing of the valve section by operating the driving means by changing the driving voltage in accordance with the force required for each of the opening operation and the closing operation. The driving means is a pulse driving motor (stepping motor). ) Other motors such as DC motors can be controlled. In addition, the power consumption of the driving means can be reduced, and the capacity of the battery power source can be reduced.
[0009]
  Embodiments of the present invention will be described below with reference to the drawings. In the first to fourth embodiments, the same components are denoted by the same reference numerals and a part of the description is omitted.
[0010]
  (Example 1)
  FIG. 1 is a configuration diagram of a gas meter according to Embodiment 1 of the present invention. FIG. 2 is a block diagram of the gas meter. 3 and 4 are cross-sectional views when the gas meter valve portion is opened, and FIG. 5 is a cross-sectional view when the gas meter valve portion is closed. FIG. 6 is a flowchart of the operation during the valve closing operation of the valve portion of the gas meter, and FIG. 7 is an operation flowchart during the valve opening operation of the valve portion of the gas meter.
[0011]
  1 and 2, reference numeral 7 denotes a gas meter housing. Inside the housing 7, a flow path 10 communicating the inlet 8 and the outlet 9 is configured.Has been.The flow path 10 includes a valve unit 11 that opens and closes the flow path 10, a stepping motor 12 that is a driving unit that drives the valve unit 11, and a flow rate measurement unit that measures a flow rate of a gas that is a detected fluid that flows through the flow path 10. 13, an arithmetic processing unit 14 that performs arithmetic processing on a signal from the flow rate measuring unit 13, a driving circuit 15 that inputs a signal from the arithmetic processing unit and outputs a driving signal to the stepping motor 12 of the driving unit, and a driving circuit 15 The voltage control means 16 for changing the output voltage (hereinafter, pulse is omitted) and the battery power supply unit 17 are configured. Reference numeral 18 denotes display means for displaying the flow rate.
[0012]
  3 to 5, the valve portion 11 having the inlet joint 19 and the outlet joint 20 is connected to the linear motion conversion portion 21 that converts the rotation of the stepping motor 12 into the direct motion, and the linear motion conversion portion 21. There is provided a valve body 23 that moves up and down and comes into contact with the valve seat 22 to be closed.
[0013]
  6 and 7, step 1 is a flow rate measuring operation, step 2 is a flow rate integrating operation, step 3 is an operation for comparing the set value of the integrated flow rate stored in the arithmetic processing unit 14 with the value integrated with the flow rate, step 4 is a valve closing signal output operation for instructing valve closing, step 5 is an operation for driving the stepping motor 12 as driving means with a certain voltage A, and step 6 is a closing state of the valve portion 11.
[0014]
  Step 7 is a valve opening signal output operation for instructing the opening of the valve, Step 8 is an operation for driving the stepping motor 12 as a driving means at a certain voltage B, and Step 9 is an opening state of the valve portion 11.
[0015]
  Next, the operation and action of the above configuration will be described with reference to FIGS. First, the valve closing operation of the valve portion 11 shown in FIG. 6 will be described.When,Normally, the valve body 23 of the valve unit 11 built in the gas meter is in an open state, and the flow rate is measured in step 1. In step 2, the flow rate integration is performed by the arithmetic processing unit 14 based on the measured flow rate value.
[0016]
  In step 3, the integrated value of the flow rate is compared with the set value of the integrated flow rate stored in the arithmetic processing unit 14, and the integrated value of the flow rate is stored in the arithmetic processing unit 14.Has beenIf it is larger than the set value of the integrated flow rate, it is determined that there is an abnormality. In step 4, a valve closing signal is output from the arithmetic processing unit 14, and in step 5, the voltage A is applied from the drive circuit 15 to the stepping motor 12. Drive.
[0017]
  The rotation of the stepping motor 12 is converted into a linear motion by the linear motion conversion unit 21, the valve body 23 moves and comes into contact with the valve seat 22, and the valve is closed in Step 6. At this time, since the flow path 10 is closed by the valve portion 11 of the gas meter, the gas does not flow to the instrument side (not shown). Next, the valve opening operation of the valve body shown in FIG. 7 will be described. When it is determined that there is no abnormality on the instrument side, a valve opening signal instructing opening of the valve is output from the arithmetic processing unit 14 in step 7, 8, the voltage B is applied from the drive circuit 15 to the stepping motor 12, and the stepping motor is driven.
[0018]
  The rotation of the stepping motor 12 is converted into a linear motion by the linear motion changing unit 21, the valve body 23 moves, and is disengaged from the valve seat 22, and the valve is opened in Step 9. That is, in the valve portion 11 as in this embodiment shown in FIGS. 3 to 5, the gas flowing direction and the moving direction of the valve body 23 are reversed during the opening operation.
When the valve body 23 receives the gas pressure opposite to the valve opening direction, the force required for the valve opening operation increases, but flows from the inlet joint 19 toward the outlet joint 20 during the valve closing operation. Since the valve body 23 moves in the same direction as the gas flow, the valve body 23 receives the pressure in the gas flow in the valve closing direction, whereby a directional force for closing the valve body 23 acts, and the valve body 23 is closed. The force required for the formation is reduced, and it can be driven at a lower voltage than during the opening operation. This low voltage indicates a voltage lower than the maximum output voltage (for example, 3 V) of the battery power supply unit 17.
[0019]
  In general, the design value of the operating voltage of the valve is 2 V or less when the maximum output voltage of the battery power supply unit 17 is 3 V, for example, considering the output voltage drop characteristics, temperature characteristics, gas pressure, etc. of the battery power supply unit 17 over time. Designed so that the valve can be opened. Further, the operation voltage at the time of closing is operated below the voltage at the time of opening.
[0020]
  As described above, since the force and energy required for the valve opening operation and the valve closing operation are different, in this embodiment, control is performed so that the driving power is changed in accordance with the force and energy required for each operation. Therefore, it is possible to reduce the power consumption required for the valve opening operation and the valve closing operation, and the capacity of the battery power supply unit 17 can be reduced.
[0021]
  In addition, since the present embodiment is controlled by changing the drive voltage, it can be applied to the DC motor other than the stepping motor 12.
[0022]
  (Example 2)
  FIG. 8 is a gas meter structure diagram of Embodiment 2 of the present invention. FIG. 9 is a block diagram of the gas meter. FIG. 10 is an operation flowchart when the valve of the gas meter is opened, FIG. 11 is an operation flowchart when the valve of the gas meter is closed, and FIG. 12 is another valve closing operation of the valve of the gas meter. It is an operation | movement flowchart.
[0023]
  The difference from the first embodiment is that the timer means 24 for counting time in FIGS. 8 to 12 is provided, the operation of driving the stepping motor 12 as the driving means with a high voltage, step 10, the timer means 24 and a predetermined value. Each operation of Step 13 includes an operation step 11 for counting time, an operation step 12 for driving the stepping motor 12 as a driving means at a low voltage, and an operation 35 for driving the stepping motor 12 as a driving means at a low voltage at a constant voltage. Is to have a program.
[0024]
  Next, the operation and action of the above configuration will be described. The opening operation of the valve unit 11 shown in FIG. 10 will be described. In step 7, a valve opening signal instructing opening of the valve is output from the arithmetic processing unit 14, and in step 10, a driving signal based on a high voltage is output from the arithmetic processing unit 14. A high voltage is applied from the drive circuit 15 to the stepping motor 12 and driving is performed at the same time. At the same time, the timer means 24 is activated in step 11 and a predetermined time (a time sufficient for the valve to open) is counted. When the time has elapsed, a drive signal with a low voltage is output from the arithmetic processing unit 14 at step 12, a low voltage is applied from the drive circuit 15 to the stepping motor 12, and driving with the low voltage is performed. 23 moves and leaves the valve seat 22 to reach the valve open state of step 9.
[0025]
  In this operation, when the valve portion 11 is opened, the gas pressure due to the gas flow acts in the direction opposite to the moving direction of the valve body. Therefore, the valve 11 is initially opened with a strong driving force by a high voltage, and sufficient time is required for opening the valve. After the lapse of time, when the valve body 23 moves and the urging force of the pressure affected by the gas flow becomes sufficiently small, the power consumption of the driving means required for opening the valve is reduced by controlling to switch to the driving by the low voltage. Can be reduced.
[0026]
  Next, the closing operation and action of the valve part 11 shown in FIG. 11 will be described.
In the comparison operation, when the value of the integrated flow rate performed by the arithmetic processing unit 14 in step 2 is larger than the set value of the integrated flow rate stored in the arithmetic processing unit 14, the valve is closed from the arithmetic processing unit 14 in step 4. In step 12, a generated signal is output, and a drive signal based on a low voltage is output from the arithmetic processing unit, a low voltage is applied from the drive circuit 15 to the stepping motor 12, and a drive based on the low voltage is performed.
[0027]
  At the same time, when a predetermined time (a time sufficient for the valve to close) is counted by the timer means 24 in step 11, a high-voltage drive signal is output from the arithmetic processing unit 14 in step 10 and stepping is performed from the drive circuit 15. A high voltage is applied to the motor 12 and driving is performed with a strong force due to the high voltage, and the valve element 23 comes into contact with the valve seat 22 with a strong force by the linear motion conversion unit 21 to reach the valve closed state in Step 9.
[0028]
  In the closing operation of the valve, the moving direction of the valve body 23 and the direction in which the gas pressure acts are the same. Most of the closing operation of the valve is driven by a low voltage, and the high voltage is strong only in the last stage. By driving, the power consumption can be reduced and the valve body 23 can be closed with a strong force with respect to the valve seat 22, and the sealing performance of the valve can be improved.
[0029]
  Next, the closing operation and operation of the valve unit 11 shown in FIG. 12 will be described. The value of the flow rate integration performed by the arithmetic processing unit 14 in step 2 in the comparison operation with the set value in step 3 is stored in the arithmetic processing unit 14. If it is larger than the set value of the integrated flow rate, the valve closing signal is output in step 4, and the driving signal with a low voltage and a constant voltage is output in step 13 from the arithmetic processing unit 14. A low voltage and a constant voltage are applied to the stepping motor 12, and driving with the low voltage and the constant voltage is performed.
[0030]
  At the same time, when a predetermined time (a time sufficient for the valve to close) is counted by the timer means 24 in step 11, a high voltage drive signal is output from the arithmetic processing unit 14, and the drive circuit 15 supplies the stepping motor 12. The valve of Step 9 is applied in a state where the high pressure is applied and the valve body 23 that is driven by the high voltage by the high voltage and is already in contact with the valve seat 22 by the linear motion conversion unit 21 is further urged to the valve seat 22. It will be closed.
[0031]
  As a configuration of the battery power source unit 17 when this constant voltage is applied, there are cases where a plurality of battery power sources are used by switching the connection. In this operation, a constant voltage lower than the normal output voltage of the battery power supply unit 17 (for example, one battery) is applied, and after a certain period of time, a voltage higher than the predetermined voltage (for example, a plurality of batteries connected in series) is applied. .
[0032]
  By such a control operation, stable drive characteristics can be obtained, the voltage of the drive means can be reduced, and the sealing performance of the valve portion 11 can be improved. Further, since the present embodiment is controlled by changing the driving voltage, it can be applied to the DC motor in addition to the stepping motor 12.
[0033]
  (Example 3)
  FIG. 13 is a configuration diagram of a gas meter according to Embodiment 3 of the present invention. FIG. 14 is a block diagram of the gas meter. 15 is an operation flowchart when the valve portion of the gas meter is opened, FIG. 16 is an operation flowchart when the valve portion of the gas meter is opened, and FIG. 17 is another valve closing operation of the valve portion of the gas meter. It is an operation | movement flowchart.
[0034]
  The difference from the first and second embodiments is that the valve opening / closing detection means 25 for detecting the opening / closing of the valve unit 1 is provided in FIGS. 13 to 17, the operation step 14 for detecting the open state of the valve unit 11, and the valve unit. 11 has an operation step 15 for detecting the closed state.
[0035]
  The valve opening / closing detection means 25 detects the opening / closing state of the valve section 11 by processing the signal of the flow rate measurement means 13 by the arithmetic processing section 14 and determining whether or not there is a flow.
  Next, the operation and action of the above configuration will be described. The opening operation of the valve unit 11 shown in FIG. 15 will be described. In step 7, a valve opening signal instructing opening of the valve is output from the arithmetic processing unit 14, and in step 10 a driving signal based on a high voltage is output from the arithmetic processing unit 14. Then, a high voltage is applied from the drive circuit 15 to the stepping motor 12 to drive the high voltage, and the valve element 23 is moved by the linear motion conversion unit 21. Next, in step 14, is the valve opened to detect the opened state of the valve part 11? When the operation is performed and it is detected that the valve element 23 is opened, a low-voltage drive signal is output from the arithmetic processing unit 14 in step 12, and the low voltage is applied from the drive circuit 15 to the stepping motor 12. The valve body 23 is moved by the linear motion conversion unit 21 while being driven by the low voltage, and the valve is opened in step 9.
[0036]
  In this operation, when the valve portion 11 is opened, the valve body 23 initially moves in opposition to the gas pressure, so that a strong drive by a high voltage is required. However, when the valve body 23 is slightly opened, the valve body 23 receives the valve body 11. The effect of gas pressure due to gas flow is reduced.
[0037]
  Therefore,By detecting that the valve body 23 is slightly opened by the valve opening / closing detection means 25 and immediately switching to drive with a low voltage, the power consumption of the drive means required for opening the valve can be reduced.
[0038]
  Next, the closing operation and action of the valve unit 11 shown in FIG. 16 will be described. In the comparison operation with the set value in Step 3, the value of the flow rate integration performed in the arithmetic processing unit 14 in Step 2 is stored in the arithmetic processing unit 14. If the accumulated flow rate is larger than the set value, the valve closing signal is output from the arithmetic processing unit 14 in step 4, and the driving signal based on the low voltage is output from the arithmetic processing unit 14 in step 12. A low voltage is applied to the stepping motor 12, the stepping motor 12 is driven at a low voltage, and the valve element 23 moves toward the valve seat 22 by the linear motion conversion unit 21.
  Next, in step 15, the valve opening / closing detection means 25 closes the valve portion 11? When the valve body 23 is detected to be closed, a high voltage drive signal is output from the arithmetic processing unit 14, and a high voltage is applied from the drive circuit 15 to the stepping motor 12. Is driven by a strong force of high voltage, and the valve body 23 already in contact with the valve seat 22 is further strongly urged against the valve seat 22 by the linear motion conversion unit 21 and the valve is closed in step 9.
[0039]
  This action can improve the sealing characteristics of the valve portion 11. Moreover, the power consumption of the drive means required for the valve closing operation can be reduced.
[0040]
  Next, the closing operation and action of the valve unit 11 shown in FIG. 17 will be described. In the comparison operation with the set value in Step 3, the value of the flow rate integration performed in the arithmetic processing unit 14 in Step 2 is stored in the arithmetic processing unit 14. If the integrated flow rate is larger than the set value, a valve closing signal is output from the arithmetic processing unit 14 in step 4, and a drive signal with a low voltage and a constant voltage is output from the arithmetic processing unit 14 in step 13. A low voltage and a constant voltage are applied from the drive circuit 15 to the stepping motor 12, the stepping motor 12 is driven at a low voltage and a constant voltage, and the valve element 23 moves toward the valve seat 22 by the linear motion conversion unit 21.
  Next, in step 15, the valve open / close detection means 25 detects the closed state of the valve portion 11. When it is detected that the valve body 23 is closed, a drive signal with a high voltage is output from the arithmetic processing unit 14 in step 10. A high voltage is applied from the drive circuit 15 to the stepping motor 12.
[0041]
  In this valve closing operation, a stable constant voltage lower than the normal output voltage of the battery power supply unit 17 is applied while the valve body 23 moves from the beginning of the valve closing operation and contacts the valve seat 22. But
After it is detected that the valve seat 22 is in contact with the valve seat 22 and closed, the stepping motor 12 is driven with a strong high-voltage force so that the valve body 23 already in contact with the valve seat 22 is made stronger. The valve closing step 9 is reached in the energized state. Therefore, the sealing performance of the body 11 can be improved and the power consumption of the driving means required for the valve closing operation can be reduced.
[0042]
  Further, since the present embodiment is controlled by changing the driving voltage, it can be applied to the DC motor in addition to the stepping motor 12.
[0043]
  (Example 4)
  FIG. 18 is a configuration diagram of a gas meter according to a fourth embodiment of the present invention. FIG. 19 is a block diagram of the gas meter. FIG. 20 is an operation flowchart during the closing operation of the gas meter valve unit.
[0044]
  Next, the closing operation and action of the valve body 11 shown in FIG. 20 will be described. In the comparison operation with the set value in Step 3, the value of the flow rate integration performed in the arithmetic processing unit 14 in Step 2 is stored in the arithmetic processing unit 14. If the accumulated flow rate is larger than the set value, the valve closing signal is output from the arithmetic processing unit 14 in step 4, and a drive signal with a low voltage and a constant voltage is output from the arithmetic processing unit 14 in step 13. A low voltage and a constant voltage are applied from the circuit 15 to the stepping motor 12, and the stepping motor 12 is driven at a low voltage and a constant voltage. Part 11 is closed.
[0045]
  In this valve closing operation, the voltage due to the gas flow acts in the same direction as the movement direction of the valve body 23, so that a strong force is not required to close the valve body 23, and the valve body 23 with the minimum required power consumption. Can be moved and closed.
[0046]
  In addition, since the present embodiment is controlled by changing the driving voltage, it can be applied to control of the DC motor in addition to the stepping motor 12.
[0047]
  The technical significance of each embodiment described above is summarized as follows.
[0048]
  (1) By controlling the driving power of the driving means during the opening operation and closing operation of the valve portion so as to be different voltages, driving is performed at a voltage corresponding to each force required for opening and closing the valve. Therefore, power consumption required for the driving means can be reduced. As a result, the capacity of the battery power supply unit can be reduced. In addition, it is possible to control a DC motor in addition to a pulse drive motor that is controlled by changing a voltage.
[0049]
  (2) During the opening operation of the valve portion, the driving means is driven at a high voltage at the initial stage, and after a predetermined time has passed, the timer means is controlled so as to switch to driving at a low voltage, so that the driving means required for the valve opening operation is controlled. Power consumption can be reduced.
[0050]
  (3) The valve closing operation is started from the time when the valve is opened by controlling the driving means to be driven at a low voltage at the beginning of the valve closing operation and to drive the driving means at a high voltage after a predetermined time has elapsed by the timer means. The power consumption is reduced while the valve is closed, and the urging force of the valve body when the valve is closed increases when the valve is closed for a certain period of time. Will improve.
[0051]
  (4) During the closing operation of the valve unit, the driving unit is driven at a low voltage and a constant voltage at the initial stage, and the driving unit is driven with a strong force by a high voltage after a predetermined time has elapsed by the timer unit, thereby closing the valve. In addition, stable driving characteristics can be obtained and power consumption can be reduced. Further, the urging force of the valve body to the valve seat when the valve is closed increases, and the sealing performance of the valve portion is improved.
[0052]
  (5) At the initial stage of the opening operation of the valve body, the driving means is driven at a high voltage, the valve opening / closing detection means detects the open state of the valve portion, the valve body is slightly opened and acts on the valve body in the reverse direction. In addition, since the control is performed so that the driving is performed at a low voltage in a state where the urging force of the fluid is small, the power consumption of the driving means required for the valve opening operation can be reduced.
[0053]
  (6) At the initial stage of the closing operation of the valve portion, the driving means is driven at a low voltage. When the valve opening / closing detecting means detects the valve closed state and detects that the valve body is closed, the driving means is driven at a high voltage. By controlling in such a manner, the power consumption of the driving means required for the valve closing operation can be reduced, and the urging force of the valve body on the valve seat in the valve closed state can be increased, thereby improving the valve sealing performance.
[0054]
  (7) During the closing operation of the valve portion, the driving means is driven at a low voltage and a constant voltage in the initial stage, the valve closing state is detected by the valve opening / closing detecting means, and the driving means is turned on after detecting that the valve is closed. By controlling to drive with voltage, stable low power driving can be performed, and power consumption of the driving means required for the valve closing operation can be reduced. Further, the urging force of the valve body with respect to the valve seat in the valve opened state is increased, and the valve seal performance can be improved.
[0055]
  (8) During the closing operation of the valve section, the driving means is driven at a low voltage and a constant voltage, so that the power consumption can be reduced because the driving means is driven at the minimum necessary voltage.
[0056]
【The invention's effect】
As described above, according to the present invention, by controlling the driving power of the driving means during the opening operation and closing operation of the valve portion so as to have different voltages, it is possible to cope with the forces required for opening and closing the valve respectively. Therefore, the power consumption required for the driving means can be reduced, and as a result, the capacity of the battery power supply unit can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a gas meter according to a first embodiment of the present invention.
[Figure 2] Block diagram of the gas meter
FIG. 3 is a sectional view of the gas meter when the valve is opened
FIG. 4 is a cross-sectional view of the gas meter when the valve is opened
FIG. 5 is a cross-sectional view of the gas meter when the valve is closed
FIG. 6 is an operation flowchart when the valve of the gas meter is closed.
FIG. 7 is an operation flowchart when the valve of the gas meter is opened.
FIG. 8 is a configuration diagram of a gas meter according to Embodiment 2 of the present invention.
Fig. 9 Block diagram of the gas meter
FIG. 10 is an operation flowchart when the valve of the gas meter is opened.
FIG. 11 is an operation flowchart when the valve of the gas meter is closed.
FIG. 12 is an operation flowchart of another valve closing operation of the valve portion of the gas meter.
FIG. 13 is a configuration diagram of a gas meter according to Embodiment 3 of the present invention.
FIG. 14 is a block diagram of the gas meter.
FIG. 15 is an operation flowchart when the valve of the gas meter is opened.
FIG. 16 is an operation flowchart when the valve of the gas meter is closed.
FIG. 17 is an operation flowchart of another valve closing operation of the valve portion of the gas meter.
FIG. 18 is a configuration diagram of a gas meter in Embodiment 4 of the present invention.
FIG. 19 is a block diagram of the gas meter.
FIG. 20 is an operation flowchart when the gas meter is closed.
FIG. 21 is a block diagram of a conventional valve control method.
[Explanation of symbols]
  10 Channel
  11 Valve
  12 Stepping motor (drive means)
  13 Flow rate measuring means
  14 Arithmetic processing part
  15 Drive circuit
  16 Voltage control means
  17 Battery power supply
  19 Inlet joint
  20 Outlet joint
  21 Linear motion converter
  22 Valve seat
  23 Disc
  24 Timer means
  25 Valve open / close detection means

Claims (2)

流体が流れる流路の途中に形成した弁座と、この流体流動方向上流側からこの弁座を開閉する弁部と、前記弁部を駆動するモータと、前記流路を流れる被検出流体の流量を計測する流量計測手段と、前記流量計測手段からの信号を演算処理する演算処理部と、前記演算処理部からの信号を入力して前記モータへ駆動信号を出力する駆動回路と、前記駆動回路からの出力電圧を可変する電圧制御手段と、前記弁座に対する弁部の開閉状態を検出する弁開閉検出手段と、電池電源部とを具備し、A valve seat formed in the middle of the flow path of the fluid, a valve section that opens and closes the valve seat from the upstream side in the fluid flow direction, a motor that drives the valve section, and a flow rate of the fluid to be detected that flows through the flow path A flow rate measuring means for measuring a signal, an arithmetic processing unit for arithmetically processing a signal from the flow rate measuring means, a drive circuit for inputting a signal from the arithmetic processing unit and outputting a drive signal to the motor, and the drive circuit Voltage control means for varying the output voltage from the valve, valve open / close detection means for detecting the open / close state of the valve portion with respect to the valve seat, and a battery power supply unit,
(1)流体圧が逆方向に加わる前記弁部の開成動作時には、弁開閉検出手段を介して弁部が弁座を開いた位置に達したか否かを検出して、まだ閉位置にあるときには駆動回路からの出力電圧を大に、閉位置から開位置になると駆動回路からの出力電圧を小さく、(1) During the opening operation of the valve portion where the fluid pressure is applied in the opposite direction, it is detected whether or not the valve portion has reached the position where the valve seat is opened via the valve opening / closing detection means, and is still in the closed position. Sometimes the output voltage from the drive circuit is increased, and when the closed position is changed to the open position, the output voltage from the drive circuit is decreased,
(2)流路を流れる流体量が設定値を超え、流体圧が順方向に加わる前記弁部の閉成動作時には、弁開閉検出手段を介して弁部が弁座を閉じた位置に達したか否かを検出して、まだ開位置にあるときには駆動回路からの出力電圧を小に、開位置から閉位置になると駆動回路からの出力電圧を大きく(2) During the closing operation of the valve portion in which the amount of fluid flowing through the flow path exceeds the set value and fluid pressure is applied in the forward direction, the valve portion has reached the position where the valve seat is closed via the valve opening / closing detection means The output voltage from the drive circuit is reduced when it is still in the open position, and the output voltage from the drive circuit is increased when the position is changed from the open position to the closed position.
なるように設定した流体制御弁制御装置。Fluid control valve control device set to be.
流体が流れる流路の途中に形成した弁座と、この流体流動方向上流側からこの弁座を開閉する弁部と、前記弁部を駆動するモータと、前記流路を流れる被検出流体の流量を計測する流量計測手段と、前記流量計測手段からの信号を演算処理する演算処理部と、前記演算処理部からの信号を入力して前記モータへ駆動信号を出力する駆動回路と、前記駆動回路からの出力電圧を可変する電圧制御手段と、前記弁座に対する弁部の開方向、および閉方向動作時間をそれぞれカウントするタイマ手段と、電池電源部とを具備し、A valve seat formed in the middle of the flow path of the fluid, a valve section that opens and closes the valve seat from the upstream side in the fluid flow direction, a motor that drives the valve section, and a flow rate of the fluid to be detected that flows through the flow path A flow rate measuring means for measuring a signal, an arithmetic processing unit for arithmetically processing a signal from the flow rate measuring means, a drive circuit for inputting a signal from the arithmetic processing unit and outputting a drive signal to the motor, and the drive circuit A voltage control means for varying the output voltage from the valve, an opening direction of the valve portion with respect to the valve seat, a timer means for counting the operation time in the closing direction, and a battery power supply portion,
(1)流体圧が逆方向に加わる前記弁部の開成動作時には、タイマ手段を介して弁部が弁座を開いた位置に達したか否かを時間的に検出して、まだ閉位置にある計時状態では駆動回路からの出力電圧を大に、閉位置から開位置になる計時状態では駆動回路からの出力電圧を小さく、(1) During the opening operation of the valve portion where the fluid pressure is applied in the reverse direction, it is detected in time whether or not the valve portion has reached the position where the valve seat is opened via the timer means, and the valve portion is still in the closed position. In a certain timekeeping state, the output voltage from the drive circuit is large, and in the timekeeping state from the closed position to the open position, the output voltage from the drive circuit is small.
(2)流路を流れる流体量が設定値を超え、流体圧が順方向に加わる前記弁部の閉成動作時には、タイマ手段を介して弁部が弁座を閉じた位置に達したか否かを時間的に検出して、まだ開位置にある計時状態では駆動回路からの出力電圧を小に、開位置から閉位置に(2) Whether or not the valve portion has reached the position where the valve seat is closed via the timer means during the closing operation of the valve portion in which the amount of fluid flowing in the flow path exceeds the set value and fluid pressure is applied in the forward direction. In the timekeeping state that is still in the open position, the output voltage from the drive circuit is reduced and the open position is changed to the closed position.
なる計時状態では駆動回路からの出力電圧を大きくIn this timing state, the output voltage from the drive circuit is increased.
なるように設定した流体制御弁制御装置。Fluid control valve control device set to be.
JP29233396A 1996-11-05 1996-11-05 Fluid control valve control device Expired - Fee Related JP3804124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29233396A JP3804124B2 (en) 1996-11-05 1996-11-05 Fluid control valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29233396A JP3804124B2 (en) 1996-11-05 1996-11-05 Fluid control valve control device

Publications (2)

Publication Number Publication Date
JPH10132125A JPH10132125A (en) 1998-05-22
JP3804124B2 true JP3804124B2 (en) 2006-08-02

Family

ID=17780442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29233396A Expired - Fee Related JP3804124B2 (en) 1996-11-05 1996-11-05 Fluid control valve control device

Country Status (1)

Country Link
JP (1) JP3804124B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018426A (en) * 1998-07-01 2000-01-18 Ricoh Elemex Corp Cutoff valve driving and controlling device
JP4238409B2 (en) * 1999-04-02 2009-03-18 パナソニック株式会社 Fluid control valve control device
JP2006038182A (en) * 2004-07-30 2006-02-09 Tokyo Gas Co Ltd Cutoff valve device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03608Y2 (en) * 1986-07-09 1991-01-10
JPH07106230B2 (en) * 1990-06-07 1995-11-15 矢崎総業株式会社 Gas shutoff valve controller
JP2900280B2 (en) * 1990-07-27 1999-06-02 株式会社 三協精機製作所 Opening / closing drive
JPH0571656A (en) * 1991-09-17 1993-03-23 Tohoku Oki Denki Kk Fluid cutoff valve control method
JPH0658536A (en) * 1992-08-04 1994-03-01 Yazaki Corp Microcomputer-aided gas meter
JPH0660950U (en) * 1993-02-04 1994-08-23 石川島播磨重工業株式会社 Electromagnetic drive circuit
JP3417011B2 (en) * 1993-11-11 2003-06-16 株式会社デンソー Valve drive system
JP3174462B2 (en) * 1994-09-08 2001-06-11 東京瓦斯株式会社 Method of operating solenoid valve of fuel cell power generator
JPH08123554A (en) * 1994-10-24 1996-05-17 Matsushita Seiko Co Ltd Controller for flow rate valve

Also Published As

Publication number Publication date
JPH10132125A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP3931732B2 (en) Opening and closing body pinching detection device
KR960001454A (en) Flow valve controller and flow valve manufacturing method
KR100414477B1 (en) Power window apparatus
JP3011043B2 (en) Flow control valve
JP3804124B2 (en) Fluid control valve control device
JP3885269B2 (en) Fluid control valve control device
JP3885268B2 (en) Fluid control valve control device
US6913122B2 (en) Brake for DC motor
JP3804123B2 (en) Fluid control valve control device
JPH08260810A (en) Control apparatus for opening and shutting of window
JPH09324581A (en) Holding existence detection device of window glass
JP3948043B2 (en) Motor controller for opening / closing mechanism
JP3398974B2 (en) Flow control device
JPH10267153A (en) Controller for fluid control valve
JP2000130622A (en) Fluid control valve controlling method
JP2954471B2 (en) Opening / closing body opening / closing control method
JP4238409B2 (en) Fluid control valve control device
EP0632188B1 (en) Exhaust emission control device for diesel engine
JPH10136692A (en) Drive interrupt method of stepping motor
CN111365823A (en) Air conditioning system and control method thereof
JP3244253B2 (en) Power window current detection circuit
JP3893695B2 (en) Gas shut-off control device
JPH0583993A (en) Motor driven fluid isolation valve controller
JP2000018426A (en) Cutoff valve driving and controlling device
JPS6169391A (en) Controlling method for dc motor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees