JP3802108B2 - Process for producing N-acetylgalactosaminyl α1-O-serine derivative - Google Patents

Process for producing N-acetylgalactosaminyl α1-O-serine derivative Download PDF

Info

Publication number
JP3802108B2
JP3802108B2 JP21137395A JP21137395A JP3802108B2 JP 3802108 B2 JP3802108 B2 JP 3802108B2 JP 21137395 A JP21137395 A JP 21137395A JP 21137395 A JP21137395 A JP 21137395A JP 3802108 B2 JP3802108 B2 JP 3802108B2
Authority
JP
Japan
Prior art keywords
serine
acetyl
galactosaminidase
galnac
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21137395A
Other languages
Japanese (ja)
Other versions
JPH0937790A (en
Inventor
勝美 鰺坂
浩 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Meiji Dairies Corp
Original Assignee
Meiji Co Ltd
Meiji Dairies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd, Meiji Dairies Corp filed Critical Meiji Co Ltd
Priority to JP21137395A priority Critical patent/JP3802108B2/en
Publication of JPH0937790A publication Critical patent/JPH0937790A/en
Application granted granted Critical
Publication of JP3802108B2 publication Critical patent/JP3802108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、ムチン型糖タンパク質の合成原料として有用な糖アミノ酸であるN-アセチルガラクトサミニルα-O-セリン誘導体の製造法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
ムチン型糖タンパク質は、消化器官や気管の粘膜上に分泌されている粘液から見出され、生体内では粘膜表面の潤滑化、消化管内膜の消化酵素からの保護、細菌感染からの保護などの生理的役割を有していると考えられている。
【0003】
一方、ハイブリドーマ技術を用いて腫瘍特異的な抗原に対するモノクローナル抗体を作製して、そのモノクローナル抗体の認識する分子構造(エピトープ)を解明する研究が近年大きく進展し、その結果、腺癌のエピトープ構造の多くが、ムチン型糖蛋白質のペプチド部分あるいはその糖鎖部分に存在することが明らかになっている。そのため、ムチン型糖タンパク質は、癌の診断、治療への応用が期待されている。
【0004】
N-アセチルガラクトサミニルα1-O-セリン(以下GalNAcα1-O-セリンという)は、ムチン型糖タンパク質において、タンパク質中のセリンの水酸基とN-アセチル-D-ガラクトサミン(以下GalNAcという)とがα-O-グリコシド結合している箇所の構成要素であって、ムチン型糖タンパク質(またはペプチド)を合成する上で重要な糖アミノ酸である。故に、GalNAcα1-O-セリンの合成を、容易でかつ低いコストで行うことが出来れば、ムチン型糖タンパク質そのものの研究や、これを癌の診断、治療へ利用して行く上で、産業上有用である。
【0005】
GalNAcα1-O-セリン誘導体の中には、化学合成法で合成されているものがある(H. Iijima and T. Ogawa, Carbohydrate Research, 172(1988) 183-193、W. Kunz and R. Schmidt, Carbohydrate Research, 193(1989) 33-47)が、その製造に当たっては、GalNAcの水酸基の保護と脱保護及び1位水酸基の活性化等、工程が長くならざるを得なかった。また、IijimaらやKunzらの方法で得られたGalNAcα1-O-セリン誘導体のGalNAc部分の水酸基は全て保護されているため、これを原料としてムチン型糖ペプチドを酵素反応で合成するには、脱保護を行う必要があった。
【0006】
一方、酵素を用いてGalNAcα1-O-セリン誘導体を製造した例としては、ウシ肝臓由来のN-アセチルα-D-ガラクトサミニダーゼを用いて、ガラクトサミンとセリンとを脱水縮合させてGalNAcα1-O-セリンを合成したとの報告がある(H. Johansson et al., Enzyme Microb. Technol., 13(1991) 781-787)。しかしJohanssonらは、セリン残基のアミノ基あるいはカルボキシル基が保護されているGalNAcα1-O-セリン誘導体は合成していないため、彼らの合成したGalNAcα1-O-セリンを原料として、化学合成法でムチン型糖ペプチドを合成するには、セリン残基のアミノ基とカルボキシル基に保護基を別途導入する必要があった。しかも、動物臓器由来のN-アセチルα-D-ガラクトサミニダーゼは、原料からの精製が困難であり、また、大量に得ることが出来ないため、ムチン型糖ペプチドを工業的に合成するには適していない。
【0007】
また、特開平4-225996には、グリコシダーゼの存在下で、グルコース、ガラクトース又はマンノースと、セリン、セリン誘導体又はセリンペプチドと結合させて、複合糖質類似物質を製造する方法が記載されている。しかしながら、この公開特許公報にはGalNAcとセリン誘導体とをN-アセチルα-D-ガラクトサミニダーゼによって結合させることは記載されておらず、それを示唆するものもない。
【0008】
【課題を解決するための手段】
本発明においては、酵素を用いてGalNAcα1-O-セリン誘導体を製造するに当たって、動物臓器由来のN-アセチルα-D-ガラクトサミニダーゼの代わりに、微生物由来のN-アセチルα-D-ガラクトサミニダーゼを用いる。
【0009】
微生物由来のN-アセチルα-D-ガラクトサミニダーゼは、動物臓器由来のものと比べて原料からの精製が容易でしかも大量に得ることが出来る。由来微生物はN-アセチルα-D-ガラクトサミニダーゼを産生するものならば何でも良く、例えば、Aspergillus nigerClostridium perfringensCharonia lampasAcremonium sp.Bacillus circulansなどが挙げられるが、菌の入手や培養の容易さを考慮すると、A. oryzaeの培養液中に存在するN-アセチルα-D-ガラクトサミニダーゼが特に好ましい。A. oryzae由来のN-アセチルα-D-ガラクトサミニダーゼを用いる場合、A. oryzaeの菌株には特に限定はない。そして、N-アセチルα-D-ガラクトサミニダーゼを得るには、A. oryzaeを常法で培養して、その培養液からN-アセチルα-D-ガラクトサミニダーゼを得ても良く、また、水飴の製造に用いられている市販のA. oryzae培養液の乾燥粉末から抽出してもよい。
【0010】
また、本発明で使用するセリン誘導体は、セリンのアミノ基とカルボキシル基の片方又は両方に保護基が導入されていてもよい。アミノ基の保護基としては、長鎖脂肪酸のアシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基等の、ペプチド合成においてアミノ基の保護に通常用いられているものが使用でき、特に、ベンジルオキシカルボニル基、第三ブチルオキシカルボニル基、アリルオキシカルボニル基及びホルミルオキシカルボニル基が好ましい。また、カルボニル基の保護基としては、ペプチド合成においてカルボキシル基の保護に通常用いられているものが使用できるが、特にメチル基、エチル基及びベンジル基が好ましい。即ち、本発明のセリン誘導体としては、
【0011】
【式3】

Figure 0003802108
【0012】
で表される構造式を有するものを用いることが好ましい。
【0013】
GalNAcとセリン誘導体との反応は、両者のモル比が10:1〜1:10、好ましくは3:1〜1:3で行う。使用するN-アセチルα-D-ガラクトサミニダーゼは、GalNAcの単位ミリモル当たり1〜50ユニットを用い、pH 4.0〜pH 9.0、好ましくはpH 5.0〜pH 8.0の緩衝液中で、20〜60℃、好ましくは35〜50℃で反応を行う。反応終了後は熱水中で酵素を失活させ、HPLCなど公知の方法でGalNAcα1-O-セリン誘導体を分離・精製すればよい。
【0014】
セリン誘導体として式3の構造式を有するものをGalNAcと反応させた場合は、
【0015】
【式4】
Figure 0003802108
【0016】
で示されるGalNAcα1-O-セリン誘導体が得られる。
【0017】
(参考例)
A. oryzae培養液からのN-アセチルα-D-ガラクトサミニダーゼの抽出・精製例)
オリエンターゼONS(阪急バイオインダストリー社製;A. oryzae培養液の乾燥粉末)100gを300mlの水に溶解し、4℃で一夜放置後遠心分離して上清を濃縮し、5cm×21cmのDEAE-セファロースカラムにアプライした。A液として10mMリン酸緩衝液(pH 7.4)、B液としてA液+0.5M NaClを用い、4ml/分の流速で12時間かけてグラジエントで溶出を行った。5分ごとにフラクションを集め、そのフラクション中の酵素活性を測定した。そのときの酵素活性パターンを図1に示す。N-アセチルα-D-ガラクトサミニダーゼとN-アセチルβ-D-ガラクトサミニダーゼの活性が分離しているフラクション106から115までを集めて限外濾過法により濃縮し、更に水を加えて濃縮を繰り返した後、凍結乾燥した。この凍結乾燥品を精製N-アセチルα-D-ガラクトサミニダーゼとして以下の実施例で用いた。
【0018】
【実施例】
以下に本発明を実施例によって更に具体的に示すが、本発明はこれらに限定されるものではない。
【0019】
実施例1
221mgのGalNAcと420mgのセリン(式3において、R1、R2とも水素原子)を、1mlの0.1M酢酸緩衝液(pH5.0)に溶解し、これにN-アセチルα-D-ガラクトサミニダーゼ4ユニットを加えて、37℃で2週間振盪して反応させた。100℃の熱水中に5分間静置して酵素を失活させた後、反応生成物をHPLC(カラムはYMC Polyamine II、分離液は80%アセトニトリル、流速は1ml/min、モニターはRI)にかけたところ、図2に示すチャートが得られた。図中の矢印のピークを分取して1H NMRスペクトルを測定したところ、2.02ppm(N-アセチル)、4.16ppm(GalNAc H2)及び4.88ppm(GalNAc H1)にシグナルが観測された。これらの値は、GalNAcα1-O-セリンの文献値とよく一致していたため、GalNAcα1-O-セリン(式4において、R1、R2とも水素原子)が生成していることが示された。
【0020】
実施例2
221mgのGalNAcと814mgのt-ブチルオキシカルボニル-セリン(式3において、R1=水素原子、R2=COO-tBu)を、700μlの0.1M酢酸緩衝液(pH5.0)と300μlのDMF(N,N-ジメチルホルムアミド)の混合液に溶解し、これにN-アセチルα-D-ガラクトサミニダーゼ4ユニットを加えて、37℃で2週間振盪して反応させた。100℃の熱水中に5分間静置して酵素を失活させた後、反応生成物をHPLC(カラムはYMC Polyamine II、分離液は80%アセトニトリル、流速は1ml/min、モニターはRI)にかけたところ、図3に示すチャートが得られた。図中の矢印のピークを分取して1H NMRスペクトルを測定したところ、1.38ppm(t-ブチル基)、2.00ppm(N-アセチル)、4.10ppm(GalNAc H2)及び4.84ppm(GalNAc H1)にシグナルが観測され、このことからGalNAcα1-O-[t-ブチルオキシカルボニル-セリン](式4において、R1=水素原子、R2=COO-tBu)が生成していることが確認された。
【0021】
【発明の効果】
本発明方法によれば、癌の診断、治療への応用が期待されているムチン型糖タンパク質を合成する上で重要な構成要素であるGalNAcα1-O-セリン誘導体を、短い製造工程で、かつ安いコストで製造できる。
【図面の簡単な説明】
【図1】 A. oryzae培養液からN-アセチルα-D-ガラクトサミニダーゼを抽出・精製したときのイオン交換クロマトグラムである。
【図2】 GalNAcとセリンとから本発明方法によりGalNAcα1-O-セリンを製造したときの反応液のHPLCのチャートである。
【図3】 GalNAcとt-ブチルオキシカルボニル-セリンとから本発明方法によりGalNAcα1-O-[t-ブチルオキシカルボニル-セリン]を製造したときの反応液のHPLCのチャートである。[0001]
[Industrial application fields]
The present invention relates to a method for producing an N-acetylgalactosaminyl α-O-serine derivative, which is a sugar amino acid useful as a raw material for synthesizing mucin-type glycoproteins.
[0002]
[Prior art and problems to be solved by the invention]
Mucin-type glycoproteins are found in mucus secreted on the mucous membranes of the digestive tract and trachea. In vivo, the mucosal surface is lubricated, the digestive tract is protected from digestive enzymes, and protected from bacterial infection. It is thought to have a physiological role.
[0003]
On the other hand, research has recently made great progress in preparing monoclonal antibodies against tumor-specific antigens using hybridoma technology and elucidating the molecular structure (epitope) recognized by the monoclonal antibodies. Many have been found to be present in the peptide part of the mucin-type glycoprotein or in its sugar chain part. Therefore, mucin-type glycoprotein is expected to be applied to cancer diagnosis and treatment.
[0004]
N-acetylgalactosaminyl α1-O-serine (hereinafter referred to as GalNAcα1-O-serine) is a mucin-type glycoprotein in which the serine hydroxyl group and N-acetyl-D-galactosamine (hereinafter referred to as GalNAc) are α It is a component of the site where the -O-glycoside bond is formed, and is an important sugar amino acid in the synthesis of mucin-type glycoprotein (or peptide). Therefore, if the synthesis of GalNAcα1-O-serine can be carried out easily and at low cost, it will be industrially useful for studying mucin-type glycoproteins themselves and using them for cancer diagnosis and treatment. It is.
[0005]
Some GalNAcα1-O-serine derivatives are synthesized by chemical synthesis (H. Iijima and T. Ogawa, Carbohydrate Research, 172 (1988) 183-193, W. Kunz and R. Schmidt, In Carbohydrate Research, 193 (1989) 33-47), the production of the hydroxyl group of GalNAc had a long process, such as protection and deprotection of the GalNAc and activation of the 1-position hydroxyl group. In addition, since all the hydroxyl groups of the GalNAc part of the GalNAcα1-O-serine derivative obtained by the methods of Iijima et al. And Kunz et al. Are protected, in order to synthesize mucin-type glycopeptides by enzymatic reaction using this, It was necessary to provide protection.
[0006]
On the other hand, as an example of producing a GalNAcα1-O-serine derivative using an enzyme, galactosamine and serine are dehydrated and condensed using N-acetyl α-D-galactosaminidase derived from bovine liver. It has been reported that serine was synthesized (H. Johansson et al., Enzyme Microb. Technol., 13 (1991) 781-787). However, Johansson et al. Have not synthesized a GalNAcα1-O-serine derivative in which the amino group or carboxyl group of the serine residue is protected. In order to synthesize type glycopeptides, it was necessary to introduce protective groups separately to the amino group and carboxyl group of the serine residue. Moreover, since N-acetyl α-D-galactosaminidase derived from animal organs is difficult to purify from raw materials and cannot be obtained in large quantities, industrial synthesis of mucin-type glycopeptides Not suitable.
[0007]
JP-A-4-225996 describes a method for producing a complex carbohydrate-like substance by binding glucose, galactose or mannose to serine, a serine derivative or a serine peptide in the presence of glycosidase. However, this published patent publication does not describe, or suggest, that GalNAc and serine derivatives are bound by N-acetyl α-D-galactosaminidase.
[0008]
[Means for Solving the Problems]
In the present invention, in producing a GalNAcα1-O-serine derivative using an enzyme, instead of N-acetyl α-D-galactosaminidase derived from an animal organ, N-acetyl α-D-galactosaminim derived from a microorganism is used. Use a dase.
[0009]
N-acetyl α-D-galactosaminidase derived from microorganisms can be easily purified from raw materials and can be obtained in large amounts compared to those derived from animal organs. Any microorganism can be used as long as it produces N-acetyl α-D-galactosaminidase. Examples include Aspergillus niger , Clostridium perfringens , Charonia lampas , Acremonium sp. And Bacillus circulans . Therefore , N-acetyl α-D-galactosaminidase present in the culture solution of A. oryzae is particularly preferable. When N-acetyl α-D-galactosaminidase derived from A. oryzae is used, the strain of A. oryzae is not particularly limited. In order to obtain N-acetyl α-D-galactosaminidase, A. oryzae may be cultured by a conventional method, and N-acetyl α-D-galactosaminidase may be obtained from the culture solution. You may extract from the dry powder of the commercially available A. oryzae culture solution used for the manufacture of a chickenpox .
[0010]
In the serine derivative used in the present invention, a protective group may be introduced into one or both of the amino group and carboxyl group of serine. As the amino-protecting group, those conventionally used for protecting amino groups in peptide synthesis, such as acyl groups of long chain fatty acids, alkyloxycarbonyl groups, and aryloxycarbonyl groups, can be used. Group, tert-butyloxycarbonyl group, allyloxycarbonyl group and formyloxycarbonyl group are preferred. In addition, as a protecting group for the carbonyl group, those commonly used for protecting a carboxyl group in peptide synthesis can be used, and a methyl group, an ethyl group, and a benzyl group are particularly preferable. That is, as the serine derivative of the present invention,
[0011]
[Formula 3]
Figure 0003802108
[0012]
It is preferable to use what has the structural formula represented by these.
[0013]
The reaction between GalNAc and serine derivative is carried out at a molar ratio of 10: 1 to 1:10, preferably 3: 1 to 1: 3. The N-acetyl α-D-galactosaminidase used uses 1 to 50 units per millimole of GalNAc and is 20 to 60 ° C. in a pH 4.0 to pH 9.0, preferably pH 5.0 to pH 8.0 buffer. The reaction is preferably carried out at 35-50 ° C. After completion of the reaction, the enzyme may be inactivated in hot water, and the GalNAcα1-O-serine derivative may be separated and purified by a known method such as HPLC.
[0014]
When a serine derivative having the structural formula of Formula 3 is reacted with GalNAc,
[0015]
[Formula 4]
Figure 0003802108
[0016]
A GalNAcα1-O-serine derivative represented by
[0017]
(Reference example)
(Example of extraction and purification of N-acetyl α-D-galactosaminidase from A. oryzae culture)
Orientase ONS (manufactured by Hankyu Bioindustry, Inc .; A. oryzae culture dry powder) 100g dissolved in 300ml water, left at 4 ° C overnight, centrifuged and concentrated supernatant, 5cm x 21cm DEAE- It applied to the sepharose column. Using a 10 mM phosphate buffer (pH 7.4) as solution A and solution A + 0.5 M NaCl as solution B, elution was performed using a gradient at a flow rate of 4 ml / min for 12 hours. Fractions were collected every 5 minutes and enzyme activity in the fractions was measured. The enzyme activity pattern at that time is shown in FIG. Fractions 106 to 115 in which the activities of N-acetyl α-D-galactosaminidase and N-acetyl β-D-galactosaminidase are separated are collected, concentrated by ultrafiltration, and further concentrated by adding water. Was repeated and then freeze-dried. This lyophilized product was used as purified N-acetyl α-D-galactosaminidase in the following examples.
[0018]
【Example】
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.
[0019]
Example 1
221 mg of GalNAc and 420 mg of serine (in formula 3, R 1 and R 2 are both hydrogen atoms) are dissolved in 1 ml of 0.1 M acetate buffer (pH 5.0), and N-acetyl α-D-galactosamini is dissolved in this solution. 4 units of dase were added, and the reaction was performed by shaking at 37 ° C. for 2 weeks. After leaving the enzyme in 100 ° C hot water for 5 minutes to inactivate the enzyme, the reaction product is HPLC (column is YMC Polyamine II, separation is 80% acetonitrile, flow rate is 1 ml / min, monitor is RI) As a result, the chart shown in FIG. 2 was obtained. When the peak of the arrow in the figure was fractionated and 1 H NMR spectrum was measured, signals were observed at 2.02 ppm (N-acetyl), 4.16 ppm (GalNAc H2) and 4.88 ppm (GalNAc H1). Since these values were in good agreement with the literature values for GalNAcα1-O-serine, it was shown that GalNAcα1-O-serine (in Formula 4, R 1 and R 2 are both hydrogen atoms) was generated.
[0020]
Example 2
221 mg of GalNAc and 814 mg of t-butyloxycarbonyl-serine (in formula 3, R 1 = hydrogen atom, R 2 = COO-tBu), 700 μl of 0.1 M acetate buffer (pH 5.0) and 300 μl of DMF ( N, N-dimethylformamide) was dissolved in this solution, 4 units of N-acetyl α-D-galactosaminidase were added thereto, and the mixture was reacted by shaking at 37 ° C. for 2 weeks. After leaving the enzyme in 100 ° C hot water for 5 minutes to inactivate the enzyme, the reaction product is HPLC (column is YMC Polyamine II, separation is 80% acetonitrile, flow rate is 1 ml / min, monitor is RI) As a result, the chart shown in FIG. 3 was obtained. The peak of the arrow in the figure was fractionated and 1 H NMR spectrum was measured. As a result, 1.38 ppm (t-butyl group), 2.00 ppm (N-acetyl), 4.10 ppm (GalNAc H2) and 4.84 ppm (GalNAc H1) A signal was observed in this, and it was confirmed that GalNAcα1-O- [t-butyloxycarbonyl-serine] (in formula 4, R 1 = hydrogen atom, R 2 = COO-tBu) was generated. .
[0021]
【The invention's effect】
According to the method of the present invention, a GalNAcα1-O-serine derivative, which is an important component for synthesizing a mucin-type glycoprotein that is expected to be applied to diagnosis and treatment of cancer, can be obtained in a short production process and at a low cost. Can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is an ion exchange chromatogram obtained by extracting and purifying N-acetyl α-D-galactosaminidase from a culture medium of A. oryzae .
FIG. 2 is a HPLC chart of a reaction solution when GalNAcα1-O-serine is produced from GalNAc and serine by the method of the present invention.
FIG. 3 is a HPLC chart of a reaction solution when GalNAcα1-O- [t-butyloxycarbonyl-serine] is produced from GalNAc and t-butyloxycarbonyl-serine by the method of the present invention.

Claims (1)

Aspergillus oryzae由来のN-アセチルガラクトサミニダーゼの存在下、N-アセチルガラクトサミンと
【式1】
Figure 0003802108
で表されるセリン誘導体とを反応させることを特徴とする、
【式2】
Figure 0003802108
で表されるN-アセチルガラクトサミニルα1-O-セリン誘導体の製造法。
N-acetylgalactosamine in the presence of N-acetylgalactosaminidase derived from Aspergillus oryzae
Figure 0003802108
Characterized by reacting with a serine derivative represented by:
[Formula 2]
Figure 0003802108
A method for producing an N-acetylgalactosaminyl α1-O-serine derivative represented by the formula:
JP21137395A 1995-07-28 1995-07-28 Process for producing N-acetylgalactosaminyl α1-O-serine derivative Expired - Fee Related JP3802108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21137395A JP3802108B2 (en) 1995-07-28 1995-07-28 Process for producing N-acetylgalactosaminyl α1-O-serine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21137395A JP3802108B2 (en) 1995-07-28 1995-07-28 Process for producing N-acetylgalactosaminyl α1-O-serine derivative

Publications (2)

Publication Number Publication Date
JPH0937790A JPH0937790A (en) 1997-02-10
JP3802108B2 true JP3802108B2 (en) 2006-07-26

Family

ID=16604894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21137395A Expired - Fee Related JP3802108B2 (en) 1995-07-28 1995-07-28 Process for producing N-acetylgalactosaminyl α1-O-serine derivative

Country Status (1)

Country Link
JP (1) JP3802108B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740509B2 (en) 2002-05-22 2004-05-25 Ikuko Ishii Karakasa Method for the production of mucin-type glycopeptide

Also Published As

Publication number Publication date
JPH0937790A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
KR100775805B1 (en) Process for producing sugar chain asparagine derivative
Lai-Xi et al. Chemoenzymatic synthesis of a high-mannose-type N-glycopeptide analog with C-glycosidic linkage
WO1998040349A1 (en) Sphingosine analogues
Deras et al. Synthesis of a high-mannose-type glycopeptide analog containing a glucose-asparagine linkage
JPH0413358B2 (en)
Waldmann et al. Selective enzymatic removal of protecting groups: the phenylacetamide as amino protecting group in phosphopeptide synthesis
JP3802108B2 (en) Process for producing N-acetylgalactosaminyl α1-O-serine derivative
JP2610646B2 (en) Bioactive glycopeptide
JPH04225996A (en) Synthesis of complex carbohydrate by glycosidase catalytic function
JP2904687B2 (en) New oligosaccharide
EP0406087B1 (en) Antihypertensives and food and drinks containing such antihypertensives
KR0144351B1 (en) Arylsulfatase
JPH01281082A (en) Neuraminidase isozyme s and production of gangliosides
JPH0740953B2 (en) Method for producing bioactive polysaccharide RON
JP3110075B2 (en) Method for producing composition containing angiotensin converting enzyme inhibitor
JPS6210520B2 (en)
JP3483212B2 (en) Novel peptide, method for producing it and use
US5001112A (en) Antitumor antibiotic kedarcidin
JP3732871B2 (en) Method for producing complex carbohydrate
JPH0647569B2 (en) Valyolamine derivative and method for producing the same
JP3688446B2 (en) New Terpene Compound 0406TP-1
JP3304358B2 (en) WS79089 substance from Streptosporangium
JPH08238097A (en) Production of glycoside using glycosidase of ciliates origin
JPS6330319B2 (en)
JPH1036391A (en) New peptide and angiotensin converting enzyme inhibitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees