JP3800820B2 - Active micro optical element and image display device - Google Patents

Active micro optical element and image display device Download PDF

Info

Publication number
JP3800820B2
JP3800820B2 JP24236198A JP24236198A JP3800820B2 JP 3800820 B2 JP3800820 B2 JP 3800820B2 JP 24236198 A JP24236198 A JP 24236198A JP 24236198 A JP24236198 A JP 24236198A JP 3800820 B2 JP3800820 B2 JP 3800820B2
Authority
JP
Japan
Prior art keywords
electrode
optical element
intermediate electrode
micro
micro optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24236198A
Other languages
Japanese (ja)
Other versions
JP2000075224A (en
Inventor
高司 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24236198A priority Critical patent/JP3800820B2/en
Publication of JP2000075224A publication Critical patent/JP2000075224A/en
Application granted granted Critical
Publication of JP3800820B2 publication Critical patent/JP3800820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はマイクロマシンによりマイクロ光学素子を動かし光スイッチングする能動型光学素子、及び、画像表示装置に関するものである。
【0002】
【従来の技術】
従来この種のマイクロアクチュエータは、中間電極と上、又は、下の電極との間に電圧を印可し、中間電極を上下に移動させている。また、上下の電極には絶縁膜が中間電極側に設けられており、中間電極が移動し上、又は、下の電極に接触するのを前記絶縁層で防止していた。前記絶縁層は、中間電極が移動する時の上限、又は、下限のストッパーの役割も担っていた。
【0003】
中間電極に接続されているばねは、通常2本、又は、4本のものが主流で、各々のばねはそれぞれ支持部材によって片端を固定されていた。
【0004】
【発明が解決しようとする課題】
マイクロ光学素子をライン状に並べたり、アレイ状に並べたりしたプリンターヘッド、又は、画像表示素子等の場合、ライン状、又は、アレイ状に並べた素子の大きさは、省電力、ローコスト化の為、小さい方が望ましい。素子を小さくするには個々のマイクロ光学素子を小さくする必要がある。それに伴いアクチュエータ部の構成部材も小さくする必要があるが、要求変位量を満たす為にはある程度の大きさが必要となる。
【0005】
そこで、ばねの有効長が短くなり、駆動電圧が大きくなるという問題点が生ずる。また、ばねの支持部が2つ以上あると、ばね、及び、ばね支持部の面積で、電極の面積が取れず、電極面積が小さくなり、駆動電圧が大きくなるという問題点も生ずる。
【0006】
また、中間電極が上、又は、下の電極に接触するのを絶縁層で防止し、中間電極が移動する時の上限、又は、下限のストッパーになっている為に、中間電極は絶縁層に面で接触し止まっていた。電極電圧が切り替わり絶縁層から離れようとした時、面で接触して止まっていた為、吸着、エアーダンピング等の弊害によりアクチュエータが動かなくなったり、動く速さが遅くなる等の問題も生ずる。
【0007】
本発明は上記課題を解決するためのものであり、非常に簡単な構造で、上下駆動できる、より小さい能動型マイクロ光学素子アレイを実現し、吸着も起こらず、しかも、信頼性あるマイクロアクチュエータ、能動型マイクロ光学素子、及び、画像表示素子を提供することを主な目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決する本発明の構成は、
1) マイクロ光学素子とマイクロアクチュエータを有する能動型光学素子において、中間電極の上下に電極を有し、マイクロアクチュエータのばね支持部が1つで、1本のばねにより中間電極を支えている構造を持ち、中間電極にマイクロ光学素子との結合部が有り、1ヶ所以上の結合部によりマイクロ光学素子と結合されていることを特徴とする。
【0009】
2) マイクロアクチュエータ、駆動回路をアレイ状に持つ静電駆動式マイクロアクチュエータにおいて、下部と上部の電極の中間に中間電極を持ち、中間電極と下電極、又は、上電極との印加電圧により中間電極を移動させるアクチュエータ構造を有し、中間電極はばね構造を介し支持されており、下電極、中間電極、上電極の電位が等しい時、中間電極と下電極の間隔と、中間電極と上電極の間隔を等しくない構成としたことを特徴とする。
【0010】
3) マイクロアクチュエータ、駆動回路をアレイ状に持つ静電駆動式マイクロアクチュエータにおいて、中間電極の電位を少なくとも一つ以上隣のマイクロアクチュエータの中間電極の電位と等しくすること、中間電極と下電極に電位差が生じ、下方向に移動し止まる時に、中間電極の一部が、隣の中間電極に接続されているばねを支える支柱の一部に接触することを特徴とする。
【0011】
4) マイクロアクチュエータにマイクロ光学素子が結合され、マイクロアクチュエータ毎に駆動回路を持つ静電駆動式マイクロアクチュエータによって、マイクロ光学素子が移動する能動型マイクロ光学素子において、中間電極の電位を少なくとも一つ以上隣のマイクロアクチュエータの中間電極の電位を等しくすること、中間電極と下電極に電位差が生じ、下方向に移動する時に、中間電極とマイクロ光学素子との接続部の底面、又は、一部、あるいは、中間電極の底面が、隣の中間電極に接続されているばねを支える支柱の一部に接触して停止することを特徴とする。
【0012】
5) マイクロ光学素子、マイクロアクチュエータ、マイクロアクチュエータ毎に駆動回路を持つ静電駆動式マイクロアクチュエータにより、マイクロ光学素子が移動する能動型マイクロ光学素子において、中間電極の上下に電極を持ち、中間電極にマイクロ光学素子との結合部が有り、この結合部によりマイクロ光学素子と結合し、前記結合部は導体、あるいは、絶縁体で構成され、マイクロ光学素子の底面は、絶縁体で構成され、中間電極と下電極に電位差が生じ、下方向に移動する時に、上電極の上面とマイクロ光学素子の下面の一部、又は、全部が接触してマイクロ光学素子が停止することを特徴とする。
【0013】
6) マイクロアクチュエータ、駆動回路、下部と上部の電極の中間に中間電極を持ち、中間電極に接続されたマイクロ光学素子が移動して光スイッチング動作をする能動型マイクロ光学素子において、マイクロ光学素子が上方に移動した時、マイクロ光学素子の上方にマイクロ光学素子の位置を規定させるストッパーを設け、マイクロ光学素子が前記ストッパーに接触し停止した時、中間電極の上面(上電極側の面)と上電極の下面(中間電極側の面)が、少なくとも全面にわたり接触していない、構成にしたことを特徴とする。
【0014】
7) 1)、3)、4)、5),6)記載の能動型マイクロ光学素子のアレイ化によって、アレイ状の光スイッチング素子を構成し、前記光スイッチング素子アレイで画像を表示することを特徴とする。
【0015】
【発明の実施の形態】
(実施例1)
図1は本発明の実施例1におけるアクチュエータ部を示す概略図である。また、図2は図1の108から109の断面図である。101は駆動回路の上に設けられたアクチュエータの最下面に位置する下電極である。ばね104はばねを支える支柱105によって支えられており、もう一方の端を中間電極102に接続している。中間電極の上面の一部には光学素子203との接続部103を有する。中間電極の上には支柱107に支えられた上電極106がある。この様な構造をとる事により、空間利用効率が飛躍的に向上し、しかも、ばねが長く、上下の電極の面積も大きくできた。従って、5Vで駆動で、アクチュエータと強固に接続された能動型マイクロ光学素子を実現した。
【0016】
(実施例2)
実施例2における静電アクチュエータを、図1、及び、図1の108から109の断面図を示す図2で説明する。下電極101と、中間電極102に電位差を与える事により引力が発生し、中間電極102は下方向に移動する。同様に、上電極106と、中間電極102に電位差を与える事により引力が発生し、中間電極102は上方向に移動する。中間電極102はばね104に接続されもう一方の端は支柱に固定されている。従って、中間電極が静電力により上方に移動する時も下方に移動する時も同じばね定数となる。静電アクチュエータの場合、電極の面積に反比例して駆動電圧は下がり、駆動距離の2乗に比例して駆動電圧が上がる。実施例2に示すアクチュエータの場合、マイクロ光学素子203に接続する為の接続部103が必要となる為、上電極106の面積が、下電極101より小さくなる。この様な状態で、中間電極と上下の電極の間隔を同じにすると、下電極と中間電極に印可する電位差よりも、上電極と中間電極に印可する電位差の方を大きくしないとプルイン電圧に至らない。そこで、中間電極と上電極の間隔201を中間電極と下電極の間隔202よりも狭くする事により、上下の電極の印可電圧を同じにしても、同様にプルインさせる事が出来る。
【0017】
この様な構造にする事により、本実施例2では、上下のプルイン電圧を5Vとする事ができ、駆動電圧を上下電極ともに5V以下が達成できた。
【0018】
(実施例3)
図3は、本発明の実施例3におけるアクチュエータ部を示す概略図である。また、図4は図3の302から303の断面図である。ばね104の支柱105、及び、ばねに接続されている中間電極102は導電性の物質で構成されておりアレイ状になったアクチュエータ其々のばね支柱105はお互い下部の駆動回路内で導通されている。ばね支柱105の一部301は中間電極102と平面的に重なっている。下電極は絶縁層401によって、中間電極側が絶縁保護されている。下電極101と中間電極104に電位差が生じ、下方に移動するとばね104の一部が隣のばね支柱に402の様に接触する。この様に隣のばね支柱とばねの一部が接触した時、中間電極104と下電極の絶縁層401との間には隙間403が存在する。
【0019】
中間電極に蓄積された電荷は、ばね支柱に接触する毎に支柱から逃げる事ができ、帯電防止の効果がある。また、中間電極104と下電極の絶縁層401との接触が避けられる為、吸着などの弊害も防ぐ事が出来る。
【0020】
(実施例4)
図5は、本発明の実施例4におけるアクチュエータ部を示す概略図である。また、図6は図5の502から503の断面図である。ばね104の支柱105、及び、ばねに接続されている中間電極102は導電性の物質で構成されており、光学素子601中間電極102を接続している結合部103も導電性がある。アレイ状になったアクチュエータ其々のばね支柱105はお互い下部の駆動回路内で導通されている。ばね支柱105の一部501は結合部103と平面的に重なっている。下電極は絶縁層401によって、中間電極側が絶縁保護されている。下電極101と中間電極104に電位差が生じ、下方に移動すると結合部103の一部が隣のばね支柱に603の様に接触する。この様に隣のばね支柱と結合部103の一部が接触した時、中間電極104と下電極の絶縁層401との間には隙間602が存在する。
【0021】
中間電極に蓄積された電荷は、ばね支柱に接触する毎に導電性の結合部材を通して支柱から逃げる事が出来、帯電防止の効果がある。また、中間電極104と下電極の絶縁層401との接触が避けられる為、吸着などの弊害も防ぐ事が出来る。本実施例4では、結合部は導電性の物質で構成したが、絶縁体であっても、中間電極104と下電極の絶縁層401との接触が避けられる為、吸着などの弊害も導体の場合と同様に防ぐ事が出来る。
【0022】
(実施例5)
実施例5は、中間電極104と下電極の絶縁層401との接触を避けるもう一つの手段である。図7は図5の502から503の断面図である。上電極は絶縁層401によって、上電極全体が絶縁保護されている。下電極101と中間電極104に電位差が生じ、下方に移動すると光学素子701の下面が上電極106を絶縁保護している絶縁層401に703の点で接触する。この時、中間電極104と下電極の絶縁層401との間には隙間702が存在する。
【0023】
この様に、中間電極104と下電極の絶縁層401との接触が避けられる為、吸着などの弊害も防ぐ事が出来る。本実施例5では、光学素子の下面はは絶縁体で構成したが、導電体でも、中間電極104と下電極の絶縁層401との接触が避けられる為、吸着などの弊害も絶縁体の場合と同様に防ぐ事が出来る。
【0024】
(実施例6)
図8に実施例6の能動型マイクロ素子アレイの断面図を示す。101は駆動回路の上に設けられた、アクチュエータの最下面に位置する下電極である。ばね104はばねを支える支柱105によって支えられており、もう一方の端が中間電極に接続している。中間電極の上面の一部にはマイクロ光学素子との接続部103を有する。中間電極の上には支柱に支えられた上電極106がある。実施例6のマイクロ光学素子901は、上部にV溝構造の反射部を持つ。下電極101と中間電極に電位差を生じさせるとばねに対抗して、下方に移動し、光導光部802とマイクロ光学素子801の間に0.5μm程度の隙間が生ずる。この状態では導光部内の光線808は導光部の底面で全反射し光線807の方向に反射する。一方、上電極106と中間電極に電位差を生じさせるとばねに対抗して、上方に移動し、光導光部802の底面とマイクロ光学素子801の上面が密着し、導光部内の光線805はマイクロ光学素子に進入する事ができる。マイクロ光学素子にはv構造の反射面がある為、入射光はその斜面で反射し、導光部802の底面に垂直の光線806となり出射する。この様に、マイクロ光学素子を下部に設けられたマイクロアクチュエータによって上下させる事により、光の角度を70度程度変化させる事ができ、これを用いて光スイッチング動作が得られる。光導光部802の底面とマイクロ光学素子801の上面が密着する時、上電極106上にある絶縁層401と中間電極との接触を避け、804の隙間を残す構造とした。
【0025】
これにより、上電極と中間電極の間に電位差が生じ上方に移動しても、導光部802がストッパーの役割を果たし、上電極の絶縁体と、中間電極の接触を避ける事ができる。従って、吸着などの弊害を下電極の場合と同様に防ぐ事が出来る。
【0026】
(実施例7)
図9は本発明の実施例7における画像表示装置を示す概略図である。光源901より出射した光はレンズ902により色フィルタ903上に集光させ、コリメートレンズ904により平行光となり光導入プリズム906に入射する。光導入プリズム906に入射した光は、実施例1〜6で示した能動型マイクロ光学素子アレイ905に入射し、画素表示として選択的に907に出射される。画像情報を持った光907は投射レンズ908によってスクリーンに投影され、動画等を表示するのである。このように、非常に小さいマイクロ光学素子アレイが実現した為、非常に、部品点数の少ない、小型で明るい画像表示装置が実現可能となった。
【0027】
【発明の効果】
以上説明したように本発明によれば、
1)一本のばねと、ばねの支持機構を一ヶ所にする事により、上下に電極を持つアクチュエータにおいても、上下の電極面積を大きくする事ができると同時に、マイクロ光学素子との結合部の接合面積も大きく取る事ができた。これにより、空間利用効率が飛躍的に向上し、マイクロ光学素子の大きさを小さくする事と、マイクロ光学素子を駆動するマイクロアクチュエータに投入するエネルギーを小さくするという、相反する課題を同時に解決し、マイクロ光学素子を非常に小さくし、しかも、アクチュエータに投入する電気的エネルギーも少なく出来た。
【0028】
2)本発明のマイクロアクチュエータによれば、上下の電極面積の大きさの違いを吸収し、上下電極とも同じ電圧5Vで駆動できた。従って、マイクロアクチュエータ下部に設けられた駆動回路の面積を小さくできる事で、大規模なマイクロアクチュエータアレイに対し有効な手段が得られた。
【0029】
3)本発明の能動型マイクロ光学素子によれば、中間電極が、上下電極を保護している絶縁層にさえ接触せず、しかも、マイクロ光学素子の一回の上下駆動毎に中間電極に蓄積した電荷を逃がす事ができる為、光スイッチング回数の非常に大きな、プリンター、画像表示装置等のデバイスに使用する事ができる。
【0030】
4)能動型マイクロ光学素子アレイを画像表示装置に用いる事により、より省電力の画像表示装置が実現できたと共に、1つの画像表示素子が小さく出来た為、HDTVの様な高画素数の画像表示素子でも0.9インチ以下になり、一枚のシリコンウエハーから取れる画像表示素子の数が飛躍的に向上した。
【図面の簡単な説明】
【図1】 実施例1におけるアクチュエータ部を示す概略図である。
【図2】 図1の断面図を示す概略図である。
【図3】 実施例3におけるアクチュエータ部を示す概略図である。
【図4】 図3の断面図を示す概略図である。
【図5】 実施例4におけるアクチュエータ部を示す概略図である。
【図6】 図5の断面図を示す概略図である。
【図7】 実施例5における図5の断面図を示す概略図である。
【図8】 実施例6の能動型マイクロ素子アレイの断面図である。
【図9】 実施例7における画像表示装置を示す概略図である。
【符号の説明】
101…下電極
102…中間電極
106…上電極
201…上電極と中間電極との間隔
202…下電極と中間電極との間隔
203…光学素子
802…光導入部
805…入射光線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an active optical element that performs optical switching by moving a micro optical element by a micromachine, and an image display apparatus.
[0002]
[Prior art]
Conventionally, in this type of microactuator, a voltage is applied between the intermediate electrode and the upper or lower electrode to move the intermediate electrode up and down. In addition, an insulating film is provided on the upper and lower electrodes on the intermediate electrode side, and the insulating layer prevents the intermediate electrode from moving and contacting the upper or lower electrode. The insulating layer also served as an upper limit or lower limit stopper when the intermediate electrode moved.
[0003]
Usually, two or four springs connected to the intermediate electrode are mainstream, and one end of each spring is fixed by a support member.
[0004]
[Problems to be solved by the invention]
In the case of a printer head or an image display element in which micro optical elements are arranged in a line or array, the size of the elements arranged in a line or array is low in power consumption and low cost. Therefore, the smaller one is desirable. In order to make the element small, it is necessary to make each micro optical element small. Along with this, it is necessary to make the constituent members of the actuator portion small, but a certain size is required to satisfy the required displacement amount.
[0005]
Therefore, there arises a problem that the effective length of the spring is shortened and the drive voltage is increased. In addition, when there are two or more spring support portions, there is a problem that the area of the electrode cannot be obtained due to the area of the spring and the spring support portion, the electrode area is reduced, and the drive voltage is increased.
[0006]
Also, the intermediate electrode prevents the upper electrode from contacting the upper or lower electrode with an insulating layer, and the intermediate electrode is an upper or lower stopper when the intermediate electrode moves. It stopped in contact with the surface. When the electrode voltage is switched to leave the insulating layer, it comes in contact with the surface and stops, causing problems such as the actuator not moving or the moving speed slowing due to adverse effects such as adsorption and air damping.
[0007]
The present invention has been made to solve the above-mentioned problems, and realizes a smaller active micro-optical element array that can be driven up and down with a very simple structure, does not cause adsorption, and is a reliable microactuator. The main object is to provide an active micro optical element and an image display element.
[0008]
[Means for Solving the Problems]
The configuration of the present invention for solving the above problems is as follows.
1) In an active optical element having a micro optical element and a micro actuator, an electrode is provided above and below the intermediate electrode, the micro actuator has one spring support, and the intermediate electrode is supported by a single spring. The intermediate electrode has a coupling portion with the micro optical element, and is coupled to the micro optical element by one or more coupling portions.
[0009]
2) In an electrostatically driven microactuator having an array of microactuators and drive circuits, an intermediate electrode is provided between the lower and upper electrodes, and an intermediate electrode is applied depending on the applied voltage between the intermediate electrode and the lower electrode or the upper electrode. The intermediate electrode is supported via a spring structure, and when the potentials of the lower electrode, the intermediate electrode, and the upper electrode are equal, the distance between the intermediate electrode and the lower electrode, and between the intermediate electrode and the upper electrode A feature is that the intervals are not equal.
[0010]
3) In an electrostatically driven microactuator having an array of microactuators and drive circuits, make the potential of the intermediate electrode equal to the potential of the intermediate electrode of one or more adjacent microactuators, and the potential difference between the intermediate electrode and the lower electrode When this occurs and stops moving downward, a part of the intermediate electrode comes into contact with a part of the column supporting the spring connected to the adjacent intermediate electrode.
[0011]
4) At least one potential of the intermediate electrode is set in an active micro-optical element in which the micro-optical element is moved by an electrostatically driven micro-actuator having a driving circuit for each micro-actuator. When the potential of the intermediate electrode of the adjacent microactuator is made equal, a potential difference is generated between the intermediate electrode and the lower electrode, and when moving downward, the bottom surface or part of the connecting portion between the intermediate electrode and the micro optical element, or The bottom surface of the intermediate electrode comes into contact with a part of the support supporting the spring connected to the adjacent intermediate electrode and stops.
[0012]
5) In an active micro optical element in which the micro optical element moves by a micro optical element, a micro actuator, and an electrostatic drive type micro actuator having a drive circuit for each micro actuator, the electrodes are located above and below the intermediate electrode, There is a coupling portion with the micro optical element, and the coupling portion couples with the micro optical element. The coupling portion is made of a conductor or an insulator, and the bottom surface of the micro optical element is made of an insulator, and an intermediate electrode When the potential difference is generated between the lower electrode and the lower electrode and the lower electrode moves downward, the upper surface of the upper electrode and a part or all of the lower surface of the micro optical element come into contact with each other to stop the micro optical element.
[0013]
6) An active micro-optical element that has an intermediate electrode between the micro-actuator, drive circuit, and lower and upper electrodes, and the micro-optical element connected to the intermediate electrode moves to perform optical switching operation. When moved upward, a stopper is provided above the micro optical element to define the position of the micro optical element. When the micro optical element comes into contact with the stopper and stops, the upper surface of the intermediate electrode (the surface on the upper electrode side) and the upper The lower surface of the electrode (the surface on the intermediate electrode side) is not in contact with at least the entire surface.
[0014]
7) By forming an array of active micro optical elements as described in 1), 3), 4), 5) and 6), an optical switching element in the form of an array is formed, and an image is displayed by the optical switching element array. Features.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
FIG. 1 is a schematic view showing an actuator portion in Embodiment 1 of the present invention. 2 is a cross-sectional view taken from 108 to 109 in FIG. Reference numeral 101 denotes a lower electrode located on the lowermost surface of the actuator provided on the drive circuit. The spring 104 is supported by a support column 105 that supports the spring, and the other end is connected to the intermediate electrode 102. A part of the upper surface of the intermediate electrode has a connection portion 103 with the optical element 203. Above the intermediate electrode is an upper electrode 106 supported by a support column 107. By adopting such a structure, the space utilization efficiency has been dramatically improved, the springs are long, and the areas of the upper and lower electrodes can be increased. Therefore, an active micro optical element that is driven at 5 V and is firmly connected to the actuator has been realized.
[0016]
(Example 2)
An electrostatic actuator according to the second embodiment will be described with reference to FIG. 1 and FIG. 2 showing a cross-sectional view from 108 to 109 in FIG. An attractive force is generated by applying a potential difference between the lower electrode 101 and the intermediate electrode 102, and the intermediate electrode 102 moves downward. Similarly, an attractive force is generated by applying a potential difference between the upper electrode 106 and the intermediate electrode 102, and the intermediate electrode 102 moves upward. The intermediate electrode 102 is connected to the spring 104 and the other end is fixed to the support column. Therefore, the same spring constant is obtained when the intermediate electrode moves upward and downwards due to electrostatic force. In the case of an electrostatic actuator, the driving voltage decreases in inverse proportion to the electrode area, and the driving voltage increases in proportion to the square of the driving distance. In the case of the actuator shown in the second embodiment, the connection portion 103 for connecting to the micro optical element 203 is required, so that the area of the upper electrode 106 is smaller than that of the lower electrode 101. In this state, if the distance between the intermediate electrode and the upper and lower electrodes is the same, the pull-in voltage will be reached unless the potential difference applied to the upper electrode and the intermediate electrode is made larger than the potential difference applied to the lower electrode and the intermediate electrode. Absent. Therefore, by making the interval 201 between the intermediate electrode and the upper electrode narrower than the interval 202 between the intermediate electrode and the lower electrode, even if the applied voltages of the upper and lower electrodes are the same, the pull-in can be performed in the same manner.
[0017]
By adopting such a structure, in Example 2, the upper and lower pull-in voltages can be set to 5 V, and the drive voltage can be achieved to 5 V or less for both the upper and lower electrodes.
[0018]
Example 3
FIG. 3 is a schematic diagram illustrating an actuator unit according to the third embodiment of the present invention. 4 is a cross-sectional view taken from 302 to 303 in FIG. The strut 105 of the spring 104 and the intermediate electrode 102 connected to the spring are made of a conductive material, and the spring struts 105 of the actuators arranged in an array are connected to each other in the drive circuit below. Yes. A part 301 of the spring column 105 overlaps the intermediate electrode 102 in a plan view. The lower electrode is insulated and protected by the insulating layer 401 on the intermediate electrode side. When a potential difference is generated between the lower electrode 101 and the intermediate electrode 104 and the electrode 104 moves downward, a part of the spring 104 comes into contact with an adjacent spring column like 402. In this way, when the adjacent spring strut and a part of the spring are in contact with each other, a gap 403 exists between the intermediate electrode 104 and the insulating layer 401 of the lower electrode.
[0019]
The electric charge accumulated in the intermediate electrode can escape from the column every time it contacts the spring column, and has an effect of preventing charging. Further, since the contact between the intermediate electrode 104 and the insulating layer 401 of the lower electrode is avoided, adverse effects such as adsorption can be prevented.
[0020]
(Example 4)
FIG. 5 is a schematic diagram illustrating an actuator unit according to a fourth embodiment of the present invention. FIG. 6 is a cross-sectional view taken from 502 to 503 in FIG. The column 105 of the spring 104 and the intermediate electrode 102 connected to the spring are made of a conductive material, and the coupling portion 103 connecting the optical element 601 intermediate electrode 102 is also conductive. The spring struts 105 of the actuators arranged in an array are connected to each other in the lower drive circuit. A part 501 of the spring column 105 overlaps the coupling portion 103 in a plan view. The lower electrode is insulated and protected by the insulating layer 401 on the intermediate electrode side. When a potential difference is generated between the lower electrode 101 and the intermediate electrode 104 and the lower electrode 101 and the intermediate electrode 104 move downward, a part of the coupling portion 103 comes into contact with an adjacent spring post like a frame 603. In this way, when the adjacent spring strut and a part of the coupling portion 103 are in contact with each other, a gap 602 exists between the intermediate electrode 104 and the insulating layer 401 of the lower electrode.
[0021]
The electric charge accumulated in the intermediate electrode can escape from the support through the conductive coupling member every time it comes into contact with the spring support, and has the effect of preventing charging. Further, since the contact between the intermediate electrode 104 and the insulating layer 401 of the lower electrode is avoided, adverse effects such as adsorption can be prevented. In the fourth embodiment, the coupling portion is made of a conductive material. However, even if it is an insulator, contact between the intermediate electrode 104 and the insulating layer 401 of the lower electrode can be avoided. You can prevent it as well.
[0022]
(Example 5)
The fifth embodiment is another means for avoiding contact between the intermediate electrode 104 and the insulating layer 401 of the lower electrode. FIG. 7 is a cross-sectional view taken from 502 to 503 in FIG. The entire upper electrode is insulated and protected by the insulating layer 401. When a potential difference is generated between the lower electrode 101 and the intermediate electrode 104 and moves downward, the lower surface of the optical element 701 contacts the insulating layer 401 that insulates and protects the upper electrode 106 at a point 703. At this time, a gap 702 exists between the intermediate electrode 104 and the lower electrode insulating layer 401.
[0023]
In this way, contact between the intermediate electrode 104 and the insulating layer 401 of the lower electrode can be avoided, so that adverse effects such as adsorption can be prevented. In Example 5, the lower surface of the optical element is made of an insulator. However, even in the case of a conductor, contact between the intermediate electrode 104 and the insulating layer 401 of the lower electrode can be avoided. Can be prevented as well.
[0024]
(Example 6)
FIG. 8 shows a sectional view of an active microelement array of Example 6. Reference numeral 101 denotes a lower electrode provided on the lowermost surface of the actuator provided on the drive circuit. The spring 104 is supported by a support column 105 that supports the spring, and the other end is connected to the intermediate electrode. A part of the upper surface of the intermediate electrode has a connection portion 103 with a micro optical element. Above the intermediate electrode is an upper electrode 106 supported by a column. The micro optical element 901 according to the sixth embodiment has a reflection portion having a V-groove structure at the top. When a potential difference is generated between the lower electrode 101 and the intermediate electrode, it moves downward against the spring, and a gap of about 0.5 μm is generated between the light guide 802 and the micro optical element 801. In this state, the light beam 808 in the light guide unit is totally reflected on the bottom surface of the light guide unit and reflected in the direction of the light beam 807. On the other hand, when a potential difference is generated between the upper electrode 106 and the intermediate electrode, it moves upward against the spring, the bottom surface of the light guide 802 and the top surface of the micro optical element 801 are brought into close contact with each other, and the light beam 805 in the light guide is microscopic. It is possible to enter the optical element. Since the micro-optical element has a v-structure reflecting surface, incident light is reflected by the inclined surface and emitted as a light beam 806 perpendicular to the bottom surface of the light guide unit 802. In this way, by moving the micro optical element up and down by the microactuator provided at the lower part, the angle of light can be changed by about 70 degrees, and an optical switching operation can be obtained using this. When the bottom surface of the light guide 802 and the top surface of the micro optical element 801 are in close contact with each other, the contact between the insulating layer 401 on the upper electrode 106 and the intermediate electrode is avoided, and a gap 804 is left.
[0025]
As a result, even if a potential difference is generated between the upper electrode and the intermediate electrode and moves upward, the light guide 802 serves as a stopper, and contact between the insulator of the upper electrode and the intermediate electrode can be avoided. Therefore, adverse effects such as adsorption can be prevented in the same manner as in the case of the lower electrode.
[0026]
(Example 7)
FIG. 9 is a schematic view showing an image display apparatus in Embodiment 7 of the present invention. The light emitted from the light source 901 is condensed on the color filter 903 by the lens 902, becomes parallel light by the collimating lens 904, and enters the light introducing prism 906. The light incident on the light introducing prism 906 is incident on the active micro optical element array 905 described in the first to sixth embodiments, and is selectively emitted to the pixel 907 as a pixel display. Light 907 having image information is projected onto a screen by a projection lens 908 to display a moving image or the like. As described above, since a very small micro optical element array is realized, a small and bright image display apparatus with a very small number of parts can be realized.
[0027]
【The invention's effect】
As described above, according to the present invention,
1) By using a single spring and a spring support mechanism in one place, even in an actuator having electrodes on the top and bottom, the area of the top and bottom electrodes can be increased, and at the same time, the coupling portion with the micro optical element can be increased. The joining area was also large. This dramatically improves the space utilization efficiency and simultaneously resolves the conflicting issues of reducing the size of the micro optical element and reducing the energy input to the micro actuator that drives the micro optical element, The micro optical element can be made very small, and the electrical energy input to the actuator can be reduced.
[0028]
2) According to the microactuator of the present invention, the difference in the size of the upper and lower electrode areas was absorbed, and the upper and lower electrodes could be driven at the same voltage of 5V. Therefore, since the area of the drive circuit provided under the microactuator can be reduced, an effective means for a large-scale microactuator array can be obtained.
[0029]
3) According to the active micro-optical element of the present invention, the intermediate electrode does not even contact the insulating layer protecting the upper and lower electrodes, and accumulates in the intermediate electrode for every single vertical drive of the micro-optical element. Therefore, it can be used in devices such as printers and image display devices that have a very large number of optical switching operations.
[0030]
4) By using an active micro optical element array for an image display device, a more power-saving image display device can be realized and one image display device can be made smaller. Even the display element is 0.9 inches or less, and the number of image display elements that can be taken from one silicon wafer has been dramatically improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an actuator unit according to a first embodiment.
FIG. 2 is a schematic diagram showing a cross-sectional view of FIG. 1;
FIG. 3 is a schematic diagram illustrating an actuator unit according to a third embodiment.
4 is a schematic diagram showing a cross-sectional view of FIG. 3. FIG.
FIG. 5 is a schematic diagram illustrating an actuator unit according to a fourth embodiment.
6 is a schematic diagram showing a cross-sectional view of FIG. 5. FIG.
7 is a schematic diagram showing a cross-sectional view of FIG. 5 in Example 5. FIG.
8 is a cross-sectional view of an active microelement array of Example 6. FIG.
FIG. 9 is a schematic diagram illustrating an image display apparatus according to a seventh embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Lower electrode 102 ... Intermediate electrode 106 ... Upper electrode 201 ... Space between upper electrode and intermediate electrode 202 ... Space between lower electrode and intermediate electrode 203 ... Optical element 802 ... Light introducing portion 805 ... Incident light

Claims (5)

マイクロ光学素子とマイクロアクチュエータを有する能動型マイクロ光学素子において、
中間電極と、
中間電極の上面側に設けられた上電極と、
中間電極の下面側に設けられた下電極と、
中間電極の上面に設けられるとともに、中間電極と当該中間電極の上方に位置するマイクロ光学素子とを結合する結合部とを備え、
マイクロアクチュエータのばね支持部が1つで、1本のばねにより中間電極を支えている構造を持ち、1ヶ所以上の結合部によりマイクロ光学素子と結合され、
中間電極と下電極、又は、上電極との印加電圧により中間電極を移動させるアクチュエータ構造を有し、
上電極の面積より下電極の面積の方が大きく、かつ、下電極、中間電極、上電極の電位が等しい時、中間電極と上電極との間隔より中間電極と下電極との間隔の方が大きいことを特徴とする能動型マイクロ光学素子。
In an active micro optical element having a micro optical element and a micro actuator,
An intermediate electrode;
An upper electrode provided on the upper surface side of the intermediate electrode;
A lower electrode provided on the lower surface side of the intermediate electrode;
A coupling portion that is provided on the upper surface of the intermediate electrode and that couples the intermediate electrode and the micro-optical element positioned above the intermediate electrode;
The microactuator has a single spring support, and has a structure in which the intermediate electrode is supported by a single spring, and is coupled to the micro optical element by one or more coupling parts.
It has an actuator structure that moves the intermediate electrode by the applied voltage between the intermediate electrode and the lower electrode, or the upper electrode,
When the area of the lower electrode is larger than that of the upper electrode and the potentials of the lower electrode, the intermediate electrode, and the upper electrode are equal, the distance between the intermediate electrode and the lower electrode is greater than the distance between the intermediate electrode and the upper electrode. An active micro optical element characterized by being large.
マイクロアクチュエータにマイクロ光学素子が結合され、マイクロアクチュエータ毎に駆動回路を持つ静電駆動式マイクロアクチュエータによって、マイクロ光学素子が移動する能動型マイクロ光学素子において、
中間電極と、
中間電極の上面側に設けられた上電極と、
中間電極の下面側に設けられた下電極を備え、
中間電極と下電極に電位差が生じ、下方向に移動する時に、中間電極とマイクロ光学素子との接続部の底面、又は、一部、あるいは、中間電極の底面が、隣の中間電極に接続されているばねを支えるとともに導電性を有する支柱の一部に接触して停止し、中間電極と隣の中間電極に接続されている支柱とが接触した状態で電気的に導通することを特徴とする能動型マイクロ光学素子。
In an active micro optical element in which a micro optical element is coupled to a micro actuator and the micro optical element is moved by an electrostatically driven micro actuator having a drive circuit for each micro actuator.
An intermediate electrode;
An upper electrode provided on the upper surface side of the intermediate electrode;
A lower electrode provided on the lower surface side of the intermediate electrode,
When a potential difference occurs between the intermediate electrode and the lower electrode and the electrode moves downward, the bottom surface or part of the connection portion between the intermediate electrode and the micro optical element, or the bottom surface of the intermediate electrode is connected to the adjacent intermediate electrode. It is characterized in that it is stopped in contact with a part of a supporting pillar that supports a spring that is electrically conductive and in which the intermediate electrode and the supporting pillar connected to the adjacent intermediate electrode are in contact with each other. Active micro optical element.
マイクロ光学素子、マイクロアクチュエータ、マイクロアクチュエータ毎に駆動回路を持つ静電駆動式マイクロアクチュエータにより、マイクロ光学素子が移動する能動型マイクロ光学素子において、
中間電極と、
中間電極の上面側に設けられた上電極と、
中間電極の下方への移動を規定するとともに、中間電極の上面側に設けられた上電極と、
中間電極の下面側に設けられた下電極と、
中間電極の上面に設けられるとともに、中間電極とマイクロ光学素子とを結合する結合部とを備え、
前記結合部は導体、あるいは、絶縁体で構成され、マイクロ光学素子の底面は、絶縁体で構成され、中間電極と下電極に電位差が生じ、下方向に移動する時に、上電極の上面とマイクロ光学素子の下面の一部、又は、全部が接触してマイクロ光学素子が停止することを特徴とする能動型マイクロ光学素子。
In an active micro optical element in which a micro optical element moves by an electrostatic drive type micro actuator having a driving circuit for each micro optical element, micro actuator,
An intermediate electrode;
An upper electrode provided on the upper surface side of the intermediate electrode;
Defining the downward movement of the intermediate electrode, and an upper electrode provided on the upper surface side of the intermediate electrode;
A lower electrode provided on the lower surface side of the intermediate electrode;
Provided on the upper surface of the intermediate electrode, and comprising a coupling portion for coupling the intermediate electrode and the micro optical element,
The coupling portion is made of a conductor or an insulator, and the bottom surface of the micro optical element is made of an insulator. When the potential difference is generated between the intermediate electrode and the lower electrode and the lower electrode moves downward, the top surface of the upper electrode An active micro-optical element, wherein the micro-optical element stops when a part or all of the lower surface of the optical element comes into contact.
マイクロアクチュエータ、駆動回路、下部と上部の電極の中間に中間電極を持ち、中間電極に接続されたマイクロ光学素子が移動して光スイッチング動作をする能動型マイクロ光学素子において、
マイクロ光学素子が上方に移動した時、マイクロ光学素子の上方に設けられた導光部により、マイクロ光学素子の位置が規定され、マイクロ光学素子が前記導光部に接触し停止した時、中間電極の上面(上電極側の面)と上電極の下面(中間電極側の面)が、少なくとも全面にわたり接触していない、構成にしたことを特徴とする能動型マイクロ光学素子。
In the micro actuator, drive circuit, active micro optical element that has an intermediate electrode between the lower and upper electrodes, and the micro optical element connected to the intermediate electrode moves to perform optical switching operation.
When the micro optical element moves upward, the position of the micro optical element is defined by the light guide provided above the micro optical element, and when the micro optical element comes into contact with the light guide and stops, the intermediate electrode An active micro optical element characterized in that at least the entire upper surface (surface on the upper electrode side) and the lower surface of the upper electrode (surface on the intermediate electrode side) are not in contact with each other.
請求項1、2、3、4のいずれかに記載の能動型マイクロ光学素子のアレイ化によって、アレイ状の光スイッチング素子を構成し、前記光スイッチング素子アレイで画像を表示することを特徴とする画像表示装置。  An arrayed optical switching element is formed by arraying the active micro optical elements according to any one of claims 1, 2, 3, and 4, and an image is displayed by the optical switching element array. Image display device.
JP24236198A 1998-08-27 1998-08-27 Active micro optical element and image display device Expired - Fee Related JP3800820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24236198A JP3800820B2 (en) 1998-08-27 1998-08-27 Active micro optical element and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24236198A JP3800820B2 (en) 1998-08-27 1998-08-27 Active micro optical element and image display device

Publications (2)

Publication Number Publication Date
JP2000075224A JP2000075224A (en) 2000-03-14
JP3800820B2 true JP3800820B2 (en) 2006-07-26

Family

ID=17088048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24236198A Expired - Fee Related JP3800820B2 (en) 1998-08-27 1998-08-27 Active micro optical element and image display device

Country Status (1)

Country Link
JP (1) JP3800820B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same

Also Published As

Publication number Publication date
JP2000075224A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
US7298542B2 (en) Microelectromechanical device with reset electrode
US7071109B2 (en) Methods for fabricating spatial light modulators with hidden comb actuators
KR100707193B1 (en) Laser scanner having multi-layered comb drive
US7538932B2 (en) High contrast spatial light modulator
JP4307813B2 (en) Optical deflection method, optical deflection apparatus, method of manufacturing the optical deflection apparatus, optical information processing apparatus, image forming apparatus, image projection display apparatus, and optical transmission apparatus including the optical deflection apparatus
US20060284514A1 (en) Actuator having vertical comb electrode structure
KR20030085506A (en) Micro-mirror device
JPH11344680A (en) Micromirror device for image display device
KR100644896B1 (en) Electromagnetic MEMS scanning micromirror and optical scanning device thereby
WO2006033860A2 (en) Micromirror having offset addressing electrode
US7046415B2 (en) Micro-mirrors with flexure springs
US7257286B2 (en) Dual comb electrode structure with spacing for increasing a driving angle of a microscanner, and the microscanner adopting the same
JP3800820B2 (en) Active micro optical element and image display device
JP3846359B2 (en) Optical device
US7365899B2 (en) Micromirror with multi-axis rotation and translation
US20060245031A1 (en) Micro-mirror element with double binge
JP2000066122A (en) Micro-optical element, composite micro-optical element and picture display device
KR100559079B1 (en) Optical switch and driving method thereof
JP6052901B2 (en) Micromirror element and mirror array
KR100708086B1 (en) Micro-mirror device
KR100270811B1 (en) Micromirror device and the manufacture process of micromirror device
CN115561895A (en) Long and narrow piezoelectric MEMS micro-mirror
JP2002055287A (en) Electrostatic actuator, optical switching element and video display device
CN112327474A (en) Micro-mirror structure and forming method, micro-mirror array and detector
JP2000330041A (en) Electrostatic actuator, optical switching element, image display device, and their control methods

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees