JP3800350B2 - Biosensor - Google Patents

Biosensor Download PDF

Info

Publication number
JP3800350B2
JP3800350B2 JP27806895A JP27806895A JP3800350B2 JP 3800350 B2 JP3800350 B2 JP 3800350B2 JP 27806895 A JP27806895 A JP 27806895A JP 27806895 A JP27806895 A JP 27806895A JP 3800350 B2 JP3800350 B2 JP 3800350B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
buffer solution
membrane
electrode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27806895A
Other languages
Japanese (ja)
Other versions
JPH09119914A (en
Inventor
陽一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP27806895A priority Critical patent/JP3800350B2/en
Publication of JPH09119914A publication Critical patent/JPH09119914A/en
Application granted granted Critical
Publication of JP3800350B2 publication Critical patent/JP3800350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はバイオセンサに関し、さらに詳細にいえば、過酸化水素電極の表面の過酸化水素選択透過膜を設け、過酸化水素選択透過膜上に生理活性物質を固定化してなる固定化生理活性物質膜を設け、これら膜を緩衝溶液で湿潤させた状態で生理活性物質の存在下で測定対象物質の反応を行わせ、反応により生成された過酸化水素の量に対応する電気信号を過酸化水素電極から出力するバイオセンサに関する。
【0002】
【従来の技術】
従来から過酸化水素電極上に固定化酵素膜のように生理活性物質を固定化してなる固定化生理活性物質膜(以下、単に固定化酵素膜と称する)を設けるとともに、固定化酵素膜と過酸化水素電極との間に過酸化水素選択透過膜を設け、これらの膜を50mM/l程度の緩衝溶液で湿潤させた状態で生理活性物質の存在下で測定対象物質(例えば、体液に含まれる測定対象物質)の反応を行わせ、反応により生成された過酸化水素の量に対応する電気信号を過酸化水素電極から出力するバイオセンサが提案されている。このようなバイオセンサは測定対象物質に対して高い選択性を有しているのであるから、複雑な構造の有機物質などの濃度を高精度に測定することができる。また、緩衝溶液は、例えば、体液を測定対象溶液とする場合に、測定環境を生体条件に近づけるために50mM/l程度の濃度に設定される。
【0003】
特に、測定対象溶液が血液である場合には、過酸化水素選択透過膜が存在していなければ、血液中の妨害物質(アスコルビン酸など)に由来するノイズが検出電流に重畳されてしまい、濃度測定精度が低下してしまうのであるが、過酸化水素選択透過膜を設けておけば、過酸化水素のみが過酸化水素電極の表面に到達するのであるから、妨害物質に由来するノイズの発生がなく、高精度の濃度測定を達成することができる。
【0004】
【発明が解決しようとする課題】
しかし、過酸化水素選択透過膜はアセチルセルロースのように一般に高分子を絡み合せることにより作製されているのであり、部分的に電荷の偏りを有している。また、バイオセンサでは、測定時に過酸化水素電極の表面に形成される不純物を除去して過酸化水素電極の活性を復元させるために短時間だけ過酸化水素電極に印加するバイアス電圧の極性を反転させるようにしている。
【0005】
したがって、過酸化水素電極の表面に接した状態で設けられている過酸化水素選択透過膜が極性の反転の影響、OHラジカルの影響を受けて安定状態が乱されてしまい、この結果、高分子を絡み合せることにより作製された過酸化水素選択透過膜の膜構造が徐々に劣化していく。また、緩衝溶液の濃度が前述のように設定されているのであるから、緩衝溶液による緩衝能力を余り高めることができず、低pH領域で過酸化水素電極からの出力信号が低下してしまうという都合もある。
【0006】
【発明の目的】
この発明は上記の問題点に鑑みてなされたものであり、過酸化水素選択透過膜より長期間にわたって安定に保持し続けることができるとともに、低pH領域における出力信号の低下を防止することができるバイオセンサを提供することを目的としている。
【0007】
【課題を解決するための手段】
請求項1のバイオセンサは、固定化生理活性物質膜および過酸化水素選択透過膜を湿潤させるリン酸緩衝溶液の濃度を200mM/l以上、かつ300mM/l以下に設定してある。
【0008】
【作用】
請求項1のバイオセンサであれば、印加されるバイアス電圧の極性を測定動作時の極性に対して反転させることにより電極の活性の復元が行われる過酸化水素電極の表面に過酸化水素選択透過膜を設け、過酸化水素選択透過膜上に生理活性物質を固定化してなる固定化生理活性物質膜を設け、これら膜をリン酸緩衝溶液で湿潤させた状態で生理活性物質の存在下で測定対象物質の反応を行わせ、反応により生成された過酸化水素の量に対応する電気信号を過酸化水素電極から出力するバイオセンサであって、リン酸緩衝溶液の濃度を200mM/l以上、かつ300mM/l以下に設定しているので、過酸化水素電極に印加されるバイアス電圧の極性が反転した場合であっても、極性反転による影響がリン酸緩衝溶液層で十分に吸収され、過酸化水素選択透過膜に及ぼす影響が大幅に低減される。したがって、過酸化水素選択透過膜を長期間にわたって安定に保持することができる。また、リン酸緩衝溶液の濃度を200mM/l以上、かつ300mM/l以下に設定することにより、低pH領域での出力信号の低下を防止できることを見出した。
【0010】
【発明の実施の態様】
以下、添付図面を参照しながらこの発明の実施の態様を説明する。
図1はこの発明のバイオセンサの一実施態様を概略的に示す図である。
このバイオセンサは、少なくとも図示しないPtなどからなる作用電極およびAgなどからなる対向電極を有する過酸化水素電極1の表面にアセチルセルロース膜、ナフィオン膜、セロハン膜などからなる過酸化水素選択透過膜2を有しているとともに、過酸化水素選択透過膜2を覆うように固定化酵素膜3を有している。なお、固定化酵素膜3を覆う妨害物質分離膜(図示せず)が必要に応じて設けられる。この妨害物質分離膜は、測定対象溶液が血液である場合には、血球などを分離して血球以外の成分を固定化酵素膜3に到達させるように機能する。そして、過酸化水素選択透過膜2および固定化酵素膜3を湿潤させるための、リン酸緩衝溶液(リン酸水素2ナトリウム/リン酸2水素カリウムもしくは各水和物)が添加されている。なお、このリン酸緩衝溶液のリン酸濃度は300mM/lに設定してある。
【0011】
図2は不純物除去のためのバイアス電圧の極性反転回数の増加に伴なって漏出物質に起因する出力が変化する様子を示す図である。なお、図において、a1,a2が50mM/lのリン酸緩衝溶液を採用した場合を、a3,a4,a5,a6が300mM/lのリン酸緩衝溶液を採用した場合をそれぞれ示している。
図2から明らかなように、リン酸緩衝溶液のリン酸濃度を300mM/lに設定することで反応物質の漏出を抑制し、過酸化水素選択透過膜に対する保護効果が向上していることが分かる。
【0012】
図3はバイオセンサを通常のように使用した場合(例えばバイアス電圧の極性反転と濃度測定とを交互に行なった場合)において時間日数の増加に伴なって過酸化水素選択透過膜の劣化度の変化を示す図である。なお、図3において破線が50mM/lのリン酸緩衝溶液を採用した場合を、実線が300mM/lのリン酸緩衝溶液を採用した場合をそれぞれ示している。また、劣化度は電極出力に対する漏出物質の出力を示す。
【0013】
なお、図3の縦軸は{(妨害物質+グルコース液)/グルコース液}による出力比を示している。
図3から明らかなように、リン酸緩衝溶液のリン酸濃度を300mM/lに設定することにより、過酸化水素選択透過膜の劣化度を抑制できることが分かる。固定化酵素膜3として固定化グルコースオキシダーゼ膜を採用したバイオセンサを用いてグルコース溶液中のグルコース濃度を測定した場合に、リン酸緩衝溶液のリン酸濃度を50mM/lに設定してあれば、測定回数の増加に伴なってpH値が低下し、これに伴なって出力信号値が低下するが、リン酸緩衝溶液のリン酸濃度を300mM/lに設定してあれば、測定回数が増加した場合の低いpH領域でも、出力信号値の低下が殆ど認められなかった。これは、リン酸緩衝溶液のリン酸濃度を高めることにより緩衝能力が向上したためと思われる。
【0014】
具体的には、リン酸緩衝溶液のリン酸濃度を50mM/l、100mM/l、200mM/l、300mM/lに設定してグルコース濃度が既知のグルコース溶液を用いて測定を反復したところ、図4〜図7に示す測定結果が得られた。なお、各データは各々の条件で2ロット分のデータを示している。
これらの測定結果から明らかなように、リン酸濃度が50mM/l、100mM/lのリン酸緩衝溶液を用いた場合には、測定回数の増加に伴なって出力が大幅に低下しているが、リン酸濃度が200mM/l、300mM/lのリン酸緩衝溶液を用いた場合には、測定回数の増加に拘らず出力は殆ど低下しなかった。
【0015】
なお、上記の実施態様においては、緩衝溶液としてリン酸緩衝溶液を採用した場合についてのみ説明しているが、測定対象溶液の種類などに応じて適宜従来公知の他の緩衝溶液(塩酸/塩化カリウム、グリシン/塩酸、ギ酸/ギ酸ナトリウム、クエン酸/クエン酸ナトリウム、酢酸/酢酸ナトリウム、マレイン酸/水酸化ナトリウム、トリス/塩酸、ジエタノールアミン/塩酸、ホウ酸/水酸化ナトリウム、水酸化ナトリウム/塩化カリウムなど)を採用することが可能である。
【0016】
【発明の効果】
請求項1の発明は、過酸化水素電極に印加されるバイアス電圧の極性が反転した場合であっても、極性反転による影響がリン酸緩衝溶液層で十分に吸収され、過酸化水素選択透過膜に及ぼす影響が大幅に低減され、ひいては、過酸化水素選択透過膜を長期間にわたって安定に保持することができ、また、リン酸緩衝溶液の濃度を200mM/l以上、かつ300mM/l以下に設定することにより、低pH領域での出力信号の低下を防止できるという特有の効果を奏する。
【図面の簡単な説明】
【図1】この発明の過酸化水素選択透過膜保護方法が適用されるバイオセンサの構成を概略的に示す図である。
【図2】不純物除去のためのバイアス電圧の極性反転回数の増加に伴なって漏出物質に起因する出力が変化する様子を示す図である。
【図3】バイオセンサを通常のように使用した場合において時間日数の増加に伴なって過酸化水素選択透過膜の劣化度の変化を示す図である。
【図4】リン酸緩衝溶液のリン酸濃度を50mM/lに設定してグルコース濃度が既知のグルコース溶液を用いて測定を反復した場合の測定結果を示す図である。
【図5】リン酸緩衝溶液のリン酸濃度を100mM/lに設定してグルコース濃度が既知のグルコース溶液を用いて測定を反復した場合の測定結果を示す図である。
【図6】リン酸緩衝溶液のリン酸濃度を200mM/lに設定してグルコース濃度が既知のグルコース溶液を用いて測定を反復した場合の測定結果を示す図である。
【図7】リン酸緩衝溶液のリン酸濃度を300mM/lに設定してグルコース濃度が既知のグルコース溶液を用いて測定を反復した場合の測定結果を示す図である。
【符号の説明】
1 過酸化水素電極 2 過酸化水素選択透過膜
3 固定化酵素膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biosensor, and more specifically, an immobilized physiologically active substance provided with a hydrogen peroxide selective permeable membrane on the surface of a hydrogen peroxide electrode and a physiologically active substance immobilized on the hydrogen peroxide selective permeable membrane. Membranes are provided, and these membranes are wetted with a buffer solution to cause the measurement target substance to react in the presence of a physiologically active substance, and an electric signal corresponding to the amount of hydrogen peroxide generated by the reaction is generated by hydrogen peroxide. The present invention relates to a biosensor that outputs from an electrode.
[0002]
[Prior art]
Conventionally, an immobilized physiologically active substance film (hereinafter simply referred to as an immobilized enzyme film) obtained by immobilizing a physiologically active substance like an immobilized enzyme film on a hydrogen peroxide electrode has been provided. A hydrogen peroxide selective permeable membrane is provided between the hydrogen oxide electrode, and these membranes are wetted with a buffer solution of about 50 mM / l, and in the presence of a physiologically active substance (for example, contained in a body fluid). There has been proposed a biosensor that causes a reaction of a substance to be measured) and outputs an electrical signal corresponding to the amount of hydrogen peroxide generated by the reaction from a hydrogen peroxide electrode. Since such a biosensor has high selectivity with respect to the measurement target substance, the concentration of an organic substance or the like having a complicated structure can be measured with high accuracy. In addition, the buffer solution is set to a concentration of about 50 mM / l in order to bring the measurement environment close to the biological conditions when, for example, a body fluid is the measurement target solution.
[0003]
In particular, when the solution to be measured is blood, if no hydrogen peroxide permselective membrane exists, noise derived from interfering substances in the blood (such as ascorbic acid) is superimposed on the detection current, resulting in a concentration Although the measurement accuracy is reduced, if a hydrogen peroxide selective permeable membrane is provided, only hydrogen peroxide will reach the surface of the hydrogen peroxide electrode, which may cause noise from interfering substances. In addition, highly accurate concentration measurement can be achieved.
[0004]
[Problems to be solved by the invention]
However, the hydrogen peroxide permselective membrane is generally produced by entanglement of a polymer like acetylcellulose, and has a partial charge bias. The biosensor also reverses the polarity of the bias voltage applied to the hydrogen peroxide electrode for a short time to remove the impurities formed on the surface of the hydrogen peroxide electrode during measurement and restore the activity of the hydrogen peroxide electrode. I try to let them.
[0005]
Therefore, the hydrogen peroxide permselective membrane provided in contact with the surface of the hydrogen peroxide electrode is disturbed by the inversion of polarity and the influence of OH radicals, and the stable state is disturbed. The membrane structure of the hydrogen peroxide permselective membrane produced by entanglement of the film gradually deteriorates. Further, since the concentration of the buffer solution is set as described above, the buffer capacity by the buffer solution cannot be increased so much, and the output signal from the hydrogen peroxide electrode is lowered in a low pH region. There is convenience.
[0006]
OBJECT OF THE INVENTION
The present invention has been made in view of the above-described problems, and can be stably maintained for a longer period of time than a hydrogen peroxide selective permeable membrane, and can prevent a decrease in output signal in a low pH region. It aims to provide a biosensor.
[0007]
[Means for Solving the Problems]
In the biosensor of claim 1, the concentration of the phosphate buffer solution for wetting the immobilized physiologically active substance membrane and the hydrogen peroxide selective permeable membrane is set to 200 mM / l or more and 300 mM / l or less .
[0008]
[Action]
In the biosensor according to claim 1, hydrogen peroxide selective permeation is performed on the surface of the hydrogen peroxide electrode where the polarity of the applied bias voltage is reversed with respect to the polarity at the time of the measurement operation to restore the activity of the electrode. Measured in the presence of a physiologically active substance in a state where an immobilized physiologically active substance film is formed by immobilizing a physiologically active substance on a hydrogen peroxide permselective membrane and these membranes are wetted with a phosphate buffer solution. A biosensor that causes a reaction of a target substance and outputs an electrical signal corresponding to the amount of hydrogen peroxide generated by the reaction from a hydrogen peroxide electrode, wherein the concentration of the phosphate buffer solution is 200 mM / l or more, and since the set below 300 mM / l, even if the polarity of the bias voltage applied to the hydrogen peroxide electrode is inverted, the effect of the polarity inversion is sufficiently absorbed in phosphate buffer solution layer, over Effects on hydrogen permselective membrane is greatly reduced. Therefore, the hydrogen peroxide permselective membrane can be stably maintained over a long period of time. Further, it has been found that by setting the concentration of the phosphate buffer solution to 200 mM / l or more and 300 mM / l or less, it is possible to prevent a decrease in output signal in a low pH region.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a diagram schematically showing one embodiment of the biosensor of the present invention.
This biosensor has a hydrogen peroxide permselective membrane 2 made of an acetylcellulose membrane, Nafion membrane, cellophane membrane, etc. on the surface of a hydrogen peroxide electrode 1 having at least a working electrode made of Pt or the like (not shown) and a counter electrode made of Ag or the like. And an immobilized enzyme membrane 3 so as to cover the hydrogen peroxide selective permeable membrane 2. In addition, an interfering substance separation membrane (not shown) that covers the immobilized enzyme membrane 3 is provided as necessary. When the measurement target solution is blood, the interfering substance separation membrane functions to separate blood cells or the like and allow components other than blood cells to reach the immobilized enzyme membrane 3. A phosphate buffer solution (disodium hydrogen phosphate / potassium dihydrogen phosphate or each hydrate) for wetting the hydrogen peroxide selective permeable membrane 2 and the immobilized enzyme membrane 3 is added. The phosphate concentration of this phosphate buffer solution is set to 300 mM / l.
[0011]
FIG. 2 is a diagram showing a state in which the output due to the leaking substance changes as the number of polarity inversions of the bias voltage for impurity removal increases. In the figure, a1 and a2 each employ a 50 mM / l phosphate buffer solution, and a3, a4, a5 and a6 each employ a 300 mM / l phosphate buffer solution.
As is apparent from FIG. 2, it is understood that the leakage of the reactant is suppressed by setting the phosphate concentration of the phosphate buffer solution to 300 mM / l, and the protective effect on the hydrogen peroxide permselective membrane is improved. .
[0012]
FIG. 3 shows the degree of deterioration of the hydrogen peroxide permselective membrane with the increase in the number of days when the biosensor is used normally (for example, when the polarity reversal of the bias voltage and the concentration measurement are alternately performed). It is a figure which shows a change. In FIG. 3, the broken line indicates a case where a 50 mM / l phosphate buffer solution is employed, and the solid line indicates a case where a 300 mM / l phosphate buffer solution is employed. Further, the deterioration degree indicates the output of the leaking substance with respect to the electrode output.
[0013]
In addition, the vertical axis | shaft of FIG. 3 has shown the output ratio by {(interfering substance + glucose solution) / glucose solution}.
As is clear from FIG. 3, it can be seen that the deterioration degree of the hydrogen peroxide selective permeable membrane can be suppressed by setting the phosphate concentration of the phosphate buffer solution to 300 mM / l. When the glucose concentration in the glucose solution is measured using a biosensor that employs an immobilized glucose oxidase membrane as the immobilized enzyme membrane 3, if the phosphate concentration of the phosphate buffer solution is set to 50 mM / l, The pH value decreases as the number of measurements increases, and the output signal value decreases accordingly. However, if the phosphate concentration of the phosphate buffer solution is set to 300 mM / l, the number of measurements increases. Even in the low pH range, almost no decrease in the output signal value was observed. This seems to be because the buffer capacity was improved by increasing the phosphate concentration of the phosphate buffer solution.
[0014]
Specifically, when the phosphate concentration of the phosphate buffer solution was set to 50 mM / l, 100 mM / l, 200 mM / l, and 300 mM / l, the measurement was repeated using a glucose solution with a known glucose concentration. The measurement results shown in FIGS. 4 to 7 were obtained. Each data shows data for two lots under each condition.
As is apparent from these measurement results, when a phosphate buffer solution having a phosphate concentration of 50 mM / l or 100 mM / l was used, the output decreased significantly as the number of measurements increased. When a phosphate buffer solution having a phosphate concentration of 200 mM / l or 300 mM / l was used, the output hardly decreased regardless of the increase in the number of measurements.
[0015]
In the above embodiment, only the case where a phosphate buffer solution is employed as the buffer solution has been described. , Glycine / hydrochloric acid, formic acid / sodium formate, citric acid / sodium citrate, acetic acid / sodium acetate, maleic acid / sodium hydroxide, tris / hydrochloric acid, diethanolamine / hydrochloric acid, boric acid / sodium hydroxide, sodium hydroxide / potassium chloride Etc.) can be adopted.
[0016]
【The invention's effect】
According to the first aspect of the present invention, even when the polarity of the bias voltage applied to the hydrogen peroxide electrode is reversed, the influence of the polarity reversal is sufficiently absorbed by the phosphate buffer solution layer, and the hydrogen peroxide selective permeable membrane The hydrogen peroxide permselective membrane can be stably maintained over a long period of time , and the concentration of the phosphate buffer solution is set to 200 mM / l or more and 300 mM / l or less. By doing this, there is a specific effect that it is possible to prevent the output signal from being lowered in the low pH region.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a configuration of a biosensor to which a hydrogen peroxide selective permeable membrane protection method of the present invention is applied.
FIG. 2 is a diagram showing a state in which an output due to a leaking substance changes with an increase in the number of times of polarity inversion of a bias voltage for removing impurities.
FIG. 3 is a diagram showing a change in the degree of deterioration of a hydrogen peroxide selective permeable membrane with an increase in the number of days when a biosensor is used in a normal manner.
FIG. 4 is a diagram showing measurement results when measurement is repeated using a glucose solution having a known glucose concentration with the phosphate concentration of the phosphate buffer solution set to 50 mM / l.
FIG. 5 is a diagram showing measurement results when measurement is repeated using a glucose solution having a known glucose concentration with the phosphate concentration of the phosphate buffer solution set to 100 mM / l.
FIG. 6 is a diagram showing measurement results when measurement is repeated using a glucose solution with a known glucose concentration with the phosphate concentration of the phosphate buffer solution set to 200 mM / l.
FIG. 7 is a diagram showing measurement results when the measurement is repeated using a glucose solution with a known glucose concentration with the phosphate concentration of the phosphate buffer solution set to 300 mM / l.
[Explanation of symbols]
1 Hydrogen peroxide electrode 2 Hydrogen peroxide selective permeable membrane 3 Immobilized enzyme membrane

Claims (1)

印加されるバイアス電圧の極性を測定動作時の極性に対して反転させることにより電極の活性の復元が行われる過酸化水素電極(1)の表面に過酸化水素選択透過膜(2)を設け、過酸化水素選択透過膜(2)上に生理活性物質を固定化してなる固定化生理活性物質膜(3)を設け、これら膜(2)(3)をリン酸緩衝溶液で湿潤させた状態で生理活性物質の存在下で測定対象物質の反応を行わせ、反応により生成された過酸化水素の量に対応する電気信号を過酸化水素電極(1)から出力するバイオセンサであって、リン酸緩衝溶液の濃度を200mM/l以上、かつ300mM/l以下に設定したことを特徴とするバイオセンサ。A hydrogen peroxide selective permeation membrane (2) is provided on the surface of the hydrogen peroxide electrode (1) where the activity of the electrode is restored by reversing the polarity of the applied bias voltage with respect to the polarity during the measurement operation, An immobilized physiologically active substance membrane (3) formed by immobilizing a physiologically active substance on the hydrogen peroxide permselective membrane (2) is provided, and these membranes (2) and (3) are wetted with a phosphate buffer solution. to perform the reaction of the analyte in the presence of a physiologically active substance, an electric signal corresponding to the amount of hydrogen peroxide generated by reacting a biosensor output from the hydrogen peroxide electrode (1), phosphoric acid A biosensor characterized in that the concentration of the buffer solution is set to 200 mM / l or more and 300 mM / l or less .
JP27806895A 1995-10-25 1995-10-25 Biosensor Expired - Fee Related JP3800350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27806895A JP3800350B2 (en) 1995-10-25 1995-10-25 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27806895A JP3800350B2 (en) 1995-10-25 1995-10-25 Biosensor

Publications (2)

Publication Number Publication Date
JPH09119914A JPH09119914A (en) 1997-05-06
JP3800350B2 true JP3800350B2 (en) 2006-07-26

Family

ID=17592210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27806895A Expired - Fee Related JP3800350B2 (en) 1995-10-25 1995-10-25 Biosensor

Country Status (1)

Country Link
JP (1) JP3800350B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071785B2 (en) 2013-07-12 2017-02-01 株式会社堀場製作所 Concentration measuring device

Also Published As

Publication number Publication date
JPH09119914A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
US4127448A (en) Amperometric-non-enzymatic method of determining sugars and other polyhydroxy compounds
Mascini et al. Amperometric acetylcholine and choline sensors with immobilized enzymes
EP0543770A3 (en) Ozone detection
JPS63131057A (en) Enzyme sensor
Wang et al. Tissue bioelectrode for organic-phase enzymatic assays
JPS6239900B2 (en)
Brahim et al. Interferent suppression using a novel polypyrrole‐containing hydrogel in amperometric enzyme biosensors
JP3800350B2 (en) Biosensor
Nwosu et al. Comparative studies of immobilized enzyme electrodes based on the inhibitory effect of nicotine on choline oxidase and acetylcholinesterase
Tatsuma et al. Model analysis of enzyme monolayer-and bilayer-modified electrodes: the transient response
MIZUTANI et al. Amperometric glucose sensor based on a polydimethyl siloxane/enzyme-bilayer membrane
CA1247700A (en) Two-dimensional diffusion glucose substrate sensing electrode
Gardies et al. Micro-enzyme field effect transistor sensor using direct covalent bonding of urease
US20100126858A1 (en) Chemical sensor type measuring apparatus
Genshaw Enzyme electrode for determining glucose in whole blood.
JP4535741B2 (en) Measuring method using chemical sensor and chemical sensor type measuring device
JPH11271258A (en) Measuring system of physiological phenomenon by sensor fusion
JPH0643130A (en) Composite type fixing enzyme film
Kulys et al. Urease sensors based on differential antimony electrodes
JPS585642A (en) Enzyme electrode
JPS58216947A (en) Enzyme electrode for measuring sucrose concentration
JPS62274254A (en) Sensor for measuring bio-component
JPH0375552A (en) Enzyme electrode
JPS58216946A (en) Enzyme electrode for measuring lactic acid concentration
JPH01206253A (en) Uric acid sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees