JP3804057B2 - Inrush current suppression circuit for power supply - Google Patents

Inrush current suppression circuit for power supply Download PDF

Info

Publication number
JP3804057B2
JP3804057B2 JP09780197A JP9780197A JP3804057B2 JP 3804057 B2 JP3804057 B2 JP 3804057B2 JP 09780197 A JP09780197 A JP 09780197A JP 9780197 A JP9780197 A JP 9780197A JP 3804057 B2 JP3804057 B2 JP 3804057B2
Authority
JP
Japan
Prior art keywords
thermistor
inrush current
thermistors
power supply
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09780197A
Other languages
Japanese (ja)
Other versions
JPH10290524A (en
Inventor
正貴 清川
Original Assignee
デンセイ・ラムダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンセイ・ラムダ株式会社 filed Critical デンセイ・ラムダ株式会社
Priority to JP09780197A priority Critical patent/JP3804057B2/en
Publication of JPH10290524A publication Critical patent/JPH10290524A/en
Application granted granted Critical
Publication of JP3804057B2 publication Critical patent/JP3804057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負特性のサーミスタにより構成される電源装置の突入電流抑制回路に関する。
【0002】
【発明が解決しようとする課題】
一般に、この種の電源装置の入力部は、入力端子を介して印加される交流入力電圧を整流器により整流し、この整流器からの整流出力を平滑コンデンサにより平滑するようにしているが、整流器の出力ラインの一側には、この出力ラインを流れる突入電流を抑制するための負特性のサーミスタが挿入接続されている。このサーミスタは、温度が上昇するにしたがって抵抗値が低くなるものであり、通常は単独または同じ特性のものを2以上直列接続して使用する。そして、電源投入直後の抵抗値の高い状態においては、整流器の出力ラインの突入電流を抑制するとともに、定常時には、出力ラインを流れる電流により自己発熱してその抵抗値を下げ、サーミスタによる損失を極力減らすようにしている。
【0003】
ところが、例えば−10℃程度の低温時に、交流入力電圧が低い状態で(例えば、AC100V以下)、全負荷で電源装置を起動させると、サーミスタの抵抗値が上昇している状態で、比較的大きな起動電流が流れ込むことになり、サーミスタの電圧降下が大きくなる。したがって、平滑コンデンサの両端電圧すなわち負荷への供給電圧が定格以下となるアンレギ状態となり、電源装置が正常に立ち上がらなくなる不具合を生じる。
【0004】
こうした事態を避けるためには、熱放散しにくい熱放散定数の小さなサーミスタを採用すれば、電流が流れたときの内部温度の上昇が早くなり、抵抗値がすぐに低くなるので、サーミスタの電圧降下が小さくなって、突入電流抑制回路の出力側電圧である平滑コンデンサの両端電圧がアンレギ状態になりにくくなる。しかし、サーミスタ全体を熱放散定数の小さなものに取り替えると、その分だけ素子の温度上昇が著しくなるので、サーミスタを実装する基板温度が上昇して、基板の実装密度を上げることができなくなる。また、電源装置の突入電流抑制回路としては、他にサイリスタスイッチと抵抗を用いたものも知られているが、この場合は、実装面積を広く確保しなければならない上に、部品点数が増加してコストが上昇するという問題を有する。
【0005】
そこで、本発明は上記問題点に鑑み、簡単な回路構成により、起動時において回路の出力側電圧がアンレギ状態になりにくく、かつ、温度上昇を極力抑えることのできる電源装置の突入電流抑制回路を提供することをその目的とする。
【0006】
【課題を解決するための手段】
本発明は、前記目的を達成するために、負特性のサーミスタにより起動時における突入電流を抑制するように構成した電源装置の突入電流抑制回路において、負特性のサーミスタにより起動時における突入電流を抑制するように構成した電源装置の突入電流抑制回路において、熱放散定数の各々異なる2個の前記サーミスタを直列接続して用い、これらの サーミスタは、起動時の電源投入直後における抵抗値の高い状態では前記突入電流の流れ込みを抑制し、その後は自己発熱により熱放散定数の小さな一方のサーミスタが、熱放散定数の大きな他方のサーミスタよりも急速に抵抗値が減少するように構成される。
【0007】
上記構成によれば、電源投入直後は、いずれのサーミスタ温度上昇を起こしていないため抵抗値も高く、起動時における突入電流を効果的に抑制する。その後、サーミスタに電流が流れるにしたがって、各サーミスタの抵抗値は徐々に低下するが、全負荷状態で各サーミスタに流れ込む起動電流が多い程、熱放散定数の小さなサーミスタはすぐに温度上昇を起こして、逆にサーミスタのケースサイズも小さいので放熱しにくくなり、抵抗値が急激に低下する。よって、サーミスタ全体の抵抗値も大きくならず、電圧降下もある程度小さくなって、突入電流抑制回路の出力側電圧が定格以下となるアンレギ状態を回避することができる。
【0008】
また、熱放散定数の小さなサーミスタは放散しにくく、温度も急速に上昇するが、熱放散定数の大きなサーミスタは逆に放熱しやすく、温度上昇も緩やかなため、突入電流抑制回路全体としての温度上昇度は、サーミスタの全てを熱放散定数の小さなものに取り替えた場合に比べて緩和される。したがって、これらのサーミスタを例えば基板に実装した場合でも、基板の温度上昇を極力抑えて、その実装密度を高めることが可能になる。さらに、サイリスタなどの半導体スイッチを用いないサーミスタだけの簡単な構成であるため、部品点数の増加や、コストの上昇を起こさない。
【0009】
【発明の実施形態】
以下、本発明の電源装置の一実施例について、添付図面を参照しながら説明する。電源装置の入力部の電気的構成を示す図1おいて、1,2は交流電圧が入力する入力端子、また、3はグランドすなわち接地端子で、前記入力端子1,2にはラインフィルタ4が接続される。ラインフィルタ4は、主に低域のノーマルモードノイズを除去するアクロス・ザ・ライン・コンデンサ5,6と、主に高域のノーマルモードノイズおよびコモンモードノイズを除去するライン・バイパス・コンデンサ7,8と、主に低域のコモンモードノイズを除去するコモンモードチョークコイル9,10とにより構成される。なお、本実施例では、コモンモードノイズを効果的に除去するために、二段のコモンモードチョークコイル9,10を有しているが、これは一段であってもよい。また、ラインフィルタ4の内部構成は、本実施例のものに限定されない。
【0010】
11は、前記入力端子1,2間の交流入力電圧を整流するダイオードブリッジからなる整流器で、この整流器11の入力側は、ラインフィルタ4の最後段にあるコモンモードチョークコイル10に接続される。また、12は整流器11からの整流出力に含まれるリプル成分を小さくするための平滑コンデンサであり、ここで平滑された直流電圧が、高調波電流抑制回路であるチョッパ型の昇圧回路13に印加される。なお、整流器11は、本実施例のようなブリッジ型のものに限らず、各種タイプのものを使用できる。
【0011】
整流器11の出力ラインの一方には、抵抗値は同一であるが、熱放散定数の各々異なる突入電流抑制用のサーミスタ14A,14Bが直列に挿入接続される。そして、これらのサーミスタ14A,14Bにより、サイリスタなどの半導体スイッチの存在しない突入電流抑制回路14を構成する。なお、ここでいう熱放散定数が異なるという意味は、スペック(仕様)上、同一の熱放散定数を有するサーミスタの誤差やばらつきを指すものではなく、少なくとも熱放散定数の異なる仕様のサーミスタ14A,14Bを選択することを意味する。また、前記同一の抵抗値というのも、スペック上同一の抵抗値を有するサーミスタ14A,14Bを選択することを意味し、同一仕様であっても個々に存在する誤差やばらつきは、許容範囲内において無視する。
【0012】
本実施例では、整流器11の出力側一端に、熱放散定数の小さなサーミスタ14Aの一端を接続し、このサーミスタ14Aの他端に、熱放散定数の大きなサーミスタ14Bの一端を接続する。また、これらのサーミスタ14A,14Bは、電源投入直後の低温時には抵抗値が高く、定常時の電流が流れているときには自己発熱により抵抗値が下がる負特性のものを使用する。熱放散定数の小さなサーミスタ14Aは、熱放散定数の大きなサーミスタ14Bに比べて、サーミスタのケースサイズが小さく熱が放散しにくいため温まりやすく、また、一旦温度上昇すると、冷めにくいという特性を有する。したがって、サーミスタ14A,14Bを直列接続して電流を流すと、自己発熱によりサーミスタ14Aのほうが急速に抵抗値が減少し、サーミスタ14Bは緩やかに抵抗値が減少する。なお、このサーミスタ14A,14Bの接続は前後逆であってもよい。また、整流器11の他方の出力ラインに接続してもよい。
【0013】
前記昇圧回路13は、平滑コンデンサ12の両端間に、昇圧用のチョークコイル16とMOS型FETからなるスイッチング素子17との直列回路を接続するとともに、スイッチング素子17の両端間にダイオード18とコンデンサ19との直列回路を接続し、このコンデンサ19の両端間に、主トランス20の一次巻線とMOS型FETからなる主スイッチング素子21との直列回路を接続して構成される。また、この主トランス20と主スイッチング素子21とにより、直流を交流に変換する電源装置の主インバータ回路22を構成する。そして、スイッチング素子17のオン時には、チョークコイル16にエネルギーを蓄え、スイッチング素子17のオフ時には、このチョークコイル16に蓄えたエネルギーを平滑コンデンサ12の両端電圧に重畳させて、昇圧回路13の出力側にあるコンデンサ19の両端電圧すなわち主インバータ回路22の印加電圧を昇圧させる。それと共に、スイッチング素子17のスイッチング動作により、昇圧回路13が入力端子1,2間の交流入力電圧と入力電流の波形を近付けることで、力率の改善ひいては高調波電流の抑制を達成するようにしている。
【0014】
次に、上記構成につきその作用を説明する。起動時の電源投入直後には、入力端子1,2間に交流入力電圧を印加すると、ラインフィルタ4から整流器11の出力ラインを通過して、サーミスタ14A,14Bに突入電流が流れ込む。しかし、これらのサーミスタ14A,14Bは、温度が低く抵抗値の高い状態となっており、電源投入直後において入力回路である昇圧回路13への突入電流の流れ込みは抑制される。その後、各サーミスタ14A,14Bに電流が流れ込むのにしたがって、サーミスタ14A,14Bは自己発熱して抵抗値が徐々に低下するが、電源装置の出力側に接続される負荷が大きい全負荷状態では、起動時において各サーミスタ14A,14Bに流れ込む起動電流が多くなり、その分だけ熱放散定数の小さなサーミスタ14Aはすぐに温度上昇を起こして、冷めにくくなる。これにより、サーミスタ14Aの抵抗値は急速に低下し、熱放散定数の大きなサーミスタ14Bを含めたサーミスタ14A,14B全体の抵抗値も低くなって、この間の電圧降下もある程度小さくなるので、平滑コンデンサ12の端子間電圧すなわち突入電流抑制回路14の出力電圧の落ち込みを緩和することができ、いわゆるアンレギ状態となって電源装置が立ち上がらなくな欠点が回避される。
【0015】
その後の定常状態においては、入力端子1,2間に印加される交流入力電圧が、整流器11および平滑コンデンサ12にて整流平滑され、昇圧回路13に供給される。また、ラインフィルタ4は、ライン−ライン間に発生するノーマルモードノイズと、ライン−グランド間に発生するコモンモードノイズを減衰除去する。整流器11の整流出力は昇圧回路13により昇圧され、主インバータ回路22に印加される。この際、スイッチング素子17をスイッチングすることにより、チョークコイル16を介して入力端子1,2間に取り込まれる電流波形を正弦波状に制御するので、結果的に電源装置の力率が改善され、入力電流の高調波成分をほぼ零にまで抑制できる。前記サーミスタ14A,14Bは、整流器11の出力ラインを通過する電流により自己発熱して抵抗値が低下する。これにより、サーミスタ14A,14Bによる損失は極力低減される。
【0016】
このように、本実施例では、電源投入直後は、いずれのサーミスタ14A,14B温度上昇を起こしていないため抵抗値も高く、起動時における突入電流を効果的に抑制する。その後、各サーミスタ14A,14Bに電流が流れるにしたがって、サーミスタ14A,14Bの抵抗値は徐々に低下するが、全負荷状態で各サーミスタ14A,14Bに流れ込む起動電流が多い程、熱放散定数の小さなサーミスタ14Aはすぐに温度上昇を起こして、逆に冷めにくくなり、抵抗値が急激に低下する。よって、サーミスタ14A,14B全体の抵抗値も大きくならず、電圧降下もある程度小さくなって、突入電流抑制回路14の出力側電圧が定格以下となるアンレギ状態を回避することができる。
【0017】
また、熱放散定数の小さなサーミスタ14Aは放散しにくく、温度も急速に上昇するが、熱放散定数の大きなサーミスタ14Bは逆に放熱しやすく、温度上昇も緩やかなため、突入電流抑制回路14全体としての温度上昇度は、サーミスタの全てを熱放散定数の小さなものに取り替えた場合に比べて緩和される。したがって、これらのサーミスタ14A,14Bを例えば基板に実装した場合でも、基板の温度上昇を極力抑えて、その実装密度を高めることが可能になる。さらに、サイリスタなどの半導体スイッチを用いないサーミスタ14A,14Bだけの簡単な構成であるため、部品点数の増加や、コストの上昇を起こさない。
【0018】
つまり、負特性のサーミスタ14A,14Bにより起動時における突入電流を抑制するように構成した電源装置の突入電流抑制回路14において、熱放散定数の各々異なる前記サーミスタ14A,14Bを2個以上用いることによって、簡単な回路構成により、起動時において突入電流抑制回路14の出力側電圧がアンレギ状態になりにくく、かつ、温度上昇を極力抑えることが可能となる。
【0019】
なお、本発明は上記実施例に限定されるものではなく、本発明の要旨の範囲において種々の変形実施が可能である。
【0020】
【発明の効果】
本発明は、負特性のサーミスタにより起動時における突入電流を抑制するように構成した電源装置の突入電流抑制回路において、熱放散定数の各々異なる2個の前記サーミスタを直列接続して用い、これらのサーミスタは、起動時の電源投入直後における抵抗値の高い状態では前記突入電流の流れ込みを抑制し、その後は自己発熱により熱放散定数の小さな一方のサーミスタが、熱放散定数の大きな他方のサーミスタよりも急速に抵抗値が減少するように構成され、簡単な回路構成により、起動時において回路の出力側電圧がアンレギ状態になりにくく、かつ、温度上昇を極力抑えることのできる電源装置の突入電流抑制回路を提供できる。
【図面の簡単な説明】
【図1】 本発明の一実施例を示す電源装置の入力部の回路図である。
【符号の説明】
14 突入電流抑制回路
14A,14B サーミスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inrush current suppression circuit for a power supply device including a thermistor having a negative characteristic.
[0002]
[Problems to be solved by the invention]
In general, the input unit of this type of power supply device rectifies an AC input voltage applied via an input terminal by a rectifier, and smoothes the rectified output from the rectifier by a smoothing capacitor. A thermistor having a negative characteristic for suppressing an inrush current flowing through the output line is inserted and connected to one side of the line. This thermistor has a resistance value that decreases as the temperature rises. Normally, two or more of the thermistors having the same characteristics are connected in series. When the resistance value is high immediately after the power is turned on, the inrush current of the output line of the rectifier is suppressed, and in the steady state, the current flowing through the output line is self-heated to reduce its resistance value, thereby reducing the loss caused by the thermistor as much as possible. I try to reduce it.
[0003]
However, when the power supply device is started at full load when the AC input voltage is low (for example, AC 100 V or less) at a low temperature of about −10 ° C., for example, the resistance value of the thermistor is relatively high. The starting current flows in, and the voltage drop of the thermistor increases. Therefore, the voltage across the smoothing capacitor, that is, the supply voltage to the load is in an unregulated state where the rated voltage is lower than the rated value, causing a problem that the power supply device does not start up normally.
[0004]
In order to avoid such a situation, if a thermistor with a small heat dissipation constant that is difficult to dissipate heat is used, the internal temperature rises quickly when current flows, and the resistance value immediately decreases, so the voltage drop of the thermistor Becomes smaller, and the voltage across the smoothing capacitor, which is the output side voltage of the inrush current suppression circuit, is less likely to be in an unregulated state. However, if the entire thermistor is replaced with one having a small heat dissipation constant, the temperature of the element increases remarkably, so that the temperature of the substrate on which the thermistor is mounted rises, making it impossible to increase the mounting density of the substrate. In addition, there are other known inrush current suppression circuits for power supply devices that use thyristor switches and resistors. In this case, however, a large mounting area must be secured and the number of components increases. Cost.
[0005]
Therefore, in view of the above problems, the present invention provides a rush current suppression circuit for a power supply apparatus that can prevent an output voltage of the circuit from being in an unregulated state at the time of start-up and can suppress a temperature rise as much as possible with a simple circuit configuration. Its purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention suppresses inrush current at start-up by a negative thermistor in a inrush current suppression circuit of a power supply device configured to suppress inrush current at start-up by a negative thermistor. In the inrush current suppression circuit of the power supply device configured to be used , the two thermistors having different heat dissipation constants are connected in series , and these thermistors are in a state where the resistance value is high immediately after the power is turned on at the start-up. inhibiting the flow of the inrush current, then a small one thermistor dissipation constant by self-heating, rapid resistance value is configured to reduce than larger other thermistor dissipation constant.
[0007]
According to the above configuration, immediately after the power is turned on, none of the thermistors has risen in temperature, so the resistance value is high, and the inrush current at startup is effectively suppressed. After that, as the current flows through the thermistor, the resistance value of each thermistor gradually decreases.However, the more starting current that flows into each thermistor at full load, the sooner the thermistor with a smaller heat dissipation constant rises in temperature. On the contrary, the thermistor's case size is also small, so it is difficult to dissipate heat, and the resistance value decreases rapidly. Therefore, the resistance value of the entire thermistor is not increased, the voltage drop is also reduced to some extent, and an unregulated state in which the output side voltage of the inrush current suppression circuit is below the rating can be avoided.
[0008]
Also, thermistors with small heat dissipation constants are difficult to dissipate and the temperature rises rapidly, but thermistors with large heat dissipation constants tend to dissipate heat and the temperature rises slowly, so the temperature rise of the inrush current suppression circuit as a whole The degree is relaxed compared to the case where all the thermistors are replaced with ones having a small heat dissipation constant. Therefore, even when these thermistors are mounted on a substrate, for example, it is possible to suppress the temperature rise of the substrate as much as possible and increase its mounting density. Furthermore, since it is a simple configuration of only a thermistor that does not use a semiconductor switch such as a thyristor, an increase in the number of parts and an increase in cost do not occur.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a power supply device of the present invention will be described with reference to the accompanying drawings. In FIG. 1 showing the electrical configuration of the input unit of the power supply device, reference numerals 1 and 2 denote input terminals to which an AC voltage is input, reference numeral 3 denotes a ground, that is, a ground terminal, and the input terminals 1 and 2 are provided with a line filter 4. Connected. The line filter 4 includes an across-the-line capacitors 5 and 6 that mainly remove low-frequency normal mode noise, and a line bypass capacitor 7 that mainly removes high-frequency normal mode noise and common mode noise. 8 and common mode choke coils 9 and 10 that mainly remove low-frequency common mode noise. In this embodiment, in order to effectively remove the common mode noise, the two-stage common mode choke coils 9 and 10 are provided. However, this may be a single stage. Further, the internal configuration of the line filter 4 is not limited to that of the present embodiment.
[0010]
Reference numeral 11 denotes a rectifier composed of a diode bridge that rectifies the AC input voltage between the input terminals 1 and 2, and the input side of the rectifier 11 is connected to the common mode choke coil 10 at the last stage of the line filter 4. Reference numeral 12 denotes a smoothing capacitor for reducing the ripple component contained in the rectified output from the rectifier 11, and the DC voltage smoothed here is applied to the chopper type booster circuit 13 which is a harmonic current suppression circuit. The The rectifier 11 is not limited to the bridge type as in the present embodiment, and various types can be used.
[0011]
One of the output lines of the rectifier 11 is inserted and connected in series with inrush current suppressing thermistors 14A and 14B having the same resistance but different heat dissipation constants. These thermistors 14A and 14B constitute an inrush current suppression circuit 14 that does not have a semiconductor switch such as a thyristor. The meaning that the heat dissipation constants differ here does not indicate the error or variation of thermistors having the same heat dissipation constant in terms of specifications (specifications), but at least thermistors 14A and 14B having different specifications of the heat dissipation constants. Means to choose. Further, the same resistance value means that thermistors 14A and 14B having the same resistance value in terms of specifications are selected, and errors and variations existing individually even within the same specification are within an allowable range. ignore.
[0012]
In this embodiment, one end of a thermistor 14A having a small heat dissipation constant is connected to one end of the output side of the rectifier 11, and one end of a thermistor 14B having a large heat dissipation constant is connected to the other end of the thermistor 14A. Further, these thermistors 14A and 14B have negative characteristics in which the resistance value is high at a low temperature immediately after the power is turned on and the resistance value decreases due to self-heating when a steady-state current flows. The thermistor 14A having a small heat dissipation constant has characteristics that thermistor case size is small and heat is not easily dissipated compared to the thermistor 14B having a large heat dissipation constant, so that it is easy to warm, and once the temperature rises, it is difficult to cool. Therefore, when the thermistors 14A and 14B are connected in series and a current flows, the resistance value of the thermistor 14A decreases more rapidly due to self-heating, and the resistance value of the thermistor 14B decreases more slowly. The thermistors 14A and 14B may be connected in the reverse order. Further, it may be connected to the other output line of the rectifier 11.
[0013]
The booster circuit 13 connects a series circuit of a boosting choke coil 16 and a switching element 17 made of a MOS FET between both ends of the smoothing capacitor 12, and a diode 18 and a capacitor 19 between both ends of the switching element 17. And a series circuit of the primary winding of the main transformer 20 and the main switching element 21 made of a MOS FET is connected between both ends of the capacitor 19. The main transformer 20 and the main switching element 21 constitute a main inverter circuit 22 of a power supply device that converts direct current into alternating current. When the switching element 17 is on, energy is stored in the choke coil 16, and when the switching element 17 is off, the energy stored in the choke coil 16 is superimposed on the voltage across the smoothing capacitor 12, and the output side of the boost circuit 13 The voltage across the capacitor 19, that is, the voltage applied to the main inverter circuit 22 is boosted. At the same time, by the switching operation of the switching element 17, the booster circuit 13 brings the AC input voltage between the input terminals 1 and 2 close to the waveform of the input current, thereby improving the power factor and thus suppressing the harmonic current. ing.
[0014]
Next, the effect | action is demonstrated about the said structure. Immediately after the power is turned on at startup, when an AC input voltage is applied between the input terminals 1 and 2, an inrush current flows into the thermistors 14A and 14B from the line filter 4 through the output line of the rectifier 11. However, these thermistors 14A and 14B are in a state where the temperature is low and the resistance value is high. Immediately after the power is turned on, the inrush current flows into the booster circuit 13 which is an input circuit. Thereafter, as the current flows into each thermistor 14A, 14B, the thermistor 14A, 14B self-heats and the resistance value gradually decreases, but in a full load state where the load connected to the output side of the power supply device is large, At the time of starting, the starting current flowing into each of the thermistors 14A and 14B increases, and accordingly, the thermistor 14A having a small heat dissipation constant causes a temperature rise and becomes difficult to cool. As a result, the resistance value of the thermistor 14A rapidly decreases, the resistance values of the thermistors 14A and 14B including the thermistor 14B having a large heat dissipation constant are also reduced, and the voltage drop therebetween is also reduced to some extent. The voltage drop between the terminals, that is, the drop in the output voltage of the inrush current suppression circuit 14 can be alleviated, and the disadvantage that the power supply device does not start up in a so-called unregulated state is avoided.
[0015]
In the subsequent steady state, the AC input voltage applied between the input terminals 1 and 2 is rectified and smoothed by the rectifier 11 and the smoothing capacitor 12 and supplied to the booster circuit 13. The line filter 4 attenuates and removes normal mode noise generated between the lines and the common mode noise generated between the lines and the ground. The rectified output of the rectifier 11 is boosted by the booster circuit 13 and applied to the main inverter circuit 22. At this time, by switching the switching element 17, the current waveform taken in between the input terminals 1 and 2 via the choke coil 16 is controlled in a sine wave shape. As a result, the power factor of the power supply device is improved, and the input The harmonic component of the current can be suppressed to almost zero. The thermistors 14A and 14B are self-heated by the current passing through the output line of the rectifier 11, and the resistance value decreases. Thereby, the loss by the thermistors 14A and 14B is reduced as much as possible.
[0016]
Thus, in this embodiment, immediately after the power is turned on, none of the thermistors 14A, 14B has a temperature rise, so the resistance value is high, and the inrush current at the start-up is effectively suppressed. Thereafter, as the current flows through the thermistors 14A and 14B, the resistance values of the thermistors 14A and 14B gradually decrease. However, the larger the starting current flowing into the thermistors 14A and 14B in the full load state, the smaller the heat dissipation constant. The thermistor 14A immediately rises in temperature, and on the other hand, it becomes difficult to cool, and the resistance value rapidly decreases. Therefore, the resistance values of the thermistors 14A and 14B as a whole are not increased, and the voltage drop is reduced to some extent, so that an unregi state where the output side voltage of the inrush current suppression circuit 14 is less than the rated value can be avoided.
[0017]
The thermistor 14A having a small heat dissipation constant is difficult to dissipate and the temperature rises rapidly. However, the thermistor 14B having a large heat dissipation constant tends to dissipate heat and the temperature rises slowly. The degree of temperature rise is reduced compared to the case where all the thermistors are replaced with ones having a small heat dissipation constant. Therefore, even when these thermistors 14A and 14B are mounted on, for example, a substrate, it is possible to suppress the temperature rise of the substrate as much as possible and increase its mounting density. Further, since the thermistors 14A and 14B do not use a semiconductor switch such as a thyristor, the number of parts and the cost are not increased.
[0018]
That is, by using two or more of the thermistors 14A and 14B having different heat dissipation constants in the inrush current suppressing circuit 14 of the power supply device configured to suppress the inrush current at the start-up by the thermistors 14A and 14B having negative characteristics. The simple circuit configuration makes it difficult for the output side voltage of the inrush current suppression circuit 14 to enter an unregulated state at the time of start-up, and to suppress the temperature rise as much as possible.
[0019]
In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible in the range of the summary of this invention.
[0020]
【The invention's effect】
In the inrush current suppression circuit of the power supply device configured to suppress the inrush current at the start-up by the negative thermistor, the present invention uses two thermistors having different heat dissipation constants connected in series . The thermistor suppresses the flow of the inrush current when the resistance value is high immediately after the power is turned on at the time of start-up, and after that, one thermistor with a small heat dissipation constant is self-heated and the other thermistor with a large heat dissipation constant. An inrush current suppression circuit for a power supply device that is configured so that the resistance value decreases rapidly, and with a simple circuit configuration, the output voltage of the circuit is unlikely to be in an unregulated state at start-up, and the temperature rise can be suppressed as much as possible. Can provide.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an input unit of a power supply device according to an embodiment of the present invention.
[Explanation of symbols]
14 Inrush current suppression circuit
14A, 14B thermistor

Claims (1)

負特性のサーミスタにより起動時における突入電流を抑制するように構成した電源装置の突入電流抑制回路において、熱放散定数の各々異なる2個の前記サーミスタを直列接続して用い、これらのサーミスタは、起動時の電源投入直後における抵抗値の高い状態では前記突入電流の流れ込みを抑制し、その後は自己発熱により熱放散定数の小さな一方のサーミスタが、熱放散定数の大きな他方のサーミスタよりも急速に抵抗値が減少するように構成したことを特徴とする電源装置の突入電流抑制回路。In an inrush current suppression circuit of a power supply device configured to suppress an inrush current at start-up by a negative thermistor, two thermistors having different heat dissipation constants are connected in series , and these thermistors are started In the state where the resistance value is high immediately after the power is turned on, the inrush current is prevented from flowing, and then, due to self-heating, one thermistor having a small heat dissipation constant has a resistance value more rapidly than the other thermistor having a large heat dissipation constant. An inrush current suppressing circuit for a power supply device, wherein the inrush current is reduced .
JP09780197A 1997-04-15 1997-04-15 Inrush current suppression circuit for power supply Expired - Lifetime JP3804057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09780197A JP3804057B2 (en) 1997-04-15 1997-04-15 Inrush current suppression circuit for power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09780197A JP3804057B2 (en) 1997-04-15 1997-04-15 Inrush current suppression circuit for power supply

Publications (2)

Publication Number Publication Date
JPH10290524A JPH10290524A (en) 1998-10-27
JP3804057B2 true JP3804057B2 (en) 2006-08-02

Family

ID=14201894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09780197A Expired - Lifetime JP3804057B2 (en) 1997-04-15 1997-04-15 Inrush current suppression circuit for power supply

Country Status (1)

Country Link
JP (1) JP3804057B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549560B2 (en) * 2001-03-15 2010-09-22 三菱電機株式会社 DC power supply manufacturing method
TWI401990B (en) * 2008-12-31 2013-07-11 Genesis Photonics Inc Electronic device, constant current unit and stable current method
JP6227598B2 (en) 2015-07-15 2017-11-08 ファナック株式会社 Digital control power supply with DC-DC converter in the subsequent stage

Also Published As

Publication number Publication date
JPH10290524A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US7710748B2 (en) AC/DC converter comprising plural converters in cascade
JP5098522B2 (en) Inverter device design method
JP7401385B2 (en) Input filter capacitor control circuit and control method in switch mode power supply device, and power supply device using the same
JP3804057B2 (en) Inrush current suppression circuit for power supply
JP2001309652A (en) Power supply device
JP3402031B2 (en) DC power supply
JP2004171852A (en) High frequency heating device
JPH11178342A (en) Power supply unit, electronic apparatus, and step-down type rectification/smoothing circuit
JP2002153048A (en) Voltage-boosting chopper circuit
JP3806913B2 (en) Power supply
JP2004343832A (en) Micro surge voltage suppressing circuitry
JP4549560B2 (en) DC power supply manufacturing method
JP2854075B2 (en) Switching regulator
JP2004320858A (en) Switching power unit
EP3618250B1 (en) Inrush current limiting device and power factor correction circuit
JP2790326B2 (en) Switching regulator
JP2868230B2 (en) Switching regulator
JP4677080B2 (en) Switching regulator
JPS5836588B2 (en) Switching type constant voltage circuit
KR20230165094A (en) Switching mode power supply and controlling method thereof
JPH08126331A (en) Regulated dc power source circuit
JPS6115568A (en) Dc/dc converter
JPH11332243A (en) Inrush current prevention circuit
JPS60255058A (en) Rush current suppressing circuit
JP2001298946A (en) Direct-current power supply unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

EXPY Cancellation because of completion of term