JP3803192B2 - Object to be checked for authenticity and processing device for checking the authenticity of the object to be detected - Google Patents

Object to be checked for authenticity and processing device for checking the authenticity of the object to be detected Download PDF

Info

Publication number
JP3803192B2
JP3803192B2 JP06720198A JP6720198A JP3803192B2 JP 3803192 B2 JP3803192 B2 JP 3803192B2 JP 06720198 A JP06720198 A JP 06720198A JP 6720198 A JP6720198 A JP 6720198A JP 3803192 B2 JP3803192 B2 JP 3803192B2
Authority
JP
Japan
Prior art keywords
detected
scanning
magnetic
sensor
scanning region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06720198A
Other languages
Japanese (ja)
Other versions
JPH11265421A (en
Inventor
剛 安藤
良平 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP06720198A priority Critical patent/JP3803192B2/en
Publication of JPH11265421A publication Critical patent/JPH11265421A/en
Application granted granted Critical
Publication of JP3803192B2 publication Critical patent/JP3803192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inspection Of Paper Currency And Valuable Securities (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、クレジットカード,IDカード,CDカード等のカード類,パスポート,重要書類や有価証券,紙幣および小切手等の金券,トラベラーズチェック,あるいは絵画等の美術品,競艇・競馬等の公営競技投票券等のように、偽造を防止する必要がありかつ真正さがチェックされる被検出物とその処理装置に関する。
【0002】
【従来の技術】
各種カードや書類等の真正さをチェックするための手段として、例えば特開昭50−6999号公報や特開平6−179296号公報あるいは特開平7−32777号公報などに記載されているように、被検出物の走査領域に照合用データを登録しておくものが知られている。この種の被検出物は、真正さをチェックする際に前記走査領域をセンサによって走査し、得られた検出信号と前記照合用データを照合するようにしている。
【0003】
前記公知例において、被検出物の走査領域を走査するための処理装置は、予め決められた位置に存在する走査領域をセンサによって読取ることを条件とし、得られた検出信号をディジタルコード化したのちに、予め登録されている照合用データと比較することにより、この被検出物が真正であるか否かをチェックしている。
【0004】
例えば図9に示す従来の被検出物1は、その全体に磁性素子2がランダムに分布しており、この被検出物1の特定位置に設定された走査領域3を、素子幅ωのセンサ4によって磁気的に検出するようにしている。そして走査領域3から得られた検出信号を処理装置の演算処理部等において処理し、被検出物1のデータ記録部に登録されている暗号コードと照合している。このため処理装置は、被検出物1の基準面1aからセンサ4の中心(すなわち走査領域3の中心C)までの距離P1をガイド機構によって正確に規制した状態で、常に一定範囲の走査領域3をその検出長Lにわたって忠実に走査するようにしていた。
【0005】
【発明が解決しようとする課題】
しかし被検出物1の寸法公差や走査時の被検出物1の挙動、処理装置の部品寸法や組付け誤差など、被検出物1を走査するための検出系には、走査領域3とセンサ4との相対位置ずれを生じる要因が数多く存在している。
【0006】
たとえば図9に示すように被検出物1の進行方向(走査方向)をX、走査方向に対して直角な方向(被検出物1の幅方向)をYとした場合、走査領域3がX方向にずれたとしても検出系のアルゴリズムによって位置ずれを補正すれば所望の検出信号を得ることができる。しかしY方向に関しては被検出物1とセンサ4との相対位置が物理的に決まってしまうため、走査領域3がY方向にずれると検出信号が大きく異なってしまう。このため処理装置は、被検出物1のY方向に関して常に一定位置を走査するような位置決め機構を組込まなくてはならない。
【0007】
そのための位置決め機構として、一般的には、ばね等の付勢部材により付勢されるガイド部材によって、被検出物を処理装置の基準ガイド面に押付ける幅寄せ機構を用いたり、テーパー付ローラによって被検出物を基準ガイド面に向って幅寄せするなどの機構が採用されている。また、走査中の被検出物の位置ずれの度合いに応じてセンサを追従移動させるようにした処理装置も提案されている。
【0008】
このように従来は被検出物とセンサとを前記Y方向に精度良く位置決めするための幅寄せ機構を必要とし、装置が複雑化して部品数が多くなり、処理装置の大形化やコストアップの原因になるなどの問題がある。また、構造が複雑な分だけ信頼性に不安があり、メンテナンスにも手間がかかる。
【0009】
従って本発明の目的は、前記のような高精度な幅寄せ機構を用いずとも幅方向の大まかな位置を走査するだけで常に一定の検出信号が得られるような被検出物と、その処理装置を提供することにある。
【0010】
【課題を解決するための手段】
前記の目的を果たすための本発明の被検出物は、紙または合成樹脂等の非磁性材からなる被検出物本体と、前記被検出物本体の一部に設けられかつ磁電変換素子を用いたセンサによって走査される走査領域と、前記走査領域を前記センサによって走査したときに得られる検出信号に応じた照合用データがコード化されて記録される登録データ記録部とを有し、前記走査領域は、基材中に多数の磁性繊維をランダムに混入しかつ前記センサの素子幅よりも狭い幅を有しかつ走査方向に所定長さを有する帯状の磁性繊維混入部材からなることを特徴とする。
【0011】
そして本発明の処理装置は、前記走査領域の検出幅よりも広い素子幅を有するMR素子を備えかつこのMR素子によって前記走査領域を所定長さ走査することによりこの走査領域に含まれる多数の磁性繊維の混入状況に応じた検出信号を得るセンサと、前記センサがとらえた検出信号を被検出物の登録データ記録部に登録されているデータと照合し、両者が対応した時にこの被検出物が真正であると判断する演算処理部とを具備している。
【0012】
本発明において、帯状の磁性繊維混入部材からなる走査領域は、被検出物の一部に設けられている。この磁性繊維混入部材の幅すなわち走査領域の検出幅はセンサの素子幅よりも小さい。MR素子を用いたセンサは、その素子形状を被検出物に投影した部分に存在する磁性繊維によってバイアス磁界が影響を受け、抵抗値が変化する。
【0013】
したがって、MR素子の素子幅の外側に磁性繊維混入部材が外れない限りは走査領域の検出信号に変化はなく、常に安定した検出信号が得られる。つまり、磁性繊維混入部材の中心線とMR素子の中心線とが一致している場合、センサの素子幅と走査領域の検出幅との差の2分の1ずつに相当する前記Y方向の位置ずれが走査領域の両側に許容されることになる。このため本発明の被検出物を処理装置によって走査する際には、センサの素子幅から走査領域が外れない程度のラフな位置決めを行うだけで足りる。
【0014】
【発明の実施の形態】
以下に本発明の第1の実施形態について図1から図3を参照して説明する。
図1に示されるように、カードあるいは書類(紙葉)等の形態をとる被検出物10は、紙あるいは合成樹脂(例えば塩化ビニール樹脂)等の非磁性材料を主体とするカード状の被検出物本体11を有している。さらにこの被検出物10は、被検出物10の特徴を表わす走査領域12と、走査領域12に応じた暗号コードを記録する登録データ記録部13などを有している。
【0015】
走査領域12は、紙などの非磁性材料からなる基材中に多数の細かな磁性繊維21をランダムに混入した帯状の磁性繊維混入部材22からなる。この磁性繊維混入部材22の幅W1は、後述するMR素子40,41の素子幅W2よりも狭い寸法となっている。磁性繊維混入部材22の長さは、MR素子40,41の走査方向(矢印X方向)に沿って被検出物本体11の全長にわたっている。そしてこの磁性繊維混入部材22の全長の一部(検出長L1)を走査領域12として用いるようにしている。
【0016】
磁性繊維21の形態の一例は、高分子材料からなる繊維状の素子本体に磁性金属の粉体を混入したもの(いわゆる磁性ポリマー素子)であり、各磁性繊維21はそれぞれ不特定多数の方向を向くように、基材としての例えば紙パルプ繊維と一体にすきこまれている。磁性繊維21の素子本体に使われる高分子材料の一例は、ポリエチレンやポリエステルあるいはウレタンなどであるが、要するに適当な可撓性を有する周知の合成樹脂を適用できる。
【0017】
磁性繊維21に使われる磁性金属としては、例えばパーマロイ,センダスト,Co系アモルファス,ソフトフェライトなどのように磁気的に軟質な高透磁率磁性材料が適しているが、例えばフェライトやSm−Co合金,Nd合金等のように磁気的に硬質な高保磁力材料が使われてもよい。
【0018】
登録データ記録部13には、走査領域12を走査することによって得られた固有の情報、すなわち磁性繊維21の分布状態等に応じて特徴付けられた固有の情報(照合用データ)が下記の処理装置30によって暗号化されて書込まれるようになっている。この登録データ記録部13には、照合用データ以外に、各種の情報(例えばプリペイドカードの場合は額面や残額等)も磁気的あるいは光学的手段もしくはICチップ等の記録媒体によって記録されてもよい。なお登録データ記録部13の記録内容は、被検出物10とは別の電子機器の記憶領域(例えばホストコンピュータのメモリ)などに記録するようにしてもよい。
【0019】
図3に示された処理装置30は、被検出物10をチェックする際に、被検出物10をその移動経路30aに沿って矢印Xで示す走査方向に移動させるようにしている。被検出物10を移動経路30aに沿ってX方向に移動させるための手段としては、例えばモータと搬送ローラ等を用いた搬送機構を採用してもよいが、処理装置30の構成を簡略化するために手動によって被検出物10を搬送するようにしてもよい。
【0020】
被検出物10の移動経路30aの途中にセンサ31が設けられている。センサ31の一例は、出力の大きさが走査速度に依存しない磁電変換素子の一例として一対のMR素子(磁気抵抗効果素子)40,41を備えている。MR素子40,41の背後にマグネット42が配置されている。なお、センサ31に用いる素子は、磁束の変化に応じて電気抵抗値が変化する磁電変換素子であればよく、例えば磁気ダイオードや磁気トランジスタ、ホール素子等の磁電変換素子を用いてもよい。
【0021】
MR素子40,41は、この素子を通る磁束の強さに応じて電気抵抗値が変化する特性を有している。これらMR素子40,41は互いに電気的に接続され、かつ、各MR素子40,41にマグネット42による同じ強さの磁界が及ぶようになっている。一方のMR素子40は直流電源43に接続され、他方のMR素子41はマイクロコンピュータ等を用いた演算処理部45に接続されている。
【0022】
走査領域12を走査する際に、MR素子40,41の近傍を磁性繊維21が通ると、磁性繊維21の位置に応じてMR素子40,41を通る磁束が経時的に変化し、MR素子40,41の抵抗値に差が出るためMR素子40,41の出力電圧が変化するようになる。この出力電圧は、走査領域12に混入している磁性繊維21の分布密度や磁性繊維21のサイズ等に応じて微妙に変化するので、この被検出物10に固有の出力電圧の波形が得られる。
【0023】
この実施形態の場合、処理装置30は、被検出物10のX方向の検出位置を特定するために、センサ31と被検出物10との相対位置を特定する検出系を備えている。例えば、被検出物10の一部に孔をあけ、この孔を透過光センサによって検出することにより、被検出物10のX方向の位置を特定するとか、被検出物10のX方向の動きに応動する同期クロック信号発生部を用いるなどして、走査領域12のX方向の位置を検出するようにしている。
【0024】
処理装置30は、登録データ記録部13に記録されたデータを読取るためのコード読取り部55を備えている。コード読取り部55は、読取り用の回路56に接続されている。演算処理部45は、検出された信号を処理するためのA/D変換器60や比較器61および暗号コード変換器62などを含んでいる。演算処理部45に、チェック結果等を示す表示器63が接続されている。
【0025】
次に、前記被検出物10の発行処理と、真正さを判断するためのチェック工程などについて説明する。
被検出物10が製造される際に、帯状の磁性繊維混入部材22が被検出物本体11に設けられる。また被検出物10に、例えば高保磁力の磁性層などからなる帯状の登録データ記録部13が設けられる。
【0026】
そして被検出物10の発行処理において、前記センサ31と同様のMR素子対を用いたセンサによって走査領域12を走査し、その出力電圧の波形を特定のアルゴリズムによって暗号化して登録データ記録部13に記録する。この実施形態の登録データ記録部13は磁気帯であるが、光学的に読取り可能な標識(例えばバーコードや二次元バーコード,OCR文字など)を印字ヘッドによって登録データ記録部13に記録してもよいし、磁気インクを用いてもよく、コードを記録したホログラムを暗号コードにしたがって順番にスタンプしてもよい。
【0027】
被検出物10が真正であるか否かのチェックは前記処理装置30によって行われる。この被検出物10を処理装置30に挿入し、その移動経路30aに沿って被検出物10を走査方向Xに移動させるとともに、センサ31によって走査領域12を走査する。
【0028】
センサ31によって走査領域12が走査される際に、走査領域12に含まれる磁性繊維21がMR素子40,41の近傍を順次通過する。この時に、磁性繊維21の位置や分布状況等に応じてMR素子40,41を通る磁束が経時的に変化するため、この走査領域12に固有の電圧波形が出力される。この波形は例えば時分割された微小部分ごとに出力電圧が複数段階にランク付けされてディジタル化され、検出信号が得られる。この検出信号は暗号コード変換器62によって特定のアルゴリズムに従って復号される。
【0029】
また、登録データ記録部13に記録されている照合用データがコード読取り部55によって読取られる。この照合用データが、比較器61によって前記復号された走査領域12の検出信号と比較され、両者が整合した時にこの被検出物10が本物であると判断され、その照合結果が表示器63に表示される。
【0030】
この実施形態の走査領域12は帯状の磁性繊維混入部材22によって構成されており、磁性繊維混入部材22の全長のうちの一部すなわち長さL1が検出長となっている。そして磁性繊維混入部材22の幅W1、すなわち走査領域12の検出幅はセンサ31の素子幅W2よりも十分に小さい。
【0031】
MR素子40,41は、その素子形状を被検出物10に投影した範囲に存在する磁性繊維21によってバイアス磁界が影響を受け、MR素子40,41の抵抗値が変化する。したがってこの実施形態のように走査領域12の検出幅W1がMR素子40,41の素子幅W2よりも狭いものでは、検出幅W1の外側に磁性繊維混入部材22がはみ出さない限り、走査領域12の検出信号に変化はなく、常に一定の安定した検出信号が得られる。
【0032】
つまり、磁性繊維混入部材22とMR素子40,41の各中心線C1が互いに一致している場合、走査領域12の検出幅W1の両側に、MR素子40,41の素子幅W2との差の2分の1に相当する±ΔYずつの位置ずれが許容されることになる。このため、MR素子40,41と走査領域12の各中心線C1をおおむね合わせる程度のラフな位置決め精度で十分である。
【0033】
したがってこの処理装置30の機構設計を行う際に、MR素子40,41の取付け誤差や被検出物10の幅方向(Y方向)の寸法公差(ばらつき)、移動経路30aにおけるY方向の隙間等の存在を考慮し、Y方向のずれ量を十分カバーできるようなΔYの値を設定した上で、磁性繊維混入部材22の幅W1やセンサ31の素子幅W2などを決定することにより、被検出物10の幅寄せ機構やセンサ31の追従機構などのY方向位置決め機構を設ける必要がなくなり、より確実かつ信頼性の高い処理装置30を低コストで提供することが可能となる。
【0034】
なお、図4に示す実施形態の被検出物10のように、被検出物本体11の全長よりも短い(走査領域12の検出長L1と同じ長さの)短冊状の磁性繊維混入部材22によって走査領域12を構成するようにしてもよい。この磁性繊維混入部材22は、前記実施形態(図1に示すもの)の磁性繊維混入部材22と同様に多数の磁性繊維21を基材中にランダムに混入したものである。
【0035】
このように走査領域12の検出長L1と同じ長さの短冊状の磁性繊維混入部材22を用いた場合には、前記第1の実施形態で述べたようなX方向の位置を特定するための同期クロック信号発生手段やセンサ類が不要となり、検出プログラムによるソフト的な位置補正も不要となるため、より確実性が高まり、コストダウンを図ることが可能となる。
【0036】
この実施形態(図4および図5)の磁性繊維混入部材22は、図6に示すように、非磁性材料からなる被検出物本体11を構成するコアプレート70の所定位置に磁性繊維混入部材22を設け、その表裏両側からカバープレート71,72を重ね、熱溶着あるいは接着剤などの適宜の固定手段によって各プレート70,71,72を接着するなどして積層する。なお、必要に応じてコアプレート70とカバープレート71との間に第2のコアプレート73を設けてもよい。
【0037】
また、図7に示すように、非磁性材料からなるコアプレート70に走査領域12の検出幅W1と検出長L1に相当する寸法の長孔80を形成し、この長孔80に前記検出幅W1と検出長L1に相当する寸法の短冊状の磁性繊維混入部材22を収容し、かつ、表裏両側からカバープレート71,72を重ね、熱溶着あるいは接着剤などの適宜の固定手段によって各プレート70,71,72を接着するなどして積層してもよい。この場合も必要に応じてコアプレート70とカバープレート71との間に第2のコアプレート73を設けてもよい。長孔80はコアプレート70の厚み方向に貫通する貫通孔でもよいし、あるいはコアプレート70の厚み方向に貫通しない有底の凹部であってもよい。
【0038】
さらに図8に示すように、被検出物本体11と同等の面積をもつ磁性繊維混入プレート90(前記基材に前記磁性繊維21をランダムに混入したもの)に、走査方向に延びる2本のスリット91,92を所定長さにわたって互いに平行に形成し、これらスリット91,92間を走査領域12として用いてもよい。これら各実施形態の被検出物の基本的な構成と作用は、前記第1の実施形態と同様であるため、第1の実施形態と共通の箇所に共通の符号を付して説明は省略する。また、前記各実施形態の被検出物10はオーバーコート層を省略して描いたが、実際には被検出物10の表面あるいは裏面が合成樹脂製のオーバーコート層によって覆われていると良い。
【0039】
【発明の効果】
請求項1に記載した被検出物によれば、幅方向のおおまかな位置決めを行うだけで常に一定の検出信号を精度良く出力することができ、被検出物を高精度に位置決めするための幅寄せ機構などが不要となり、処理装置の簡略化と低コスト化が図れる。
【0040】
請求項2および請求項3に記載した被検出物は、走査領域の検出長と同等の磁性繊維混入部材を用いればよいため磁性繊維混入部材の使用量が少なくて済み、その製造コストを下げることができる。また、走査方向の検出位置の特定を行うための位置検出手段が不要となるため、処理装置のさらなる簡略化が図れるものである。
【0041】
請求項4に記載した被検出物によれば、走査領域よりも広い面積をもつ磁性繊維混入プレートにスリットを形成するだけで所定の検出幅と検出長の走査領域を容易につくりだすことができる。
【0042】
請求項5に記載した処理装置は、高精度な位置決め機構を備えていなくても走査領域から常に一定の検出信号を得ることができ、構造が簡単でありながら信頼性が高く、高精度なチェックを行うことができる。そして処理装置の部品数も少なくてすみ、処理装置の小形化と低コスト化が図れる。
【図面の簡単な説明】
【図1】本発明の一実施形態の被検出物とセンサを示す斜視図。
【図2】図1に示された被検出物とセンサの一部の平面図。
【図3】本発明の一実施形態の処理装置を一部断面で示す側面図。
【図4】本発明の他の実施形態の被検出物とセンサを示す斜視図。
【図5】図4に示された被検出部とセンサの底面図。
【図6】図4に示された被検出物の分解斜視図。
【図7】被検出物の変形例を示す分解斜視図。
【図8】被検出物の更に別の変形例を示す分解斜視図。
【図9】従来の被検出物とセンサを示す斜視図。
【符号の説明】
10…被検出物
11…被検出物本体
12…走査領域
13…登録データ記録部
21…磁性繊維
22…磁性繊維混入部材
30…処理装置
31…センサ(磁電変換素子)
40,41…MR素子
90…磁性繊維混入プレート
[0001]
BACKGROUND OF THE INVENTION
This invention includes credit cards, ID cards, CD cards and other cards, passports, important documents and securities, cash vouchers such as banknotes and checks, traveler's checks, or art works such as paintings, public competition votes such as boat racing and horse racing. The present invention relates to an object to be detected, such as a ticket, which needs to be prevented from forgery and whose authenticity is checked, and a processing apparatus for the same.
[0002]
[Prior art]
As means for checking the authenticity of various cards and documents, for example, as described in Japanese Patent Application Laid-Open No. 50-6999, Japanese Patent Application Laid-Open No. 6-179296, or Japanese Patent Application Laid-Open No. 7-32777, There is known one in which collation data is registered in a scanning region of a detection object. In this type of detection object, when the authenticity is checked, the scanning region is scanned by a sensor, and the obtained detection signal is collated with the collation data.
[0003]
In the known example, the processing device for scanning the scanning area of the object to be detected digitally codes the obtained detection signal on condition that the scanning area existing at a predetermined position is read by the sensor. In addition, it is checked whether or not the detected object is authentic by comparing with pre-registered data for verification.
[0004]
For example, the conventional detection object 1 shown in FIG. 9 has magnetic elements 2 randomly distributed over the entire object, and a scanning region 3 set at a specific position of the detection object 1 is represented by a sensor 4 having an element width ω. By means of magnetic detection. Then, the detection signal obtained from the scanning region 3 is processed by an arithmetic processing unit or the like of the processing device and collated with an encryption code registered in the data recording unit of the detected object 1. For this reason, the processing apparatus always maintains a predetermined range of the scanning region 3 in a state where the distance P1 from the reference surface 1a of the detected object 1 to the center of the sensor 4 (that is, the center C of the scanning region 3) is accurately regulated by the guide mechanism. Was faithfully scanned over the detection length L.
[0005]
[Problems to be solved by the invention]
However, the detection system for scanning the object 1 such as the dimensional tolerance of the object 1 to be detected, the behavior of the object 1 at the time of scanning, the component dimensions of the processing apparatus, and the assembly error, includes the scanning region 3 and the sensor 4. There are a number of factors that cause relative positional deviation.
[0006]
For example, as shown in FIG. 9, when the traveling direction (scanning direction) of the detected object 1 is X and the direction perpendicular to the scanning direction (the width direction of the detected object 1) is Y, the scanning region 3 is in the X direction. Even if it is shifted to the desired value, a desired detection signal can be obtained by correcting the positional shift by the detection system algorithm. However, since the relative position between the detected object 1 and the sensor 4 is physically determined in the Y direction, the detection signal is greatly different if the scanning region 3 is shifted in the Y direction. For this reason, the processing apparatus must incorporate a positioning mechanism that always scans a certain position in the Y direction of the detection object 1.
[0007]
As a positioning mechanism therefor, in general, a guide member that is biased by a biasing member such as a spring is used, and a width-shifting mechanism that presses the object to be detected against the reference guide surface of the processing apparatus, or a tapered roller. A mechanism such as a method of moving the object to be detected toward the reference guide surface is employed. There has also been proposed a processing apparatus in which the sensor is moved in accordance with the degree of positional deviation of the detected object during scanning.
[0008]
As described above, conventionally, a width adjusting mechanism for accurately positioning the object to be detected and the sensor in the Y direction is required, which complicates the apparatus and increases the number of parts, thereby increasing the size and cost of the processing apparatus. There are problems such as causes. In addition, because of the complexity of the structure, there are concerns about reliability, and maintenance is troublesome.
[0009]
Accordingly, an object of the present invention is to detect an object that can always obtain a constant detection signal only by scanning a rough position in the width direction without using a high-precision width adjusting mechanism as described above, and a processing apparatus for the same. Is to provide.
[0010]
[Means for Solving the Problems]
An object to be detected of the present invention for achieving the above object is a detected object body made of a non-magnetic material such as paper or synthetic resin, and a magnetoelectric conversion element provided on a part of the detected object body. A scanning area scanned by a sensor; and a registered data recording section in which collation data according to a detection signal obtained when the scanning area is scanned by the sensor is coded and recorded. Is characterized by comprising a strip-like magnetic fiber mixed member in which a large number of magnetic fibers are randomly mixed in the base material and has a width narrower than the element width of the sensor and has a predetermined length in the scanning direction. .
[0011]
The processing apparatus of the present invention includes an MR element having an element width wider than the detection width of the scan area, and scans the scan area for a predetermined length by the MR element, thereby allowing a large number of magnetic elements included in the scan area. A sensor that obtains a detection signal according to the state of fiber mixing, and the detection signal captured by the sensor are collated with the data registered in the registration data recording unit of the detected object. And an arithmetic processing unit that determines that it is authentic.
[0012]
In the present invention, the scanning region composed of the belt-like magnetic fiber mixed member is provided in a part of the object to be detected. The width of the magnetic fiber mixed member, that is, the detection width of the scanning region is smaller than the element width of the sensor. In a sensor using an MR element, a bias magnetic field is affected by a magnetic fiber present in a portion where the element shape is projected onto an object to be detected, and the resistance value changes.
[0013]
Therefore, as long as the magnetic fiber mixed member is not removed outside the element width of the MR element, there is no change in the detection signal in the scanning region, and a stable detection signal is always obtained. That is, when the center line of the magnetic fiber mixed member and the center line of the MR element coincide with each other, the position in the Y direction corresponding to one half of the difference between the sensor element width and the detection width of the scanning region Deviation is allowed on both sides of the scanning area. For this reason, when the object to be detected of the present invention is scanned by the processing device, it is only necessary to perform rough positioning so that the scanning area does not deviate from the element width of the sensor.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the detected object 10 in the form of a card or a document (paper sheet) is a card-shaped detected object mainly composed of a non-magnetic material such as paper or a synthetic resin (for example, vinyl chloride resin). An object body 11 is provided. The detected object 10 further includes a scanning area 12 representing the characteristics of the detected object 10, a registration data recording unit 13 for recording an encryption code corresponding to the scanning area 12, and the like.
[0015]
The scanning region 12 includes a strip-shaped magnetic fiber mixed member 22 in which a large number of fine magnetic fibers 21 are randomly mixed in a base material made of a nonmagnetic material such as paper. The width W1 of the magnetic fiber mixed member 22 is smaller than the element width W2 of MR elements 40 and 41 described later. The length of the magnetic fiber mixed member 22 extends over the entire length of the detected object main body 11 along the scanning direction (arrow X direction) of the MR elements 40 and 41. A part of the entire length of the magnetic fiber mixed member 22 (detection length L1) is used as the scanning region 12.
[0016]
An example of the form of the magnetic fiber 21 is a fibrous element body made of a polymer material mixed with magnetic metal powder (so-called magnetic polymer element), and each magnetic fiber 21 has an unspecified number of directions. For example, it is squeezed together with, for example, a paper pulp fiber as a base material. An example of the polymer material used for the element body of the magnetic fiber 21 is polyethylene, polyester, urethane, or the like, but in short, a well-known synthetic resin having appropriate flexibility can be applied.
[0017]
As the magnetic metal used for the magnetic fiber 21, a magnetically soft high permeability magnetic material such as permalloy, sendust, Co-based amorphous, soft ferrite, and the like is suitable. For example, ferrite, Sm—Co alloy, A magnetically hard high coercive force material such as an Nd alloy may be used.
[0018]
In the registered data recording unit 13, unique information obtained by scanning the scanning region 12, that is, unique information characterized by the distribution state of the magnetic fibers 21 (collation data) is processed as follows. The data is encrypted and written by the device 30. In addition to the verification data, various types of information (for example, face value and remaining balance in the case of a prepaid card) may be recorded in the registration data recording unit 13 by a magnetic or optical means or a recording medium such as an IC chip. . The recorded contents of the registered data recording unit 13 may be recorded in a storage area (for example, a memory of a host computer) of an electronic device different from the detected object 10.
[0019]
When the processing apparatus 30 shown in FIG. 3 checks the detected object 10, the detected object 10 is moved in the scanning direction indicated by the arrow X along the movement path 30a. As a means for moving the detected object 10 in the X direction along the movement path 30a, for example, a transport mechanism using a motor and a transport roller may be employed, but the configuration of the processing apparatus 30 is simplified. Therefore, the detected object 10 may be manually conveyed.
[0020]
A sensor 31 is provided in the middle of the movement path 30a of the detected object 10. An example of the sensor 31 includes a pair of MR elements (magnetoresistance effect elements) 40 and 41 as an example of a magnetoelectric conversion element whose output magnitude does not depend on the scanning speed. A magnet 42 is disposed behind the MR elements 40 and 41. The element used for the sensor 31 may be a magnetoelectric conversion element whose electric resistance value changes in accordance with a change in magnetic flux. For example, a magnetoelectric conversion element such as a magnetic diode, a magnetic transistor, or a Hall element may be used.
[0021]
The MR elements 40 and 41 have a characteristic that the electric resistance value changes according to the strength of the magnetic flux passing through these elements. These MR elements 40 and 41 are electrically connected to each other, and a magnetic field having the same strength by the magnet 42 is applied to each MR element 40 and 41. One MR element 40 is connected to a DC power source 43, and the other MR element 41 is connected to an arithmetic processing unit 45 using a microcomputer or the like.
[0022]
When scanning the scanning region 12, if the magnetic fiber 21 passes in the vicinity of the MR elements 40 and 41, the magnetic flux passing through the MR elements 40 and 41 changes with time according to the position of the magnetic fiber 21, and the MR element 40. , 41 has a difference in resistance value, so that the output voltage of the MR elements 40, 41 changes. Since this output voltage changes slightly according to the distribution density of the magnetic fibers 21 mixed in the scanning region 12, the size of the magnetic fibers 21, and the like, a waveform of the output voltage unique to the detected object 10 is obtained. .
[0023]
In the case of this embodiment, the processing device 30 includes a detection system that specifies the relative position between the sensor 31 and the detected object 10 in order to specify the detected position of the detected object 10 in the X direction. For example, by making a hole in a part of the detected object 10 and detecting the hole with a transmitted light sensor, the position of the detected object 10 in the X direction is specified, or the detected object 10 moves in the X direction. The position of the scanning region 12 in the X direction is detected by using a synchronous clock signal generator that responds.
[0024]
The processing device 30 includes a code reading unit 55 for reading data recorded in the registered data recording unit 13. The code reading unit 55 is connected to a reading circuit 56. The arithmetic processing unit 45 includes an A / D converter 60, a comparator 61, an encryption code converter 62, and the like for processing the detected signal. A display 63 indicating a check result or the like is connected to the arithmetic processing unit 45.
[0025]
Next, an issue process of the detected object 10 and a check process for determining authenticity will be described.
When the detected object 10 is manufactured, a band-shaped magnetic fiber mixed member 22 is provided in the detected object main body 11. The detected object 10 is provided with a strip-shaped registration data recording unit 13 made of a magnetic layer having a high coercive force, for example.
[0026]
In the issuance process of the detected object 10, the scanning region 12 is scanned by a sensor using the same MR element pair as the sensor 31, and the waveform of the output voltage is encrypted by a specific algorithm and stored in the registered data recording unit 13. Record. Although the registration data recording unit 13 of this embodiment is a magnetic band, an optically readable mark (for example, a bar code, a two-dimensional bar code, or an OCR character) is recorded on the registration data recording unit 13 by a print head. Alternatively, magnetic ink may be used, and the hologram on which the code is recorded may be stamped in order according to the encryption code.
[0027]
The processing device 30 checks whether the detected object 10 is authentic. The detected object 10 is inserted into the processing device 30, and the detected object 10 is moved in the scanning direction X along the movement path 30 a, and the scanning region 12 is scanned by the sensor 31.
[0028]
When the scanning region 12 is scanned by the sensor 31, the magnetic fibers 21 included in the scanning region 12 sequentially pass through the vicinity of the MR elements 40 and 41. At this time, since the magnetic flux passing through the MR elements 40 and 41 changes with time in accordance with the position and distribution state of the magnetic fiber 21, a unique voltage waveform is output to the scanning region 12. For example, this waveform is digitized by ranking the output voltage in a plurality of stages for each time-divided minute portion, and a detection signal is obtained. This detection signal is decrypted by the encryption code converter 62 according to a specific algorithm.
[0029]
The verification data recorded in the registered data recording unit 13 is read by the code reading unit 55. The comparison data is compared with the detection signal of the decoded scanning region 12 by the comparator 61, and when both are matched, it is determined that the detected object 10 is genuine, and the comparison result is displayed on the display 63. Is displayed.
[0030]
The scanning region 12 of this embodiment is configured by a belt-shaped magnetic fiber mixed member 22, and a part of the total length of the magnetic fiber mixed member 22, that is, the length L <b> 1 is a detection length. The width W 1 of the magnetic fiber mixed member 22, that is, the detection width of the scanning region 12 is sufficiently smaller than the element width W 2 of the sensor 31.
[0031]
The MR elements 40 and 41 are affected by the bias magnetic field due to the magnetic fiber 21 existing in the range where the element shape is projected onto the object 10 to be detected, and the resistance values of the MR elements 40 and 41 change. Therefore, in the case where the detection width W1 of the scanning region 12 is narrower than the element width W2 of the MR elements 40 and 41 as in this embodiment, the scanning region 12 is used as long as the magnetic fiber mixed member 22 does not protrude outside the detection width W1. There is no change in the detection signal, and a constant and stable detection signal is always obtained.
[0032]
That is, when the center lines C1 of the magnetic fiber mixed member 22 and the MR elements 40 and 41 coincide with each other, the difference between the element width W2 of the MR elements 40 and 41 on both sides of the detection width W1 of the scanning region 12 A positional deviation of ± ΔY corresponding to one half is allowed. For this reason, a rough positioning accuracy enough to roughly match the MR elements 40, 41 and the center line C1 of the scanning region 12 is sufficient.
[0033]
Therefore, when designing the mechanism of the processing device 30, there are mounting errors of the MR elements 40, 41, dimensional tolerance (variation) in the width direction (Y direction) of the detected object 10, gaps in the Y direction in the movement path 30a, and the like. In consideration of the existence, a value of ΔY that can sufficiently cover the amount of deviation in the Y direction is set, and then the width W1 of the magnetic fiber mixed member 22, the element width W2 of the sensor 31, and the like are determined. It is not necessary to provide a Y-direction positioning mechanism such as the tenth width adjusting mechanism or the follow-up mechanism of the sensor 31, and it is possible to provide a more reliable and reliable processing apparatus 30 at a low cost.
[0034]
4, the strip-like magnetic fiber mixed member 22 is shorter than the entire length of the body 11 to be detected (same length as the detection length L1 of the scanning region 12). The scanning area 12 may be configured. The magnetic fiber mixed member 22 is a member in which a large number of magnetic fibers 21 are randomly mixed in the base material in the same manner as the magnetic fiber mixed member 22 of the embodiment (shown in FIG. 1).
[0035]
As described above, when the strip-shaped magnetic fiber mixed member 22 having the same length as the detection length L1 of the scanning region 12 is used, the position in the X direction as described in the first embodiment is specified. Synchronous clock signal generation means and sensors are not required, and software position correction by a detection program is not required, so that the reliability is further increased and the cost can be reduced.
[0036]
The magnetic fiber mixed member 22 of this embodiment (FIGS. 4 and 5) is, as shown in FIG. 6, a magnetic fiber mixed member 22 at a predetermined position of the core plate 70 constituting the detected object body 11 made of a nonmagnetic material. The cover plates 71 and 72 are overlapped from both the front and back sides, and the plates 70, 71 and 72 are laminated by adhering them by appropriate fixing means such as heat welding or adhesive. In addition, you may provide the 2nd core plate 73 between the core plate 70 and the cover plate 71 as needed.
[0037]
Further, as shown in FIG. 7, a long hole 80 having dimensions corresponding to the detection width W1 and the detection length L1 of the scanning region 12 is formed in the core plate 70 made of a nonmagnetic material, and the detection width W1 is formed in the long hole 80. And the strip-like magnetic fiber mixed member 22 having a size corresponding to the detection length L1, and the cover plates 71 and 72 are overlapped from both the front and back sides, and each plate 70, by appropriate fixing means such as heat welding or adhesive. Alternatively, the layers 71 and 72 may be laminated. Also in this case, a second core plate 73 may be provided between the core plate 70 and the cover plate 71 as necessary. The long hole 80 may be a through-hole penetrating in the thickness direction of the core plate 70 or a bottomed recess that does not penetrate in the thickness direction of the core plate 70.
[0038]
Further, as shown in FIG. 8, two slits extending in the scanning direction are formed in a magnetic fiber mixed plate 90 (an area in which the magnetic fibers 21 are randomly mixed in the base material) having the same area as the detected object main body 11. 91 and 92 may be formed in parallel to each other over a predetermined length, and the space between these slits 91 and 92 may be used as the scanning region 12. Since the basic configuration and operation of the object to be detected in these embodiments are the same as those in the first embodiment, the same reference numerals are given to the same portions as those in the first embodiment, and the description thereof will be omitted. . Moreover, although the to-be-detected object 10 of each said embodiment was abbreviate | omitted and drawn, the surface or the back surface of the to-be-detected object 10 is good to be covered with the overcoat layer made from a synthetic resin.
[0039]
【The invention's effect】
According to the detected object described in claim 1, it is possible to always output a constant detection signal with high accuracy only by performing rough positioning in the width direction, and width adjustment for positioning the detected object with high accuracy. A mechanism or the like is not required, and the processing apparatus can be simplified and reduced in cost.
[0040]
The object to be detected according to claim 2 and claim 3 is only required to use a magnetic fiber mixed member equivalent to the detection length of the scanning region, so that the amount of the magnetic fiber mixed member used is small, and the manufacturing cost is reduced. Can do. In addition, since the position detection means for specifying the detection position in the scanning direction is not necessary, the processing apparatus can be further simplified.
[0041]
According to the object to be detected described in claim 4, it is possible to easily create a scanning region having a predetermined detection width and detection length only by forming a slit in a magnetic fiber mixed plate having a larger area than the scanning region.
[0042]
The processing apparatus according to claim 5 can always obtain a constant detection signal from the scanning region even without a high-precision positioning mechanism, and has a simple structure but high reliability and high-precision checking. It can be performed. In addition, the number of parts of the processing apparatus can be reduced, and the processing apparatus can be reduced in size and cost.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an object to be detected and a sensor according to an embodiment of the present invention.
2 is a plan view of a part of the object to be detected and a sensor shown in FIG. 1. FIG.
FIG. 3 is a side view of the processing apparatus according to the embodiment of the present invention, partly in cross section.
FIG. 4 is a perspective view showing an object to be detected and a sensor according to another embodiment of the present invention.
FIG. 5 is a bottom view of the detected part and sensor shown in FIG. 4;
6 is an exploded perspective view of the object to be detected shown in FIG.
FIG. 7 is an exploded perspective view showing a modified example of the object to be detected.
FIG. 8 is an exploded perspective view showing still another modified example of the detected object.
FIG. 9 is a perspective view showing a conventional object to be detected and a sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Detected object 11 ... Detected object main body 12 ... Scanning region 13 ... Registration data recording part 21 ... Magnetic fiber 22 ... Magnetic fiber mixed member 30 ... Processing apparatus 31 ... Sensor (magnetoelectric conversion element)
40, 41 ... MR element 90 ... magnetic fiber mixed plate

Claims (5)

非磁性材料からなる被検出物本体と、
前記被検出物本体の一部に設けられかつ磁電変換素子を用いたセンサによって走査される走査領域と、
前記走査領域を前記センサによって走査したときに得られる検出信号に応じた照合用データがコード化されて記録される登録データ記録部とを有し、
前記走査領域は、
基材中に多数の磁性繊維をランダムに混入しかつ前記センサの素子幅よりも狭い幅を有しかつ走査方向に所定長さを有する帯状の磁性繊維混入部材からなることを特徴とする真正さがチェックされる被検出物。
A body to be detected made of a non-magnetic material;
A scanning region provided in a part of the body to be detected and scanned by a sensor using a magnetoelectric conversion element;
A registration data recording unit in which data for verification according to a detection signal obtained when the scanning area is scanned by the sensor is encoded and recorded;
The scanning area is
Authenticity characterized by comprising a strip-like magnetic fiber mixed member in which a large number of magnetic fibers are randomly mixed in a base material and have a width narrower than the element width of the sensor and a predetermined length in the scanning direction. The object to be detected is checked.
前記走査領域は、その検出長と等しい長さを有する前記磁性繊維混入部材を被検出物本体に配置したものである請求項1記載の被検出物。The object to be detected according to claim 1, wherein the scanning region has the magnetic fiber mixed member having a length equal to the detection length arranged in a body of the object to be detected. 前記走査領域は、被検出物本体に形成した走査方向に延びる長孔の内部に、所定長さと幅を有する短冊状の前記磁性繊維混入部材を収容したものである請求項2記載の被検出物。The object to be detected according to claim 2, wherein the scanning region accommodates the strip-shaped magnetic fiber mixed member having a predetermined length and width in a long hole formed in the body of the object to be detected and extending in the scanning direction. . 前記走査領域は、この走査領域よりも広い面積をもつ磁性繊維混入プレートの一部に走査方向に延びる互いに平行な2本のスリットを所定長さにわたって形成し、これらスリット間を前記走査領域として用いるようにしたことを特徴とする請求項1記載の被検出物。In the scanning region, two parallel slits extending in the scanning direction are formed over a predetermined length in a part of the magnetic fiber mixed plate having a larger area than the scanning region, and the space between the slits is used as the scanning region. The detected object according to claim 1, wherein the object is detected. 走査領域を有する被検出物の真正さをチェックする処理装置であって、
前記走査領域の検出幅よりも広い素子幅を有するMR素子を備えかつこのMR素子によって前記走査領域を所定長さ走査することによりこの走査領域に含まれる多数の磁性繊維の混入状況に応じた検出信号を得るセンサと、
前記センサがとらえた検出信号を被検出物の登録データ記録部に登録されているデータと照合し、両者が対応した時にこの被検出物が真正であると判断する演算処理部と、
を具備したことを特徴とする被検出物の真正さをチェックするための処理装置。
A processing device for checking the authenticity of an object to be detected having a scanning region,
The MR element having an element width wider than the detection width of the scanning area, and scanning the scanning area by a predetermined length by the MR element, enables detection according to the mixing state of a large number of magnetic fibers contained in the scanning area. A sensor for obtaining a signal;
An arithmetic processing unit that compares the detection signal captured by the sensor with data registered in the registration data recording unit of the detected object, and determines that the detected object is authentic when both correspond,
A processing apparatus for checking the authenticity of an object to be detected.
JP06720198A 1998-03-17 1998-03-17 Object to be checked for authenticity and processing device for checking the authenticity of the object to be detected Expired - Fee Related JP3803192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06720198A JP3803192B2 (en) 1998-03-17 1998-03-17 Object to be checked for authenticity and processing device for checking the authenticity of the object to be detected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06720198A JP3803192B2 (en) 1998-03-17 1998-03-17 Object to be checked for authenticity and processing device for checking the authenticity of the object to be detected

Publications (2)

Publication Number Publication Date
JPH11265421A JPH11265421A (en) 1999-09-28
JP3803192B2 true JP3803192B2 (en) 2006-08-02

Family

ID=13338067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06720198A Expired - Fee Related JP3803192B2 (en) 1998-03-17 1998-03-17 Object to be checked for authenticity and processing device for checking the authenticity of the object to be detected

Country Status (1)

Country Link
JP (1) JP3803192B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2841021B1 (en) * 2002-06-13 2004-12-24 Systemig Sa MONITORING AND / OR MONITORING DEVICE USING AN ELECTRONIC LABEL, A READER AND A STATUS ENCODER
KR100896234B1 (en) * 2007-08-10 2009-05-08 주식회사 아이센스 Electrochemical biosensor and measuring instrument thereof

Also Published As

Publication number Publication date
JPH11265421A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
EP0656607B1 (en) Object to be checked for authenticity and a method for manufacturing the same
US5602381A (en) Objects to be checked for authenticity, and method and apparatus for checking whether or not objects are authentic
EP0632398B1 (en) Method and apparatus for checking whether or not objects are authentic
US4507550A (en) High security credit card, system and method
EP0428779B2 (en) Unit for sensing magnetic codes
US5473147A (en) Method and an apparatus for checking objects to be checked for authenticity
US5739517A (en) Apparatus and a method for checking an object to be checked for authenticity
JPH0916734A (en) Read-only magnetic security badge and read-only magnetic security system using it
JPH0678037B2 (en) Authentication device for authentication identification medium
JP3803192B2 (en) Object to be checked for authenticity and processing device for checking the authenticity of the object to be detected
EP0589195B1 (en) A method and an apparatus for checking objects to be checked for authenticity
JP2821367B2 (en) Card-like object to be checked for authenticity and method of manufacturing the same
JP3862848B2 (en) Detected object whose authenticity is to be checked, and processing apparatus and check method for checking the authenticity of the detected object
JP2005129183A (en) Recording medium, method of distinguishing recording medium, and card reader
JP3529411B2 (en) An object whose authenticity is to be checked and a method of creating the object
JP3828604B2 (en) Apparatus and method for checking authenticity of detected object
JP2726794B2 (en) Method and apparatus for checking authenticity of an object to be detected
JP3501537B2 (en) An object whose authenticity is to be checked and a method of checking the authenticity of this object
JP2680980B2 (en) Method and apparatus for checking authenticity of an object to be detected
JPH0827883B2 (en) Magnetic card and magnetic recording / reproducing method and apparatus therefor
JP2843743B2 (en) Method and apparatus for determining authenticity of an object to be detected
JPH07157998A (en) Material to be analyzed, capable of check of trueness and its production
JPH07282174A (en) Device for checking genuineness of object to be detected
JPH0732777A (en) Matter to be checked for genuineness and method and apparatus for checking genuineness of the same
JPH10100572A (en) Article to be checked of truth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees