JP3801295B2 - Tunnel segment connection structure - Google Patents

Tunnel segment connection structure Download PDF

Info

Publication number
JP3801295B2
JP3801295B2 JP05877197A JP5877197A JP3801295B2 JP 3801295 B2 JP3801295 B2 JP 3801295B2 JP 05877197 A JP05877197 A JP 05877197A JP 5877197 A JP5877197 A JP 5877197A JP 3801295 B2 JP3801295 B2 JP 3801295B2
Authority
JP
Japan
Prior art keywords
segment
main body
connector
dovetail groove
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05877197A
Other languages
Japanese (ja)
Other versions
JPH10153098A (en
Inventor
勝彦 向野
和則 辻本
俊博 土山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP05877197A priority Critical patent/JP3801295B2/en
Publication of JPH10153098A publication Critical patent/JPH10153098A/en
Application granted granted Critical
Publication of JP3801295B2 publication Critical patent/JP3801295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トンネル周方向に隣接させて組付けられる第1セグメント本体及び第2セグメント本体の夫々の突合せ部に、当該夫々の突合せ部を突合わせた状態で対向するよう、第1被挟持部を有する第1アリ溝部および第2被挟持部を有する第2アリ溝部を個別に設けると共に、トンネル軸芯方向端部から前記第1アリ溝部および第2アリ溝部に各別に嵌入自在であり、互いの間隔が嵌入方向前方側ほど広く構成してある第1挟持部と第2挟持部とを両側に備えた連結具を、前記第1アリ溝部および第2アリ溝部に挿入することで、前記第1挟持部が前記第1被挟持部に当接し、前記第2挟持部が前記第2被挟持部に当接して、前記夫々の突合せ部を相対的に近接させるトンネル用セグメントの連結構造に関する。
【0002】
【従来の技術】
従来、この種のトンネル用セグメント連結具(以下「連結具」という)は、トンネル周方向に隣接するトンネル用セグメント本体どうしを連結する際に用いる。つまり、既にトンネル周方向に構築された環状のセグメントリングに対して、前記トンネル用セグメント本体を順次連結していく場合に、トンネル周方向に隣接するセグメント本体どうしを引付け連結するために前記連結具を用いる。
前記連結具は、非平行な一対の拡大縁部を平板状の胴部で連結した形状を有しており、双方のセグメント本体に形成したアリ溝部に前記一対の拡大縁部が夫々嵌入されることで、双方のセグメント本体を互いに引き付けて連結する。
ここで、トンネル周方向に隣接する二つのトンネル用セグメント本体のうち、先に取付けるものを第1セグメント本体とし、後から取付けるものを第2セグメント本体とすると共に、既に構築され、前記第1セグメント本体および前記第2セグメント本体を共に当接させるセグメントを既設セグメント本体とする。
前記既設セグメント本体に対して前記第1セグメント本体および前記第2セグメント本体を連結するには、前記連結具の使用態様としていわゆる先付方式を用いる。
当該先付方式は、前記連結具の一方の拡大縁部を、予め前記第1セグメント本体の第1アリ溝部に対して前記既設セグメント本体の側から挿入しておく方式である。つまり、前記連結具を装着した状態で前記既設セグメント本体に連接された前記第1セグメント本体に対し、前記第2セグメント本体を押し付けて連結するものである。
【0003】
【発明が解決しようとする課題】
しかし、上記従来の連結具を使用した連結方式によれば、次のような問題があった。
前記先付方式の場合には、所定の引付け力を確実に発生させることが困難であった。つまり、前記第2セグメント本体を前記既設セグメント本体に押付ける際には、通常、前記連結具は、前記第2セグメント本体の押付けによって前記既設セグメント本体に当接させられ、前記第2セグメント本体の押込みが完了した状態では、前記第1セグメント本体および前記第2セグメント本体に加えて、前記連結具も前記既設セグメント本体に当接していることとなる。
本構成の場合には、前記第1セグメント本体の第1アリ溝部と前記第2セグメント本体の第2アリ溝部との間隔と、前記連結具の拡大縁部どうしの間隔つまり前記胴部の間隔とは一致していることが望ましいが、通常、幾分の誤差が生じている。特に、前記胴部の間隔が広過ぎる場合には、前記第1セグメント本体と前記第2セグメント本体とを十分に引付けることができなくなる。
また、前記第2セグメント本体を取付けた後に、当該引付け力を測定することも困難である。
このように、上記従来の連結具を用いた連結方式においては、セグメント本体どうしの連結作業の確実性が損なわれるおそれがあって未だ改善の余地があった。
【0004】
本発明の目的は、このような従来技術の欠点を解消し、トンネル周方向に連結する二つのセグメント本体どうしの連結を確実ならしめるトンネル用セグメントの連結構造を提供することにある。
【0005】
【課題を解決するための手段】
(構成1)
この目的を達成するための本発明に係るセグメント連結構造は、請求項1に記載したごとく、前記連結具の嵌入方向後端に、トンネル軸芯方向に隣接する既設セグメント本体に接当可能で、前記第2セグメント本体を前記既設セグメント本体に押し付ける際に、前記既設セグメント本体から一定以上の荷重を受けた場合に変形可能な突出部材を設けると共に、前記第1被挟持部の延出方向を前記突合せ部に対して平行とし、前記第2被挟持部の延出方向を前記連結具の挿入方向奥側ほど前記突合せ部から離間させた点に特徴を有する。
(作用・効果)
本構成のごとく、前記突出部材を備えたセグメント連結構造によれば、前記第2セグメント本体を、前記既設セグメント本体の側に押しつけていく際に、当該第2セグメント本体と前記連結具との当接開始位置を、前記第2セグメント本体の挿入方向手前側に設定することができる。つまり、前記当接開始位置を、前記第1セグメント本体の第1アリ溝部の挿入方向奥側に設定することができる。
このことは、例えば、前記連結具における第1挟持部と第2挟持部との間隔に比べて、挟持すべき前記第1被挟持部と前記第2被挟持部との間隔が小さい場合に有効である。この場合、前記連結具は、前記第2セグメント本体に押される際に、前記突出部材が前記既設セグメント本体に当接する位置で一旦停止する。この状態で、前記第2セグメント本体は未だ前記既設セグメント本体に当接していない。さらに前記第2セグメント本体が押込まれ、当該第2セグメント本体による押付け力が前記突出部材の変形に必要な力を上回ると、前記連結具は双方のアリ溝部間の寸法誤差を吸収すべく、前記既設セグメントの側に移動する。この時、前記連結具は略一定の引張力で前記第1セグメント本体と前記第2セグメント本体とを引き付けることができる。
以上のごとく、本発明のセグメント連結構造によれば、前記第1・第2アリ溝部あるいは前記連結具自身の製作誤差を一定範囲まで許容しながら、前記セグメント本体どうしを略一定の締結力で連結することができるから、連結部分の信頼性を向上させることができる。
そして、前記連結具を予め装着した第1セグメント本体に前記第2セグメント本体を押付ける場合には、前記第1被挟持部の延出方向が前記突合せ部と平行であるから、前記連結具は、前記第1セグメント本体の突合せ部から一定幅の胴部を突出させた状態で前記既設セグメント本体の側に移動する。つまり、この移動の際に、前記連結具は前記既設セグメント本体に対して横擦れを生じない。
前記突出部は、前記連結具の移動に際して、その一端を前記既設セグメント本体に当接させた状態で圧縮変形するが、上述のごとく前記連結具の移動に横擦れが生じないから前記突出部に曲げ力が加わることがなく、前記突出部を変形の初期状態から完了までのあいだ常に一定方向に圧縮変形させることができる。
この結果、前記突出部に所望の圧縮抵抗力を発揮させることができ、前記連結具の動作が確実となって前記セグメント本体どうしに作用する締結力をより最適に設定することができる。
【0006】
(構成2)
本発明のセグメント連結構造は、請求項2に記載したごとく、前記突出部材を中空の略円筒形状を有する部材で構成すると共に前記第2挟持部の端部に設けることができる。
(作用・効果)
本構成であれば、前記突出部材を極めて簡単に構成できながら、圧縮変形する際には変形過程の大部分に亘って略一定の圧縮抵抗力を発生させ得るという変形特性を有する。この結果、前記突出部材の圧縮ストロークを大きく設定できることができ、前記連結具の製作誤差等を比較的大きな範囲まで許容することができる。
また、前記突出部材の構成が簡単であるから、当該部材の設計・製作が容易になる。
【0007】
【発明の実施の形態】
以下に本発明の実施例を図面に基づいて説明する。
(連結具およびアリ溝部)
本発明のトンネル用セグメントの連結構造の概要を図1に示すと共に、本発明に用いる連結具Rの外観を図2および図3に示す。
図1に示すごとく、本実施形態においては、連結するトンネル用セグメントとしてダクタイルセグメントを用いた例を示す。ただし、この他に、コンクリートセグメント、あるいは、スチールセグメントを用いることも可能である。
前記連結具Rは略矩形状であって、当該連結具Rの挿入方向に沿った両縁部には第1挟持部1および第2挟持部2が形成されていると共に、これら第1挟持部1および第2挟持部2は平板状の胴部3で連接されている。特に、第2挟持部2は、第2セグメント本体S2に挿入されて双方のセグメント本体S1,S2どうしを引付け連結できるよう前記連結具Rの挿入方向奥側ほど広がった状態に形成してある。
本発明のトンネル用セグメントの連結構造を用いれば、単にセグメント本体Sを連結位置に押付けるだけで、セグメント本体Sどうしが連結され、トンネル内壁を構築することができる。よって、トンネルの内部空間側の面を構成するセグメント本体Sの内側面には、従来のセグメント本体のように、連結用のボルトポケットを多数設ける必要がなく、内側面を比較的円滑な面に構成して、二次覆工等の手間を省略することができる。
【0008】
本発明に係る連結具Rは、既設セグメント本体Sに接当可能な突出部材Tをその嵌入方向後端に備えている。突出部材Tは、前記第2挟持部2の端部に設け、その突出方向は前記第1挟持部1の延出方向と平行に設定してある。前記突出部材Tの取付けは、図2のごとく前記第2挟持部2の後端に凹部4を形成して前記突出部材Tを嵌入固定するものであってもよいし、接着剤等を用いて行ってもよい。
図2に示すごとく、前記突出部材Tは、例えば中空の円筒部材で構成する。前記突出部材Tは、前記連結具Rが所定の押圧力で前記既設セグメント本体Sに押し付けられる際に図3に示すごとく面外変形可能である。つまり、当該突出部材Tが圧縮変形することで前記連結具Rは前記既設セグメント本体Sの側に移動し、後述するごとく、前記第1セグメント本体S1と前記第2セグメント本体S2とを略一定力で引付け連結する。
【0009】
(連結操作)
前記既設セグメント本体Sに対して前記第1セグメント本体S1および前記第2セグメント本体S2を取り付ける際には、前記連結具Rを予め前記第1セグメント本体S1に取り付けておく先付方式を用いる。これらの取付け態様を図4に示す。
図4において、Sa,Sb,Scで示したセグメント本体は、前記既設セグメント本体Sを示す。これら三つのセグメント本体は、先ずSaが組み立てられ、その後Sb或いはScが組み立てられたものである。つまり、既設セグメント本体Sbおよび既設セグメント本体Scには、突合せ面5と平行な第1被挟持部m1を設けてあり、夫々の第1被挟持部m1に予め連結具Rを取付けた状態で、前記既設セグメント本体Saに近接・連結が行われるのである。
【0010】
これら三つの既設セグメント本体Sa,Sb,Scに対し、第1セグメント本体S1および第2セグメント本体S2が連結される。
前記第1セグメント本体S1のうち、前記既設セグメント本体Saの側に設けるアリ溝部は、突合せ面5に平行な第1被挟持部m1を有する第1アリ溝部M1とする。
前記連結具Rを取付ける際には、図4に示すごとく、前記突出部材Tを設けていない側の第1挟持部1を前記第1アリ溝部M1に挿入し、前記突出部材Tを設けた第2挟持部2は露出させておく。本構成であれば、後で第2セグメント本体S2を押込む際に、前記連結具Rが、前記第1セグメント本体S1の突合せ部から一定幅の胴部3を突出させた状態で前記既設セグメント本体Sの側に移動するとができる。つまり、前記突出部材Tの圧縮方向と前記第2セグメント本体S2の押込み方向とが一致するから、前記第2セグメント本体S2の押込みによって前記連結具Rにこじりが生じず、前記連結具Rが前記既設セグメント本体Sに対して横擦れを生じることもない。このように、前記突出部材Tに曲げ力が加わらなければ、前記突出部材Tの変形が最適な状態でなされ、前記突出部材Tの所期の性能を十分に発揮させることが可能となる。
【0011】
前記連結具Rを用いた前記第1セグメント本体S1と前記第2セグメント本体S2との連結過程を図5(イ)〜(ニ)に示す。
図5(イ)は、既に構築が終了した前記第1セグメント本体S1と、当該第1セグメント本体S1の第1アリ溝部M1に挿入されている前記連結具Rとに対し、前記第2セグメント本体S2を近接させる過程を示している。この過程においては、前記連結具Rと前記第2セグメント本体S2とは未だ当接していない。
前記第2セグメント本体S2の押付けが進み、前記第2アリ溝部M2が前記連結具Rの第2挟持部2に当接し、さらに、両者が当接した状態で前記連結具Rの突出部材Tが前記既設セグメント本体Sに当接した状態を示したのが図5(ロ)である。この状態では、前記第1セグメント本体S1と前記第2セグメント本体S2との間に所定の締結力は未だ発生していない。
さらに前記第2セグメント本体S2を前記既設セグメント本体Sの側に押込むと、前記第2セグメント本体S2の平溝部M2bが、前記連結具Rの第2挟持部2と前記第1セグメント本体S1との間に嵌入される。この嵌入は、前記連結具Rが前記第1セグメント本体S1と前記第2セグメント本体S2とを所定の締結力で引き付けるようになるまで行われる。
当該嵌入が終了した状態を示したのが図5(ハ)であり、この状態では、前記連結具Rの端部のうち前記既設セグメント本体S側の端部が、前記第2セグメント本体S2の同じく既設セグメント側の端部よりも引退しており、前記突出部材Tの先端部は前記第2セグメント本体S2の端部より突出している。
(ハ)の状態になる以前においては、前記突出部材Tに面外圧縮変形は生じない。つまり、前記第2挟持部2が突合せ面5と非平行に構成してあるから、前記第2セグメント本体S2を前記既設セグメント本体Sの側に押付ける力の大部分は、両セグメント本体S1,S2どうしを引付けるための分力となる。このため、前記連結具Rを前記既設セグメント本体Sの側に押付ける分力が、前記突出部材Tを面外変形させるのに必要な力にまで高まっていないからである。
(ハ)の状態になった時点で、連結具Rと第2セグメント本体S2との間には所定の締結力が発生する。よって、(ハ)の状態から第2セグメント本体S2をさらに押し込んでも、連結具Rと第2セグメント本体S2との相対位置は殆ど変化しない。つまり、当該押し込みの際には、連結具Rと第2セグメント本体S2とが略一体化した状態で既設セグメント本体Sに近接し、その際、前記突出部材Tが一定の変形抵抗力を発揮させて圧縮変形する。前記第1セグメント本体S1と前記第2セグメント本体S2との引付力も略一定に保たれる。
図5(ニ)は、第2セグメント本体S2の押し込みが終了した状態である。この状態の突出部材Tは、さらに圧縮変形し得る余裕を残しているか、或いは、ちょうど圧縮変形が終了した状態であることが必要である。具体的には、前記突出部材Tが最大限に圧縮変形した状態での前記突出部材Tの突出長さをhとすると、第2セグメント本体S2の端部に対する連結具Rの端部の引退長さが、長さhよりも長いことが必要である。つまり、突出部材Tが完全に圧縮変形された時点で前記第2セグメント本体S2が未だ前記既設セグメント本体Sに当接していない場合には、突出部材Tが障害となって、それ以上前記第2セグメント本体S2を前記既設セグメント本体Sに密着させることが不可能になるからである。
【0012】
ここで、前記突出部材Tが圧縮変形する状況について説明する。
例えば、図6に示した形状の筒部材5が有する変形特性を図7に示す。当該筒部材5は両端部が開口した単なる円筒部材である。前記筒部材5を自身の軸芯X方向に圧縮すると、初期の段階すなわち原点0からa点までにおいては、前記筒部材5は前記軸芯X方向に圧縮変形する。圧縮荷重Pがa点に達した段階で、当該筒部材5は面外変形を生じ始める。その後は、a点からb点に示すごとくしばらく押圧を続けても前記筒部材5に加わる荷重Pは増加せず面外変形のみが進行する。b点に達すると前記面外変形は座屈に転じ、前記筒部材5に加わる荷重Pはc点までやや急激に低下する。c点で前記筒部材5の変形は略終了し、この後、押圧を続けても圧縮変形は生じず荷重Pのみが増加する。
本発明においては、前記筒部材5が有する変形特性のうち、a点からb点までの特性を利用する。つまり、前記第2セグメント本体S2を押込む荷重Pのうち前記連結具Rを前記既設セグメント本体Sの側に押付ける分力が上記a点からb点までの間の荷重Pと等しいとき、前記両セグメント本体S1,S2どうしを引付けるための分力が所定の荷重となるように前記第1挟持部1のテーパー角度等を設定する。
ただし、本実施形態においては図2あるいは図3に示すごとく、少なくとも中央部に鍔部7を設けた突出部材Tを使用する。本構成であれば、上記筒部材5を二つ連接した形状となって、一定の変形抵抗を発生させ得る変形ストロークを長く確保することができる。この結果、前記連結具Rが比較的大きな製作誤差を有する場合でも、当該製作誤差を許容して略一定の引付力で前記両セグメント本体S1,S2どうしを連結することができる。
尚、前記突出部材Tは、アルミニウム・銅・鉛、あるいは薄肉の鋼材など比較的変形し易い材料を用いて形成することができる。つまり、これらの材料であれば塑性変形能力が安定しているから、所望の変形性状を有する突出部材Tを容易に得ることができる。
【0013】
上記の過程を経て前記第2セグメント本体S2の押し込みが終了した状態を示したのが図5(ニ)である。
【0014】
前記第1アリ溝部M1に係る平溝部M1bの幅と前記第2アリ溝部M2に係る平溝部M2bの幅との合計幅が、前記連結具Rの胴部3の幅に対して狭い場合には、前記突出部材Tがそれほど圧縮変形しない状態で双方のセグメント本体S1,S2どうしの連結が終了する。
図8は、前記突出部材Tが殆ど圧縮変形しない状態を示す例であり、これは、双方の平溝部M1b,M2bの合計幅が、前記胴部3の間隔に対して狭い場合の許容限界を示すものである。
逆に、前記突出部材Tが完全に圧縮変形して連結が終了する例を示したのが図9である。これは、双方の平溝部M1b,M2bの合計幅が、前記胴部3の幅に対して比較的広い場合の許容限界を示すものである。
【0015】
従来の先付方式においては、前記双方の平溝部M1b,M2bの合計幅と前記胴部3の幅とが一致していない場合、双方のセグメント本体S1,S2どうしを適切に連結することは不可能であった。例えば、前記双方の平溝部M1b,M2bの合計幅が狭い場合には、前記連結具Rは双方の第1・第2アリ溝部M1,M2の内部でガタついたまま放置されるという不都合が生じていた。
しかし、図8および図9に示した例から明らかなごとく、本発明の連結具Rを用いれば、前記第1・第2アリ溝部M1,M2あるいは前記連結具R自身の製作誤差を一定範囲まで許容しながら、前記第1・第2セグメント本体S1,S2どうしを略一定の締結力で連結することができる。
【0016】
尚、以上の説明は、主に、前記第1・第2セグメント本体S1,S2が有するアリ溝部M1,M2のうち、既設セグメント本体Saの側にあるアリ溝部M1,M2に係る連結過程についてのものであるが、前記既設セグメントリングSaとは反対側のアリ溝部M1,M2についても締結要領は同じである。
ただし、当該反対側のアリ溝部M1,M2については、前記第1セグメント本体S1には、突合せ面5とは非平行な第2アリ溝部M2を設け、前記第2セグメント本体S2には、突合せ面5と平行な第1アリ溝部M1を設けるほうが、連結具Rの挿入作業が容易となる。
また、前記既設セグメント本体Saとは反対側に取付ける連結具Rは、次に連結されるセグメント本体Sの側面を利用して押込むものであってもよいし、図4の既設セグメント本体Saと既設セグメント本体Sbとの間に取付けた連結具のように、続くセグメント本体S2を連結する際には、既に所定の押込み力で締結されているものであってもよい。
【0017】
(連結具等の製作許容誤差)
前記連結具R等が許容し得る製作誤差の範囲は、上述したごとく図8の例と図9の例とに亘る範囲である。
説明を簡単にするために、前記連結具Rに製作誤差はないものとし、前記第1セグメント本体S1のアリ溝部M1のテーパー角度にも誤差はないものとする。つまり、製作誤差は、前記第1セグメント本体S1および前記第2セグメント本体S2の夫々において、前記平溝部M1b,M2bの幅のみに生じると仮定する。
まず、図8に示した例のごとく、前記連結具Rの胴部3の幅と比較して夫々の平溝部M1b,M2bの合計幅が狭い場合について検討する。この場合、前記胴部3の幅については、特に、前記突出部材Tが設けられた側の端部における間隔をD0 とする。一方、前記平溝部M1b,M2bどうしの合計幅については、前記既設セグメント本体Sに当接する端部における合計幅をDとする。
前記合計幅Dと前記間隔D0 との差は、前記突出部材Tの突出長さHと、前記第2挟持部2が連結具Rの挿入方向となすテーパー角度とから求めることができる。
図8に示すごとく、前記テーパー角度をL:1とすると、
前記合計幅Dが採り得る最小値Dmin は、
min = D0 − H/L − ▲1▼
である。
一方、図9に示した例のごとく、前記合計幅Dが広い場合は、前記突出部材Tが最大に圧縮変形を受けた場合の押込み方向の長さをhとすると、
max = D0 − h/L − ▲2▼
である。
よって、式▲1▼および式▲2▼から、前記合計幅Dの採り得る範囲は、
max − Dmin = (H−h)/L − ▲3▼
となる。
このように、本発明の連結具Rを用いる場合には、前記第1アリ溝部M1・前記第2アリ溝部M2の製作誤差、あるいは、前記連結具R自身の製作誤差を一定の範囲内で許容することができる。これは、前記連結具Rの製作誤差が殆ど許容されていなかった従来の連結具Rを用いる場合と比較して、前記第1・第2セグメント本体S1,S2の生産性を向上させるものである。
【0018】
以上のごとく、本発明のトンネル用セグメントの連結構造によれば、その構造が極めて簡単でありながら、前記第1・第2アリ溝部M1,M2あるいは前記連結具Rの製作誤差等を一定範囲まで許容しつつ、前記第1・第2セグメント本体S1,S2どうしを略一定の締結力で連結することができ、信頼性の高い連結部分を得ることができる。
【0019】
〔別実施形態〕
〈1〉 上記実施形態では前記突出部材Tは前記第1挟持部1のみに設けたが、前記第2挟持部2の側にも設けることができる。
この場合には、夫々の突出部材Tを圧縮変形させるのに必要な荷重の合計が、上記実施形態における単一の突出部材Tを圧縮変形させるのに必要な荷重と等しくなるようにする。
【0020】
尚、特許請求の範囲の項に、図面との対照を便利にするために符号を記すが、該記入により本発明は添付図面の構成に限定されるものではない。
【図面の簡単な説明】
【図1】本発明のトンネル用セグメントの連結構造の概要を示す説明図
【図2】本発明に係る連結具を示す平面図
【図3】変形途中の突出部材材を示す説明図
【図4】第2セグメント本体を連結する過程を示す説明図
【図5】第2セグメント本体を連結する過程の詳細を示す説明図
【図6】筒部材を示す斜視図
【図7】筒部材を圧縮変形させる際の圧縮変形量と荷重との関係を示す説明図
【図8】連結部分に製作誤差がある場合の連結状態の一例を示す説明図
【図9】連結部分に製作誤差がある場合の連結状態の他の一例を示す説明図
【符号の説明】
1 第1挟持部
2 第2挟持部
M1 第1アリ溝部
M2 第2アリ溝部
R 連結具
S1 第1セグメント本体
S2 第2セグメント本体
S 既設セグメント本体
T 突出部材
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a first sandwiched portion so as to face the respective butted portions of the first segment body and the second segment body assembled adjacent to each other in the circumferential direction of the tunnel in a state where the butted portions are butted. The first dovetail groove portion having the second dovetail groove portion and the second dovetail groove portion having the second sandwiched portion are separately provided, and can be separately fitted into the first dovetail groove portion and the second dovetail groove portion from the end portion in the tunnel axial direction. By inserting into the first dovetail groove portion and the second dovetail groove portion a connector having a first sandwiching portion and a second sandwiching portion that are configured so that the distance between them is wider toward the front side in the insertion direction, The present invention relates to a tunnel segment connecting structure in which one sandwiching portion abuts on the first sandwiched portion and the second sandwiching portion abuts on the second sandwiched portion so that the respective butted portions are relatively close to each other.
[0002]
[Prior art]
Conventionally, this kind of tunnel segment connector (hereinafter referred to as “connector”) is used when connecting tunnel segment bodies adjacent to each other in the circumferential direction of the tunnel. That is, when the segment body for tunnel is sequentially connected to the annular segment ring already constructed in the tunnel circumferential direction, the connection is made to attract and connect the segment bodies adjacent in the tunnel circumferential direction. Use tools.
The connector has a shape in which a pair of non-parallel enlarged edges are connected by a plate-shaped body, and the pair of enlarged edges are respectively fitted in dovetails formed in both segment bodies. Thus, the two segment main bodies are attracted to each other and connected.
Here, of the two tunnel segment bodies adjacent to each other in the tunnel circumferential direction, the first segment body is attached first, the second segment body is attached later, and the first segment is already constructed. A segment in which the main body and the second segment main body are brought into contact with each other is defined as an existing segment main body.
In order to connect the first segment main body and the second segment main body to the existing segment main body, a so-called leading method is used as a usage mode of the connector.
The tipping method is a method in which one enlarged edge portion of the connector is inserted in advance from the side of the existing segment body into the first dovetail portion of the first segment body. That is, the second segment main body is pressed and connected to the first segment main body connected to the existing segment main body in a state where the connecting tool is mounted.
[0003]
[Problems to be solved by the invention]
However, according to the connection method using the conventional connector, there are the following problems.
In the case of the leading method, it is difficult to reliably generate a predetermined attractive force. That is, when the second segment main body is pressed against the existing segment main body, the connecting tool is normally brought into contact with the existing segment main body by pressing the second segment main body, and the second segment main body In the state where the push-in is completed, in addition to the first segment body and the second segment body, the connector is also in contact with the existing segment body.
In the case of this configuration, the interval between the first dovetail portion of the first segment body and the second dovetail portion of the second segment body, the interval between the enlarged edge portions of the connector, that is, the interval between the trunk portions, Are preferably matched, but usually there is some error. In particular, when the interval between the body portions is too wide, the first segment body and the second segment body cannot be sufficiently attracted.
It is also difficult to measure the attractive force after the second segment body is attached.
Thus, in the connection method using the conventional connector, there is a possibility that the certainty of the connection work between the segment main bodies may be impaired, and there is still room for improvement.
[0004]
An object of the present invention is to provide a connecting structure for a tunnel segment that eliminates the disadvantages of the prior art and ensures the connection between two segment bodies that are connected in the circumferential direction of the tunnel.
[0005]
[Means for Solving the Problems]
(Configuration 1)
In order to achieve this object, the segment connection structure according to the present invention, as described in claim 1, can be brought into contact with the existing segment main body adjacent to the tunnel axial direction at the rear end in the insertion direction of the connector, When pressing the second segment main body against the existing segment main body, a projecting member is provided that can be deformed when receiving a load of a certain level or more from the existing segment main body, and the extending direction of the first sandwiched portion is It is characterized in that it is parallel to the abutting portion, and the extending direction of the second sandwiched portion is separated from the abutting portion toward the back in the insertion direction of the connector.
(Action / Effect)
As in this configuration, according to the segment connection structure provided with the projecting member, when the second segment body is pressed against the existing segment body, the contact between the second segment body and the connection tool is reduced. The contact start position can be set on the front side in the insertion direction of the second segment body. That is, the contact start position can be set on the back side in the insertion direction of the first dovetail portion of the first segment body.
This is effective when, for example, the interval between the first sandwiched portion and the second sandwiched portion to be sandwiched is smaller than the spacing between the first sandwiched portion and the second sandwiched portion in the connector. It is. In this case, when the connector is pushed by the second segment body, the connector temporarily stops at a position where the projecting member comes into contact with the existing segment body. In this state, the second segment main body has not yet contacted the existing segment main body. Further, when the second segment main body is pushed in and the pressing force by the second segment main body exceeds the force necessary for the deformation of the protruding member, the connecting tool absorbs the dimensional error between both dovetail portions, Move to the existing segment. At this time, the connector can attract the first segment body and the second segment body with a substantially constant tensile force.
As described above, according to the segment connection structure of the present invention, the segment main bodies are connected with a substantially constant fastening force while allowing a manufacturing error of the first and second dovetail grooves or the connector itself to a certain range. Therefore, the reliability of the connecting portion can be improved.
When the second segment main body is pressed against the first segment main body on which the connector is mounted in advance, the extending direction of the first sandwiched portion is parallel to the butting portion. The first segment main body moves toward the existing segment main body in a state in which a body portion having a constant width is protruded from the butting portion of the first segment main body. That is, during this movement, the connector does not rub against the existing segment body.
The protrusion is compressed and deformed in a state in which one end thereof is in contact with the existing segment main body when the connecting tool is moved. However, as described above, since the movement of the connecting tool is not laterally rubbed, No bending force is applied, and the projecting portion can be always compressed and deformed in a certain direction from the initial state to the completion of the deformation.
As a result, a desired compressive resistance force can be exerted on the projecting portion, the operation of the connector is ensured, and the fastening force acting between the segment bodies can be set more optimally.
[0006]
(Configuration 2)
As described in claim 2, the segment connection structure of the present invention can be configured such that the projecting member is formed of a hollow member having a substantially cylindrical shape and is provided at an end of the second holding portion.
(Action / Effect)
With this configuration, the projecting member can be configured very simply, but has a deformation characteristic that a substantially constant compressive resistance force can be generated over most of the deformation process when compressively deforming. As a result, the compression stroke of the projecting member can be set large, and the manufacturing error of the connector can be allowed to a relatively large range.
Moreover, since the structure of the said protrusion member is simple, the design and manufacture of the said member become easy.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(Connector and dovetail part)
The outline of the connecting structure of the tunnel segment of the present invention is shown in FIG. 1, and the external appearance of the connector R used in the present invention is shown in FIGS.
As shown in FIG. 1, in this embodiment, an example in which a ductile segment is used as a connecting tunnel segment is shown. However, a concrete segment or a steel segment can also be used in addition to this.
The connector R has a substantially rectangular shape, and a first sandwiching portion 1 and a second sandwiching portion 2 are formed on both edge portions along the insertion direction of the connector R, and these first sandwiching portions are formed. 1 and the 2nd clamping part 2 are connected by the flat trunk | drum 3. FIG. In particular, the second clamping part 2 is formed in a state of being expanded toward the back in the insertion direction of the connector R so that the two segment main bodies S1 and S2 can be attracted and connected to each other by being inserted into the second segment main body S2. .
If the connection structure of the segment for tunnels of this invention is used, the segment main bodies S will be connected only by pressing the segment main body S to a connection position, and a tunnel inner wall can be constructed | assembled. Therefore, it is not necessary to provide a large number of bolt pockets for connection on the inner side surface of the segment main body S constituting the surface on the inner space side of the tunnel, unlike the conventional segment main body, and the inner side surface becomes a relatively smooth surface. By configuring, it is possible to omit the troubles such as secondary lining.
[0008]
The connector R according to the present invention includes a protruding member T that can contact the existing segment body S at the rear end in the insertion direction. The projecting member T is provided at the end of the second clamping part 2, and the projecting direction is set parallel to the extending direction of the first clamping part 1. The protrusion member T may be attached by forming a recess 4 at the rear end of the second sandwiching portion 2 and inserting and fixing the protrusion member T as shown in FIG. 2, or using an adhesive or the like. You may go.
As shown in FIG. 2, the projecting member T is formed of, for example, a hollow cylindrical member. The protruding member T can be deformed out of plane as shown in FIG. 3 when the connector R is pressed against the existing segment body S with a predetermined pressing force. That is, when the projecting member T is compressed and deformed, the connector R moves toward the existing segment main body S, and as described later, the first segment main body S1 and the second segment main body S2 are applied with a substantially constant force. Attach and connect.
[0009]
(Concatenation operation)
When attaching the first segment main body S1 and the second segment main body S2 to the existing segment main body S, a leading method is used in which the connector R is attached to the first segment main body S1 in advance. These attachment modes are shown in FIG.
In FIG. 4, the segment main bodies indicated by Sa, Sb, and Sc indicate the existing segment main bodies S. In these three segment bodies, Sa is first assembled, and then Sb or Sc is assembled. That is, the existing segment main body Sb and the existing segment main body Sc are provided with the first sandwiched portions m1 parallel to the abutting surface 5, and in a state in which the connecting tool R is attached to each first sandwiched portion m1 in advance. The proximity / connection is performed to the existing segment body Sa.
[0010]
The first segment body S1 and the second segment body S2 are connected to the three existing segment bodies Sa, Sb, Sc.
The dovetail part provided in the said existing segment main body Sa side among the said 1st segment main body S1 is made into the 1st dovetail groove part M1 which has the 1st to-be-clamped part m1 parallel to the butt | matching surface 5. FIG.
When attaching the connector R, as shown in FIG. 4, the first clamping part 1 on the side where the protruding member T is not provided is inserted into the first dovetail groove part M1, and the protruding member T is provided. 2 The clamping part 2 is exposed. If it is this structure, when pushing in 2nd segment main body S2 later, the said connecting tool R will be the said existing segment in the state which made the trunk | drum 3 of fixed width protrude from the butt | matching part of said 1st segment main body S1. It can be moved to the main body S side. That is, since the compression direction of the projecting member T and the pushing direction of the second segment body S2 coincide with each other, the pushing of the second segment body S2 does not cause the connecting tool R to be twisted, and the connecting tool R is There is no side rubbing against the existing segment body S. Thus, if no bending force is applied to the protruding member T, the protruding member T is deformed in an optimal state, and the expected performance of the protruding member T can be sufficiently exhibited.
[0011]
The connection process of the first segment body S1 and the second segment body S2 using the connector R is shown in FIGS.
FIG. 5 (a) shows that the second segment body is compared with the first segment body S1 that has already been constructed and the connector R that is inserted into the first dovetail groove M1 of the first segment body S1. The process of making S2 approach is shown. In this process, the connector R and the second segment body S2 are not yet in contact with each other.
When the pressing of the second segment body S2 proceeds, the second dovetail groove portion M2 comes into contact with the second sandwiching portion 2 of the connector R, and the protruding member T of the connector R is in a state where both are in contact with each other. FIG. 5B shows a state in which the existing segment main body S is in contact with the existing segment main body S. In this state, a predetermined fastening force has not yet occurred between the first segment body S1 and the second segment body S2.
Further, when the second segment main body S2 is pushed into the existing segment main body S, the flat groove M2b of the second segment main body S2 is connected to the second sandwiching portion 2 of the connector R and the first segment main body S1. It is inserted between. This insertion is performed until the connector R comes to attract the first segment body S1 and the second segment body S2 with a predetermined fastening force.
FIG. 5 (c) shows the state where the insertion has been completed. In this state, the end of the connecting segment R on the side of the existing segment main body S is the end of the second segment main body S2. Similarly, it is retracted from the end of the existing segment side, and the tip of the protruding member T protrudes from the end of the second segment body S2.
Before the state of (c), out-of-plane compression deformation does not occur in the protruding member T. That is, since the second sandwiching portion 2 is configured to be non-parallel to the abutting surface 5, most of the force for pressing the second segment body S2 against the existing segment body S is the two segment bodies S1, S1. It becomes a component for attracting S2. For this reason, it is because the component force which presses the said connection tool R to the said existing segment main body S side has not increased to the force required in order to carry out the out-of-plane deformation of the said protrusion member T.
When the state (c) is reached, a predetermined fastening force is generated between the connector R and the second segment body S2. Therefore, even if the second segment main body S2 is further pushed in from the state (c), the relative position between the connector R and the second segment main body S2 hardly changes. That is, when the push-in is performed, the connecting tool R and the second segment main body S2 are close to the existing segment main body S in a substantially integrated state, and at that time, the projecting member T exhibits a certain deformation resistance force. To compress and deform. The attractive force between the first segment body S1 and the second segment body S2 is also kept substantially constant.
FIG. 5D shows a state in which the second segment body S2 has been pushed. The projecting member T in this state needs to have a margin for further compressive deformation or be in a state where the compressive deformation has just ended. Specifically, when the projecting length of the projecting member T in the state where the projecting member T is compressed and deformed to the maximum is h, the retraction length of the end portion of the connector R with respect to the end portion of the second segment body S2. However, it needs to be longer than the length h. That is, when the projecting member T is completely compressed and deformed, if the second segment body S2 is not yet in contact with the existing segment body S, the projecting member T becomes an obstacle, and the second This is because it becomes impossible to bring the segment body S2 into close contact with the existing segment body S.
[0012]
Here, the situation where the protruding member T is compressed and deformed will be described.
For example, the deformation characteristics of the cylindrical member 5 having the shape shown in FIG. 6 are shown in FIG. The cylindrical member 5 is a simple cylindrical member having both ends opened. When the cylinder member 5 is compressed in its own axis X direction, the cylinder member 5 is compressed and deformed in the axis X direction at the initial stage, that is, from the origin 0 to the point a. When the compressive load P reaches the point a, the cylindrical member 5 starts to be deformed out of plane. Thereafter, as shown from point a to point b, even if pressing is continued for a while, the load P applied to the cylindrical member 5 does not increase, and only out-of-plane deformation proceeds. When the point b is reached, the out-of-plane deformation turns into a buckling, and the load P applied to the cylindrical member 5 decreases abruptly to the point c. At the point c, the deformation of the cylindrical member 5 is almost completed, and after that, even if the pressing is continued, no compression deformation occurs and only the load P increases.
In the present invention, among the deformation characteristics of the cylindrical member 5, the characteristics from point a to point b are used. That is, when the component force that presses the connector R against the existing segment main body S side out of the load P for pressing the second segment main body S2 is equal to the load P between the points a and b, The taper angle or the like of the first clamping unit 1 is set so that the component force for attracting the segment main bodies S1 and S2 is a predetermined load.
However, in this embodiment, as shown in FIG. 2 or FIG. 3, a protruding member T having a flange 7 at least in the center is used. If it is this structure, it becomes the shape which connected the said cylindrical member 5 two, and can ensure long deformation stroke which can generate | occur | produce a fixed deformation resistance. As a result, even when the connector R has a relatively large manufacturing error, the segment main bodies S1 and S2 can be connected to each other with a substantially constant attractive force while allowing the manufacturing error.
The protruding member T can be formed using a material that is relatively easily deformed, such as aluminum, copper, lead, or a thin steel material. That is, if these materials are used, the plastic deformation ability is stable, and thus the protruding member T having a desired deformation property can be easily obtained.
[0013]
FIG. 5D shows a state in which the pushing of the second segment main body S2 is completed through the above process.
[0014]
When the total width of the width of the flat groove portion M1b related to the first dovetail groove portion M1 and the width of the flat groove portion M2b related to the second dovetail groove portion M2 is narrower than the width of the trunk portion 3 of the connector R The connection between the segment main bodies S1 and S2 is completed in a state where the protruding member T is not so compressed and deformed.
FIG. 8 is an example showing a state in which the projecting member T hardly undergoes compressive deformation. This is an allowable limit when the total width of both the flat groove portions M1b and M2b is narrower than the interval between the body portions 3. It is shown.
On the contrary, FIG. 9 shows an example in which the projecting member T is completely compressed and deformed to complete the connection. This indicates an allowable limit when the total width of both the flat groove portions M1b and M2b is relatively wide with respect to the width of the body portion 3.
[0015]
In the conventional tipping system, when the total width of the two flat groove portions M1b and M2b and the width of the trunk portion 3 do not match, it is not possible to appropriately connect the two segment main bodies S1 and S2. It was possible. For example, when the total width of both of the flat groove portions M1b and M2b is narrow, there arises a disadvantage that the connector R is left loose in both the first and second dovetail groove portions M1 and M2. It was.
However, as is apparent from the examples shown in FIGS. 8 and 9, when the connector R of the present invention is used, the manufacturing error of the first and second dovetail grooves M1 and M2 or the connector R itself is limited to a certain range. While permitting, the first and second segment bodies S1, S2 can be connected with a substantially constant fastening force.
[0016]
In addition, the above description is mainly about the connection process which concerns on the dovetail groove part M1, M2 in the existing segment main body Sa side among the dovetail groove parts M1, M2 which said 1st, 2nd segment main body S1, S2 has. However, the fastening procedure is the same for the dovetail grooves M1 and M2 on the opposite side to the existing segment ring Sa.
However, for the dovetail grooves M1 and M2 on the opposite side, the first segment body S1 is provided with a second dovetail groove M2 that is non-parallel to the butting surface 5, and the second segment body S2 has a butting surface. When the first dovetail groove portion M1 parallel to 5 is provided, the insertion work of the connector R becomes easier.
Further, the connector R attached to the side opposite to the existing segment main body Sa may be pushed in using the side surface of the segment main body S to be connected next, or the existing segment main body Sa in FIG. When connecting the following segment main body S2, like the connection tool attached between the existing segment main bodies Sb, it may be already fastened with a predetermined pushing force.
[0017]
(Manufacturing tolerances for connectors, etc.)
As described above, the range of manufacturing errors that can be allowed by the connector R and the like ranges from the example of FIG. 8 to the example of FIG.
In order to simplify the description, it is assumed that there is no manufacturing error in the connector R, and there is no error in the taper angle of the dovetail groove M1 of the first segment body S1. That is, it is assumed that a manufacturing error occurs only in the width of the flat groove portions M1b and M2b in each of the first segment body S1 and the second segment body S2.
First, as in the example shown in FIG. 8, a case where the total width of the flat groove portions M1b and M2b is narrower than the width of the body portion 3 of the connector R will be considered. In this case, the width of the body part 3, in particular, the distance at the end of the side where the projecting member T is provided to D 0. On the other hand, regarding the total width of the flat groove portions M1b and M2b, let D be the total width at the end portion in contact with the existing segment body S.
The difference between the total width D and the distance D 0 can be obtained from the protruding length H of the protruding member T and the taper angle that the second clamping part 2 makes with the insertion direction of the connector R.
As shown in FIG. 8, when the taper angle is L: 1,
The minimum value Dmin that the total width D can take is:
D min = D 0 -H / L-(1)
It is.
On the other hand, as in the example shown in FIG. 9, when the total width D is wide, the length in the pushing direction when the projecting member T is subjected to the maximum compression deformation is h.
D max = D 0 -h / L-(2)
It is.
Therefore, from the formulas (1) and (2), the possible range of the total width D is
Dmax− Dmin = (H−h) / L− (3)
It becomes.
As described above, when the connector R of the present invention is used, a manufacturing error of the first dovetail groove portion M1 and the second dovetail groove portion M2 or a manufacturing error of the connector R itself is allowed within a certain range. can do. This improves the productivity of the first and second segment bodies S1 and S2 as compared with the case of using the conventional connector R in which the manufacturing error of the connector R is hardly allowed. .
[0018]
As described above, according to the tunnel segment connecting structure of the present invention, the manufacturing error of the first and second dovetail grooves M1 and M2 or the connecting tool R is kept within a certain range, although the structure is very simple. While allowing, the first and second segment bodies S1, S2 can be connected with a substantially constant fastening force, and a highly reliable connection portion can be obtained.
[0019]
[Another embodiment]
<1> In the above embodiment, the protruding member T is provided only on the first clamping unit 1, but can also be provided on the second clamping unit 2 side.
In this case, the total load necessary for compressing and deforming each projecting member T is set equal to the load necessary for compressing and deforming the single projecting member T in the above embodiment.
[0020]
In the claims, reference numerals are used for convenience of comparison with the drawings. However, the present invention is not limited to the configurations of the accompanying drawings.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an outline of a connecting structure of tunnel segments according to the present invention. FIG. 2 is a plan view showing a connecting tool according to the present invention. FIG. 5 is an explanatory view showing the process of connecting the second segment main body. FIG. 5 is an explanatory view showing the details of the process of connecting the second segment main body. FIG. 6 is a perspective view showing the cylindrical member. FIG. 8 is an explanatory diagram showing an example of a connection state when there is a manufacturing error in the connecting portion. FIG. 9 is a connection diagram when there is a manufacturing error in the connecting portion. Explanatory drawing showing another example of state 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 1st clamping part 2 2nd clamping part M1 1st dovetail groove part M2 2nd dovetail groove part R connector S1 1st segment main body S2 2nd segment main body S Existing segment main body T Protrusion member

Claims (2)

トンネル周方向に隣接させて組付けられる第1セグメント本体(S1)及び第2セグメント本体(S2)の夫々の突合せ部に、当該夫々の突合せ部を突合わせた状態で対向するよう、第1被挟持部(m1)を有する第1アリ溝部(M1)および第2被挟持部(m2)を有する第2アリ溝部(M2)を個別に設けると共に、
トンネル軸芯方向端部から前記第1アリ溝部(M1)および第2アリ溝部(M2)に各別に嵌入自在であり、互いの間隔が嵌入方向前方側ほど広く構成してある第1挟持部(1)と第2挟持部(2)とを両側に備えた連結具(R)を、前記第1アリ溝部(M1)および第2アリ溝部(M2)に挿入することで、
前記第1挟持部(1)が前記第1被挟持部(m1)に当接し、前記第2挟持部(2)が前記第2被挟持部(m2)に当接して、前記夫々の突合せ部を相対的に近接させるトンネル用セグメントの連結構造であって、
前記連結具(R)の嵌入方向後端に、トンネル軸芯方向に隣接する既設セグメント本体(S)に接当可能で、前記第2セグメント本体(S2)を前記既設セグメント本体(S)に押し付ける際に前記既設セグメント本体(S)から一定以上の荷重を受けた場合に変形可能な突出部材(T)を設けると共に、
前記第1被挟持部(m1)の延出方向を前記突合せ部に対して平行とし、前記第2被挟持部(m2)の延出方向を前記連結具(R)の挿入方向奥側ほど前記突合せ部から離間させてあるトンネル用セグメントの連結構造。
The first target body (S1) and the second segment body (S2), which are assembled adjacent to each other in the circumferential direction of the tunnel, face each butted portion so that the respective butted portions face each other. The first dovetail groove part (M1) having the sandwiching part (m1) and the second dovetail groove part (M2) having the second sandwiched part (m2) are individually provided,
A first sandwiching portion that can be inserted into the first dovetail groove portion (M1) and the second dovetail groove portion (M2) separately from the tunnel axial direction end portion, and the interval between the first pinching portion and the front side in the fitting direction is wider ( 1) and the second clamping part (2), the connector (R) provided on both sides is inserted into the first dovetail groove part (M1) and the second dovetail groove part (M2),
The first clamping part (1) abuts on the first clamping part (m1), the second clamping part (2) abuts on the second clamping part (m2), and the respective abutting parts A connecting structure for tunnel segments that relatively close to each other,
The connecting segment (R) can be brought into contact with the existing segment main body (S) adjacent to the tunnel axis direction at the rear end in the fitting direction, and the second segment main body (S2) is pressed against the existing segment main body (S). In addition to providing a protruding member (T) that can be deformed when receiving a load of a certain level or more from the existing segment body (S),
The extending direction of the first sandwiched portion (m1) is parallel to the abutting portion, and the extending direction of the second sandwiched portion (m2) is closer to the back side in the insertion direction of the connector (R). A connecting structure for tunnel segments separated from the butt.
前記突出部材(T)が、前記第2挟持部(2)の端部に設けた中空の略円筒形状を有する部材である請求項1に記載のトンネル用セグメントの連結構造。The connection structure of the segment for tunnels of Claim 1 whose said protrusion member (T) is a member which has the hollow substantially cylindrical shape provided in the edge part of the said 2nd clamping part (2).
JP05877197A 1996-09-27 1997-03-13 Tunnel segment connection structure Expired - Fee Related JP3801295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05877197A JP3801295B2 (en) 1996-09-27 1997-03-13 Tunnel segment connection structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-256610 1996-09-27
JP25661096 1996-09-27
JP05877197A JP3801295B2 (en) 1996-09-27 1997-03-13 Tunnel segment connection structure

Publications (2)

Publication Number Publication Date
JPH10153098A JPH10153098A (en) 1998-06-09
JP3801295B2 true JP3801295B2 (en) 2006-07-26

Family

ID=26399785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05877197A Expired - Fee Related JP3801295B2 (en) 1996-09-27 1997-03-13 Tunnel segment connection structure

Country Status (1)

Country Link
JP (1) JP3801295B2 (en)

Also Published As

Publication number Publication date
JPH10153098A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JPS61153009A (en) Expanding anchor
JP3801295B2 (en) Tunnel segment connection structure
JP3572562B2 (en) One-touch joint and concrete unit using the same
JP3877390B2 (en) Tunnel segment connection structure
EP0955448A1 (en) Joining construction
JP3753480B2 (en) Tunnel segment connection method and tunnel segment
JP3363053B2 (en) Segment connection tool for tunnel
JPH10220184A (en) Segment joint structure
JP3871435B2 (en) Tunnel segment connection
JPH10302858A (en) Wedge connector shell having widened end part and burr
JPH11280390A (en) Connecting section of segment for tunnel
JP3877391B2 (en) Tunnel segment connecting portion and tunnel ring forming method
JPH11107689A (en) Connecting section of segment for tunnel
JP4344552B2 (en) Segment connection structure
JP3211742B2 (en) Connection structure between ferrule and optical fiber cord
JPH11200788A (en) Joint metal fitting for concrete segment
CN214658005U (en) Assembled wall body
JPH1193589A (en) Connector
JP2510551Y2 (en) Fastening taper-wound bushing bearings with the same shape of fastening parts at both ends of the seam
JP3137728B2 (en) Method of manufacturing flexible joint for duct and flexible joint for duct
JP3363047B2 (en) Joint structure of tunnel segment
JP3157553B2 (en) Ferrule for optical connector
JPH11294085A (en) Joint device of segment or the like
JPH1144192A (en) Connecting part structure of segment for tunnel
JP2000257390A (en) Segment for shield tunnel and shield tunnel lining using the segment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees