JP3801781B2 - Manufacturing method of intraocular lens - Google Patents

Manufacturing method of intraocular lens Download PDF

Info

Publication number
JP3801781B2
JP3801781B2 JP16992198A JP16992198A JP3801781B2 JP 3801781 B2 JP3801781 B2 JP 3801781B2 JP 16992198 A JP16992198 A JP 16992198A JP 16992198 A JP16992198 A JP 16992198A JP 3801781 B2 JP3801781 B2 JP 3801781B2
Authority
JP
Japan
Prior art keywords
intraocular lens
optical
lens
manufacturing
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16992198A
Other languages
Japanese (ja)
Other versions
JP2000005203A (en
Inventor
敏之 中島
敏一 菊池
研一 小林
Original Assignee
キヤノンスター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンスター株式会社 filed Critical キヤノンスター株式会社
Priority to JP16992198A priority Critical patent/JP3801781B2/en
Publication of JP2000005203A publication Critical patent/JP2000005203A/en
Application granted granted Critical
Publication of JP3801781B2 publication Critical patent/JP3801781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、白内障で水晶体を摘出した後に、水晶体の代わりに挿入される眼内レンズの製造方法に関するものである。
【0002】
【従来の技術】
眼内レンズは、白内障手術の際に除去した水晶体に代用して挿入されるものである。1949年にリドレイ(Ridley)により始めて移植に成功して以来、その素材、形状についてさまざまな研究がなされてきた。また、素材の面でも種々の研究がなされそれに伴い手術方法も大きな変革を遂げてきている。最近では、超音波乳化吸引術等の普及もあり、混濁した水晶体の除去等の水晶体摘出手術に必要な切開創が小さくてすむようになり、挿入する眼内レンズに要求される特性も変革しつつある。
例えば、特開昭58―146346号公報に開示されているように、光学部が弾性体等の変形可能な眼内レンズが出現し、折りたたんだ形で小さな切開創から眼内に挿入し、嚢内で開かせる手法およびそれら変形可能な眼内レンズを圧縮したり、折り曲げて眼球内に挿入するための挿入器具も開示されている。
【0003】
眼内レンズの素材は、切開創6mm程度が必要なポリメチルメタクリレート(PMMA)から、シリコーン、アクリル樹脂等の変形後に復元可能な樹脂に次第に移行している。また、近年ではヒドロキシエチルメタクリレートとメチルメタクリレート等との共重合体やメタクリル酸−2−ヒドロキシエチル(HEMA)等も研究の対象となっている。
眼内レンズの形状は、円形の光学部とは別素材でループ状の支持部を持つもの、ループ状の支持部が光学部と同一素材で一体化したもの、支持部が板状のもの等さまざまなものが研究、実用化されている。
眼内レンズの製法は、PMMA素材を機械加工により眼内レンズ形状に切削して光学部をバフ研磨する方法、複数の眼内レンズを砥粒溶液中で攪拌して研磨を行うタンブリング法、さらには素材を型の中で重合または架橋して成形するモールド法等に移行して、大量生産を可能にしている。
【0004】
一方で眼内レンズの挿入術式は、水晶体前嚢中央を切開し、嚢内分の水晶体実質、皮質繊維細胞を前述の超音波乳化吸引法等により除去した後、眼内レンズを嚢内に挿入する方法が一般化している。
このような眼内レンズ、手術方法の改良にも関わらず、眼内レンズ挿入後に残った水晶体上皮細胞が増殖を起こし、増殖した水晶体上皮細胞の一部が繊維化して、水晶体後嚢側に向かうことがある。通常この繊維化した水晶体上皮細胞は白濁しており、それが後嚢側を透過する光を散乱させて光透過率を低下させるため、視力を低下させる後発白内障が起こる場合がある。
この繊維化した水晶体上皮細胞は水晶体嚢赤道部から次第に中心に向けて増殖するのが一般的であり、眼内レンズ等埋植物と水晶体上皮細胞の増殖がそれ以上進まないように阻止できると考えられている。
【0005】
以下、図13乃至図15を参照して眼内レンズ1の従来技術について説明する。図13は水晶体摘出前の人眼2の断面図であり、人眼2は、角膜3、虹彩4、水晶体5、硝子体6、網膜7からなっている。
【0006】
現在良く行われている超音波乳化吸引術は、水晶体5の嚢8を残して実質を超音波で乳化吸引して除去するものである。水晶体5の実質を除去し終えた時点で眼内レンズ1を挿入する。この状態を示したものが図14である。
超音波乳化吸引術により水晶体5実質を除去し、眼内レンズ1を挿入した後でも、前述のように、水晶体上皮細胞9の増殖により後発白内障を起こすことがある。図15の(a)は、その状態を表わす断面図である。この図では、特に、砥粒を含む液体中に眼内レンズをいれて攪拌することで光学部1aを研磨するタンブリング法により製造された眼内レンズ1を示しており、タンブリング法により製造された眼内レンズ1は表面全体が砥粒と接触することで研磨されており、特に、角部が砥粒により滑らかになり、光学部1aと外周部10が連続する面になる形状をもつのが一般的である。そのため、眼内レンズ1と後嚢8aとの接触角が鈍角になり、水晶体嚢赤道部11付近から後嚢8a側に増殖した水晶体上皮細胞9が眼内レンズ1の光学部1a内の裏面側に入り込み易い形状となっている。そのため、光学部1a内に増殖した細胞により後発白内障を生ずる可能性が高い。
【0007】
上述した欠点を解消して図15の(b)に示す断面図のように、光学部1aと外周部10が不連続な面で構成され、光学部1aと後嚢8aの間に水晶体上皮細胞9が増殖するのを阻止するような形状をもつものも開示されている。
このような形状の眼内レンズ1においては、光学部1a内に増殖することは妨げるものの、眼内レンズ外周部10と後嚢8aとの接触点付近で不規則な方向に増殖を続ける可能性があり、時間の経過とともに光学部1a内に侵入して上述の例と同じように後発白内障を生ずることがある。
【0008】
この考えに基づいて、水晶体上皮細胞9がレンズ光学部1aにまで増殖することを防止するための方法として以下のようなものが知られている。特開平8−317943号、特開平9−173363号では眼内レンズとは別のリング状の部材を水晶体嚢に移植し、その眼内レンズを移植する方法を示し、特開平8−257146号では眼内レンズ光学部周辺に突起を設け、突起と水晶体後嚢との接触角により、繊維化細胞の増殖を阻止するような方法を、特開平10−211号では眼内レンズ支持部の断面形状に陵部を設けた方法を示しており、水晶体上皮細胞9が眼内レンズ1の光学部1aにまで増殖することを防止するようにしている。
【0009】
【発明が解決しようとする課題】
このように、後発白内障を積極的に防止しようとする方法は、いずれもその目的のために埋植物を付加する、眼内レンズ光学部に突起部を設ける、眼内レンズ支持部に陵部を設けるなど、従来の眼内レンズに対して付加的な埋植物体、複雑な加工などが必要となり、従来の眼内レンズもしくは眼内レンズ挿入術に比べて、その手術の手間、製造コストの面から術者に負荷を与えるという問題点を有していた。
【0010】
本発明は、上述の事情に鑑みてなされたもので、その目的とするところは、眼内レンズの光学部とその外周部を不連続な面で構成すると共に、前記外周部が周方向に沿って一様な凹面形状となっていることで、眼内レンズの光学部と後嚢の接触面を鋭角とし、増殖する水晶体上皮細胞が前記光学部内に侵入することを阻止し、かつ前記光学部と離れた方向に増殖できる余地を残すことで、後発白内障の防止効果を高めることのできる眼内レンズの製造方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
請求項の発明は、弾性機能を有する材料により構成され、外周部により接合された2つの光学面で構成される光学部、および前記光学部と同一材料で光学部と一体的に構成される周辺部を有する眼内レンズの製造方法において、前記光学部および、光学部と同一材料で一体的に構成される周辺部の最終形状より大きな形状に形成する第1工程、前記同一材料で一体化した周辺部に対して光学部の光軸方向に略一致する方向に弾性変形範囲内で加圧する第2工程、前記加圧状態で最終形状に加工を行う第3工程を含むことを特徴とするもので、前記請求項1の発明の眼内レンズを旋盤による切削加工等の付加的な加工で最終形状に仕上げるという工程なしに実現する製造方法であり、最終形状より大きく形成された眼内レンズを、その周辺部を加圧して生じる材料の変形を利用し、変形状態で最終形状に切断加工することで、請求項1に記載された眼内レンズを製造する方法であり、工数の増加によるコスト高を回避して製造する方法を、光学部および光学部の周辺部が、弾性機能を有する眼内レンズ特有の性質を用いて可能にしている。
【0012】
請求項の発明は、外周部により接合された2つの光学面で構成された光学部、または前記光学部と同一材料で光学部と一体的に構成される周辺部を有する眼内レンズの製造方法において、前記2つの光学面のうち一方を形成する第1の型部材、弾性機能を有する材料で構成され前記外周部を形成する第2の型部材、もう一方の光学面を形成する第3の型部材を用い、第2の型部材を前記光学部の光軸に略一致する方向に加圧して弾性変形させる工程を含むことを特徴とするものであって、眼内レンズを特に型の中に眼内レンズ材料を流し込んで成形する製造方法の場合に、成形終了後除圧することで通常の非弾性体の型では不可能な形状の成形を可能としたものであって、この製造方法によれば、成形時に発生するバリをおさえることもでき、通常発生する二次加工の工程を省略することも可能となる。
【0013】
【発明の実施の形態】
以下、本発明に係る眼内レンズの実施形態について、図1乃至図4を参照して説明する。
図1は、本発明の眼内レンズの側面図、図2は、図1の正面図、図3は、本発明の眼内レンズを水晶体嚢内に挿入した状態の設明図。図4は本発明の眼内レンズが水晶体嚢内に挿入された状態での水晶体上皮細胞増殖の様子を表わす説明図である。
【0014】
図中、20は眼内レンズ1の光学部であって、ポリ・メチル・メタクリレート(PMMA)、シリコーンゴム等の透明な弾性体で形成されており、この光学部20の外周部21には、この光学部20を眼内で支えるポリイミド、PMMA等の異種材料で形成された一対の支持部22が対向した位置に突出して形成されている。光学部20は光学面20a,20bが前記外周部21で結合される構成をもっている。
【0015】
前記各支持部22の基端22aは支持部固定ピン23により光学部20の外周部21近傍にそれぞれ固定されていると共に、各遊端22bはそれぞれ前記光学部20側に湾曲されて形成され、弾性により変形して前記光学部20を水晶体嚢8内の中心に位置決めできるようになっている。24は、前記光学部20の外周部21に連続し、かつ先端部20中心方向に凹む凹面形状である。
【0016】
以上のように構成された実施形態の眼内レンズは、図3に示すように、水晶体嚢8内に挿入して使用した場合には、図4に示すように、増殖してきた水晶体上皮細胞9が光学部20の光学面20b内に侵入するのを阻止できるだけでなく、光学部20と離れた方向に増殖出来る余地を残すことで、後発白内障防止効果を高めることができる。
【0017】
図5,図6は、本発明の他の実施形態を示す眼内レンズ1で、この眼内レンズ構造では、光学部20の同一面周辺部25aに支持部25が形成されており、この支持部25によって眼内レンズ1の前記光学部20を水晶体嚢8内の中心部に位置決めできるようになっている。また前記支持部25には、支持部25を上下方向に貫通する小孔26が前記光学部20を挟んで対応して形成されており、これらの小孔26,26は、図示しないが水晶体の前嚢と後嚢とを接触させて早期に癒着を促進させることで、眼内レンズ1が水晶体嚢内で回転することを防止する機能を有する。27は前記支持部25の外周部27aの周方向に形成された凹面形状である。
【0018】
以上のように構成された本発明の他の実施形態の眼内レンズにおいても、前述の実施形態の眼内レンズ1と同様に、増殖する水晶体上皮細胞が光学部20の光学面20b内に侵入することが防止出来、かつ光学部20と離れた方向に増殖できる余地をのこすことも勿論可能であり、後発白内障防止効果を高めることができる。
【0019】
本発明に係る眼内レンズについて、実施形態では、光学部20の成形部材と異種部材で成形した支持部22を有する眼内レンズ1を、また第2実施形態では、光学部20の同一面周辺部25aに形成した支持部25を有する眼内レンズ1について説明したが、これに限定されることなく、支持部が光学部を挟んで両側に一体的に形成された形態を有する眼内レンズであっても、光学部および支持部の外周部に凹面形状を形成したものであれば、前述の実施形態と同様な効果を得ることができることは勿論である。
【0020】
以下、本発明に使用する眼内レンズの好適な製造方法について説明する。
従来知られているような成形により本発明の眼内レンズ1の形状を実現するには成形型割りに工夫が必要であり、一般的な型割り方法を用いると、眼内レンズ1の外周部が凹面形状であるため、成形された眼内レンズを変形させないと成形型から容易に取り出せないという問題点が生じて好ましくない。
また、前記外周部を凹面形状に一次加工した後に、タンブリング研磨を行うと外周部と光学部の光学面との結合点が連続した面になり、水晶体上皮細胞が光学部内に増殖することを防ぐという本発明の効果を減少してしまう。
【0021】
したがって、本発明の眼内レンズを製造するには、従来の成形による方法、バフ研磨、タンブリング研磨により光学面を研磨形成の後、機械加工等の公知の加工法により外周部を二次加工して本発明形状に仕上げる必要があり、それにより工数が増加する。
【0022】
そこで、前記工数を増加させることなしに、前述の図1乃至図6に示す眼内レンズを製造する方法を以下に図7乃至図12を用いて説明する。
図7,図8は、本発明の眼内レンズ1の製造方法を示す第1の実施形態である。この第1の実施形態においては、光学部20が弾性体で形成された眼内レンズ1を成形する製造方法を示す。
【0023】
第1のプロセスは、既知の少なくとも光学部20が弾性体で形成された眼内レンズの製造方法により図7の破線で示されるような最終形状30よりおおきな形状の一次加工品を製造する工程である。図7では図6に示すような光学部20と支持部25が同一材料で一体化した例を示している。一次加工品は光学部20と小孔26がすでに形成されており、破線で示す最終形状30より大きな支持部28を持つ形状になっている。
【0024】
第2のプロセスは、図8に示すように、上型31、下型32により光学部20周辺部25aを光軸と略垂直方向で一様に加圧する工程である。この工程での加圧力は少なくとも光学部20を含む弾性体が弾性変形可能な範囲内である。
また、加圧部位は光学部20の周辺部25aを含む支持部25のみであり、弾性体の変形により内部応力を解放するために図中矢印33に示すように、上下方向にのみ加圧を行い、水平方向、および紙面垂直方向は自由に変形可能なように解放されている。
【0025】
このように、弾性変形範囲で一方向に圧力をかけることにより、弾性体で構成された支持部25の形状は圧力のかからない端部で断面形状のような凸面形状29となるような変形を生じる。
【0026】
第3のプロセスは、圧力をかけたままで最終形状30に加工する工程である。図8では一例として切断による加工を示している。眼内レンズ1の最終加工形状30と同じ形状を持つ抜型34が上,下型31,32に沿って下方の二点鎖線の位置まで移動して眼内レンズ1の前記おおきな支持部28を切断する加工方法を示している。そして、最終形状加工が終了した後、上,下型31,32に対する上下方向からの圧力を解除する。
【0027】
前述のように、加圧力は弾性体の弾性変形可能な範囲であるため、圧力を解放することで弾性体はもとの形状に復帰する。一方、最終形状加工時に加圧された外周部27aは圧力により型の周囲に向かって凸面形状29に変形していたため、圧力を取除くことで、もとの形状に復帰したとき加工面は逆に凹面形状27となっている。
【0028】
換言すれば、除圧後の外周部27aの形状は、図5に示すように、支持部25と不連続でかつ、周方向に沿って一様に凹んだ凹面形状27となっている。
本実施例では、図5,図6に示すような光学部20と支持部25が同一の弾性体で構成された眼内レンズ1の製造方法について説明したが、特に、この形態に限定されず光学部20のみが弾性体で構成された図1,図2に示すような眼内レンズの光学部20を製造する方法も同様に可能である。
【0029】
図9,図10は本発明の眼内レンズの製造方法を示す第2の実施形態である。
本製造方法は、図9に示すように、一方の光学面20aを形成する上型31、もう一方の光学面20bを形成する下型32、および外周部27aを形成する弾性機能を持つ素材で構成された中型35の3つ型部材を用いて製造される。
図10は、例えば合成ゴム等弾性機能を有する素材で構成される中型35を図9の上方から見た平面図である。このように中型35は眼内レンズ1の最終形状30に近い形状の穴36をもっており、その厚み方向の面で眼内レンズの外周部27aを形成する構造になっている。
また、この中型35の厚みは眼内レンズ1の外周部27aの厚さより弾性変形可能な範囲Δdだけ厚く形成されている。
【0030】
図9は、眼内レンズ1の成形中の状態を示しており、図中の矢印33で示すように、上型31と下型32は上下方向から所定圧力に加圧されている。図に示されるように、中型35の端部は加圧により応力が解放される水平および紙面垂直な方向では、一様な凸面形状36に変形している。また、中型35が圧力により変形することで、不図示ではあるが上,下型31,32と中型35との間にできる微小な間隙も中型35が変形することで埋めることができる。
【0031】
このため本発明の製造方法によれば、金属等の塑性体で構成される型同志では回避できないバリも中型35が変形することで、いわゆるパッキンのような役割をなすため、バリが生じない成形が可能となる。
特に、原料の粘性が低い眼内レンズ材料の場合、従来金属等の塑性物で型を構成しており、精密仕上げを行ってもほんのわずかな間隙にまで材料が回り込んでしまい、バリをなくすことができなかった。そのため、バリをなくすための二次加工が必要であったが、前記中型35の開発により前記二次加工の作業を省略できた。
【0032】
そして、本発明の眼内レンズ材料は上,下型31,32を合わせる前に所定量だけ注入される、上,下型31,32を合わせた後に図中不図示のゲートから型内に材料を注入するなど既知の方法により成形される。
成形終了後、上型31,下型32を再び開く時には、中型35がもとの形状に復帰するので、成形された眼内レンズ1の外周部27aが凹面形状27に成形されても中型35と干渉することなく取出すことができる。
【0033】
図7乃至図10では、図5,図6に示すような光学部20と支持部25が同一材料で構成された眼内レンズ1の製造例を示したが、特に、このような形態に限定されるものではない。
【0034】
図11,図12は、図1,図2に示すような、光学部20と支持部22が別部材、別材料により構成された眼内レンズ1の製造例である。
この製造方法においても、前述の図9,図10に示す方法と同様に、上,下型31,32および弾性機能を有する中型35の3つの型部材を用いて製造するものであって、上,下型31,32を矢印33の上下方向に加圧することで、中型35を押圧変形させ、前述の実施形態同様に光学部20の外周部21の周方向に沿って凹面形状24を容易に形成できる。
【0035】
また、本製造方法によれば、成形される眼内レンズ1は特に弾性材料に限らず、従来からあるPMMA等のいわゆる固い素材であっても製造が可能である。
さらにまた、本実施例では図5,図6または図1,図2に示すような眼内レンズの製造方法を示したが、ループ状の支持部が光学部と同一部材で構成された眼内レンズにも応用可能であることは明白である。
【0036】
【発明の効果】
以上説明したように、本願の発明による眼内レンズの製造方法は、発明による眼内レンズを旋盤による切削加工等の付加的な外周部の溝付け加工なしに実現する製造方法であり、眼内レンズ製造時に、光学部および光学部の周辺部が弾性機能を有する眼内レンズ特有の性質を用いて、前記周辺部を含む支持部を加圧することに起因する材料の変形を利用した変形状態で最終形状に加工する製造方法であるため、工数の増加によるコスト高を回避して製造できるという効果がある。
【0037】
また、発明による眼内レンズの製造方法は、眼内レンズを特に型の中に眼内レンズ材料を流し込んで成形する製造方法の場合に、外周部を形成する型部材を弾性体で形成し、型部材を加圧変形した上で成形を行い、成形終了後除圧することで通常の非弾性体の型では不可能な形状の成形が行えると共に、成形時に発生するバリを押さえ、通常発生する二次加工の工程を省略できるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明の眼内レンズの実施形態を示す側面図。
【図2】 図1の眼内レンズの正面図。
【図3】 本発明の眼内レンズを人間の目に挿入した状態の断面を示す説明図。
【図4】 本発明の眼内レンズが水晶体嚢内に挿入された状態での水晶体上皮細胞増殖の様子を表わした説明図。
【図5】 本発明の眼内レンズの別の実施形態を表わす側面図。
【図6】 図5の眼内レンズの正面図。
【図7】 本発明の眼内レンズ製造方法に係る中間工程により形成された眼内レンズ。
【図8】 本発明の眼内レンズ製造方法の第一実施例を示す断面図。
【図9】 本発明の眼内レンズ製造方法の第二実施例を示す断面図。
【図10】 本発明の眼内レンズ製造方法の第二実施例に用いる一部の型の平面図。
【図11】 本発明の眼内レンズ製造方法の第二実施例に係る別形態の断面図。
【図12】 本発明の眼内レンズ製造方法の第二実施例に係る別形態に用いる一部の型の平面図。
【図13】 人間の目の断面を示す説明図。
【図14】 従来の眼内レンズを水晶体嚢内に挿入した状態の説明図。
【図15】 (a)は従来の眼内レンズが水晶体嚢内に挿入された状態での水晶体上皮細胞増殖の様子を表わす説明図。(b)は従来の改良された眼内レンズが水晶体嚢内に挿入された状態での水晶体上皮細胞増殖の様子を表わす説明図。
【符号の説明】
1 眼内レンズ
3 角膜
4 虹彩
5 水晶体
6 硝子体
7 網膜
8 嚢
9 水晶体上皮細胞
20 光学部
21 外周部
22 支持部
24 凹面形状
25 支持部
26 小孔
27a 外周部
27 凹面形状
30 最終形状
31 上型
32 下型
34 抜き型
35 中型
[0001]
BACKGROUND OF THE INVENTION
The present invention, after extracting the crystalline lens in cataract, a method of manufacturing the intraocular lens to be inserted in place of the crystalline lens.
[0002]
[Prior art]
The intraocular lens is inserted in place of the lens removed during the cataract surgery. Since the first successful transplantation by Ridley in 1949, various studies have been conducted on its material and shape. In addition, various researches have been made in terms of materials, and accordingly, surgical methods have undergone major changes. Recently, with the spread of ultrasonic emulsification, etc., the incision required for lens extraction surgery such as removal of the turbid lens has become smaller, and the characteristics required for the inserted intraocular lens are also changing. is there.
For example, as disclosed in Japanese Patent Application Laid-Open No. 58-146346, a deformable intraocular lens having an optical part such as an elastic body appears, and is inserted into a eye from a small incision wound in a folded shape. And an insertion device for compressing or bending the deformable intraocular lens and inserting it into the eyeball is also disclosed.
[0003]
The intraocular lens material is gradually shifting from polymethyl methacrylate (PMMA), which requires an incision of about 6 mm, to a resin that can be restored after deformation, such as silicone and acrylic resin. In recent years, copolymers of hydroxyethyl methacrylate and methyl methacrylate, 2-hydroxyethyl methacrylate (HEMA), and the like have also been studied.
The shape of the intraocular lens is a material different from the circular optical part and having a loop-shaped support part, the loop-shaped support part is integrated with the optical part and the same material, the support part is a plate-like shape, etc. Various things have been researched and put into practical use.
The intraocular lens is manufactured by cutting a PMMA material into an intraocular lens shape by machining and buffing the optical part, tumbling agitation by stirring a plurality of intraocular lenses in an abrasive solution, Shifts to a molding method in which a material is polymerized or cross-linked in a mold to enable mass production.
[0004]
On the other hand, in the intraocular lens insertion method, the center of the anterior lens capsule is incised, the lens parenchyma and cortical fiber cells are removed by the ultrasonic emulsification suction method, etc., and then the intraocular lens is inserted into the capsule. The method is generalized.
Despite the improvement of the intraocular lens and the surgical method, the lens epithelial cells remaining after insertion of the intraocular lens are proliferated, and some of the proliferated lens epithelial cells are fibrillated toward the posterior capsule side. Sometimes. Usually, the fibrillated lens epithelial cells are clouded, which scatters the light transmitted through the posterior capsule side and lowers the light transmittance, so that there may be a post-cataract that reduces visual acuity.
These fibrotic lens epithelial cells generally proliferate gradually from the capsular equator to the center, and it is thought that the growth of the intraocular lens and other implanted plants and lens epithelial cells can be prevented from proceeding further. It has been.
[0005]
Hereinafter, the prior art of the intraocular lens 1 will be described with reference to FIGS. FIG. 13 is a cross-sectional view of the human eye 2 before the lens is extracted. The human eye 2 includes a cornea 3, an iris 4, a lens 5, a vitreous body 6, and a retina 7.
[0006]
Ultrasonic emulsification and suction, which is often performed at present, is performed by emulsifying and removing the substance with ultrasound while leaving the capsule 8 of the crystalline lens 5. The intraocular lens 1 is inserted when the lens 5 is completely removed. FIG. 14 shows this state.
Even after the lens 5 is removed by ultrasonic emulsification and the intraocular lens 1 is inserted, the cataract may occur due to proliferation of the lens epithelial cells 9 as described above. FIG. 15A is a sectional view showing the state. In this figure, in particular, the intraocular lens 1 manufactured by the tumbling method in which the optical part 1a is polished by putting the intraocular lens in a liquid containing abrasive grains and stirring is shown. The intraocular lens 1 is polished by bringing the entire surface into contact with the abrasive grains, and in particular, the corners are smoothed by the abrasive grains, and the optical part 1a and the outer peripheral part 10 have a continuous surface. It is common. Therefore, the contact angle between the intraocular lens 1 and the posterior capsule 8a becomes an obtuse angle, and the lens epithelial cells 9 that have proliferated from the vicinity of the capsular equator 11 to the posterior capsule 8a are on the back side in the optical part 1a of the intraocular lens 1 The shape is easy to penetrate. Therefore, there is a high possibility that secondary cataract is caused by cells grown in the optical part 1a.
[0007]
As shown in the cross-sectional view of FIG. 15 (b), the optical part 1a and the outer peripheral part 10 are constituted by discontinuous surfaces, and the lens epithelial cells are interposed between the optical part 1a and the posterior capsule 8a. Also disclosed is a shape that prevents 9 from growing.
In the intraocular lens 1 having such a shape, although it is prevented from growing in the optical part 1a, it may continue to grow in an irregular direction near the contact point between the intraocular lens outer peripheral part 10 and the posterior capsule 8a. And may enter into the optical part 1a over time and cause a subsequent cataract as in the above example.
[0008]
Based on this idea, the following methods are known as methods for preventing the lens epithelial cells 9 from proliferating to the lens optical part 1a. JP 8-317943, the intraocular lens in JP-A-9-173363 ported another ring-shaped member to the capsular bag, shows a method for implanting the intraocular lens, JP-A-8-257146 In the method of providing a protrusion around the optical part of the intraocular lens and preventing the proliferation of fibrotic cells by the contact angle between the protrusion and the posterior capsule of the lens, This shows a method in which a ridge is provided in the shape, and the lens epithelial cells 9 are prevented from growing to the optical part 1a of the intraocular lens 1.
[0009]
[Problems to be solved by the invention]
As described above, any of the methods for actively preventing secondary cataract is to add a planting plant for that purpose, to provide a protrusion on the intraocular lens optical part, and to provide a protrusion on the intraocular lens support part. This requires additional implants and complex processing for the conventional intraocular lens, and is more labor-intensive and more costly than conventional intraocular lens or intraocular lens insertion. Therefore, it had a problem of giving a load to the surgeon.
[0010]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to form an optical portion of an intraocular lens and an outer peripheral portion thereof with discontinuous surfaces, and the outer peripheral portion is along a circumferential direction. The contact surface between the optical part of the intraocular lens and the posterior capsule has an acute angle, prevents the proliferating lens epithelial cells from entering the optical part, and the optical part by leaving the room to grow in a direction away from the one in which an object to provide a method for producing intraocular lenses that can enhance the effect of preventing secondary cataract.
[0012]
[Means for Solving the Problems]
The invention of claim 1 is constituted by a material having an elastic function, and is constituted by two optical surfaces joined by an outer peripheral portion, and is constituted integrally with the optical portion by the same material as the optical portion. In the method of manufacturing an intraocular lens having a peripheral part, the optical part and the first step of forming a shape larger than the final shape of the peripheral part integrally formed of the same material as the optical part, integrated with the same material A second step of pressurizing the peripheral portion in a direction substantially coinciding with the optical axis direction of the optical unit within an elastic deformation range, and a third step of processing the final shape in the pressurized state. Therefore, the intraocular lens according to the first aspect of the invention is a manufacturing method that realizes the intraocular lens without a step of finishing it into a final shape by additional processing such as cutting with a lathe, and is an intraocular lens formed larger than the final shape. The surrounding area Utilizing the deformation of the pressurizing resulting material, by cutting into a final shape in a deformed state, a method of producing an intraocular lens according to claim 1, to avoid costly due to an increase in man-hour The manufacturing method enables the optical part and the peripheral part of the optical part by using a characteristic characteristic of an intraocular lens having an elastic function.
[0012]
According to a second aspect of the present invention, there is provided an intraocular lens having an optical part composed of two optical surfaces joined by an outer peripheral part, or a peripheral part integrally formed with the optical part using the same material as the optical part. In the method, a first mold member that forms one of the two optical surfaces, a second mold member that is formed of an elastic material and forms the outer peripheral portion, and a third mold that forms the other optical surface. Using the mold member, and pressurizing the second mold member in a direction substantially coinciding with the optical axis of the optical unit to elastically deform the intraocular lens. In the case of a manufacturing method in which an intraocular lens material is poured into a mold, it is possible to mold a shape impossible with a normal inelastic body mold by removing the pressure after the molding is completed. According to the above, it is possible to suppress burrs generated during molding. , It is possible to omit the normal secondary processing step occurs.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION implementation form of the intraocular lens according to the present invention will be described with reference to FIGS.
FIG. 1 is a side view of an intraocular lens of the present invention, FIG. 2 is a front view of FIG. 1, and FIG. 3 is an explanatory diagram showing a state in which the intraocular lens of the present invention is inserted into a lens capsule. FIG. 4 is an explanatory diagram showing the state of lens epithelial cell proliferation in a state where the intraocular lens of the present invention is inserted into the lens capsule.
[0014]
In the figure, reference numeral 20 denotes an optical part of the intraocular lens 1, which is formed of a transparent elastic body such as polymethyl methacrylate (PMMA) or silicone rubber. A pair of support portions 22 formed of different materials such as polyimide and PMMA for supporting the optical portion 20 in the eye are formed so as to protrude at opposing positions. The optical unit 20 has a configuration in which the optical surfaces 20 a and 20 b are coupled at the outer peripheral portion 21.
[0015]
The base end 22a of each support portion 22 is fixed to the vicinity of the outer peripheral portion 21 of the optical portion 20 by a support portion fixing pin 23, and each free end 22b is formed to be curved toward the optical portion 20 side, respectively. The optical part 20 can be positioned at the center in the lens capsule 8 by being deformed by elasticity. Reference numeral 24 denotes a concave shape that is continuous with the outer peripheral portion 21 of the optical portion 20 and is recessed toward the center of the distal end portion 20.
[0016]
The intraocular lens of implementation embodiment structured as described above, as shown in FIG. 3, when used in inserting the lens capsule within 8, as shown in FIG. 4, lens epithelial cells that have proliferated 9 can not only prevent the optical part 20 from entering the optical surface 20b of the optical part 20, but also leave room for growth in a direction away from the optical part 20, thereby enhancing the effect of preventing subsequent cataracts.
[0017]
5 and 6 show an intraocular lens 1 showing another embodiment of the present invention. In this intraocular lens structure, a support portion 25 is formed on the same surface peripheral portion 25a of the optical portion 20, and this support is shown. The optical part 20 of the intraocular lens 1 can be positioned at the central part in the crystalline lens capsule 8 by the part 25. In addition, small holes 26 penetrating the support portion 25 in the vertical direction are formed in the support portion 25 so as to sandwich the optical portion 20, and these small holes 26 and 26 are not shown but are made of a crystalline lens. By bringing the anterior capsule and the posterior capsule into contact with each other and promoting adhesion at an early stage, the intraocular lens 1 has a function of preventing the intraocular lens 1 from rotating within the lens capsule. Reference numeral 27 denotes a concave shape formed in the circumferential direction of the outer peripheral portion 27 a of the support portion 25.
[0018]
In the intraocular lens according to another embodiment of the present invention configured as described above, the proliferating lens epithelial cells enter the optical surface 20b of the optical unit 20 as in the case of the intraocular lens 1 according to the above-described embodiment. Of course, it is possible to leave room for growth in a direction away from the optical unit 20, and the effect of preventing subsequent cataracts can be enhanced.
[0019]
With respect to the intraocular lens according to the present invention, in the embodiment, the intraocular lens 1 having the support portion 22 molded with the molded member of the optical portion 20 and the different member, and in the second embodiment, the periphery of the same surface of the optical portion 20 Although the intraocular lens 1 having the support part 25 formed in the part 25a has been described, the present invention is not limited thereto, and the intraocular lens has a form in which the support part is integrally formed on both sides with the optical part interposed therebetween. Even if it is, if the concave shape is formed in the outer peripheral part of an optical part and a support part, of course, the effect similar to the above-mentioned embodiment can be acquired.
[0020]
Hereinafter, a preferred method for producing an intraocular lens used in the present invention will be described.
In order to realize the shape of the intraocular lens 1 of the present invention by molding as conventionally known, it is necessary to devise a molding mold part. When a general parting method is used, the outer peripheral portion of the intraocular lens 1 is used. Because of the concave shape, it is not preferable because the molded intraocular lens cannot be easily removed from the mold unless it is deformed.
In addition, if the tumbling polishing is performed after the outer peripheral portion is first processed into a concave shape, the connection point between the outer peripheral portion and the optical surface of the optical portion becomes a continuous surface, and the lens epithelial cells are prevented from growing in the optical portion. This reduces the effect of the present invention.
[0021]
Therefore, in order to manufacture the intraocular lens of the present invention, after the optical surface is polished and formed by the conventional molding method, buffing and tumbling polishing, the outer peripheral portion is secondarily processed by a known processing method such as machining. Therefore, it is necessary to finish the shape of the present invention, thereby increasing the number of steps.
[0022]
Therefore, a method for manufacturing the intraocular lens shown in FIGS. 1 to 6 without increasing the number of steps will be described below with reference to FIGS.
7 and 8 show a first embodiment of the method for manufacturing the intraocular lens 1 of the present invention. In the first embodiment, a manufacturing method for molding the intraocular lens 1 in which the optical unit 20 is formed of an elastic body will be described.
[0023]
The first process is a step of manufacturing a primary processed product having a larger shape than the final shape 30 as shown by a broken line in FIG. 7 by a known method for manufacturing an intraocular lens in which at least the optical unit 20 is formed of an elastic body. is there. FIG. 7 shows an example in which the optical unit 20 and the support unit 25 shown in FIG. 6 are integrated with the same material. The primary processed product has an optical portion 20 and small holes 26 already formed, and has a shape having a support portion 28 larger than the final shape 30 indicated by a broken line.
[0024]
As shown in FIG. 8, the second process is a step of uniformly pressing the peripheral portion 25 a of the optical unit 20 by the upper mold 31 and the lower mold 32 in a direction substantially perpendicular to the optical axis. The applied pressure in this step is within a range in which at least the elastic body including the optical unit 20 can be elastically deformed.
Further, the pressurizing part is only the support part 25 including the peripheral part 25a of the optical part 20, and in order to release internal stress by deformation of the elastic body, as shown by the arrow 33 in the figure, pressurization is performed only in the vertical direction. The horizontal direction and the vertical direction of the drawing are released so as to be freely deformable.
[0025]
In this way, by applying pressure in one direction within the elastic deformation range, the shape of the support portion 25 formed of an elastic body is deformed so as to be a convex shape 29 such as a cross-sectional shape at an end portion where no pressure is applied. .
[0026]
The third process is a step of processing into the final shape 30 while applying pressure. FIG. 8 shows processing by cutting as an example. A die 34 having the same shape as the final processed shape 30 of the intraocular lens 1 moves along the upper and lower dies 31 and 32 to the position of the lower two-dot chain line to cut the large support 28 of the intraocular lens 1. Shows the processing method. And after final shape processing is completed, the pressure from the up-and-down direction to upper and lower molds 31 and 32 is canceled.
[0027]
As described above, since the applied pressure is within a range where the elastic body can be elastically deformed, the elastic body returns to its original shape by releasing the pressure. On the other hand, the outer peripheral portion 27a that was pressed during the final shape processing was deformed into the convex shape 29 toward the periphery of the mold due to the pressure. Therefore, when the pressure is removed, the processing surface is reversed when the original shape is restored. A concave shape 27 is formed.
[0028]
In other words, the shape of the outer peripheral portion 27a after the pressure removal is a concave shape 27 that is discontinuous with the support portion 25 and is uniformly recessed along the circumferential direction, as shown in FIG.
In the present embodiment, the manufacturing method of the intraocular lens 1 in which the optical unit 20 and the support unit 25 are configured by the same elastic body as shown in FIGS. 5 and 6 has been described. However, the present invention is not particularly limited to this mode. A method of manufacturing the optical part 20 of the intraocular lens as shown in FIGS. 1 and 2 in which only the optical part 20 is made of an elastic body is also possible.
[0029]
9 and 10 show a second embodiment of the method for manufacturing an intraocular lens of the present invention.
As shown in FIG. 9, this manufacturing method is made of a material having an elastic function for forming an upper mold 31 for forming one optical surface 20a, a lower mold 32 for forming the other optical surface 20b, and an outer peripheral portion 27a. Manufactured using the three mold members of the medium mold 35 constructed.
FIG. 10 is a plan view of the middle die 35 made of a material having an elastic function, such as synthetic rubber, as viewed from above in FIG. Thus, the middle die 35 has a hole 36 having a shape close to the final shape 30 of the intraocular lens 1, and has a structure in which the outer peripheral portion 27a of the intraocular lens is formed on the surface in the thickness direction.
The thickness of the middle die 35 is formed to be thicker than the thickness of the outer peripheral portion 27a of the intraocular lens 1 by a range Δd that can be elastically deformed.
[0030]
FIG. 9 shows a state in which the intraocular lens 1 is being molded. As shown by an arrow 33 in the drawing, the upper mold 31 and the lower mold 32 are pressurized to a predetermined pressure from the vertical direction. As shown in the drawing, the end of the middle die 35 is deformed into a uniform convex shape 36 in the horizontal and vertical directions where the stress is released by pressurization. Further, although the middle die 35 is deformed by pressure, although not shown, a minute gap formed between the upper and lower dies 31 and 32 and the middle die 35 can be filled by the middle die 35 being deformed.
[0031]
For this reason, according to the manufacturing method of the present invention, a burr that cannot be avoided by molds made of a plastic material such as a metal also functions as a so-called packing because the middle die 35 is deformed. Is possible.
In particular, in the case of intraocular lens materials with a low viscosity of the raw material, the mold is conventionally made of a plastic material such as metal, and even if precision finishing is performed, the material wraps into a very small gap, eliminating burrs. I couldn't. Therefore, secondary processing for eliminating burrs was necessary, but the work of the secondary processing could be omitted by the development of the middle die 35.
[0032]
The intraocular lens material of the present invention is injected by a predetermined amount before the upper and lower molds 31 and 32 are combined. After the upper and lower molds 31 and 32 are combined, the material is put into the mold from the gate not shown in the drawing. It is formed by a known method such as injection.
When the upper mold 31 and the lower mold 32 are opened again after the molding is completed, the middle mold 35 returns to the original shape. Therefore, even if the outer peripheral portion 27a of the molded intraocular lens 1 is molded into the concave shape 27, the middle mold 35 is restored. Can be taken out without interference.
[0033]
FIGS. 7 to 10 show an example of manufacturing the intraocular lens 1 in which the optical unit 20 and the support unit 25 are made of the same material as shown in FIGS. 5 and 6, but the invention is particularly limited to such a form. Is not to be done.
[0034]
FIGS. 11 and 12 show manufacturing examples of the intraocular lens 1 in which the optical unit 20 and the support unit 22 are made of different members and different materials as shown in FIGS.
Also in this manufacturing method, similar to the method shown in FIGS. 9 and 10, the upper and lower molds 31 and 32 and the middle mold 35 having an elastic function are used for manufacturing. By pressing the lower dies 31 and 32 in the vertical direction of the arrow 33, the middle die 35 is pressed and deformed, and the concave shape 24 can be easily formed along the circumferential direction of the outer peripheral portion 21 of the optical portion 20 as in the above-described embodiment. Can be formed.
[0035]
Moreover, according to this manufacturing method, the intraocular lens 1 to be molded is not limited to an elastic material, and can be manufactured even with a so-called hard material such as a conventional PMMA.
Furthermore, in the present embodiment, the method for manufacturing an intraocular lens as shown in FIG. 5, FIG. 6 or FIG. 1 and FIG. 2 is shown, but the intraocular lens in which the loop-shaped support portion is composed of the same member as the optical portion. Obviously, it can also be applied to lenses.
[0036]
【The invention's effect】
As described above, the manufacturing method of the intraocular lens according to the invention of the present patent application is a manufacturing method for realizing the intraocular lens according to inventions without grooving additional outer peripheral portion, such as cutting by a lathe, Deformation utilizing deformation of the material caused by pressurizing the support part including the peripheral part using the properties unique to the intraocular lens in which the optical part and the peripheral part of the optical part have an elastic function when manufacturing the intraocular lens Since it is a manufacturing method which processes into a final shape in a state, there is an effect that it can be manufactured while avoiding high costs due to an increase in man-hours.
[0037]
In addition, the manufacturing method of the intraocular lens according to the invention is a manufacturing method in which the intraocular lens is formed by pouring the intraocular lens material into the mold, and the mold member that forms the outer peripheral portion is formed of an elastic body. Molding is performed after the mold member is deformed under pressure, and after the molding is completed, the pressure can be reduced to form a shape that is impossible with a normal inelastic mold, and the burrs that occur during molding can be suppressed. There is an effect that the next processing step can be omitted.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of an intraocular lens of the present invention.
FIG. 2 is a front view of the intraocular lens of FIG.
FIG. 3 is an explanatory diagram showing a cross-section in a state where the intraocular lens of the present invention is inserted into a human eye.
FIG. 4 is an explanatory diagram showing the state of lens epithelial cell proliferation in a state where the intraocular lens of the present invention is inserted into the lens capsule.
FIG. 5 is a side view showing another embodiment of the intraocular lens of the present invention.
6 is a front view of the intraocular lens of FIG. 5. FIG.
FIG. 7 shows an intraocular lens formed by an intermediate process according to the intraocular lens manufacturing method of the present invention.
FIG. 8 is a sectional view showing a first embodiment of the method for producing an intraocular lens of the present invention.
FIG. 9 is a sectional view showing a second embodiment of the method for producing an intraocular lens of the present invention.
FIG. 10 is a plan view of some molds used in the second embodiment of the method for manufacturing an intraocular lens of the present invention.
FIG. 11 is a cross-sectional view of another embodiment according to the second embodiment of the intraocular lens manufacturing method of the present invention.
FIG. 12 is a plan view of a part of a mold used in another embodiment according to the second embodiment of the intraocular lens manufacturing method of the present invention.
FIG. 13 is an explanatory diagram showing a cross section of a human eye.
FIG. 14 is an explanatory view showing a state in which a conventional intraocular lens is inserted into a crystalline lens capsule.
FIG. 15A is an explanatory view showing the state of lens epithelial cell proliferation in a state where a conventional intraocular lens is inserted into a lens capsule. (B) is explanatory drawing showing the mode of lens epithelial cell proliferation in the state which the conventional improved intraocular lens was inserted in the lens capsule.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Intraocular lens 3 Cornea 4 Iris 5 Lens 6 Lens 6 Retina 8 Sac 9 Lens epithelial cell 20 Optical part 21 Peripheral part 22 Support part 24 Concave shape 25 Support part 26 Small hole 27a Peripheral part 27 Concave shape 30 Final top 31 Mold 32 Lower mold 34 Draw mold 35 Medium mold

Claims (2)

弾性機能を有する材料により構成され、外周部により接合された2つの光学面で構成される光学部、および前記光学部と同一材料で光学部と一体的に構成される周辺部を有する眼内レンズの製造方法において、前記光学部および、光学部と同一材料で一体的に構成される周辺部の最終形状より大きな形状に形成する第1工程、前記同一材料で一体化した周辺部に対して前記光学部の光軸方向に略一致する方向に弾性変形範囲内で加圧する第2工程、前記加圧状態で最終形状に切断加工を行う第3工程を含むことを特徴とする眼内レンズの製造方法。  An intraocular lens having an optical part composed of two optical surfaces made of a material having an elastic function and joined by an outer peripheral part, and a peripheral part made of the same material as the optical part and integrally formed with the optical part In the manufacturing method, the first step of forming the optical part and a shape larger than the final shape of the peripheral part integrally formed of the same material as the optical part, the peripheral part integrated with the same material Manufacturing of an intraocular lens, comprising: a second step of applying pressure within an elastic deformation range in a direction substantially coincident with the optical axis direction of the optical unit; and a third step of cutting into a final shape in the pressurized state. Method. 外周部により接合された2つの光学面で構成された光学部、または前記光学部と同一材料で光学部と一体的に構成される周辺部を有する眼内レンズの製造方法において、前記2つの光学面のうち一方を形成する第1の型部材、弾性機能を有する材料で構成され前記外周部を形成する第2の型部材、もう一方の光学面を形成する第3の型部材を用い、第2の型部材を前記光学部の光軸に略一致する方向に加圧して弾性変形させる工程を含むことを特徴とする眼内レンズの製造方法。  In the method of manufacturing an intraocular lens having an optical part composed of two optical surfaces joined by an outer peripheral part, or a peripheral part integrally formed with the optical part using the same material as the optical part, the two optical A first mold member that forms one of the surfaces, a second mold member that is formed of an elastic material and forms the outer peripheral portion, and a third mold member that forms the other optical surface, A method of manufacturing an intraocular lens, comprising: pressing the mold member 2 in a direction substantially coinciding with the optical axis of the optical unit to elastically deform the mold member.
JP16992198A 1998-06-17 1998-06-17 Manufacturing method of intraocular lens Expired - Fee Related JP3801781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16992198A JP3801781B2 (en) 1998-06-17 1998-06-17 Manufacturing method of intraocular lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16992198A JP3801781B2 (en) 1998-06-17 1998-06-17 Manufacturing method of intraocular lens

Publications (2)

Publication Number Publication Date
JP2000005203A JP2000005203A (en) 2000-01-11
JP3801781B2 true JP3801781B2 (en) 2006-07-26

Family

ID=15895429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16992198A Expired - Fee Related JP3801781B2 (en) 1998-06-17 1998-06-17 Manufacturing method of intraocular lens

Country Status (1)

Country Link
JP (1) JP3801781B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5128308B2 (en) * 2008-02-20 2013-01-23 Hoya株式会社 Intraocular lens manufacturing method

Also Published As

Publication number Publication date
JP2000005203A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US5567365A (en) Method of producing repositionable intraocular lenses
AU2001238479B2 (en) Intraocular lens manufacturing process
US4842599A (en) Prosthetic cornea and method of implantation therefor
US4737322A (en) Intraocular lens structure with polyimide haptic portion and methods for fabrication
US4261065A (en) Artificial intraocular lens with forward-positioned optics
KR100438477B1 (en) Intraocular lenses and process for producing molded-in type intraocular lenses
CN1479598A (en) Iris fixed introcular lens
US20060001186A1 (en) IOL and method of manufacturing an IOL
EP3263069B1 (en) Intraocular lens
EP1882461A1 (en) Intraocular lens
JPH09507183A (en) Manufacturing method of intraocular implant with soft lens
JPH0514580B2 (en)
JP2007523720A (en) Foldable single intraocular lens
CZ282355B6 (en) Implantable ophthalmic lens, process of its production and a mould for making the same
MXPA01012655A (en) Improved scleral prosthesis for treatment of presbyopia and other eye disorders.
JPH02501A (en) Molded form and method and device for molding article
JP3801781B2 (en) Manufacturing method of intraocular lens
EP0329598A2 (en) Flexible contact lens for enhanced movement on the eye
KR102503560B1 (en) implantable ophthalmic implants
EP1358858A1 (en) Anterior chamber phakic lens
JP6708653B2 (en) Device and method for manufacturing an intraocular lens
GB2180160A (en) Self-centering artificial intraocular lens
GB2163653A (en) Dry artificial intraocular lenses and method for their surgical implantation
JP3636850B2 (en) Intraocular lens
JP2839255B2 (en) Method for producing balloon body for intraocular lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees