JP3804085B2 - Method for producing high quality β-bromoethylbenzene - Google Patents

Method for producing high quality β-bromoethylbenzene Download PDF

Info

Publication number
JP3804085B2
JP3804085B2 JP19652695A JP19652695A JP3804085B2 JP 3804085 B2 JP3804085 B2 JP 3804085B2 JP 19652695 A JP19652695 A JP 19652695A JP 19652695 A JP19652695 A JP 19652695A JP 3804085 B2 JP3804085 B2 JP 3804085B2
Authority
JP
Japan
Prior art keywords
bromoethylbenzene
reaction
mol
styrene
hydrogen bromide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19652695A
Other languages
Japanese (ja)
Other versions
JPH0940591A (en
Inventor
治之 堀江
晃宏 野村
巧 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP19652695A priority Critical patent/JP3804085B2/en
Publication of JPH0940591A publication Critical patent/JPH0940591A/en
Application granted granted Critical
Publication of JP3804085B2 publication Critical patent/JP3804085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は有機機能品及び医薬品等の合成中間体として有用なβ−ブロモエチルベンゼンの製造方法に関するものである。
【0002】
【従来の技術】
従来β−ブロモエチルベンゼンは、ラジカル存在下、スチレンに臭化水素を付加させて製造する方法が採られている。ラジカル源としては酸素又は過酸化物(米国特許第3321536号公報、米国特許第2935535号公報)、アゾ化合物(特開平6−172232号公報)、290〜700nmからなる紫外線又は高エネルギーイオン化放射線(特公昭38−1623号公報)等が使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、紫外線をラジカル源とした場合(特公昭38−1623号公報)、光量が十分であってもスチレン濃度が25vol%を越える場合、α−ブロモエチルベンゼンの副生率を0.2mol%以下とすることは難しく、この副生率を下げるためには強力な光源又は大幅な反応槽滞留時間の延長が必要となる。
【0004】
α−ブロモエチルベンゼンはβ−ブロモエチルベンゼンと沸点が類似し蒸留による分離が極めて困難であり、例えば、血圧降下剤製造原料のような高純度を必要とする場合には問題となる。
【0005】
また、ラジカル源に酸素又は過酸化物を用いた場合(米国特許第3321536号公報、米国特許第2935535号公報)、スチレン濃度が希薄な条件では、α−ブロモエチルベンゼンの副生率を抑制することは可能であるが、スチレン濃度が25vol%を越えるような条件においては、原料スチレンの転化率が十分に上がらないばかりでなく、α−ブロモエチルベンゼンの副生も多く、さらにアセトフェノン等の酸化物が著しく増大し、β−ブロモエチルベンゼン純度は99%を下回ってしまう。
【0006】
さらに、ラジカル源にアゾ化合物を用いると(特開平6−172232号公報)、スチレン濃度が25vol%を越える条件下においても、β−ブロモエチルベンゼンの純度を99mol%以上、かつα−ブロモエチルベンゼンの副生率を0.2mol%以下とすることは可能であるが、反応溶媒除去後の製品中にアゾ化合物及びその分解物が残存するため、これを用いて環臭素化等の反応を行った場合、着色等の問題が生じる。
【0007】
本発明は上記の課題に鑑みてなされたものであり、その目的は、有機機能品及び医薬品等の合成中間体として有用なβ−ブロモエチルベンゼンを高品質かつ高収率で得る製造方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは鋭意研究を重ねた結果、スチレンと臭化水素からβ−ブロモエチルベンゼンを製造する方法において、紫外線照射下、特定量の空気を供給することにより、α−ブロモエチルベンゼンの副生を抑制し、かつ生産効率を向上できる高純度β−ブロモエチルベンゼンの製造方法を見出し、本発明を完成させるに至った。
【0009】
すなわち本発明は、スチレンと臭化水素からβ−ブロモエチルベンゼンを製造する方法において、紫外線照射下、臭化水素に対し0.3〜3.0vol%の空気を供給して反応を行うことを特徴とする高品質β−ブロモエチルベンゼンの製造方法である。
【0010】
以下、本発明を詳細に説明する。
【0011】
本発明は反応器にスチレン、溶媒を予め全量仕込んで臭化水素を吹込みながら反応を行う回分反応、又はスチレン、溶媒、臭化水素を反応器に連続的に供給して行う連続反応のいずれの方法でも行うことが可能である。
【0012】
本反応では臭化水素のラジカル開裂を引き起こすために紫外線を用いるが、290nm以下の紫外線はスチレンの重合反応を促進し、β−BEBの収率低下を招くので好ましくない。そこで、光源として高圧水銀灯を用い、さらにランプ冷却管の材質としてパイレックスガラスを用いる等の方法により、290nm以下の紫外線を遮光することが好ましい。
【0013】
光源の強さについての規定は特にない。反応槽形状によっても異なるが通常、β−ブロモエチルベンゼン収率が99mol%以上の状態で、反応槽1L当たり1mol/hr以上得るためには、光源の反応槽単位体積あたりの光量子数が0.005eins/L・hr以上となる光源を用いることが好ましい。
【0014】
本反応で使用する有機溶媒について、n−ヘキサン、n−ヘプタン、n−オクタン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、パークロルエチレン、四塩化炭素、1,1,1−トリクロロエタン等のハロゲン化炭化水素類が好適なものとして例示される。
【0015】
本発明は、従来の空気(酸素)をラジカル源とする方法、又は紫外線をラジカル源とする方法で問題のあった、スチレン濃度25vol%以上という高濃度下での反応が可能であることに一つの特徴を有する。なお本発明の方法は、通常、スチレン濃度25〜50vol%の溶液、臭化水素及び空気を同時に供給して反応させ、生成したβ−ブロモエチルベンゼン溶液を連続的に抜き出すことにより行われる。
【0016】
臭化水素はスチレン1molに対し等モル以上供給すれば良く、1.05〜1.30倍mol供給するのが好ましい。
【0017】
空気の添加量は臭化水素に対し0.3〜3.0vol%である。0.3vol%未満であると、空気量の不足により副生α−ブロモエチルベンゼンの抑制が不十分となるばかりでなく、生産効率の向上も見られなくなる。一方、3.0vol%を越えると、アセトフェノン等の酸化物の副生量が著しく増大し品質の低下を招く。
【0018】
反応温度に関しては、特に限定するものではないが、反応速度の向上のためには、50〜90℃の範囲が好ましく、60〜80℃の範囲が特に好ましい。
【0019】
回分反応における反応時間、連続反応における反応器内での反応液の滞留時間についても特に規定はなく、光源の強さ、反応器の形状、スチレン濃度等の条件により適宜決定される。
【0020】
本発明の方法により、適当な光源を用い適当な滞留時間を設定すれば、β−ブロモエチルベンゼン収率が99mol%以上であり、かつα−ブロモエチルベンゼン副生率が0.2mol%以下の高品質β−ブロモエチルベンゼンが得られる。
【0021】
【実施例】
次に実施例により本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
【0022】
以下の実施例はスチレン溶液供給管、反応液取出管(オーバーフローさせながら反応液を取出す)、臭化水素供給管、空気供給管、高圧水銀灯(0.1kW、光量子数0.0112eins/hr)を備えた反応槽が1.24Lの反応器中で行った。なお、反応槽内の撹拌は臭化水素の吹込みによって起こる滞留のみによって行った。
【0023】
実施例1
n−ヘプタンを反応槽内に仕込み、槽内温度65℃とし、スチレン35vol%、n−ヘプタン65vol%の溶液を反応槽内での滞留時間が40分となるような条件(1,860ml/hr)で供給した。同時に臭化水素を、単位時間当たりのスチレンに対する反応槽内への供給量が1.15倍molとなるような条件(2.44L/min)で吹き込み、さらに、空気を臭化水素に対し1.0vol%(30ml/min)吹込みながら反応行った。反応が定常状態になった後(反応開始から約3時間後)反応液取出管よりサンプリングを行い、ガスクロマトグラフィーにより成分の分析を行った。その結果は、β−ブロモエチルベンゼンが99.5mol%、α−ブロモエチルベンゼンが0.13mol%、未反応スチレンが0.04mol%、アセトフェノンが0.18mol%であった。結果を表1に示す。
【0024】
【表1】

Figure 0003804085
【0025】
実施例2〜実施例9
実施例1の反応装置を用いて表1に示した条件下で反応を行った。結果を表1にあわせて示す。
【0026】
比較例1、比較例2 空気量の増減
添加する空気量を臭化水素に対して0.2及び5.0vol%とした以外は実施例1と同様に反応を行った。反応が定常状態になった後、成分分析を行った。それらの結果を表1にあわせて示す。
【0027】
比較例3 光単独での反応、対実施例1
空気を添加しない以外は実施例1と同様の方法により反応を行い、成分分析を行った。その結果はβ−ブロモエチルベンゼンが98.4mol%、α−ブロモエチルベンゼンが0.90mol%、未反応スチレンが0.62mol%、アセトフェノンが0.02mol%であった。結果を表1にあわせて示す。
【0028】
比較例4 光単独での反応、対実施例5
空気を添加しない以外は実施例5と同様に反応を行い、成分分析を行った。その結果、β−ブロモエチルベンゼン99.2mol%、α−ブロモエチルベンゼン0.47mol%、未反応スチレン0.24mol%、アセトフェノン0.04mol%であった。結果を表1にあわせて示す。
【0029】
比較例5 空気単独での反応、対実施例1
高圧水銀灯を点灯(紫外線照射)しない以外は、実施例1と同様の方法で反応を行い、成分分析を行った。その結果、β−ブロモエチルベンゼン74.5mol%、α−ブロモエチルベンゼン2.11mol%、未反応スチレン21.4mol%、アセトフェノン0.15mol%であった。結果を表1にあわせて示す。
【0030】
参考例1 空気単独での反応
槽内温度65℃において、スチレン20vol%、ヘプタン80vol%の溶液を反応槽内での滞留時間が40分(1,860ml/min)となるような条件で供給した。同時に臭化水素をスチレン1molに対し1.15molとなるような条件(1.79L/min)で吹込み、さらに、空気を臭化水素に対し1.0vol%(18ml/min)吹込みながら反応を行った。反応が定常状態になった後、反応液取出管よりサンプリングを行い、ガスクロマトグラフィーにより成分の分析を行った。その結果、β−ブロモエチルベンゼン99.1mol%、α−ブロモエチルベンゼン0.09mol%、未反応スチレン0.14mol%、アセトフェノン0.06mol%であった。結果を表1にあわせて示す。
【0031】
【本発明の効果】
本発明の製造方法によれば、蒸留による分離が困難なα−ブロモエチルベンゼンの副生量を低減でき、高品質のβ−ブロモエチルベンゼンを提供することができる。さらに、従来の紫外線照射のみ又は空気添加のみによる方法に比べ、高濃度下での反応又は反応槽内の滞留時間の短縮が可能であり、生産効率が向上する。[0001]
[Industrial application fields]
The present invention relates to a process for producing β-bromoethylbenzene useful as a synthetic intermediate for organic functional products and pharmaceuticals.
[0002]
[Prior art]
Conventionally, β-bromoethylbenzene is produced by adding hydrogen bromide to styrene in the presence of a radical. As a radical source, oxygen or peroxide (US Pat. No. 3,321,536, US Pat. No. 2,935,535), azo compound (Japanese Patent Laid-Open No. 6-172232), ultraviolet or high-energy ionizing radiation (specialized) No. 38-1623) is used.
[0003]
[Problems to be solved by the invention]
However, when ultraviolet rays are used as a radical source (Japanese Patent Publication No. 38-1623), when the styrene concentration exceeds 25 vol% even if the amount of light is sufficient, the byproduct rate of α-bromoethylbenzene is 0.2 mol% or less. In order to reduce this by-product rate, it is necessary to extend the residence time of a powerful light source or reaction vessel.
[0004]
α-Bromoethylbenzene has a boiling point similar to that of β-bromoethylbenzene and is extremely difficult to separate by distillation. For example, when high purity such as a blood pressure lowering agent production raw material is required, it becomes a problem.
[0005]
In addition, when oxygen or peroxide is used as the radical source (US Pat. No. 3,321,536, US Pat. No. 2,935,535), by-product ratio of α-bromoethylbenzene is suppressed under the condition where the styrene concentration is low. However, under the conditions where the styrene concentration exceeds 25 vol%, not only the conversion rate of the raw material styrene is not sufficiently increased, but there are many by-products of α-bromoethylbenzene, and oxides such as acetophenone are also present. Significantly increased and β-bromoethylbenzene purity is below 99%.
[0006]
Further, when an azo compound is used as a radical source (Japanese Patent Laid-Open No. 6-172232), the purity of β-bromoethylbenzene is 99 mol% or more and a secondary concentration of α-bromoethylbenzene even under conditions where the styrene concentration exceeds 25 vol%. It is possible to reduce the viability to 0.2 mol% or less, but the azo compound and its decomposition products remain in the product after removal of the reaction solvent. , Problems such as coloring occur.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a production method for obtaining β-bromoethylbenzene, which is useful as a synthetic intermediate for organic functional products and pharmaceuticals, with high quality and high yield. That is.
[0008]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have produced a by-product of α-bromoethylbenzene by supplying a specific amount of air under ultraviolet irradiation in a method for producing β-bromoethylbenzene from styrene and hydrogen bromide. The inventors have found a method for producing high-purity β-bromoethylbenzene that can suppress and improve production efficiency, and have completed the present invention.
[0009]
That is, the present invention is a method for producing β-bromoethylbenzene from styrene and hydrogen bromide, wherein the reaction is carried out by supplying 0.3 to 3.0 vol% air to hydrogen bromide under ultraviolet irradiation. And producing a high-quality β-bromoethylbenzene.
[0010]
Hereinafter, the present invention will be described in detail.
[0011]
In the present invention, either a batch reaction in which styrene and a solvent are charged in advance in a reactor and hydrogen bromide is blown in, or a continuous reaction in which styrene, a solvent and hydrogen bromide are continuously supplied to the reactor. This method can also be performed.
[0012]
In this reaction, ultraviolet light is used to cause radical cleavage of hydrogen bromide, but ultraviolet light of 290 nm or less is not preferable because it promotes the polymerization reaction of styrene and causes a decrease in the yield of β-BEB. Therefore, it is preferable to shield ultraviolet rays of 290 nm or less by a method such as using a high-pressure mercury lamp as the light source and further using Pyrex glass as the material of the lamp cooling tube.
[0013]
There is no specific rule regarding the intensity of the light source. Usually, in order to obtain 1 mol / hr or more per liter of the reaction tank in a state where the yield of β-bromoethylbenzene is 99 mol% or more, the photon number per reaction tank unit volume of the light source is 0.005 eins. It is preferable to use a light source that is at least L / hr.
[0014]
Regarding the organic solvent used in this reaction, aliphatic hydrocarbons such as n-hexane, n-heptane and n-octane, aromatic hydrocarbons such as benzene, toluene and xylene, perchlorethylene, carbon tetrachloride, 1 Halogenated hydrocarbons such as 1,1-trichloroethane are preferred.
[0015]
The present invention is capable of performing a reaction under a high concentration of styrene concentration of 25 vol% or more, which is problematic in the conventional method using air (oxygen) as a radical source or the method using ultraviolet rays as a radical source. Has one feature. In addition, the method of this invention is normally performed by supplying and reacting simultaneously the solution of styrene concentration 25-50 vol%, hydrogen bromide, and air, and extracting continuously the produced beta-bromoethylbenzene solution.
[0016]
Hydrogen bromide may be supplied in an equimolar amount or more with respect to 1 mol of styrene, and 1.05-1.30 times mol is preferably supplied.
[0017]
The amount of air added is 0.3 to 3.0 vol% with respect to hydrogen bromide. If it is less than 0.3 vol%, not only the amount of by-product α-bromoethylbenzene is sufficiently suppressed due to the shortage of air, but also the production efficiency is not improved. On the other hand, if it exceeds 3.0 vol%, the amount of by-products of oxides such as acetophenone is remarkably increased and the quality is deteriorated.
[0018]
Although it does not specifically limit regarding reaction temperature, For the improvement of reaction rate, the range of 50-90 degreeC is preferable, and the range of 60-80 degreeC is especially preferable.
[0019]
The reaction time in the batch reaction and the residence time of the reaction liquid in the reactor in the continuous reaction are not particularly limited, and are appropriately determined depending on conditions such as the intensity of the light source, the shape of the reactor, and the styrene concentration.
[0020]
If an appropriate light source is used and an appropriate residence time is set by the method of the present invention, a high quality product having a β-bromoethylbenzene yield of 99 mol% or more and an α-bromoethylbenzene byproduct rate of 0.2 mol% or less. β-bromoethylbenzene is obtained.
[0021]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to an Example.
[0022]
In the following examples, a styrene solution supply tube, a reaction solution extraction tube (takes out the reaction solution while being overflowed), a hydrogen bromide supply tube, an air supply tube, a high-pressure mercury lamp (0.1 kW, a photon number of 0.0112 eins / hr). The equipped reactor was run in a 1.24 L reactor. The stirring in the reaction vessel was carried out only by staying caused by blowing hydrogen bromide.
[0023]
Example 1
n-heptane was charged into the reaction vessel, the temperature in the vessel was set to 65 ° C., and a solution of styrene 35 vol% and n-heptane 65 vol% was set to a residence time in the reaction vessel of 40 minutes (1,860 ml / hr ). At the same time, hydrogen bromide was blown under conditions (2.44 L / min) such that the supply amount of styrene per unit time into the reaction vessel was 1.15 times mol, and further air was supplied to hydrogen bromide to 1%. The reaction was carried out while blowing 0.0 vol% (30 ml / min). After the reaction reached a steady state (about 3 hours after the start of the reaction), sampling was performed from the reaction liquid extraction tube, and components were analyzed by gas chromatography. As a result, β-bromoethylbenzene was 99.5 mol%, α-bromoethylbenzene was 0.13 mol%, unreacted styrene was 0.04 mol%, and acetophenone was 0.18 mol%. The results are shown in Table 1.
[0024]
[Table 1]
Figure 0003804085
[0025]
Example 2 to Example 9
The reaction was carried out under the conditions shown in Table 1 using the reaction apparatus of Example 1. The results are shown in Table 1.
[0026]
Comparative Example 1 and Comparative Example 2 The reaction was carried out in the same manner as in Example 1 except that the amount of air to be added was changed to 0.2 and 5.0 vol% with respect to hydrogen bromide. After the reaction reached a steady state, component analysis was performed. The results are also shown in Table 1.
[0027]
Comparative Example 3 Reaction with light alone versus Example 1
The reaction was carried out in the same manner as in Example 1 except that air was not added, and component analysis was performed. As a result, β-bromoethylbenzene was 98.4 mol%, α-bromoethylbenzene was 0.90 mol%, unreacted styrene was 0.62 mol%, and acetophenone was 0.02 mol%. The results are shown in Table 1.
[0028]
Comparative Example 4 Reaction with light alone versus Example 5
The reaction was performed in the same manner as in Example 5 except that air was not added, and component analysis was performed. As a result, β-bromoethylbenzene was 99.2 mol%, α-bromoethylbenzene was 0.47 mol%, unreacted styrene was 0.24 mol%, and acetophenone was 0.04 mol%. The results are shown in Table 1.
[0029]
Comparative Example 5 Reaction with air alone versus Example 1
The components were analyzed by reacting in the same manner as in Example 1 except that the high-pressure mercury lamp was not turned on (ultraviolet irradiation). As a result, β-bromoethylbenzene was 74.5 mol%, α-bromoethylbenzene was 2.11 mol%, unreacted styrene was 21.4 mol%, and acetophenone was 0.15 mol%. The results are shown in Table 1.
[0030]
Reference Example 1 A solution of styrene 20 vol% and heptane 80 vol% was supplied under conditions such that the residence time in the reaction tank was 40 minutes (1,860 ml / min) at a temperature in the reaction tank of 65 ° C. alone with air. . Simultaneously, hydrogen bromide was blown under the condition (1.79 L / min) so as to be 1.15 mol with respect to 1 mol of styrene, and further, the reaction was carried out while blowing air into hydrogen bromide at 1.0 vol% (18 ml / min). Went. After the reaction was in a steady state, sampling was performed from the reaction solution outlet tube, and components were analyzed by gas chromatography. As a result, β-bromoethylbenzene was 99.1 mol%, α-bromoethylbenzene was 0.09 mol%, unreacted styrene was 0.14 mol%, and acetophenone was 0.06 mol%. The results are shown in Table 1.
[0031]
[Effect of the present invention]
According to the production method of the present invention, it is possible to reduce the amount of by-produced α-bromoethylbenzene, which is difficult to separate by distillation, and to provide high-quality β-bromoethylbenzene. Furthermore, compared with the conventional method using only ultraviolet irradiation or only air addition, the reaction under high concentration or the residence time in the reaction tank can be shortened, and the production efficiency is improved.

Claims (3)

スチレンと臭化水素からβ−ブロモエチルベンゼンを製造する方法において、紫外線照射下、臭化水素に対し0.3〜3.0vol%の空気を供給して反応を行うことを特徴とする高品質β−ブロモエチルベンゼンの製造方法。In a method for producing β-bromoethylbenzene from styrene and hydrogen bromide, the reaction is carried out by supplying 0.3 to 3.0 vol% air to hydrogen bromide under ultraviolet irradiation. -Method for producing bromoethylbenzene. スチレン濃度25〜50vol%の溶液、臭化水素及び空気を同時に供給して反応させ、生成したβ−ブロモエチルベンゼン溶液を連続的に抜き出すことを特徴とする請求項1に記載の製造方法。The method according to claim 1, wherein a solution having a styrene concentration of 25 to 50 vol%, hydrogen bromide and air are simultaneously supplied to cause reaction, and the produced β-bromoethylbenzene solution is continuously withdrawn. 生成するβ−ブロモエチルベンゼンの純度が99mol%以上であり、かつ副生するα−ブロモエチルベンゼンが0.2mol%以下であることを特徴とする請求項1又は請求項2に記載の製造方法。The production method according to claim 1 or 2, wherein the β-bromoethylbenzene produced has a purity of 99 mol% or more and the by-product α-bromoethylbenzene is 0.2 mol% or less.
JP19652695A 1995-08-01 1995-08-01 Method for producing high quality β-bromoethylbenzene Expired - Fee Related JP3804085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19652695A JP3804085B2 (en) 1995-08-01 1995-08-01 Method for producing high quality β-bromoethylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19652695A JP3804085B2 (en) 1995-08-01 1995-08-01 Method for producing high quality β-bromoethylbenzene

Publications (2)

Publication Number Publication Date
JPH0940591A JPH0940591A (en) 1997-02-10
JP3804085B2 true JP3804085B2 (en) 2006-08-02

Family

ID=16359212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19652695A Expired - Fee Related JP3804085B2 (en) 1995-08-01 1995-08-01 Method for producing high quality β-bromoethylbenzene

Country Status (1)

Country Link
JP (1) JP3804085B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111340A (en) * 2018-10-26 2019-01-01 浙江众成包装材料股份有限公司 Serialization prepares the high pressure reaction assembly of 1- (1- bromoethyl) -4- chloromethylbenzene
JP7087045B2 (en) * 2020-02-19 2022-06-20 東ソー・ファインケム株式会社 High-purity β-bromoethylbenzene and its production method

Also Published As

Publication number Publication date
JPH0940591A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
EP1189856B1 (en) Uv-activated chlorination
EP1448501A1 (en) Photochlorination of 1,1,1,3,3-pentafluoropropane
EP0341164B1 (en) Method for the preparation of dihydroxybenzenes
EP3305747B1 (en) Method for producing conjugated diene
US5569782A (en) Process for preparing polyfluorochlorocarbonyl chlorides and perfluorocarbonyl chlorides with addition of chlorine
JP3804085B2 (en) Method for producing high quality β-bromoethylbenzene
JPH03118339A (en) Method for purification of 1, 1-dichloro-1- fluoroethane
US3696015A (en) Process for reducing the concentration of 2 - dichlorobutadiene-(1,3) in 1,2-dichloroethane recovered in the incomplete thermal cracking into vinyl chloride
US3894923A (en) Process for preparing benzoyl chloride
US2443494A (en) Preparation of unsaturated chloronitriles
JPH05271143A (en) Production of cyclohexanone
US2472946A (en) Production of trichloroacetkl
US3405046A (en) Process for the manufacture of 2, 2, 3-trichlorobutane
KR20000023183A (en) Process for the preparation of lauryllactam by photonitrosation of cyclododecane and Beckmann rearrangement in the presence of methanesulphonic acid
EP0849253A1 (en) Process for producing benzoyl chlorides
EP0105637A1 (en) Method of separating isotopes of zirconium
EP0018481B1 (en) Process for producing alpha, alpha, alpha-trifluoro-o-toluic fluoride
US3287240A (en) Production of vinyl chloride
JP4496450B2 (en) Production of isoflurane by reaction of 2,2,2-trifluoroethyl difluoromethyl ether and chlorine in added water at low temperature and / or higher conversion
US4808761A (en) Demethanolization of aqueous CH3 OH/HCl solutions
JPH069471A (en) Photo-dehydrogenative dimerization of tert-butyl methyl ether
US4301092A (en) Preparation of oxalyl chloride
US2905609A (en) Process for the manufacture of chlorofluorocyclohexanes
WO2020138434A1 (en) Production method for haloalkyl acid halide, production method for haloalkyl acid ester, and production method for haloalkyl acid amide
JPS58154530A (en) Preparation of halogenated hydroxylphenylacetic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees