JP3800871B2 - Method for producing antibacterial polyester fiber - Google Patents

Method for producing antibacterial polyester fiber Download PDF

Info

Publication number
JP3800871B2
JP3800871B2 JP20437199A JP20437199A JP3800871B2 JP 3800871 B2 JP3800871 B2 JP 3800871B2 JP 20437199 A JP20437199 A JP 20437199A JP 20437199 A JP20437199 A JP 20437199A JP 3800871 B2 JP3800871 B2 JP 3800871B2
Authority
JP
Japan
Prior art keywords
antibacterial
polyester fiber
silver
fiber
antibacterial agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20437199A
Other languages
Japanese (ja)
Other versions
JP2001032127A (en
Inventor
久仁和 田内
晃治 杉浦
則幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP20437199A priority Critical patent/JP3800871B2/en
Publication of JP2001032127A publication Critical patent/JP2001032127A/en
Application granted granted Critical
Publication of JP3800871B2 publication Critical patent/JP3800871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明により得られる抗菌性ポリエステル繊維は、抗菌性が要求される繊維、織布、編地、不織布及び織布と不織布の複合布等の各種のポリエステル繊維製品に使用可能なものであり、優れた抗菌性を発揮すると共に、優れた白度を有しているので染色性等に支障を起こさず、衣料、寝具、タオル等の各種ポリエステル繊維製品に加工して有効に利用し得るものである。
【0002】
【従来の技術】
繊維、塗料、樹脂成型体、紙及びバインダー等に含有させて抗菌性を発揮させることができる抗菌剤が既に多数提案されており、なかでも無機系抗菌剤は耐久性に優れたものとして近年注目されている。
大半の無機系抗菌剤は、抗菌性を発揮させるために、銀イオンを種々の方法で無機化合物に担持させた銀系無機抗菌剤であり、銀イオンを担持させる無機化合物として、例えば活性炭、アパタイト、ガラス、ゼオライト、粘土化合物、酸化チタンおよび各種リン酸塩等がある。
【0003】
銀イオンを担持させた銀系無機抗菌剤の各種用途の中でも、各種の化学繊維に銀系無機抗菌剤を練り込み加工や表面塗布等の加工方法により添加した抗菌性繊維を得る試みが最近精力的になされている。しかし、銀系無機抗菌剤を添加した繊維は、抗菌剤中の銀イオンの影響などにより紡糸加工後の処理工程において変色を生じる問題があった。
特にポリエステル長繊維は、衣類や寝具などの用途において風合いや染色性などの物性を改善するため、紡糸後アルカリ水溶液中に繊維を浸漬し溶解処理するアルカリ減量と呼ばれる処理方法が用いられる場合が多い。しかし銀系無機抗菌剤を配合した抗菌性ポリエステル繊維にこのアルカリ減量処理を施すと、繊維の抗菌性が減少することは殆どないが、アルカリ処理時およびその後の経時変化により着色が生じやすく白色の製品が得られなかったり、染色製品の発色性が劣るなどの現象が起きるため、抗菌性ポリエステル繊維の用途はアルカリ減量を行なわない分野に限定されており、広範な用途での実用展開が大きく遅れていた。
【0004】
これらの問題を解決するための手段として、特開平7−189033号公報には特定の2種類の燐酸塩系抗菌剤を特定の重量比率で配合した繊維が提案され、また一度変色した繊維を晒し処理する方法が記載されているが、前記の提案では繊維中の2種の抗菌剤の配合比率が均一になりにくかったり、白色化効果が十分でないなどの問題があり、後者の方法では一度変色した繊維は漂白処理しても完全には白色にはならず、変色防止の改善が不十分であったり、工程が増えるなどするため、完全に問題を解決するには至ってなかった。
【0005】
また、特開平6−158551号公報には抗菌剤を担持させた抗菌性繊維の製造工程において、抗菌繊維と接触させる処理液に特定のベンゾトリアゾ−ルからなる変色防止剤を含有する製造方法も提案されているが、この方法では比較的高価な変色防止剤を使用するためコストアップとなるうえ、使用後の変色防止剤を含有する廃液の廃棄処分や薬液のリサイクルをするに際して特別な処理が必要である問題があり、より容易で安価な変色を防止方法が望まれていた。
【0006】
【発明が解決しようとする課題】
本発明は、抗菌性ポリエステル繊維をアルカリ減量処理した場合、処理に際して生じる着色やその後の経時的な変色を抑え、優れた白度を有した抗菌性ポリエステル繊維を得るための、容易かつ安価な方法を提供することを課題とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意検討した結果、銀系無機抗菌剤を担持させた抗菌性ポリエステル繊維をアルカリ減量処理するに際し、特定の変色防止剤を含有させたアルカリ減量処理液を用いることが極めて有効であることを見出し、本発明を完成するに至った。即ち、本発明は、過酸化水素、過炭酸ナトリウムおよび過酸化ナトリウムの少なくとも一種から選ばれる少なくとも1種の変色防止剤を含有した0.1〜20重量%の水酸化ナトリウム水溶液を用いて、銀系無機抗菌剤を担持させたポリエステル繊維を減量率5重量%〜25重量%にアルカリ減量処理することを特徴とする抗菌性ポリエステル繊維の製造方法である。
【0008】
以下、本発明を詳細に説明する。
○銀系無機抗菌剤
本発明における銀系無機抗菌剤は、銀イオンを担持させた無機化合物であれば特に制限はないが、淡色ないし白色の無機化合物であることが好ましく、例えば以下のものがある。即ち、活性アルミナ、シリカゲル等の無機系吸着剤、ゼオライト、ヒドロキシアパタイト、リン酸ジルコニウム、リン酸アルミニウム、リン酸チタン、チタン酸カリウム、含水酸化アンチモン、含水酸化ビスマス、含水酸化ジルコニウム、含水酸化チタン、ハイドロタルサイト等の無機イオン交換体、硼珪酸ガラス、燐珪酸ガラス等のガラス等がある。
【0009】
これらの無機化合物に銀イオンを担持させる方法には特に制限はなく、今までに知られた担持方法はいずれも採用でき、例えば物理吸着又は化学吸着により担持させる方法、イオン交換反応により担持させる方法、結合剤により担持させる方法、および焼着、蒸着、溶解析出反応、スパッタ等の薄膜形成法により無機化合物の表面に銀化合物の薄層を形成させることにより担持させる方法等がある。
【0010】
上記の無機化合物の中で、無機イオン交換体は銀イオンを強固に担持できることから好ましく、下記一般式〔1〕で表される銀を担持したリン酸塩は特に好ましい化合物である。
Aga1 b2 2(PO43・nH2O 〔1〕
(M1はアルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオンまたは水素イオンから選ばれる少なくとも1種のイオンであり、M2はTi、Zr、Sn等の4価金属であり、nは0≦n≦6を満たす数であり、a及びbはa+b=1を満たす正数である。)
この化合物は空間群R3cに属する結晶性化合物であり、各構成イオンが3次元網目状構造を形成するものである。
【0011】
上記一般式〔1〕の銀系リン酸塩抗菌剤の具体例として、以下のものがある。Ag0.005Li0.995Zr2(PO43
Ag0.01(NH40.99Zr2(PO43
Ag0.05Na0.95Zr2(PO43
Ag0.20.8Ti2(PO43
Ag0.10.9Zr2(PO43
Ag0.050.05Na0.90Zr2(PO43
Ag0.050.55Na0.40Zr2(PO43
上記一般式〔1〕で表される銀系無機抗菌剤は、粒径が小さく粒度分布が狭いため紡糸性に優れており、なおかつこの銀系無機抗菌剤を含有するポリエステル繊維は、種々の処理液と接触させた際の変色や耐候性、加熱時の変色等が少ない特徴がある。
【0012】
このリン酸塩を合成する方法には、焼成法、湿式法、水熱法等があり、微粒子状のものを容易に得る好ましい方法として、湿式法がある。湿式法により合成する一例として、以下の方法がある。
オキシ硝酸ジルコニウム及び硝酸ナトリウムの水溶液を攪拌しながら、この中にシュウ酸を加え、さらにリン酸を加える。苛性ソーダ水溶液にて反応液のpHを3.5に調整し、78時間加熱還流後、沈澱物を濾過、水洗、乾燥、粉砕し、網目状リン酸ジルコニウム[NaZr2(PO43]を得る。これを適当な濃度で銀イオンを含有する水溶液中に浸漬することにより、一般式〔1〕で示される銀系無機抗菌剤を得る。
なお、この銀系無機抗菌剤の耐候性を高めるためには、上記のようにして得た化合物を、500〜1000℃、より好ましくは700〜900℃において、1〜10時間焼成することが望ましい。
【0013】
防かび、抗菌性及び防藻性を発揮させるには、一般式〔1〕におけるaの値は大きい方がよいが、aの値が0. 001以上であれば、充分に防かび、抗菌性及び防藻性を発揮させることができる。aの値が0. 001未満であると、防かび、抗菌性及び防藻性を長時間発揮させることが困難となる恐れがあることと、経済性を考慮すると、aの値を0. 01以上で0. 8以下の値とすることが好ましい。
【0014】
また、銀系無機抗菌剤は配合物として各種無機材料を各々の目的に応じてあらかじめ混合したものを使用することもできる。具体的には、酸化亜鉛、酸化チタン、アンチモン酸、シリカ等の各種酸化物、燐酸ジルコニウム、燐酸チタン等の燐酸塩、ゼオライト等の珪酸塩、水酸化物、ガラス等が挙げられる。
なお抗菌性ポリエステル繊維の製造に際し、銀系無機抗菌剤粉末を繊維樹脂中に練り込み紡糸する場合には、紡糸性の向上のため銀系無機抗菌剤の最大粒径は5μm以下であることが好ましく、平均粒径も1μm以下であることが好ましい。
【0015】
○ポリエステル繊維
本発明におけるポリエステル繊維はポリエステル樹脂を主成分とする繊維であれば、その組成、形状などに特に制限はない。ポリエステル繊維を構成する樹脂成分は単品でも複合混合、共重合したアロイでもよい。樹脂成分の具体例としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレートおよびこれらの原料またはそれ以外のジオールや2塩基性酸からなる共重合体が挙げられる。具体的な共重合成分として、ジエチレングリコール、ジブチレングルコール等のジオール類、テレフタール酸、イソフタル酸、オルソフタル酸、リジウムスルホイソフタル酸、ナフチル−ジカルボン酸、アジピン酸等のジカルボン酸等を挙げることができる。
【0016】
また、繊維形状は丸断面、三角断面等の異形断面、一本の繊維が数本に分割された分割繊維でもよく、また、鞘心型やサイドバイサイド型複合糸の一方成分に用いてもよく、繊維の太さにも制限はないが、アルカリ減量処理が実施されるのは、通常長繊維のマルチフィラメントが殆どである。
【0017】
本発明におけるアルカリ減量処理に使用されるポリエステル繊維の形態は、糸状、布状、編地状、綿状、不織布等の従来より採用されている如何なる形態であってもよく、特に限定されない。また、他の種類の繊維や裏材、基布等繊維以外の物質が付着していてもアルカリ減量を目的とする繊維製品であれば制限はない。
【0018】
○銀系無機抗菌剤の繊維への加工方法
本発明における銀系無機抗菌剤のポリエステル繊維樹脂への加工方法としては、一般的に無機粉体を溶融した樹脂に練り込み紡糸加工する方法が好ましく、その具体的方法としてはポリエステル樹脂ペレットと銀系無機抗菌剤を直接混合した混合物を溶融し紡糸する方法、ポリエステル樹脂ペレットに銀系無機抗菌剤を使用濃度で練り込みコンパウンド化した抗菌性ポリエステル樹脂ペレットを溶融し紡糸する方法、銀系無機抗菌剤を実際の使用濃度の5倍から100倍の高濃度でポリエステル樹脂にマスタ−チップ(マスタ−バッチ)化し、その後レギュラーのポリエステル樹脂と溶融状態で混合、希釈し紡糸する方法、加工時に流動性を有して使用可能なビヒクル(ポリオ−ル等)に銀系無機抗菌剤を混合してスラリ−化し溶融したポリエステル樹脂等に圧入混練し紡糸する方法、ポリエステル繊維用樹脂の縮合時に添加しておく方法等が挙げられる。
【0019】
銀系無機抗菌剤のポリエステル樹脂への添加量は0.05重量%から10重量%が好ましく、より好ましくは0.1〜5重量%である。0.05重量%以下では十分な抗菌効果が得られず、10重量%以上では抗菌効果が向上しないばかりか、変色性、紡糸性、糸強度などにも悪影響を及ぼす恐れがある。
【0020】
○アルカリ減量
アルカリ減量は主に衣料用ポリエステル繊維に実施され、その風合いの向上や染色性向上などを目的に、ポリエステル樹脂を0.1〜20重量%の水酸化ナトリウム水溶液に接触した状態で加熱することにより、ポリエステル樹脂の表面を溶解させ5重量%から25重量%程度まで減量し繊維を細くする処理である。この処理を行うと繊維間隔が増大するため織物等にした場合はバルキー化し、糸間の接圧が減少して柔軟になり、いわゆるシルキーな風合いが得られる。
【0021】
本発明におけるアルカリ処理に用いるアルカリ水溶液の種類に制限はなく、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、ソーダ灰、ケイ酸ナトリウム、消石灰およびアンモニア等の水溶液が用いられる。この中で、減量効率が高く安価である点で水酸化ナトリウムの水溶液が好ましく使用できる。
【0022】
アルカリ減量処理の方法および処理条件についても特に制限はなく、減量処理されるポリエステル繊維の太さや形態、目的とするアルカリ減量の程度などに従って、使用する処理剤濃度、処理温度、処理時間等の条件を選択できる。一般的に実施されている処理方法には浸漬法とパッドスチーム法があり、浸漬法はアルカリ処理液にポリエステル繊維を浸漬した状態で加熱処理する方法、パッドスチーム法はアルカリ処理液をポリエステル繊維に付着させた状態で高温のスチームを吹きつけ処理する方法である。処理条件を例示するとアルカリ濃度は、0.1重量%〜20重量%、処理温度は50℃から150℃、処理時間は5分から4時間程度である。アルカリ処理剤濃度が高いほど、処理時間が長いほどおよび処理温度が高いほど繊維の溶解量は多くなり、高い減量率が得られる。また、減量処理後のアルカリ処理剤等が残存していると黄変や染色性の低下等の原因となるため中和、水洗等により十分に取り除く必要がある。
【0023】
アルカリ減量処理水溶液に、減量処理の促進剤となるものを併用してもよい。この促進剤はアルカリ水溶液に0.01〜0.5%程度添加することで短時間で高い減量率を得ることが可能となる。具体的な促進剤としては、塩化ベンザルコニウム等の脂肪族アミンの4級アンモニウム塩、芳香族4級アンモニウム塩、複素環4級アンモニウム塩などがある。
【0024】
○変色防止剤
本発明において使用される変色防止剤は、過酸化水素、過炭酸ナトリウム、過酸化ナトリウムおよびこれらの混合物である。これらの変色防止剤は、繊維製品の品質を劣化させたり、銀系無機抗菌剤の抗菌効果を低下させずに変色を防止する効果がある。これら変色防止剤の中でも過酸化水素は、変色防止効果が高く、安価なうえ、処理後の処理液に残存する成分がないため特に好ましい変色防止剤である。
【0025】
変色防止剤の配合量は、アルカリ処理液に対して0.05〜10重量%が好ましく、さらに好ましくは0.5%〜5重量%である。配合量が0.05未満では十分な変色防止効果が得られず、10重量%以上では変色防止の効果が向上せず、繊維を劣化させる恐れがある。
【0026】
アルカリ水溶液での処理を特に高温側で行なう場合には、昇温し処理温度に達するまでに、添加した変色防止剤が分解して、活性が低下することもあるため、変色防止剤の安定剤となるものを併用してもよい。
変色防止剤の安定剤の具体例としては、ケイ酸ナトリウム、マグネシウム塩、カルシウム塩、ポリ−α−ヒドロキシアクリル酸ナトリウム、オルトリン酸、ピロリン酸、トリポリリン酸、ホスホン酸系キレート剤、酢酸系キレート剤およびスズ酸並びにそれらの塩などがある。
【0027】
ホスホン酸系キレート剤としては、アミノトリ(メチレンホスホン酸)、1−ヒドロキシエチリデン−1,1−ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、ニトリロメチレンホスホン酸及び1,2−プロピレンジアミンテトラ(メチレンホスホン酸)等並びにこれらの塩が挙げられる。
酢酸系キレート剤としては、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸、トリエチレンテトラミンヘキサ酢酸、N−ヒドロキシエチルエチレンジアミンテトラ酢酸及びニトリロトリ酢酸等並びにこれらの塩が挙げられる。
【0028】
また、本発明における変色防止効果や抗菌効果への悪影響、繊維の物性低下の殆どない極めて少量であれば、漂白剤等の成分を配合することも可能である。具体例として、二酸化硫黄、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸水素ナトリウム、亜硫酸水素カリウム、ロンガリット各種、ブランキット、ハイドロサルファイト各種、亜鉛末等の無機系還元剤、カンジットV等の有機系還元剤、過酸化カリウム、過ほう酸ナトリウム、過酸化バリウム、過マンガン酸カリウム、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム、亜塩素酸ナトリウム、亜塩素酸カリウム、亜塩素酸カルシウム、二酸化塩素、過硫酸アンモニウム、さらし粉、塩素化イソシアヌル酸、オゾン等の無機系酸化剤、パーアクチビン、クロラミンTO、クロラミンBX、アクチビン等の有機系酸化剤等がある。
【0029】
本発明によって処理され得られた抗菌性ポリエステル繊維は、抗菌性の低下が殆ど起こらず、厳しい環境下においても長期間防かび、抗菌性及び防藻性を有する上、白度、風合い、吸湿性、染色性に優れる。
所望により、上記のようにして得た抗菌性ポリエステル繊維製品に対して、帯電防止加工、防汚加工及び防縮加工等、種々の仕上げ加工を行うことができる。
【0030】
○用途
本発明により得られる抗菌性ポリエステル繊維製品は、防かび、防藻及び抗菌性を有する繊維製品として使用でき、具体的な使用例を挙げれば、例えば以下の用途がある。
即ち、靴下、下着、ストッキング、背広の裏地、ホワイトシャツ・ブラウス等の衣類、布団、シ−ツなどの寝具、マスクなどの保護具、その他タオル類、カーテン等の各種繊維製品等である。
【0031】
以下、本発明を実施例によりさらに具体的に説明する。
【実施例】
参考例1〔銀系無機抗菌剤aの調製〕
硫酸ジルコニウムの水溶液及びリン酸2水素ナトリウムの水溶液をジルコニウムとリンの比が2:3になるように混合することにより沈澱物を生成させ、水酸化ナトリウムの水溶液を用いてpHを2に調整したのち、水熱状態下で150℃、24時間加熱することにより結晶質リン酸ジルコニウムを得た。
上記で得たリン酸塩系化合物を硝酸銀の水溶液に添加し、室温で4時間攪拌した後、十分に水洗し、乾燥した。
上記のようにして得た粉末を、800℃で4時間焼成した後、軽く粉砕することにより銀系無機抗菌剤aを得た。得られた銀系無機抗菌剤aは下記(1)式で示される平均粒径が0.47μmである白色粉末である。
Ag0.15Na0.50.35Zr2(PO43 (1)
【0032】
参考例2〔銀系無機抗菌剤bの調製〕
A型ゼオライト〔組成:0.94Na2O・Al23・1.92SiO2・xH2O〕を、硝酸銀と硝酸アンモニウムの水溶液に添加し、室温で10時間攪拌した後、十分に水洗し、110℃で乾燥することによりゼオライト系抗菌剤を得た。得られた銀系無機抗菌剤bは下記(2)式で示される平均粒径が2.6μmである白色粉末である。
0.18Ag2O・0.02(NH4)2O・0.62Na2O・Al2O3・1.9SiO2・2.7H2O (2)
【0033】
参考例3〔抗菌性ポリエステル繊維の調製1〕
参考例1で得た銀系無機抗菌剤aを繊維用ポリエステル樹脂に、抗菌剤を配合後の樹脂全重量に対して1wt%の割合で配合し、常法により溶融紡糸することにより約2デニ−ルの抗菌性繊維(糸状)を得た。
【0034】
参考例4〔抗菌性ポリエステル繊維の調製2〕
参考例2で得た銀系無機抗菌剤bを繊維用ポリエステル樹脂に、抗菌剤配合後の樹脂全重量に対して1wt%の割合で配合し、常法により溶融紡糸することにより約2デニ−ルの抗菌性ポリエステル繊維(糸状)を得た。
【0035】
実施例1
参考例3で得た抗菌性ポリエステル繊維を、水酸化ナトリウム4%と過酸化水素2%を含む水溶液中に浸漬し、120℃で1時間処理して得た繊維を試料1とした。
【0036】
実施例2
参考例3で得た抗菌性ポリエステル繊維を、水酸化ナトリウム4%と過炭酸ナトリウム1%を含む水溶液中に浸漬し、120℃で1時間処理して得た繊維を試料2とした。
【0037】
実施例3
参考例3で得た抗菌性ポリエステル繊維を、水酸化ナトリウム4%、過酸化水素0.5%および過炭酸ナトリウム0.5%を含む水溶液中に浸漬し、120℃で1時間処理して得た繊維を試料3とした。
【0038】
実施例4
参考例3で得た抗菌性ポリエステル繊維を、水酸化ナトリウム4%、過酸化水素1%およびジエチレントリアミンペンタ酢酸ナトリウム0.01%を含む水溶液中に浸漬し、120℃で1時間処理して得た繊維を試料4とした。
【0039】
実施例5
参考例3で得た抗菌性ポリエステル繊維を、水酸化ナトリウム1%、過酸化ナトリウム1%および塩化ベンザルコニウム0.1%を含む水溶液中に浸漬し、120℃で1時間処理して得た繊維を試料5とした。
【0040】
実施例6
参考例3で得た抗菌性ポリエステル繊維を、水酸化ナトリウム15%、過酸化水素3%を含む水溶液中に浸漬後、110℃のスチームを5分間処理して得た繊維を試料6とした。
【0041】
実施例7
参考例4で得た抗菌性ポリエステル繊維を、水酸化ナトリウム4%、過酸化水素1%を含む水溶液中に浸漬し、120℃で1時間処理して得た繊維を試料7とした。
【0042】
比較例1
参考例3で得た抗菌性ポリエステル繊維を、4%の水酸化ナトリウム水溶液に浸漬し、120℃で1時間処理して得た繊維を試料8とした。
【0043】
比較例2
参考例3で得た抗菌性ポリエステル繊維を、水酸化ナトリウム1%、塩化ベンザルコニウム0.1%を含む水溶液中に浸漬し、120℃で1時間処理して得た繊維を試料9とした。
【0044】
比較例3
参考例3で得た抗菌性ポリエステル繊維を、15%水酸化ナトリウム水溶液に浸漬後、110℃のスチームで5分間処理して得た繊維を試料10とした。
【0045】
比較例4
参考例4で得た抗菌性ポリエステル繊維を4%水酸化ナトリウム水溶液に浸漬し、120℃で1時間処理して得た繊維を試料11とした。
【0046】
比較例5
参考例3で得た抗菌性化学繊維を、4%水酸化ナトリウム水溶液に水溶液中に浸漬し、120℃で1時間処理して得た繊維を洗浄し一旦乾燥後、再度過酸化水素2%、ケイ酸ナトリウム0.1%を含む水溶液に浸漬し、95℃で10分間漂白処理し、試料12とした。
【0047】
【表1】

Figure 0003800871
【0048】
試験例1〔抗菌性評価〕
実施例1〜7及び比較例1〜5で得られた抗菌性ポリエステル繊維の抗菌性評価を、JIS L 1902に準じて次のようにして行った。
各繊維を0.4g秤り取り、30mlのネジ口バイアル瓶に入れ、高圧蒸気滅菌した。冷却後、20分の1に希釈した普通ブイヨン培地で調製した黄色ブドウ球菌の試験菌液を0.2ml滴下した。37℃で18時間静置保存後に試験液を洗い出し、混釈平板培養法により測定した結果を表2に示した。評価結果は菌数増減値差で表わされ、抗菌剤無添加の対照布と各試料との生菌数の対数値の差を示し、数値が高いほど抗菌効果が高いことを示している。
【0049】
試験例2〔アルカリ処理による変色の評価〕
実施例1〜7及び比較例1〜5で得られた抗菌性化学繊維について、それぞれの実施例および比較例で実施したアルカリ処理後の試料を水洗し、減量率および色彩b値を測定した結果を表2に示した。色彩b値は黄変性を表わし数値が高いほど変色していることを示している。
【0050】
【表2】
Figure 0003800871
【0051】
本発明のアルカリ処理を行った試料1〜7では処理による変色が極めて少なかったが、従来の方法で処理した試料8〜12は明らかな変色が発生した。また、減量処理後に漂白処理した試料12では本発明の処理条件と同等な白度は得られなかった。抗菌性については、本発明のアルカリ処理を行った試料1〜7は、従来の方法で処理した試料8〜11および減量処理後に漂白処理した試料12と同様に優れた抗菌性を示した。なお、繊維試料番号1〜7はその後室内で3ヶ月保存し、再度黄変性b値を測定したが殆ど変化がなかった。
【0052】
【発明の効果】
銀系無機抗菌剤を担持させたポリエステル繊維を、本発明の製造方法に従ってアルカリ減量処理すると、従来の方法で処理した繊維と同等の抗菌性、防かび性、防藻性および風合いを保持した上、従来大きな問題となっていた変色が発生せず、白度の極めて高いポリエステル繊維が得られる。それによって、従来使用できなかった分野の抗菌繊維製品の実用化が可能となり、用途が極めて拡大した。[0001]
BACKGROUND OF THE INVENTION
The antibacterial polyester fiber obtained by the present invention can be used for various polyester fiber products such as a fiber, a woven fabric, a knitted fabric, a nonwoven fabric, and a composite fabric of a woven fabric and a nonwoven fabric that require antibacterial properties. In addition to exhibiting antibacterial properties, it has excellent whiteness, so it does not interfere with dyeing properties, etc., and can be effectively used by processing into various polyester fiber products such as clothing, bedding, towels, etc. .
[0002]
[Prior art]
Numerous antibacterial agents that can be incorporated into fibers, paints, resin moldings, paper, binders, etc. to exhibit antibacterial properties have already been proposed. Among them, inorganic antibacterial agents have recently attracted attention as being excellent in durability. Has been.
Most inorganic antibacterial agents are silver-based inorganic antibacterial agents in which silver ions are supported on inorganic compounds by various methods in order to exert antibacterial properties. Examples of inorganic compounds that support silver ions include activated carbon and apatite. Glass, zeolite, clay compound, titanium oxide, and various phosphates.
[0003]
Among various uses of silver-based inorganic antibacterial agents supporting silver ions, attempts to obtain antibacterial fibers by adding silver-based inorganic antibacterial agents to various chemical fibers by processing methods such as kneading and surface coating have recently been energetic Has been made. However, the fiber added with the silver-based inorganic antibacterial agent has a problem of causing discoloration in the processing step after the spinning process due to the influence of silver ions in the antibacterial agent.
In particular, for polyester long fibers, in order to improve physical properties such as texture and dyeability in applications such as clothing and bedding, a treatment method called alkali weight loss is often used in which fibers are immersed in an aqueous solution after spinning and dissolved. . However, when this alkali weight loss treatment is applied to an antibacterial polyester fiber containing a silver-based inorganic antibacterial agent, the antibacterial property of the fiber is hardly reduced. Antibacterial polyester fiber applications are limited to fields where alkali weight loss is not performed, because products such as product cannot be obtained or coloring properties of dyed products are inferior, and practical development in a wide range of applications is greatly delayed. It was.
[0004]
As a means for solving these problems, JP-A-7-189033 proposes a fiber in which two specific types of phosphate antibacterial agents are blended in a specific weight ratio, and once discolored fiber is exposed. Although the treatment method has been described, the above proposal has problems such as the mixture ratio of the two types of antibacterial agents in the fiber being difficult to be uniform and the whitening effect not being sufficient. The bleached fiber did not become completely white even after bleaching, and the improvement of discoloration prevention was insufficient or the number of processes was increased. Thus, the problem was not completely solved.
[0005]
Japanese Patent Laid-Open No. 6-158551 also proposes a method for producing an antibacterial fiber carrying an antibacterial agent, wherein the treatment liquid to be brought into contact with the antibacterial fiber contains a discoloration inhibitor made of a specific benzotriazole. However, this method increases costs because it uses a relatively expensive anti-discoloring agent, and requires special treatment when disposing of the waste liquid containing the anti-discoloring agent after use or recycling chemicals. Therefore, there has been a demand for an easier and cheaper method for preventing discoloration.
[0006]
[Problems to be solved by the invention]
The present invention is an easy and inexpensive method for obtaining antibacterial polyester fibers having excellent whiteness by suppressing coloration and subsequent discoloration that occur when the antibacterial polyester fibers are subjected to alkali weight loss treatment. It is a problem to provide.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention conducted an alkali weight loss treatment containing a specific discoloration preventing agent when performing an alkali weight loss treatment on an antibacterial polyester fiber carrying a silver-based inorganic antibacterial agent. The present inventors have found that it is extremely effective to use a treatment liquid and have completed the present invention. That is, the present invention uses a 0.1 to 20% by weight sodium hydroxide aqueous solution containing at least one discoloration inhibitor selected from at least one of hydrogen peroxide, sodium percarbonate and sodium peroxide. It is the manufacturing method of the antimicrobial polyester fiber characterized by carrying out the alkali weight reduction process to the weight loss rate of 5 to 25 weight% of the polyester fiber which carry | supported the inorganic inorganic antibacterial agent.
[0008]
Hereinafter, the present invention will be described in detail.
○ Silver-based inorganic antibacterial agent The silver-based inorganic antibacterial agent in the present invention is not particularly limited as long as it is an inorganic compound carrying silver ions, but is preferably a light or white inorganic compound. is there. In other words, inorganic adsorbents such as activated alumina and silica gel, zeolite, hydroxyapatite, zirconium phosphate, aluminum phosphate, titanium phosphate, potassium titanate, hydrous antimony, hydrous bismuth, hydrous zirconium oxide, hydrous titanium oxide, There are inorganic ion exchangers such as hydrotalcite, and glass such as borosilicate glass and phosphosilicate glass.
[0009]
There are no particular restrictions on the method of supporting silver ions on these inorganic compounds, and any of the known supporting methods can be employed. For example, a method of supporting by physical adsorption or chemical adsorption, a method of supporting by ion exchange reaction. There are a method of supporting by a binder and a method of supporting by forming a thin layer of a silver compound on the surface of an inorganic compound by a thin film forming method such as baking, vapor deposition, dissolution precipitation reaction, sputtering, or the like.
[0010]
Among the above inorganic compounds, inorganic ion exchangers are preferable because they can firmly support silver ions, and phosphates supporting silver represented by the following general formula [1] are particularly preferable compounds.
Ag a M 1 b M 2 2 (PO 4 ) 3 · nH 2 O [1]
(M 1 is at least one ion selected from alkali metal ions, alkaline earth metal ions, ammonium ions, or hydrogen ions, M 2 is a tetravalent metal such as Ti, Zr, or Sn, and n is 0 ≦ (It is a number that satisfies n ≦ 6, and a and b are positive numbers that satisfy a + b = 1.)
This compound is a crystalline compound belonging to the space group R3c, and each constituent ion forms a three-dimensional network structure.
[0011]
Specific examples of the silver phosphate antibacterial agent of the general formula [1] include the following. Ag 0.005 Li 0.995 Zr 2 (PO 4 ) 3
Ag 0.01 (NH 4 ) 0.99 Zr 2 (PO 4 ) 3
Ag 0.05 Na 0.95 Zr 2 (PO 4 ) 3
Ag 0.2 K 0.8 Ti 2 (PO 4 ) 3
Ag 0.1 H 0.9 Zr 2 (PO 4 ) 3
Ag 0.05 H 0.05 Na 0.90 Zr 2 (PO 4 ) 3
Ag 0.05 H 0.55 Na 0.40 Zr 2 (PO 4 ) 3
The silver-based inorganic antibacterial agent represented by the above general formula [1] is excellent in spinnability because of its small particle size and narrow particle size distribution, and the polyester fiber containing this silver-based inorganic antibacterial agent is subjected to various treatments. It is characterized by little discoloration and weather resistance when brought into contact with the liquid, and discoloration during heating.
[0012]
The method for synthesizing this phosphate includes a firing method, a wet method, a hydrothermal method, and the like, and a preferred method for easily obtaining a fine particle is a wet method. As an example of synthesis by a wet method, there is the following method.
While stirring an aqueous solution of zirconium oxynitrate and sodium nitrate, oxalic acid is added thereto, and phosphoric acid is further added. The pH of the reaction solution is adjusted to 3.5 with an aqueous caustic soda solution, heated and refluxed for 78 hours, and the precipitate is filtered, washed with water, dried and pulverized to obtain a reticulated zirconium phosphate [NaZr 2 (PO 4 ) 3 ]. . By immersing this in an aqueous solution containing silver ions at an appropriate concentration, a silver-based inorganic antibacterial agent represented by the general formula [1] is obtained.
In addition, in order to improve the weather resistance of this silver-based inorganic antibacterial agent, it is desirable that the compound obtained as described above is baked at 500 to 1000 ° C., more preferably 700 to 900 ° C., for 1 to 10 hours. .
[0013]
In order to exert fungicidal, antibacterial and antialgal properties, it is preferable that the value of a in the general formula [1] is large, but if the value of a is 0.001 or more, it is sufficiently fungicidal and antibacterial. In addition, the algae-proof property can be exhibited. If the value of a is less than 0.001, it may be difficult to exhibit antifungal, antibacterial and algal control properties for a long time, and considering the economy, the value of a is set to 0.01. It is preferable to set it as the value below 0.8 above.
[0014]
Moreover, what mixed beforehand various inorganic materials according to each objective can also be used for a silver-type inorganic antibacterial agent as a compound. Specific examples include various oxides such as zinc oxide, titanium oxide, antimonic acid, and silica, phosphates such as zirconium phosphate and titanium phosphate, silicates such as zeolite, hydroxide, and glass.
In the production of antibacterial polyester fibers, when silver inorganic antibacterial agent powder is kneaded and spun into a fiber resin, the maximum particle size of the silver inorganic antibacterial agent may be 5 μm or less in order to improve spinnability. The average particle size is also preferably 1 μm or less.
[0015]
-Polyester fiber If the polyester fiber in this invention is a fiber which has a polyester resin as a main component, there will be no restriction | limiting in particular in the composition, a shape, etc. The resin component constituting the polyester fiber may be a single product or a composite mixed and copolymerized alloy. Specific examples of the resin component include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, and copolymers of these raw materials or other diols and dibasic acids. Specific examples of the copolymer component include diols such as diethylene glycol and dibutylene glycol, dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, lithium sulfoisophthalic acid, naphthyl-dicarboxylic acid, and adipic acid. .
[0016]
In addition, the fiber shape may be a round cross section, a modified cross section such as a triangular cross section, a split fiber in which one fiber is divided into several pieces, or may be used as one component of a sheath core type or side-by-side type composite yarn, Although there is no restriction | limiting in the thickness of a fiber, the multifilament of a long fiber is usually most that alkali weight reduction processing is implemented.
[0017]
The form of the polyester fiber used for the alkali weight loss treatment in the present invention may be any form conventionally employed, such as a thread form, a cloth form, a knitted fabric form, a cotton form, and a non-woven fabric, and is not particularly limited. Moreover, even if substances other than fibers, such as other types of fibers, backing materials, and base fabrics, are attached, there is no limitation as long as they are fiber products intended for alkali weight reduction.
[0018]
○ Processing method of silver-based inorganic antibacterial agent into fiber As a processing method of silver-based inorganic antibacterial agent into polyester fiber resin in the present invention, generally a method of kneading and spinning inorganic powder into a molten resin is preferable. Specific methods include melting and spinning a mixture of polyester resin pellets and silver-based inorganic antibacterial agent directly mixed, antibacterial polyester resin compounded by kneading silver-based inorganic antibacterial agent at a working concentration in polyester resin pellets A method of melting and spinning pellets, and master-chip (master-batch) a silver-based inorganic antibacterial agent into a polyester resin at a high concentration of 5 to 100 times the actual use concentration, and then in a molten state with a regular polyester resin A method of mixing, diluting and spinning, and a silver-based inorganic antibacterial agent in a vehicle (polyol, etc.) that can be used with fluidity during processing Mixed to a slurry - turned into a method of injecting kneaded spun into molten polyester resin, the method and the like to be added during the condensation of polyester fibers for resins.
[0019]
The amount of silver-based inorganic antibacterial agent added to the polyester resin is preferably 0.05 to 10% by weight, more preferably 0.1 to 5% by weight. If the amount is 0.05% by weight or less, a sufficient antibacterial effect cannot be obtained. If the amount is 10% by weight or more, the antibacterial effect is not improved, and the discoloration, spinnability, yarn strength and the like may be adversely affected.
[0020]
○ Alkaline weight loss Alkaline weight loss is mainly applied to polyester fibers for clothing, and the polyester resin is heated in contact with a 0.1-20% by weight sodium hydroxide aqueous solution for the purpose of improving the texture and dyeability. By this, the surface of the polyester resin is dissolved to reduce the amount from 5% by weight to about 25% by weight, thereby thinning the fiber. When this treatment is performed, the fiber spacing increases, so that when a woven fabric or the like is used, it becomes bulky, the contact pressure between the yarns decreases, and the fabric becomes soft and a so-called silky texture is obtained.
[0021]
There is no restriction | limiting in the kind of alkaline aqueous solution used for the alkali treatment in this invention, Aqueous solutions, such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, soda ash, sodium silicate, slaked lime, and ammonia, are used. . Among these, an aqueous solution of sodium hydroxide can be preferably used in terms of high weight loss efficiency and low cost.
[0022]
There is no particular limitation on the method and process conditions of the caustic treatment, the thickness and form of the polyester fibers to be reduced processed in accordance including the extent of caustic of interest, treatment agent concentration to use, process temperature, process time, etc. Can be selected. The treatment methods generally used include an immersion method and a pad steam method. The immersion method is a method in which the polyester fiber is immersed in an alkali treatment liquid and heat-treated, and the pad steam method is an alkali treatment liquid applied to the polyester fiber. This is a method of spraying high-temperature steam in the attached state. Illustrative of the treatment conditions, the alkali concentration is 0.1 wt% to 20 wt%, the treatment temperature is 50 ° C to 150 ° C, and the treatment time is about 5 minutes to 4 hours. The higher the alkali treatment agent concentration, the longer the treatment time, and the higher the treatment temperature, the more fiber is dissolved and a higher weight loss rate is obtained. Further, if the alkali treatment agent after the weight reduction treatment is left, it causes yellowing or a decrease in dyeability, and therefore it is necessary to remove it sufficiently by neutralization, water washing or the like.
[0023]
You may use together the thing used as the accelerator of a weight reduction process in the alkali weight reduction aqueous solution. By adding about 0.01 to 0.5% of this accelerator to the alkaline aqueous solution, a high weight loss rate can be obtained in a short time. Specific accelerators include quaternary ammonium salts of aliphatic amines such as benzalkonium chloride, aromatic quaternary ammonium salts, and heterocyclic quaternary ammonium salts.
[0024]
O Discoloration inhibitor The discoloration inhibitor used in the present invention is hydrogen peroxide, sodium percarbonate, sodium peroxide and a mixture thereof. These anti-discoloring agents have the effect of preventing discoloration without degrading the quality of the textile product or reducing the antibacterial effect of the silver-based inorganic antibacterial agent. Among these discoloration preventing agents, hydrogen peroxide is a particularly preferable discoloration preventing agent because it has a high discoloration preventing effect, is inexpensive, and has no components remaining in the treated liquid after treatment.
[0025]
The blending amount of the discoloration inhibitor is preferably 0.05 to 10% by weight, more preferably 0.5% to 5% by weight with respect to the alkali treatment liquid. If the blending amount is less than 0.05, a sufficient discoloration preventing effect cannot be obtained, and if it is 10% by weight or more, the discoloration preventing effect is not improved and the fibers may be deteriorated.
[0026]
When the treatment with an alkaline aqueous solution is carried out particularly on the high temperature side, the added discoloration inhibitor may be decomposed and the activity may be lowered before the treatment temperature is reached by raising the temperature. You may use together.
Specific examples of the anti-discoloration stabilizer include sodium silicate, magnesium salt, calcium salt, sodium poly-α-hydroxyacrylate, orthophosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, phosphonic acid chelating agent, acetic acid chelating agent And stannic acid and their salts.
[0027]
Examples of phosphonic acid chelating agents include aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), hexamethylenediaminetetra (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic). Acid), nitrilomethylenephosphonic acid, 1,2-propylenediaminetetra (methylenephosphonic acid), and the like, and salts thereof.
Examples of the acetic acid chelating agent include ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, N-hydroxyethylethylenediaminetetraacetic acid, nitrilotriacetic acid, and the like, and salts thereof.
[0028]
Moreover, it is also possible to mix | blend components, such as a bleaching agent, if it is a very small amount which does not have a bad influence on the discoloration prevention effect and antibacterial effect in this invention, and the physical property fall of a fiber. Specific examples include sulfur dioxide, sodium sulfite, potassium sulfite, sodium hydrogen sulfite, potassium hydrogen sulfite, various longalite, blank kit, various hydrosulfites, inorganic reducing agents such as zinc dust, organic reducing agents such as Kandit V, Potassium peroxide, sodium perborate, barium peroxide, potassium permanganate, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, sodium chlorite, potassium chlorite, calcium chlorite, Examples thereof include inorganic oxidants such as chlorine dioxide, ammonium persulfate, bleached powder, chlorinated isocyanuric acid, and ozone, and organic oxidants such as peractivin, chloramine TO, chloramine BX, and activin.
[0029]
The antibacterial polyester fiber obtained by the treatment of the present invention has almost no deterioration in antibacterial properties, has a long-term antifungal, antibacterial, and antialgal property even in harsh environments, and has whiteness, texture, and hygroscopicity. Excellent dyeability.
If desired, the antibacterial polyester fiber product obtained as described above can be subjected to various finishing processes such as an antistatic process, an antifouling process and an antishrink process.
[0030]
Application The antibacterial polyester fiber product obtained according to the present invention can be used as a fiber product having fungicidal, algal and antibacterial properties, and specific examples of use include the following applications.
That is, socks, underwear, stockings, back lining, clothing such as white shirts and blouses, bedding, bedding such as sheets, protective equipment such as masks, and other textile products such as towels and curtains.
[0031]
Hereinafter, the present invention will be described more specifically with reference to examples.
【Example】
Reference Example 1 [Preparation of silver-based inorganic antibacterial agent a]
A precipitate was formed by mixing an aqueous solution of zirconium sulfate and an aqueous solution of sodium dihydrogen phosphate so that the ratio of zirconium to phosphorus was 2: 3, and the pH was adjusted to 2 using an aqueous solution of sodium hydroxide. Then, crystalline zirconium phosphate was obtained by heating at 150 ° C. for 24 hours under a hydrothermal condition.
The phosphate compound obtained above was added to an aqueous solution of silver nitrate and stirred for 4 hours at room temperature, then thoroughly washed with water and dried.
The powder obtained as described above was calcined at 800 ° C. for 4 hours, and then lightly pulverized to obtain a silver-based inorganic antibacterial agent a. The obtained silver-based inorganic antibacterial agent a is a white powder having an average particle size represented by the following formula (1) of 0.47 μm.
Ag 0.15 Na 0.5 H 0.35 Zr 2 (PO 4 ) 3 (1)
[0032]
Reference Example 2 [Preparation of silver-based inorganic antibacterial agent b]
A-type zeolite [composition: 0.94 Na 2 O · Al 2 O 3 · 1.92SiO 2 · xH 2 O] was added to an aqueous solution of silver nitrate and ammonium nitrate, stirred at room temperature for 10 hours, then thoroughly washed with water, The zeolite antibacterial agent was obtained by drying at 110 degreeC. The obtained silver-based inorganic antibacterial agent b is a white powder having an average particle size of 2.6 μm represented by the following formula (2).
0.18Ag 2 O ・ 0.02 (NH 4 ) 2 O ・ 0.62Na 2 O ・ Al 2 O 3・ 1.9SiO 2・ 2.7H 2 O (2)
[0033]
Reference Example 3 [Preparation 1 of antibacterial polyester fiber]
The silver-based inorganic antibacterial agent a obtained in Reference Example 1 is blended in a polyester resin for fibers at a ratio of 1 wt% with respect to the total weight of the resin after blending the antibacterial agent, and melt-spun by a conventional method to obtain about 2 denier. An antibacterial fiber (thread-like) was obtained.
[0034]
Reference Example 4 [Preparation 2 of antibacterial polyester fiber]
The silver-based inorganic antibacterial agent b obtained in Reference Example 2 is blended in a polyester resin for fibers at a ratio of 1 wt% with respect to the total weight of the resin after blending the antibacterial agent, and melt-spun by a conventional method to obtain about 2 denier. An antibacterial polyester fiber (thread-like) was obtained.
[0035]
Example 1
The antibacterial polyester fiber obtained in Reference Example 3 was immersed in an aqueous solution containing 4% sodium hydroxide and 2% hydrogen peroxide, and treated at 120 ° C. for 1 hour to give a sample 1.
[0036]
Example 2
The antibacterial polyester fiber obtained in Reference Example 3 was dipped in an aqueous solution containing 4% sodium hydroxide and 1% sodium percarbonate, and treated at 120 ° C. for 1 hour to give a sample 2.
[0037]
Example 3
The antibacterial polyester fiber obtained in Reference Example 3 was immersed in an aqueous solution containing 4% sodium hydroxide, 0.5% hydrogen peroxide and 0.5% sodium percarbonate and treated at 120 ° C. for 1 hour. The obtained fiber was designated as Sample 3.
[0038]
Example 4
It was obtained by immersing the antibacterial polyester fiber obtained in Reference Example 3 in an aqueous solution containing 4% sodium hydroxide, 1% hydrogen peroxide and 0.01% sodium diethylenetriaminepentaacetate and treating at 120 ° C. for 1 hour. The fiber was designated as sample 4.
[0039]
Example 5
The antibacterial polyester fiber obtained in Reference Example 3 was immersed in an aqueous solution containing 1% sodium hydroxide, 1% sodium peroxide and 0.1% benzalkonium chloride, and treated at 120 ° C. for 1 hour. The fiber was designated as sample 5.
[0040]
Example 6
The antibacterial polyester fiber obtained in Reference Example 3 was immersed in an aqueous solution containing 15% sodium hydroxide and 3% hydrogen peroxide, and then the fiber obtained by treating steam at 110 ° C. for 5 minutes was used as Sample 6.
[0041]
Example 7
The antibacterial polyester fiber obtained in Reference Example 4 was immersed in an aqueous solution containing 4% sodium hydroxide and 1% hydrogen peroxide, and treated at 120 ° C. for 1 hour to give a sample 7.
[0042]
Comparative Example 1
The fiber obtained by immersing the antibacterial polyester fiber obtained in Reference Example 3 in a 4% aqueous sodium hydroxide solution and treating it at 120 ° C. for 1 hour was designated as Sample 8.
[0043]
Comparative Example 2
The antibacterial polyester fiber obtained in Reference Example 3 was dipped in an aqueous solution containing 1% sodium hydroxide and 0.1% benzalkonium chloride, and treated at 120 ° C. for 1 hour to obtain a sample 9. .
[0044]
Comparative Example 3
The antibacterial polyester fiber obtained in Reference Example 3 was immersed in a 15% aqueous sodium hydroxide solution and then treated with steam at 110 ° C. for 5 minutes to obtain a sample 10.
[0045]
Comparative Example 4
The antibacterial polyester fiber obtained in Reference Example 4 was immersed in a 4% aqueous sodium hydroxide solution and treated at 120 ° C. for 1 hour, and the fiber obtained as Sample 11 was used.
[0046]
Comparative Example 5
The antibacterial chemical fiber obtained in Reference Example 3 is immersed in an aqueous solution of 4% sodium hydroxide, treated at 120 ° C. for 1 hour, washed and dried, and then dried again with 2% hydrogen peroxide, Sample 12 was immersed in an aqueous solution containing 0.1% sodium silicate and bleached at 95 ° C. for 10 minutes.
[0047]
[Table 1]
Figure 0003800871
[0048]
Test Example 1 [Evaluation of antibacterial properties]
Antibacterial evaluation of the antibacterial polyester fibers obtained in Examples 1 to 7 and Comparative Examples 1 to 5 was performed according to JIS L 1902, as follows.
0.4 g of each fiber was weighed and placed in a 30 ml screw mouth vial and autoclaved. After cooling, 0.2 ml of a test bacterial solution of Staphylococcus aureus prepared in a normal bouillon medium diluted 1/20 was added dropwise. Table 2 shows the results of washing out the test solution after standing at 37 ° C. for 18 hours and measuring by the pour plate culture method. The evaluation result is represented by the difference in the number of bacteria increase / decrease, showing the difference in the logarithmic value of the number of viable bacteria between the control cloth with no antibacterial agent added and each sample, and the higher the value, the higher the antibacterial effect.
[0049]
Test Example 2 [Evaluation of discoloration by alkali treatment]
About the antibacterial chemical fiber obtained in Examples 1-7 and Comparative Examples 1-5, the sample after the alkali treatment implemented in each Example and Comparative Example was washed with water, and the result of having measured the weight loss rate and the color b value Are shown in Table 2. The color b value represents yellowing, and the higher the value, the more discolored.
[0050]
[Table 2]
Figure 0003800871
[0051]
In Samples 1 to 7 subjected to the alkali treatment of the present invention, the discoloration due to the treatment was extremely small, but in Samples 8 to 12 treated by the conventional method, a clear discoloration occurred. Moreover, the whiteness equivalent to the process conditions of this invention was not obtained in the sample 12 bleached after the weight loss process. About antibacterial property, the samples 1-7 which performed the alkali treatment of this invention showed the outstanding antibacterial property similarly to the sample 12 processed by the conventional method and the sample 12 bleached after the weight loss process. Fiber samples Nos. 1 to 7 were then stored indoors for 3 months and the yellowing b value was measured again, but there was almost no change.
[0052]
【The invention's effect】
When a polyester fiber carrying a silver-based inorganic antibacterial agent is subjected to alkali weight reduction treatment according to the production method of the present invention, the antibacterial property, fungicidal property, antialgal property and texture equivalent to those treated by the conventional method are maintained. Thus, discoloration, which has been a big problem in the past, does not occur, and polyester fibers with extremely high whiteness can be obtained. As a result, it became possible to put antibacterial fiber products in fields that could not be used in the past into practical use, and the applications were greatly expanded.

Claims (3)

過酸化水素、過炭酸ナトリウムおよび過酸化ナトリウムから選ばれる少なくとも1種以上の変色防止剤を含有した0.1〜20重量%の水酸化ナトリウム水溶液を用いて、銀系無機抗菌剤を担持させたポリエステル繊維を減量率5重量%〜25重量%にアルカリ減量処理することを特徴とする抗菌性ポリエステル繊維の製造方法。A silver-based inorganic antibacterial agent was supported using a 0.1-20 wt% aqueous sodium hydroxide solution containing at least one discoloration inhibitor selected from hydrogen peroxide, sodium percarbonate and sodium peroxide. A method for producing an antibacterial polyester fiber, comprising subjecting a polyester fiber to an alkali weight loss treatment at a weight loss rate of 5 wt% to 25 wt% . 銀系無機抗菌剤が下記一般式[1]で示される化合物である請求項1記載の抗菌性ポリエステル繊維の製造方法。
Aga1 b2 2(PO43・nH2O 〔1〕
(M1はアルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオンまたは水素イオンから選ばれる少なくとも1種のイオンであり、M2はTi、Zr、Sn等の4価金属であり、nは0≦n≦6を満たす数であり、a及びbはa+b=1を満たす正数である。)
The method for producing an antibacterial polyester fiber according to claim 1, wherein the silver-based inorganic antibacterial agent is a compound represented by the following general formula [1].
Ag a M 1 b M 2 2 (PO 4 ) 3 · nH 2 O [1]
(M 1 is at least one ion selected from alkali metal ions, alkaline earth metal ions, ammonium ions, or hydrogen ions, M 2 is a tetravalent metal such as Ti, Zr, or Sn, and n is 0 ≦ (It is a number that satisfies n ≦ 6, and a and b are positive numbers that satisfy a + b = 1.)
変色防止剤が過酸化水素である請求項1または請求請2記載の抗菌性ポリエステル繊維の製造方法。The method for producing an antibacterial polyester fiber according to claim 1 or 2, wherein the discoloration inhibitor is hydrogen peroxide.
JP20437199A 1999-07-19 1999-07-19 Method for producing antibacterial polyester fiber Expired - Lifetime JP3800871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20437199A JP3800871B2 (en) 1999-07-19 1999-07-19 Method for producing antibacterial polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20437199A JP3800871B2 (en) 1999-07-19 1999-07-19 Method for producing antibacterial polyester fiber

Publications (2)

Publication Number Publication Date
JP2001032127A JP2001032127A (en) 2001-02-06
JP3800871B2 true JP3800871B2 (en) 2006-07-26

Family

ID=16489418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20437199A Expired - Lifetime JP3800871B2 (en) 1999-07-19 1999-07-19 Method for producing antibacterial polyester fiber

Country Status (1)

Country Link
JP (1) JP3800871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4034699A4 (en) * 2019-09-27 2023-11-08 Cocona, Inc. Improved functional textiles and manufacturing methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002539A1 (en) * 2004-11-04 2006-05-11 Zimmer Ag Process for bleaching, dyeing, finishing and washing silver-loaded pulps
CN115075007A (en) * 2022-06-25 2022-09-20 杭州明华纺织有限公司 High-antibacterial polyester blended fabric and preparation method thereof
CN115262019B (en) * 2022-07-05 2023-07-18 新凤鸣集团股份有限公司 Manufacturing method of antibacterial anti-yellowing ZnO antimony-free polyester fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4034699A4 (en) * 2019-09-27 2023-11-08 Cocona, Inc. Improved functional textiles and manufacturing methods

Also Published As

Publication number Publication date
JP2001032127A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
JP3201023B2 (en) Manufacturing method of antibacterial synthetic fiber
JPWO2004064523A1 (en) Antibacterial composition and antibacterial product
JP3800871B2 (en) Method for producing antibacterial polyester fiber
JP4074032B2 (en) Antibacterial polyamide fiber
US3790561A (en) Preparation of a calcium and magnesium ion sequestrant
US2819177A (en) Stable colloidal titania monohydrate dispersions
JP3280135B2 (en) Manufacturing method of antibacterial fiber products
JPH08175843A (en) Antimicrobial agent having durability
JPH10292225A (en) Polyurethane elastic fiber and its production
JP2785515B2 (en) Antibacterial synthetic fiber and method for producing the same
JPH0984860A (en) Antibacterial working method for fiber
JP2925372B2 (en) Flame-retardant antibacterial fiber and method for producing the same
JPH08302562A (en) Production of antimicrobial polyester fiber
JP3197126B2 (en) Antibacterial fiber
JP2000328440A (en) Surface-modification treatment of antibacterial agent for fiber
JPH11158730A (en) Antimicrobial polyester yarn
JPH0726434A (en) Production of antifungal textile product
JP2000303258A (en) Antimicrobial polyester fiber
JP2001247335A (en) Glass composition for imparting antimicrobial properties, antimicrobial polymer composite material and antimicrobial fiber
JP2003147637A (en) Antimicrobial polyester fiber
JPH0819258B2 (en) Antibacterial resin composition for fibers and films
JPH11229236A (en) Antimicrobial polyester yarn
JPS591769A (en) Silver containing sterilizable cellulose fiber
JP2016186135A (en) Color fastness fiber and fiber structure containing the fiber
JP3265109B2 (en) Fiber with antibacterial function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Ref document number: 3800871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term