JP3799393B2 - Apparatus for measuring small amount of foaming liquid and measuring method thereof - Google Patents

Apparatus for measuring small amount of foaming liquid and measuring method thereof Download PDF

Info

Publication number
JP3799393B2
JP3799393B2 JP03554197A JP3554197A JP3799393B2 JP 3799393 B2 JP3799393 B2 JP 3799393B2 JP 03554197 A JP03554197 A JP 03554197A JP 3554197 A JP3554197 A JP 3554197A JP 3799393 B2 JP3799393 B2 JP 3799393B2
Authority
JP
Japan
Prior art keywords
measuring
container
amount
foaming
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03554197A
Other languages
Japanese (ja)
Other versions
JPH10221057A (en
Inventor
健一 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San Nopco Ltd
Original Assignee
San Nopco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Nopco Ltd filed Critical San Nopco Ltd
Priority to JP03554197A priority Critical patent/JP3799393B2/en
Publication of JPH10221057A publication Critical patent/JPH10221057A/en
Application granted granted Critical
Publication of JP3799393B2 publication Critical patent/JP3799393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、液体の発泡量測定装置およびその測定方法に関する。さらに詳しくは、紙パルプ工業、食品工業、石油工業、繊維工業、塗料工業、化学工業、廃棄物処理業等の各種工程および排水処理工程における実機と相関があり低発泡液でも容易に液体の発泡量を評価でき、かつ、運搬および保管が容易である液体の小型発泡量測定装置およびその測定方法に関するものである。
【0002】
【従来の技術】
各種工業において発泡の原因となる物質を含む系に対し温度、PH、設備等の物理的あるいは化学的要因が加わり発泡を誘発し、製品品質の低下、生産効率の低下、原料のロスといった問題を招くことがある一方、アイスクリーム、ポリウレタンフォーム、浮遊選鉱、泡消火剤、脱墨剤のように製品中または使用時に泡を積極的に利用する分野もあり、多くの分野で発泡量を適度にコントロールして製品品質、生産効率などを向上させる努力がなされている。
これらの場合、実機で泡をコントロールする前に予備的に実験室で発泡度合をみてから実機で調整するのが一般的であり、実験室および実機において多くの液体の発泡量測定装置が知られている。
【0003】
実験室における発泡量測定装置としては、流下、振とう、かき混ぜ、攪拌、送気、循環等により垂直方向に液体を発泡させてから試験液の比重、泡容量または泡高さを測定する装置が知られている。
具体的には、ロスマイルス法をもとに液体の落下により発泡させ、直後および一定時間後の泡高さを測定する流下式発泡量測定装置(日本工業規格JIS K3362−90、ASTM規格A.S.T.M Standard D1173−53、ドイツ工業規格DIN Standard 53902Part 2)、試験液を振とうにより発泡させ泡容量または泡高さを測定する振とう式発泡量測定装置(日本工業規格JIS K2234−86、ASTM規格A.S.T.M Standard D3601−88、特開昭58−149399号公報、特開平3−163038号公報、特公昭45−7973号公報、特公平6−79642号公報)、多孔円盤で試験液の表面を30回たたき泡容量を測定するかき混ぜ式発泡量測定装置(ドイツ工業規格DIN Standard 53902Part 1)、攪拌により発泡させ泡容量または泡高さを測定する攪拌式発泡量測定装置(日本工業規格JIS K2241−86、ASTM規格A.S.T.M Standard D3519−88、特開昭52−69881号公報、特開昭55−92110号公報、特開昭59−132908号公報、特開昭61−293508号公報)、デフュザーストーン等で発泡させて泡容量、泡高さまたは比重を測定する送気式発泡量測定装置(日本工業規格JIS K2518−90、ASTM規格A.S.T.M Standard D892−92、ASTM規格A.S.T.M Standard D1881−86、ASTM規格A.S.T.M Standard D3427−86、特開昭47−33889号公報、特開昭52−22356号公報、特公昭47−40394号公報、特公平3−47882号公報)、試験液を循環させながらノズルを通じて同一表面に落下させて液面上に生成する泡の容量または高さを測定する循環式発泡量測定装置(フランス標準規格協会AFNOR規格A.F.N.O.R.Draft T73−412、特開昭56−48210号公報、特開昭52−22356号公報、特公昭47−40394号公報、特公昭61−7847号公報)等が知られている。
【0004】
また、実機における発泡量測定装置として、光センサーを利用した光散乱式、光遮断式若しくは圧力センサーを利用した容積比式、泡膨張容積変化式等の液体中の泡量測定装置又は電極式、静電容量式、超音波式等の変位センサーを利用した液体表面の泡量測定装置等が知られている[「泡のメカニズムの解析と脱泡・消泡・トラブル対策」P.155、(株)テクノシステム]。
【0005】
【発明が解決しようとする課題】
従来、実験室で使用されてきた液体の発泡量測定装置は、通気・撹拌・循環等により気体を巻き込ませながら試験液全体を激しく動かして垂直方向に泡を発生させて、泡高さ等を測定するものであった。
しかし、これらの測定装置から得られる結果は、実機での発泡現象と相関がない場合が多かった。
特に、発泡量が著しく相違する液体を比較する場合においては、実機における発泡量と実験室における発泡量はほぼ相関するが、低発泡性液体の場合や発泡量が近いような場合には実機における発泡と実験室での発泡の傾向が逆転することがたびたびあり、泡コントロールに関して実験室の試験段階から実操業に移る際に多大の困難をともなった。
さらに、従来の発泡量測定装置を使用して評価研究開発した発泡剤、整泡剤、抑泡剤、消泡剤等が実機では良い成果が得られないという相違が発生し、各種薬剤の研究開発に極めて多くの労力及び費用を要するという問題点があった。
また、たとえば消泡剤や抑泡剤がすでに含有しているような低発泡性の液体などでは、従来の実験室における発泡量測定装置では発泡量が著しく少なく測定が困難であるという問題点があった。
【0006】
【課題を解決するための手段】
本発明は、測定容器(1)内に気体を巻き込みながら試験液が激しく動く部分と緩やかに動く部分を設け、また、泡を水平方向に発生させることにより、各種工程における実機と相関があり低発泡液でも液体の発泡量を容易に評価でき、かつ、運搬および保管が容易である液体の小型発泡量測定装置およびその測定方法を提供するものである。
すなわち、本発明の液体の小型発泡量測定装置は、試験液を吐出口(5)を通過させて測定容器(1)へ注ぐ若しくは循環させることによりまたは/および気体吹き込み管(7)から気体を吹き込んで試験液を発泡させ、測定容器(1)内で試験液の表面を覆う泡の面積または/および長さを測定するための測定装置であって、
測定容器(1)の開放上部の水平断面部分の長手方向の長さ(L)が20〜60[cm]であり、この水平断面部分の面積(S)が20〜(L2/3)[cm2]である測定容器(1)と、
その上方に設置した開孔断面積が10 -5 S〜10 -3 [cm2]である吐出口(5)または/および気体吹き込み管(7)とからなることを、若しくは、この測定容器(1)の底部(3)、循環ポンプ(4)および測定容器(1)の上方に設けた開孔断面積が10 -5 S〜10 -3 [cm2]である吐出口(5)を試験液が循環できるように管(10)でつなぐことを、または、これらの測定装置の測定容器(1)若しくは/および管(10)若しくは/および吐出口(5)に気体吹き込み管(7)を有することを特徴とするものである。
また、上記の発泡量試験装置を2以上並べることを、または、上記の測定容器(1)若しくは/および容器(2)に半導体型加熱冷却装置を有することを特徴とするものである。
さらに、本発明の液体の発泡量測定方法は、試験液を0.001〜30[m/秒]の流速で吐出口(5)を通過させて上記の測定容器(1)へ注ぐ若しくは循環させることによりまたは/および気体吹き込み管(7)から気体を吹き込んで試験液を発泡させ、測定容器(1)内で試験液の表面を覆う泡の面積または/および長さを測定することを特徴とするとするものである。
【0007】
【発明の実施の形態】
▲1▼本発明の測定容器(1)について
測定容器(1)の開放上部の水平断面部分の長手方向の長さ(L)は、5〜200[cm]、好ましくは10〜100[cm]、特に好ましくは20〜60[cm]である。5[cm]未満であると試験液全体が動くようになり実機との相関性が低下し、200[cm]より大きくなると実質上持ち運びが困難となり、また、試験液を大量に必要とすることから取り扱い上不便となる。
ここで、測定容器(1)の開放上部の水平断面部分とは、測定容器(1)に液体を満たした場合の液体表面部分(測定容器内壁との界面部分を除く)を意味するものであり、その長手方向の長さとは、この水平断面上の最も離れた測定容器内壁間の長さを意味する。
また、この水平断面部分の面積(S)は、2〜(L2/3)[cm2]、好ましくは10〜(L2/3)[cm2]、特に好ましくは20〜(L2/3)[cm2]である。2[cm2]未満であると試験液全体が動くようになり実機との相関性が低下し、(L2/3)[cm2]より大きくなると泡が水平方向に発生するよりもむしろ垂直方向に発生するようになり実機との相関性が低下する。
測定容器(1)の垂直方向すなわち高さ方向の大きさは、特に制限されないが試験液の飛びはねや持ち運びの面から2〜(L/2)[cm]が好ましい。
【0008】
この水平断面部分の形状は、長方形、おおぎ型、三角形、台形、楕円形、瓢箪型またはこれらの組み合わせた形状等が挙げられ、好ましくは長方形、台形、おおぎ型、瓢箪形等である。
また、測定容器(1)の垂直方向の断面の形状は、X−Z、Y−Z方向ともに長方形、正方形、三角形、台形、半円形またはこれらの組み合わせた形状等が挙げられる。
【0009】
この測定容器(1)の材質は、試験液の種類、試験温度等によって選定する必要があるが、一般的にはポリプロピレン、ポリ塩化ビニル、テフロン、ガラス、セラミックス、ステンレス、アルミニュムまたはこれらの組み合わせたもの等である。
【0010】
この測定容器(1)には、試験液の温度調節用として、半導体型加熱冷却装置、シーズヒーター、温度調節された液体を内部循環できるジャケット、ラバーヒーター、水浴、油浴、温冷風発生装置等を付加することができる。また、これらの温度調節器は測定容器(1)以外に容器(2)、管(10)、ポンプ(4)等に付加することもでき、簡易に加熱冷却でき小型軽量化が図れる点で半導体型加熱冷却装置の付加が好ましい。
これらの温度制御方法としては、一般的にON−OFF制御、位相制御、PID制御、ファジー制御、ニューロファジー制御その他の制御方法が使用できる。
【0011】
▲2▼本発明の吐出口(5)について
吐出口(5)の開孔断面積は、10-10S〜10-2S[cm2]、好ましくは10-7S〜10-3S[cm2]、特に好ましくは10-5S〜10-3S[cm2]である。この値が10-2S[cm2]より大きいと試験液全体が激しく動くようになり実機との相関性が低下し、10-10S[cm2]未満である発泡量が著しく低下するため定量精度が低下する。
なお、Sは、上述したように測定容器(1)の開放上部の水平断面部分の面積(S)を意味する。
吐出口(5)の開孔部分の形状は、円形、四角形、三角形、楕円形等から選択でき、その開孔数は1に限らず2以上であってもよい。
試験液を吐出口(5)を通過させるのは、測定容器(1)の限られた狭い範囲に試験液を注ぐまたは循環させるためである。
また、吐出口(5)を通過または流出する試験液が層流に近い程、測定容器(1)の限られた狭い範囲に試験液を注ぐまたは循環させることができるため、上記形状をMcm以上保った柱状の孔であることが好ましい。ここでMは、吐出口(5)の開孔断面積をNとしたとき、M=N1/2で表される数値である。
吐出口(5)の位置は、測定容器(1)の上方、内部、底部または側部のいずれでもよいが、好ましくは上方からである。試験液が測定容器(1)に注がれる時に空気を巻き込ませるためである。上方に位置する吐出口(5)の方向は測定容器(1)に向いていればよく垂直または任意の角度で固定されていても、一定の規則または不規則に動いていても良いが、測定容器(1)の底部(3a)部分に試験液体が注がれまたは循環されるようにセットする必要がある。
なお、吐出口(5)の位置が内部、底部または側部であるときは測定容器(1)から試験液が溢れ出ないように邪魔板を設けるか、吐出口(5)を底部の方向にむける。
また、吐出口(5)の入り口部に調節弁を接続し、吐出口(5)の吐出流速を調節することができる。
【0012】
▲3▼本発明の容器(2)について
容器(2)の大きさは、測定容器(1)に入れるべき試験液を収容できる容量があればよく、その形状は一般的には容器(2)の下部の形状が半円球形、半楕円形、逆三角柱形等であって、試験液が容器(2)に残らずに容易に注がれるよう吐出口(5)に向かってなめらかに絞られているものが好ましい。
容器(2)の材質は、測定容器(1)と同じ材質のものが使用できる。
また、容器(2)は、吐出口(5)以外の一部を開放とするほか、密閉とし調圧弁を接続することができる。さらに調圧弁には、圧縮窒素、圧縮空気等の加圧ラインを接続することができる。容器(2)内の圧力を調節して吐出口(5)の吐出速度を調節するためである。
【0013】
▲4▼本発明の循環ポンプ(4)について
循環ポンプ(4)は、測定容器(1)の底部(3)および吐出口(5)と管(10)を介してつながれている。
循環ポンプ(4)は試験液を移送循環できるものであればよいが、脈流の少ないタイプが好ましく、一般的にギャーポンプ、インペラーポンプ、チューブポンプ、ベーンポンプ、スネークポンプ等が使用できる。
また、ポンプ(4)の能力は試験液の粘性、試験温度等により選定する必要があるが、一般的には吐出流量が0.1〜20[リッター/分]、好ましくは0.3〜10[リッター/分]、吐出圧力が0.1〜20[Kg/cm2]であり、流量が可変でき、定量性のあるものが好ましい。
一定流量または一定規則若しくは不規則に流量を変化できるものでも良いが、一定流量とすることが好ましい。
ポンプ(4)の接液部の材質は試験液の種類や試験温度によって選定する必要があるが、一般的にはポリプロピレン、ポリ塩化ビニル、ステンレスまたはこれらの組み合わせ等である。
測定容器(1)の底部(3)および吐出口(5)と接続する管(10)の内径は一般的に1〜40[mm]、好ましくは4〜20[mm]であり、その材質は、一般的に合成ゴム、ポリプロピレン、ポリ塩化ビニル、テトロン、ステンレスまたはこれらの組み合わせ等である。必要に応じて、管(10)には保温材、加熱冷却器、温度計、流量計、流速計、酸素濃度計、密度計等を付加することができる。なお、密度計は、密度を測定する以外に液体と気体の密度差を利用して液体中の含泡量を計測するために付加できるものである。
【0014】
▲5▼本発明の気体吹き込み管(7)について
気体の吹き込み管(7)は、口径10-15〜100[cm2]、好ましくは10-15〜20[cm2]である1又は2以上の吹き込み口を有するの金属管、プラスチック管、ガラス管、デフューザーストーン、ガラスフィルター(球状、板状、棒状)等が使用できる。
気体吹き込み管(7)の設置できる位置は、測定容器(1)、吐出口(5)、容器(2)、管(10)等である。好ましくは、測定容器(1)、管(10)である。
送気量は、一般的には0.01〜20[リッター/分]、好ましくは0.5〜10[リッター/分]であり、吹き込む気体としては、空気、窒素、二酸化炭素、ヘリウムまたはこららの混合気体等、好ましくは空気または窒素が使用できる。一定圧力・一定流量で吹き込むまたは一定規則若しくは不規則に吹き込み量を変化させても良い。
【0015】
▲6▼上記の発泡量測定装置を2以上並べることについて
測定容器(1)を上下、前後、左右に2以上並べることができ、好ましくは、測定容器(1)の長手方向が接触または近づくように並べる。また、それぞれの測定容器(1)、容器(2)、ポンプ(4)、吐出口(5)、気体吹き込み管(7)等の大きさは同じものまたは異なるものであってよく、測定容器(1)以外の一部又は全部を供用とすることもできる。
発泡測定装置を2以上並べるのは、測定条件の異なる液体の発泡量を同時比較できるようにするため、または測定条件を大きく変えて測定したい場合等に短時間に測定ができるようにするためである。
【0016】
▲7▼液体の発泡方法について
発泡方法としては、試験液を容器(2)から吐出口(5)を通過させて測定容器(1)に注ぐ方法、容器(2)に新たな試験液を連続的に供給しながら吐出口(5)を通過させて試験液を測定容器(1)に注ぐと共に測定容器(1)から試験液を連続的に排出する方法、若しくは、測定容器(1)の底部(3)から循環ポンプ(4)で試験液を抜きながら吐出口(5)を通過させて測定容器(1)へ循環させる方法または/および気体吹き込み管(7)から気体を吹き込む方法により発泡させることができる。
この際に試験液に添加される薬剤等は初めから添加されていても試験液を発砲させた後添加してもよい。
また、試験液の温度は実機の温度と同じになるように調整し一定とすることが好ましく、循環流量および送気量は、一定量または一定規則若しくは不規則に変化させてもよいが一定量とすることが好ましい。
【0017】
試験液を吐出口(5)を通過させる流速は、0.001〜30[m/秒]、好ましくは0.01〜12[m/秒]、特に好ましくは0.02〜7[m/秒]である。0.001[m/秒]未満であると発泡量が低下し測定誤差が大きくなる。30[m/秒]より大きいと泡の発泡量が高くなりすぎ実機との相関性が低下する。
この流速を調整する方法としては、吐出口(5)の開孔面積を調整する方法、吐出口(5)の入り口部に接続した調節弁で調節する方法、容器(2)内の圧力を調整する方法、循環ポンプ(4)の循環流量を調節する方法またはこれらの組み合わせた方法が挙げられる。
【0018】
▲8▼発泡量測定方法について
試験液の表面を覆う泡の面積または長さを測定する方法としては、試験液と水平に液中又は液上部に碁盤目に編んだ網またはものさし等をおいて直接目測する方法、これらの上部に鏡を約45°に配し横方向から間接的に目測する方法、またはカメラ若しくはビデオカメラで撮影してデータ処理する方法等がある。
【0019】
【実施例】
本発明の液体の小型発泡量測定装置の実施例を図面に基づいて説明し、さらにその測定方法の実施例を記載する。
【0020】
実施例1
図1は、長さ20[cm]、奥行き1[cm]、高さ6[cm]の直方体の形状を有する塩化ビニル製の測定容器(1)および測定容器(1)の底部(3a)の上方20[cm]に位置する内径1.6[mm]の吐出口(5)を有する200[ml]ガラス製容器(2)からなり、測定容器(1)上部にものさし(9)を付加させた本発明の小型発泡量測定装置を示している。
【0021】
実施例2
図2は、測定容器(1)の開放上部の水平断面部分の長手方向の長さ(L)が20[cm]、この水平面部分および底板の形状が共に上辺3[cm]、底辺10[cm]である左右対称の台形、測定容器(1)の側壁面の形状が上辺10[cm]、底辺15[cm]であって4つの内角の内上辺に接する2つの内角が直角である台形からなるステンレス製の測定容器(1)の底部(3)、インペラー式ポンプ(4)、流量計(6)および測定容器(1)の底部(3a)の上方60[cm]に位置する内径2[mm]の吐出口(5)をそれぞれ内径8[mm]テトロンブレードホースでつないだ本発明の小型発泡量測定装置を示している。
【0022】
実施例3
図3は、長さ55[cm]、直径20[cm]の半円柱状アクリル製測定容器(1)の底部(3)、ギャーポンプ(4)、内径15[mm]のラバーヒーター付きステンレス管(8)および測定容器(1)の底部(3a)の上方100[cm]に位置する内径4[mm]の孔を4つ有するの吐出口(5)をそれぞれ内径15[mm]テトロンブレードホースでつなぎ、測定容器(1)上部にものさし(9)を付加させ、ギャーポンプ(4)と吐出口(5)の中間に内径2[mm]の気体吹き込み管(7)を挿入した本発明の小型発泡量測定装置を示している。
【0023】
実施例4
図4は、長さ40[cm]、奥行き5[cm]、高さ10[cm]の直方体の底部(3a)に5×5×5[cm]の立方体を結合させた形状を有するステンレス製測定容器(1)の底部(3)、インペラーポンプ(4)、流量計(6)および測定容器(1)の底部(3a)の上方60[cm]に位置する内径1[mm]の吐出口(5)とをそれぞれ内径8[mm]のテトロンブレードホースでつなぎ、測定容器(1)にものさし(9)を付加し、測定容器(1)内(底部(3a))に気体吹き込み管(7、球状のデフューザーストーン)を挿入した本発明の小型発泡量測定装置を示している。
【0024】
実施例5
図5は、長さ50[cm]、直径5[cm]の半円柱の両端部に直径5[cm]の球を同形状に4等分したものをそれぞれ結合した形状を有するアクリル製測定容器(1)にものさし(9)を付加し、測定容器(1)内(底部(3a))に気体吹き込み管(7、ガラスボールフィルター)を挿入した本発明の小型発泡量測定装置を示している。
【0025】
実施例6
実施例1に示す本発明の小型発泡量測定装置(図1)を用いて、容器(2)に入れた表面サイズ剤Aまたは表面サイズ剤B200[ml]自然落下させて測定容器(1)で発泡させた後、試験液がすべて測定容器(1)内に落下してから1分後の発泡量を写真撮影し、現像後の印画上で試験液の表面を覆う泡の面積を新聞製造抄紙機における表面サイズ剤の発泡量と比較したところ、同じ傾向の結果が得られた。測定結果を表1に示す。
なお、試験温度は35℃で行い、以下の処方の表面サイズ剤を使用した。
表面サイズ剤A:スチレン・マレイン酸共重合物のソーダ塩(0.1重量%)、でんぷん(5重量%)、水(94.9重量%)
表面サイズ剤B:メタクリル酸ブチルエステル・メタクリル酸共重合物のソーダ塩(0.1重量%)、でんぷん(5重量%)、水(94.9重量%)
【0026】
実施例7
実施例2に示す本発明の小型発泡量測定装置(図2)を用いて、微塗工原紙抄紙白水1000[ml]を測定容器(1)に入れて、試験液を吐出口(5)に於ける流速が6.6[m/sec]となるように循環して発泡させ、消泡剤A、消泡剤Bまたは消泡剤Cの2[μl]を測定容器(1)内に添加し、3分後の発泡量を写真撮影し、現像後の印画上で試験液の表面を覆う泡の面積を抄紙機における白水の発泡量と比較したところ、同じ傾向の結果が得られた。測定結果を表1に示す。
なお、試験温度は38℃で行い、以下の消泡剤を使用した。
消泡剤A:ステアリルアルコールPOA(35)EOA(6)
消泡剤B:ステアリルアルコールPOA(35)EOA(10)
消泡剤C:ステアリルアルコールPOA(35)EOA(14)
【0027】
実施例8
実施例3に示す本発明の小型発泡量測定装置(図3)を用いて、瓦抄造白水10[L]に消泡剤A、消泡剤Bまたは消泡剤Cを50[μl]添加して調整した試験液を測定容器(1)に入れ、試験液を吐出口(5)に於ける流速が1.7[m/sec]となるように循環し、かつ気体吹き込み管(7)から500[ml/min]で空気を送気して発泡させ、3分後の発泡量をものさし(9)からよみとった。抄造機における白水の発泡量と比較したところ、同じ傾向の結果が得られた。測定結果を表1に示す。
なお、試験温度は35℃で行い、実施例7と同じ消泡剤を使用した。
【0028】
実施例9
実施例5に示す本発明の小型発泡量測定装置(図5)を用いて、し尿排水200[ml]を測定容器(1)に入れ、気体吹き込み管(7、デフューザーストーン)から1000[ml/min]で窒素を送気して発泡させ、消泡剤A、消泡剤Bまたは消泡剤Cの2[μl]を測定容器(1)内に添加し、3分後の発泡量をものさし(9)から読みとった。ばっ気槽における排水の発泡量と比較したところ、同じ傾向の結果が得られた。測定結果を表1に示す。
なお、試験温度は36℃で行い、実施例7と同じ消泡剤を使用した。
【0029】
実施例10
実施例4に示す本発明の小型発泡量測定装置(図4)を2つ並べて、繊維染色排水1000[ml]に消泡剤Aを2[μl]添加して調整した試験液を測定容器(1)に入れ、また、消泡剤Bを2[μl]添加して調整した試験液をもう一方の測定容器(1)に入れ、それぞれの試験液を吐出口(5)に於ける流速が0.7[m/sec]となるように循環し、かつ気体吹き込み管(7、デフューザーストーン)から2000[ml/min]で窒素を送気して発泡させ、ビデオ撮影した後コマ送り再生して発泡量をものさし(9)から読みとった。沈殿槽出口における排水の発泡量と比較したところ、同じ傾向の結果が得られた。測定結果を表1に示す。
なお、試験温度は25℃で行い、実施例7と同じ消泡剤を使用した。
【0030】
実施例11
実施例3に示す本発明の小型発泡量装置(図3)を用いて、スレートボード抄造白水10[L]に消泡剤A、消泡剤Bまたは消泡剤Cを20[μl]添加して調整した試験液を測定容器(1)に入れ、試験液を吐出口(5)に於ける流速が1.7[m/sec]となるように循環(気体吹き込み管(7)からの送気はせずに)して発泡させ、3分後の発泡量をものさし(9)からよみとった。抄造機における発泡量と比較したところ、同じ傾向の結果が得られた。測定結果を表1に示す。
なお、試験温度は40℃で行い、実施例7と同じ消泡剤を使用した。
【0031】
実施例12
実施例2に示す本発明の小型発泡量測定装置(図2)の吐出口(5)を内径2[mm]の孔を3つ有するものに交換した測定装置を用いて、脱墨排水1000[ml]に消泡剤Aまたは消泡剤Bまたは消泡剤Cを1[μl]添加して調整した試験液を測定容器(1)に入れ、試験液を吐出口(5)に於ける流速が0.02[m/sec]となるように循環(気体吹き込み管(7)からの送気はせずに)して発泡させ、3分後の発泡量をものさし(9)からよみとった。フローテーター出口における排水の発泡量と比較したところ、同じ傾向の結果が得られた。測定結果を表1に示す。
なお、試験温度は40℃で行い、実施例7と同じ消泡剤を使用した。
【0032】
実施例13
実施例4に示す本発明の小型発泡量測定装置(図4)を用いて、塩ビ樹脂製造工場総合排水1000[ml]と消泡剤BまたはCの1[μl]を測定容器(1)に入れ、気体吹き込み管(7、デフューザーストーン)から1500[ml/min]で窒素を送気して試験液を発泡させ、3分後の発泡量をものさし(9)から読みとった。沈殿槽出口における排水の発泡量と比較したところ、同じ傾向の結果が得られた。測定結果を表1に示す。
なお、試験温度は30℃で行い、実施例7と同じ消泡剤を使用した。
【0033】
比較例1
表面サイズ液Aまたは表面サイズ液Bの500[ml]を内径6.3[cm]の1000[ml]メスシリンダにとり、底部の抜き口からインペラー型ポンプ、内径8[mm]テトロンブレードホースを用いてメスシリンダー上部から循環させて発泡させて循環開始3分後の泡の容量を測定した(吐出口の内径は2[mm]、流速は6.6[m/sec])。新聞製造抄紙機における表面サイズ剤の発泡量と比較したところ、発泡の傾向順序が入れ替わった。測定結果を表2に示す。
なお、試験温度は35℃で行い、実施例6と同じ表面サイズ剤AおよびBを使用した。
【0034】
比較例2
微塗工原紙抄紙白水400[ml]に消泡剤A、消泡剤Bまたは消泡剤Cを2[μl]添加して調整した試験液を内径6.3[cm]の1000[ml]メスシリンダにとり、デフューザーストーンから空気を5000[ml/min]流しながら発泡させて送気10分後の泡の容量を測定し、抄紙機における白水の発泡量と比較したところ、発泡の傾向順序が入れ替わった。測定結果を表2に示す。
なお、試験温度は38℃で行い、実施例7と同じ消泡剤を使用した。
【0035】
比較例3
瓦抄造白水50[ml]に消泡剤A、消泡剤Bまたは消泡剤Cを5[μl]添加して調整した試験液を側壁にものさしを張り付けた内径4.5[cm]の100[ml]ビーカーにとり、コーレス型攪拌はねで4000[rpm]で攪拌して発泡させて撹拌20分後発の泡の高さを測定した。抄造機における白水の発泡量と比較したところ、発泡の傾向順序が入れ替わった。測定結果を表2に示す。
なお、試験温度は35℃で行い、実施例7と同じ消泡剤を使用した。
【0036】
比較例4
し尿排水50[ml]を内径4.5[cm]の100[ml]メスシリンダにとり、底部の抜き口からインペラー型ポンプ、内径8[mm]テトロンブレードホースを用いてメスシリンダー上部から循環させて発泡させ、消泡剤A、消泡剤Bまたは消泡剤Cの2[μl]をメスシリンダー内に添加し、循環開始3分後の発泡量を測定した(吐出口の内径は10[mm]で流速は0.7[m/sec])。ばっ気槽における排水の発泡量と比較したところ、発泡の傾向順序が入れ替わった。測定結果を表2に示す。
なお、試験温度は36℃で行い、実施例7と同じ消泡剤を使用した。
【0037】
比較例5
繊維染色排水600[ml]に消泡剤Aまたは消泡剤Bを5[μl]添加して調整した試験液を内径6.3[cm]の1000[ml]メスシリンダにとり、底部の抜き口からインペラー型ポンプ、内径8[mm]テトロンブレードホースを用いてメスシリンダー上部から循環させて発泡させて循環開始3分後の泡の高さを測定した(吐出口の内径は10[mm]で流速は0.7[m/sec])。沈殿槽出口における排水の発泡量と比較したところ、発泡の傾向順序が入れ替わった。測定結果を表2に示す。
なお、試験温度は25℃で行い、実施例7と同じ消泡剤を使用した。
【0038】
【表1】

Figure 0003799393
【0039】
【表2】
Figure 0003799393
【0040】
【発明の効果】
本発明の液体の小型発泡量測定装置およびその測定方法は、紙パルプ工業、食品工業、石油工業、繊維工業、塗料工業、化学工業、廃棄物処理等の各種工程および排水処理工程における実機と相関のある測定データを入手でき、また、低発泡液の測定もできるため、泡コントロールに関する各種試験段階から実操業に容易に移行でき、また、発泡剤、整泡剤、抑泡剤、消泡剤等の研究開発に要する労力及び費用が軽減できるというメリットがあり、実用上極めてに有用である。
【図面の簡単な説明】
【図1】実施例1に記載の本発明の発泡量測定装置を示す。
【図2】実施例2に記載の本発明の発泡量測定装置を示す。
【図3】実施例3に記載の本発明の発泡量測定装置を示す。
【図4】実施例4に記載の本発明の発泡量測定装置を示す。
【図5】実施例5に記載の本発明の発泡量測定装置を示す。
【符号の説明】
1 測定容器
2 容器
3 底部
3a 底部
4 ポンプ
5 吐出口
6 流量計
7 気体吹き込み管
8 温度調節器
9 ものさし
10 管[0001]
[Industrial application fields]
The present invention relates to a liquid foaming amount measuring apparatus and a measuring method thereof. More specifically, it correlates with actual machines in various processes such as the pulp and paper industry, food industry, petroleum industry, textile industry, paint industry, chemical industry, waste treatment industry, etc. and wastewater treatment process. The present invention relates to an apparatus for measuring a small amount of foaming of a liquid that can be evaluated in quantity and easy to transport and store, and a measuring method thereof.
[0002]
[Prior art]
In various industries, physical or chemical factors such as temperature, pH, equipment, etc. are added to systems containing substances that cause foaming to induce foaming, resulting in problems such as reduced product quality, reduced production efficiency, and loss of raw materials. On the other hand, there are also areas where foam is actively used in the product or during use, such as ice cream, polyurethane foam, flotation, foam extinguishing agent, deinking agent. Efforts are being made to improve product quality and production efficiency through control.
In these cases, it is common to preliminarily check the degree of foaming in the laboratory before adjusting the foam with the actual machine and then adjust with the actual machine, and many liquid foam volume measuring devices are known in the laboratory and the actual machine. ing.
[0003]
In the laboratory, an apparatus for measuring the foam volume is a device that measures the specific gravity, foam volume or foam height of the test solution after foaming the liquid in the vertical direction by flowing down, shaking, stirring, stirring, air supply, circulation, etc. Are known.
Specifically, a falling-down foaming amount measuring apparatus (Japanese Industrial Standard JIS K3362-90, ASTM Standard A.1) that foams by dropping a liquid based on the Ross Miles method and measures the height of the foam immediately after and after a certain time. ST Standard D1173-53, German Industrial Standard DIN Standard 53902Part 2), a shaking type foaming amount measuring apparatus (Japanese Industrial Standard JIS K2234-) for measuring the foam volume or foam height by foaming the test liquid by shaking. 86, ASTM Standard A.S.T.M Standard D3601-88, Japanese Patent Laid-Open No. 58-149399, Japanese Patent Laid-Open No. 3-163038, Japanese Patent Publication No. 45-7793, Japanese Patent Publication No. 6-79642), Stirring type foam volume measuring device that measures the foam volume by tapping the surface of the test solution 30 times with a porous disk (Doi Industrial Standard DIN Standard 53902 Part 1), Stirring Foam Measuring Device that measures foam volume or foam height by stirring (Japanese Industrial Standard JIS K2241-86, ASTM Standard ASTM Standard D3519-88, JP-A-52-69881, JP-A-55-92110, JP-A-59-132908, JP-A-61-293508), foaming with a diffuser stone, etc. Air supply type foam quantity measuring device for measuring height or specific gravity (Japanese Industrial Standard JIS K2518-90, ASTM Standard A.S.T.M Standard D892-92, ASTM Standard A.S.T.M Standard D1881-86 ASTM standard A.S.T.M Standard D3427-86, JP-A-47-33889, JP-A-52-22356, JP-B-47-40394, JP-B-3-47882), while dropping the test solution on the same surface through a nozzle, the liquid level Circulating foam amount measuring device for measuring the volume or height of the foam produced above (French Standards Association AFNOR Standard A.F.N.O.R.Draft T73-412, JP-A-56-48210, JP-A-52-22356, JP-B-47-40394, JP-B-61-7847) and the like are known.
[0004]
Further, as a foam amount measuring device in an actual machine, a light scattering type using an optical sensor, a light blocking type or a volume ratio type using a pressure sensor, a foam amount measuring device in a liquid such as a foam expansion volume change type or an electrode type, A device for measuring the amount of bubbles on a liquid surface using a displacement sensor such as a capacitance type or an ultrasonic type is known ["Analysis of Bubble Mechanism and Defoaming / Defoaming / Troubleshooting" p. 155, Techno System Co., Ltd.].
[0005]
[Problems to be solved by the invention]
Conventionally, the device for measuring the amount of foamed liquid used in laboratories generates bubbles in the vertical direction by moving the entire test solution vigorously while entraining gas by aeration, stirring, circulation, etc. It was to be measured.
However, the results obtained from these measuring apparatuses often have no correlation with the foaming phenomenon in actual machines.
In particular, when comparing liquids with significantly different foaming amounts, the amount of foaming in the actual machine and the amount of foaming in the laboratory are almost correlated, but in the case of a low foaming liquid or when the amount of foaming is close, Frequently, the trend of foaming and laboratory foaming was reversed, and it was very difficult to move from laboratory testing to actual operation with regard to foam control.
Furthermore, there is a difference that foaming agents, foam stabilizers, antifoaming agents, antifoaming agents, etc., which have been evaluated and developed using conventional foaming amount measuring devices, do not produce good results with actual machines. There was a problem that much labor and cost were required for development.
In addition, for example, in the case of a low foaming liquid such as an antifoaming agent or an antifoaming agent already contained, there is a problem that the foaming amount measuring device in the conventional laboratory has a very small amount of foaming and is difficult to measure. there were.
[0006]
[Means for Solving the Problems]
  The present invention is provided with a portion in which the test solution moves vigorously and slowly moves while entraining gas in the measurement container (1), and by generating bubbles in the horizontal direction, there is a correlation with the actual machine in various processes. It is an object of the present invention to provide a liquid small-sized foaming amount measuring apparatus that can easily evaluate the foaming amount of a liquid and that can be easily transported and stored, and a measuring method thereof.
  That is, the liquid small-sized foam amount measuring device of the present invention isThe test liquid is blown into the measurement container (1) by pouring or circulating the test liquid to the measurement container (1) through the discharge port (5) and / or by blowing gas from the gas blowing pipe (7). A measuring device for measuring the area or / and length of the foam covering the surface of the test solution with
  The length (L) in the longitudinal direction of the horizontal cross section at the open top of the measurement container (1) is20-60[Cm], and the area (S) of the horizontal section is20~ (L2/ 3) [cm2A measuring container (1)
Above itinstalledOpen cross-sectional area is10 -Five S-10 -3 S[Cm2] Discharge port (5)Or / and gas blowing tube (7)Or an open cross-sectional area provided above the bottom (3), the circulation pump (4) and the measurement container (1) of the measurement container (1).10 -Five S-10 -3 S[Cm2Or the discharge container (1) or / and the tube (10) or / and the discharge port of these measuring devices (10) so that the test solution can be circulated through the discharge port (5). 5) has a gas blowing pipe (7).
  Further, it is characterized in that two or more foaming amount test apparatuses are arranged or that the measurement container (1) and / or the container (2) has a semiconductor heating / cooling apparatus.
  Furthermore, in the method for measuring the amount of foamed liquid according to the present invention, the test solution is passed through the discharge port (5) at a flow rate of 0.001 to 30 [m / sec] and poured or circulated into the measurement container (1). Or / and gas is blown from the gas blowing tube (7) to foam the test liquid, and the area or / and length of the foam covering the surface of the test liquid in the measurement container (1) is measured. Then it is what you do.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
(1) About the measuring container (1) of the present invention
The length (L) in the longitudinal direction of the horizontal cross section at the open top of the measurement container (1) is 5 to 200 [cm], preferably 10 to 100 [cm], particularly preferably 20 to 60 [cm]. . If it is less than 5 [cm], the whole test solution will move and the correlation with the actual machine will be reduced. If it exceeds 200 [cm], it will be difficult to carry, and a large amount of test solution will be required. It becomes inconvenient in handling.
Here, the horizontal cross-sectional portion of the open upper portion of the measurement container (1) means a liquid surface portion (excluding an interface portion with the inner wall of the measurement container) when the measurement container (1) is filled with liquid. The length in the longitudinal direction means the length between the innermost measurement container inner walls on the horizontal cross section.
In addition, the area (S) of the horizontal cross section is 2 to (L2/ 3) [cm2], Preferably 10- (L2/ 3) [cm2], Particularly preferably 20 to (L2/ 3) [cm2]. 2 [cm2], The whole test solution moves and the correlation with the actual machine decreases, and (L2/ 3) [cm2] When it becomes larger, bubbles are generated in the vertical direction rather than in the horizontal direction, and the correlation with the actual machine is lowered.
The size of the measurement container (1) in the vertical direction, that is, the height direction is not particularly limited, but is preferably 2 to (L / 2) [cm] from the viewpoint of splashing and carrying the test solution.
[0008]
Examples of the shape of the horizontal cross section include a rectangle, a bowl, a triangle, a trapezoid, an ellipse, a bowl, or a combination thereof, and a rectangle, a trapezoid, a bowl, a bowl, and the like are preferable.
Moreover, the shape of the cross section of the measurement container (1) in the vertical direction includes a rectangular shape, a square shape, a triangular shape, a trapezoidal shape, a semicircular shape, or a combination thereof in both the XZ and YZ directions.
[0009]
The material of the measurement container (1) needs to be selected depending on the type of test solution, test temperature, etc., but generally, polypropylene, polyvinyl chloride, Teflon, glass, ceramics, stainless steel, aluminum, or a combination thereof. Things.
[0010]
This measuring container (1) includes a semiconductor heating / cooling device, a sheathed heater, a jacket that can circulate the temperature-controlled liquid, a rubber heater, a water bath, an oil bath, a hot and cold air generator, etc. Can be added. These temperature controllers can be added to the container (2), the pipe (10), the pump (4), etc. in addition to the measurement container (1), and can be easily heated and cooled to reduce the size and weight. The addition of a mold heating / cooling device is preferred.
As these temperature control methods, generally, ON-OFF control, phase control, PID control, fuzzy control, neuro-fuzzy control, and other control methods can be used.
[0011]
(2) Discharge port (5) of the present invention
The opening cross-sectional area of the discharge port (5) is 10-TenS-10-2S [cm2], Preferably 10-7S-10-3S [cm2], Particularly preferably 10-FiveS-10-3S [cm2]. This value is 10-2S [cm2] Larger than that, the whole test solution moves vigorously, and the correlation with the actual machine decreases, and 10-TenS [cm2], The amount of foaming is significantly lower, and the quantitative accuracy is lowered.
In addition, S means the area (S) of the horizontal cross-section part of the open upper part of a measurement container (1) as mentioned above.
The shape of the opening portion of the discharge port (5) can be selected from a circle, a quadrangle, a triangle, an ellipse, and the like, and the number of openings is not limited to 1 and may be 2 or more.
The reason why the test liquid is passed through the discharge port (5) is to pour or circulate the test liquid in a limited narrow range of the measurement container (1).
Further, the closer the test liquid passing through or out of the discharge port (5) is to a laminar flow, the more the test liquid can be poured or circulated in a limited narrow range of the measurement container (1). It is preferable that the hole is a columnar hole maintained. Here, M is M = N, where N is the opening cross-sectional area of the discharge port (5).1/2It is a numerical value represented by
The position of the discharge port (5) may be any of the upper part, the inner part, the bottom part, or the side part of the measurement container (1), but is preferably from above. This is because air is entrained when the test solution is poured into the measurement container (1). The direction of the discharge port (5) located above may be directed to the measurement container (1), and may be fixed vertically or at an arbitrary angle, or may move in a certain or irregular manner. It is necessary to set the test liquid to be poured or circulated in the bottom (3a) portion of the container (1).
When the position of the discharge port (5) is inside, bottom or side, a baffle plate is provided so that the test solution does not overflow from the measurement container (1), or the discharge port (5) is directed toward the bottom. Go away.
Moreover, a control valve can be connected to the inlet of the discharge port (5) to adjust the discharge flow rate of the discharge port (5).
[0012]
(3) About the container (2) of the present invention
The size of the container (2) only needs to be large enough to accommodate the test solution to be placed in the measurement container (1). The shape of the container (2) is generally semispherical or semielliptical at the bottom of the container (2). It is preferable that the shape is an inverted triangular prism shape or the like and is smoothly drawn toward the discharge port (5) so that the test liquid can be easily poured without remaining in the container (2).
The material of the container (2) can be the same material as the measurement container (1).
Moreover, the container (2) can be sealed and connected to a pressure regulating valve in addition to opening a part other than the discharge port (5). Furthermore, a pressure line such as compressed nitrogen or compressed air can be connected to the pressure regulating valve. This is because the discharge speed of the discharge port (5) is adjusted by adjusting the pressure in the container (2).
[0013]
(4) About the circulation pump (4) of the present invention
The circulation pump (4) is connected to the bottom (3) of the measurement container (1) and the discharge port (5) via the pipe (10).
The circulation pump (4) is not particularly limited as long as it can transfer and circulate the test liquid, but a type with less pulsating flow is preferable.
The capacity of the pump (4) needs to be selected depending on the viscosity of the test liquid, the test temperature, etc. Generally, the discharge flow rate is 0.1-20 [liter / min], preferably 0.3-10. [Litter / min], discharge pressure is 0.1-20 [Kg / cm2It is preferable that the flow rate be variable and quantitative.
A constant flow rate or a flow rate that can be changed regularly or irregularly may be used, but a constant flow rate is preferable.
The material of the liquid contact part of the pump (4) needs to be selected according to the type of test liquid and the test temperature, but is generally polypropylene, polyvinyl chloride, stainless steel, or a combination thereof.
The inner diameter of the pipe (10) connected to the bottom (3) of the measurement container (1) and the discharge port (5) is generally 1 to 40 [mm], preferably 4 to 20 [mm], and the material is Generally, synthetic rubber, polypropylene, polyvinyl chloride, tetron, stainless steel, or a combination thereof. If necessary, a heat insulating material, a heating / cooling device, a thermometer, a flow meter, a flow meter, an oxygen concentration meter, a density meter, and the like can be added to the pipe (10). The density meter can be added to measure the bubble content in the liquid using the density difference between the liquid and gas in addition to measuring the density.
[0014]
(5) Gas blowing pipe (7) of the present invention
The gas blowing tube (7) has a diameter of 10-15~ 100 [cm2], Preferably 10-15~ 20 [cm2A metal tube, plastic tube, glass tube, diffuser stone, glass filter (spherical, plate-shaped, rod-shaped) or the like having one or two or more blowing ports can be used.
The positions where the gas blowing pipe (7) can be installed are the measurement container (1), the discharge port (5), the container (2), the pipe (10) and the like. The measurement container (1) and the tube (10) are preferable.
The amount of air supplied is generally 0.01 to 20 [liter / minute], preferably 0.5 to 10 [liter / minute], and examples of the gas to be blown include air, nitrogen, carbon dioxide, helium or the like. Other mixed gases such as air or nitrogen can be used. Blowing may be performed at a constant pressure and a constant flow rate, or may be varied regularly or irregularly.
[0015]
(6) About arranging two or more foaming amount measuring devices
Two or more measurement containers (1) can be arranged vertically, front and rear, and left and right, and preferably, the measurement containers (1) are arranged so that the longitudinal direction of the measurement containers (1) comes into contact with or approaches. Also, the size of each measurement container (1), container (2), pump (4), discharge port (5), gas blowing pipe (7), etc. may be the same or different, and the measurement container ( Part or all other than 1) may be in service.
The reason why two or more foaming measuring devices are arranged is to enable simultaneous comparison of foaming amounts of liquids having different measuring conditions, or to enable measurement in a short time when it is desired to greatly change the measuring conditions. is there.
[0016]
(7) Liquid foaming method
As the foaming method, the test liquid is passed from the container (2) through the discharge port (5) and poured into the measurement container (1), while a new test liquid is continuously supplied to the container (2) while the discharge port ( 5) through which the test solution is poured into the measurement vessel (1) and the test solution is continuously discharged from the measurement vessel (1), or a circulation pump (4) from the bottom (3) of the measurement vessel (1). ), While allowing the test liquid to be removed, the foaming can be carried out by passing through the discharge port (5) and circulating to the measurement container (1) and / or by blowing gas from the gas blowing pipe (7).
At this time, the drug or the like added to the test solution may be added from the beginning or after the test solution is fired.
In addition, the temperature of the test solution is preferably adjusted to be the same as the temperature of the actual machine, and the circulation flow rate and the air supply amount may be changed to a fixed amount, a fixed rule or irregular, but a fixed amount. It is preferable that
[0017]
The flow rate at which the test solution passes through the discharge port (5) is 0.001 to 30 [m / sec], preferably 0.01 to 12 [m / sec], particularly preferably 0.02 to 7 [m / sec]. ]. If it is less than 0.001 [m / sec], the amount of foaming decreases and the measurement error increases. If it is larger than 30 [m / sec], the foaming amount of the foam becomes too high, and the correlation with the actual machine decreases.
As a method of adjusting the flow velocity, a method of adjusting the opening area of the discharge port (5), a method of adjusting with a control valve connected to the inlet of the discharge port (5), and a pressure in the container (2) are adjusted. For example, a method for adjusting the circulation flow rate of the circulation pump (4), or a combination thereof.
[0018]
▲ 8 ▼ Measurement method of foaming amount
As a method of measuring the area or length of the foam covering the surface of the test solution, a method of measuring directly with a mesh or ruler knitted in a grid in the solution or horizontally above the test solution, the upper part of these In addition, there are a method in which a mirror is arranged at about 45 ° and the eye is measured indirectly from the horizontal direction, or a method of processing data by photographing with a camera or video camera.
[0019]
【Example】
An embodiment of a liquid small-sized foam amount measuring apparatus of the present invention will be described with reference to the drawings, and an embodiment of the measuring method will be described.
[0020]
Example 1
FIG. 1 shows a measurement container (1) made of vinyl chloride having a rectangular parallelepiped shape having a length of 20 [cm], a depth of 1 [cm], and a height of 6 [cm], and a bottom (3a) of the measurement container (1). It consists of a 200 [ml] glass container (2) having a discharge port (5) with an inner diameter of 1.6 [mm] located 20 [cm] above, and a measure (9) is added to the upper part of the measurement container (1). 1 shows a small foam amount measuring device of the present invention.
[0021]
Example 2
FIG. 2 shows that the length (L) in the longitudinal direction of the horizontal cross-sectional portion of the open upper portion of the measurement container (1) is 20 [cm], the shape of the horizontal plane portion and the bottom plate is both the upper side 3 [cm], and the bottom side 10 [cm]. ] And a trapezoid in which the shape of the side wall surface of the measurement container (1) is 10 [cm] on the upper side and 15 [cm] on the bottom side, and the two inner angles contacting the inner upper side of the four inner angles are right angles. An inner diameter of 2 [located at 60 [cm] above the bottom (3) of the stainless steel measurement container (1), the impeller pump (4), the flow meter (6) and the bottom (3a) of the measurement container (1). The small foam amount measuring apparatus of this invention which connected the discharge port (5) of mm] with the inner diameter 8 [mm] Tetoron blade hose is shown.
[0022]
Example 3
FIG. 3 shows a stainless steel tube with a rubber heater having a length of 55 [cm] and a diameter (20 [cm]) of a semi-cylindrical acrylic measuring container (1) (3), a gear pump (4), and an inner diameter of 15 [mm]. (8) and a discharge port (5) having four holes with an inner diameter of 4 [mm] located 100 [cm] above the bottom (3a) of the measurement container (1), each having an inner diameter of 15 [mm] Tetron blade hose And a measuring ruler (9) is added to the upper part of the measurement container (1), and a gas blowing pipe (7) having an inner diameter of 2 [mm] is inserted between the gear pump (4) and the discharge port (5). A small foam amount measuring device is shown.
[0023]
Example 4
FIG. 4 shows a stainless steel product having a shape in which a cube of 5 × 5 × 5 [cm] is bonded to the bottom (3a) of a rectangular parallelepiped having a length of 40 [cm], a depth of 5 [cm], and a height of 10 [cm]. Discharge port with an inner diameter of 1 [mm] located 60 [cm] above the bottom (3) of the measurement container (1), the impeller pump (4), the flow meter (6) and the bottom (3a) of the measurement container (1) (5) are connected with a Tetron blade hose having an inner diameter of 8 [mm], a measuring tool (9) is added to the measuring container (1), and a gas blowing tube (7) is inserted into the measuring container (1) (bottom (3a)). 1 shows a small foam amount measuring apparatus of the present invention in which a spherical diffuser stone is inserted.
[0024]
Example 5
FIG. 5 shows an acrylic measuring container having a shape in which a sphere having a diameter of 5 [cm] is equally divided into four equal parts at both ends of a half cylinder having a length of 50 [cm] and a diameter of 5 [cm]. A small foam amount measuring device of the present invention is shown in which a measure (9) is added to (1) and a gas blowing tube (7, glass ball filter) is inserted into the measurement container (1) (bottom (3a)). .
[0025]
Example 6
Using the small foam amount measuring apparatus (FIG. 1) of the present invention shown in Example 1, the surface sizing agent A or the surface sizing agent B 200 [ml] placed in the container (2) is naturally dropped in the measuring container (1). After foaming, take a photograph of the amount of foaming 1 minute after all the test solution has fallen into the measuring container (1), and the area of the foam covering the surface of the test solution on the printed image after development When compared with the amount of foaming of the surface sizing agent in the machine, the result of the same tendency was obtained. The measurement results are shown in Table 1.
The test temperature was 35 ° C., and a surface sizing agent having the following formulation was used.
Surface sizing agent A: Soda salt of styrene / maleic acid copolymer (0.1% by weight), starch (5% by weight), water (94.9% by weight)
Surface sizing agent B: butyl methacrylate / methacrylic acid copolymer soda salt (0.1 wt%), starch (5 wt%), water (94.9 wt%)
[0026]
Example 7
Using the small foam amount measuring apparatus of the present invention shown in Example 2 (FIG. 2), 1000 [ml] of finely coated base paper and white paper is put into a measuring container (1), and the test liquid is put into the discharge port (5). Circulating and foaming so that the flow rate at 6.6 [m / sec] is 2 [mu] l of antifoaming agent A, antifoaming agent B or antifoaming agent C is added into the measuring container (1). When the foaming amount after 3 minutes was photographed and the area of the foam covering the surface of the test solution on the printed image after development was compared with the foaming amount of white water in the paper machine, the same tendency was obtained. The measurement results are shown in Table 1.
The test temperature was 38 ° C. and the following antifoaming agents were used.
Antifoam A: Stearyl alcohol POA (35) EOA (6)
Antifoam B: stearyl alcohol POA (35) EOA (10)
Antifoam C: stearyl alcohol POA (35) EOA (14)
[0027]
Example 8
Using the small foam amount measuring apparatus of the present invention shown in Example 3 (FIG. 3), 50 [μl] of antifoaming agent A, antifoaming agent B or antifoaming agent C was added to tiled paper white water 10 [L]. The test solution prepared in this manner is placed in the measurement container (1), and the test solution is circulated so that the flow rate at the discharge port (5) is 1.7 [m / sec], and from the gas blowing tube (7). Air was blown at 500 [ml / min], and the amount of foaming after 3 minutes was measured and the amount of foaming was read from (9). The result of the same tendency was obtained when compared with the foaming amount of white water in the paper machine. The measurement results are shown in Table 1.
The test temperature was 35 ° C., and the same antifoaming agent as in Example 7 was used.
[0028]
Example 9
Using the small foam amount measuring apparatus of the present invention shown in Example 5 (FIG. 5), 200 [ml] of human wastewater is put into a measurement container (1), and 1000 [ml / ml from a gas blowing pipe (7, diffuser stone). Min] is fed with nitrogen and foamed, and 2 [μl] of antifoam A, antifoam B or antifoam C is added to the measuring container (1), and the amount of foam after 3 minutes is measured. I read from (9). When compared with the amount of foamed wastewater in the aeration tank, the same trend was obtained. The measurement results are shown in Table 1.
The test temperature was 36 ° C., and the same antifoaming agent as in Example 7 was used.
[0029]
Example 10
Two small foam amount measuring apparatuses (FIG. 4) according to the present invention shown in Example 4 are arranged side by side, and a test liquid prepared by adding 2 [μl] of antifoam A to 1000 [ml] of fiber dye waste water is used as a measuring container ( 1), and the test solution prepared by adding 2 [μl] of antifoam B is put into the other measurement container (1), and the flow rate of each test solution at the discharge port (5) is increased. It circulates to 0.7 [m / sec], and nitrogen is blown from a gas blowing pipe (7, diffuser stone) at 2000 [ml / min] to foam, and after video shooting, frame-by-frame playback is performed. Then, the amount of foaming was read from the ruler (9). The result of the same tendency was obtained when compared with the foaming amount of the drainage at the outlet of the settling tank. The measurement results are shown in Table 1.
The test temperature was 25 ° C., and the same antifoaming agent as in Example 7 was used.
[0030]
Example 11
Using the small foaming amount apparatus of the present invention shown in Example 3 (FIG. 3), 20 [μl] of antifoaming agent A, antifoaming agent B or antifoaming agent C was added to 10 [L] of slate board papermaking white water. The test solution prepared in this manner is placed in the measurement container (1), and the test solution is circulated (sent from the gas blowing pipe (7) so that the flow rate at the discharge port (5) is 1.7 [m / sec]. Without foaming, the foam was foamed, and the amount of foaming after 3 minutes was measured and the amount was taken from (9). The result of the same tendency was obtained when compared with the amount of foam in the paper machine. The measurement results are shown in Table 1.
The test temperature was 40 ° C., and the same antifoaming agent as in Example 7 was used.
[0031]
Example 12
Using a measuring device in which the discharge port (5) of the small foam amount measuring device (FIG. 2) of the present invention shown in Example 2 is replaced with one having three holes with an inner diameter of 2 [mm], deinking drainage 1000 [ The test solution prepared by adding 1 [μl] of antifoam A, antifoam B or antifoam C to [ml] is placed in the measurement container (1), and the test solution is flowed through the discharge port (5). Was circulated (without supplying air from the gas blowing pipe (7)) so as to be 0.02 [m / sec], foamed, and the amount of foaming after 3 minutes was measured from (9). . The result of the same tendency was obtained when compared with the foam amount of the drainage at the outlet of the floatator. The measurement results are shown in Table 1.
The test temperature was 40 ° C., and the same antifoaming agent as in Example 7 was used.
[0032]
Example 13
Using the small foam amount measuring apparatus (FIG. 4) of the present invention shown in Example 4, 1000 [ml] of PVC resin production plant general waste water and 1 [μl] of antifoam B or C are placed in the measurement container (1). Then, nitrogen was fed from the gas blowing tube (7, diffuser stone) at 1500 [ml / min] to foam the test solution, and the amount of foaming after 3 minutes was measured from (9). The result of the same tendency was obtained when compared with the foaming amount of the drainage at the outlet of the settling tank. The measurement results are shown in Table 1.
The test temperature was 30 ° C., and the same antifoaming agent as in Example 7 was used.
[0033]
Comparative Example 1
Take 500 [ml] of surface sizing liquid A or surface sizing liquid B into a 1000 [ml] graduated cylinder with an inner diameter of 6.3 [cm], and use an impeller-type pump and an inner diameter 8 [mm] Tetron blade hose from the bottom opening. Then, the foam volume was measured by circulating from the top of the graduated cylinder and measuring the foam volume 3 minutes after the start of circulation (the inner diameter of the discharge port was 2 [mm] and the flow rate was 6.6 [m / sec]). When compared with the amount of foaming of the surface sizing agent in a newspaper manufacturing paper machine, the order of foaming trends was reversed. The measurement results are shown in Table 2.
The test temperature was 35 ° C., and the same surface sizing agents A and B as in Example 6 were used.
[0034]
Comparative Example 2
A test solution prepared by adding 2 [μl] of antifoaming agent A, antifoaming agent B or antifoaming agent C to 400 [ml] of finely coated base paper white water 1000 [ml] having an inner diameter of 6.3 [cm] The volume of foam after 10 minutes of air-feeding was measured by blowing air from a diffuser stone at 5000 [ml / min] and compared with the amount of white water in a paper machine. It was replaced. The measurement results are shown in Table 2.
The test temperature was 38 ° C., and the same antifoaming agent as in Example 7 was used.
[0035]
Comparative Example 3
A test solution prepared by adding 5 [μl] of defoaming agent A, defoaming agent B or defoaming agent C to 50 [ml] of tiled paper white water and having an inner diameter of 4.5 [cm] obtained by attaching a measure to the side wall. In a [ml] beaker, the mixture was foamed by stirring at 4000 [rpm] with a Coreless stirring blade, and the height of the foam after 20 minutes of stirring was measured. When compared with the amount of white water foaming in the papermaking machine, the order of foaming trends was reversed. The measurement results are shown in Table 2.
The test temperature was 35 ° C., and the same antifoaming agent as in Example 7 was used.
[0036]
Comparative Example 4
Drain 50 [ml] of human waste into a 100 [ml] graduated cylinder with an inner diameter of 4.5 [cm], and circulate it from the upper part of the graduated cylinder using an impeller pump and an inner diameter 8 [mm] Tetron blade hose from the bottom outlet. After foaming, 2 [μl] of antifoaming agent A, antifoaming agent B or antifoaming agent C was added into the measuring cylinder, and the amount of foaming 3 minutes after the start of circulation was measured (the inner diameter of the discharge port was 10 [mm] ], The flow rate is 0.7 [m / sec]). When compared with the amount of foamed wastewater in the aeration tank, the order of foaming trends was reversed. The measurement results are shown in Table 2.
The test temperature was 36 ° C., and the same antifoaming agent as in Example 7 was used.
[0037]
Comparative Example 5
The test solution prepared by adding 5 [μl] of antifoaming agent A or antifoaming agent B to 600 [ml] of fiber dyeing waste water is placed in a 1000 [ml] graduated cylinder with an inner diameter of 6.3 [cm], and the bottom outlet is opened. From the impeller type pump, the inner diameter 8 [mm] Tetron blade hose was circulated from the upper part of the graduated cylinder and foamed to measure the height of the foam 3 minutes after the start of circulation (the inner diameter of the discharge port was 10 [mm]). The flow rate is 0.7 [m / sec]). When compared with the amount of foamed wastewater at the outlet of the settling tank, the order of foaming trends was reversed. The measurement results are shown in Table 2.
The test temperature was 25 ° C., and the same antifoaming agent as in Example 7 was used.
[0038]
[Table 1]
Figure 0003799393
[0039]
[Table 2]
Figure 0003799393
[0040]
【The invention's effect】
The apparatus for measuring small amount of foaming of liquid and the measuring method of the present invention correlate with actual machines in various processes such as paper pulp industry, food industry, petroleum industry, textile industry, paint industry, chemical industry, waste treatment and wastewater treatment process. Measurement data can be obtained, and low foaming liquids can be measured, making it easy to move from various test stages related to foam control to actual operation. Also, foaming agents, foam stabilizers, foam inhibitors, and antifoaming agents This has the advantage of reducing labor and cost required for research and development, and is extremely useful in practice.
[Brief description of the drawings]
1 shows a foam amount measuring apparatus according to the present invention described in Example 1. FIG.
2 shows the foam amount measuring apparatus of the present invention described in Example 2. FIG.
3 shows the foam amount measuring apparatus of the present invention described in Example 3. FIG.
4 shows the foam amount measuring apparatus of the present invention described in Example 4. FIG.
5 shows the foam amount measuring apparatus of the present invention described in Example 5. FIG.
[Explanation of symbols]
1 Measurement container
2 containers
3 Bottom
3a bottom
4 Pump
5 Discharge port
6 Flow meter
7 Gas blowing pipe
8 Temperature controller
9 Measure
10 tubes

Claims (6)

試験液を吐出口(5)を通過させて測定容器(1)へ注ぐ若しくは循環させることによりまたは/および気体吹き込み管(7)から気体を吹き込んで試験液を発泡させ、測定容器(1)内で試験液の表面を覆う泡の面積または/および長さを測定するための測定装置であって、
測定容器(1)の開放上部の水平断面部分の長手方向の長さ(L)が20〜60[cm]であり、この水平断面部分の面積(S)が20〜(L2/3)[cm2]である測定容器(1)と、
その上方に設置した開孔断面積が10 -5 S〜10 -3 [cm2]である吐出口(5)または/および気体吹き込み管(7)とからなることを特徴とする液体の発泡量測定装置。
The test liquid is blown into the measurement container (1) by pouring or circulating the test liquid to the measurement container (1) through the discharge port (5) and / or by blowing gas from the gas blowing pipe (7). A measuring device for measuring the area or / and length of the foam covering the surface of the test solution with
Longitudinal length of the horizontal cross section of the open top of the measuring container (1) (L) a is 20 to 60 [cm], the area of the horizontal cross section (S) is 20 ~ (L 2/3) [ cm < 2 >] measuring container (1),
Foaming of the liquid, characterized in that Hirakianadan area installed thereabove is because 10 -5 S~10 -3 S [cm 2 ] at which the discharge port (5) and / or gas injection pipe (7) Quantity measuring device.
請求項1記載の測定容器(1)の底部(3)、循環ポンプ(4)および測定容器(1)の上方に設けた開孔断面積が10 -5 S〜10 -3 [cm2]である吐出口(5)を試験液が循環できるように管(10)でつなぐことを特徴とする液体の発泡量測定装置。Bottom of the measuring container according to claim 1, wherein (1) (3), circulation pump (4) and the measuring container (1) opening cross-sectional area 10 -5 S~10 -3 S provided above the [cm 2] An apparatus for measuring the amount of foamed liquid, wherein the pipe (10) is connected so that the test liquid can circulate through the discharge port (5). 測定容器(1)または/および管(10)または/および吐出口(5)に気体吹き込み管(7)を有することを特徴とする請求項1または請求項2記載の液体の発泡量測定装置。  3. The apparatus for measuring the amount of foamed liquid according to claim 1, further comprising a gas blowing pipe (7) in the measuring container (1) or / and the pipe (10) or / and the discharge port (5). 請求項1〜3のいずれかに記載の発泡量測定装置を2以上並べることを特徴とする液体の発泡量測定装置。Two or more foaming amount measuring apparatuses according to any one of claims 1 to 3 are arranged. 測定容器(1)に半導体型加熱冷却装置を有する請求項1〜4のいずれかに記載の液体の発泡量測定装置。The liquid foaming amount measuring device according to any one of claims 1 to 4, wherein the measuring vessel (1) has a semiconductor heating / cooling device. 請求項1〜5のいずれかに記載の発泡量測定装置を用いて、試験液を0.001〜30[m/秒]の流速で吐出口(5)を通過させて 測定容器(1)へ注ぐ若しくは循環させることによりまたは/および気体吹き込み管(7)から気体を吹き込んで試験液を発泡させ、測定容器(1)内で試験液の表面を覆う泡の面積または/および長さを測定することを特徴とする液体の発泡量測定方法。 Using the foam amount measuring apparatus according to any one of claims 1 to 5, the test liquid is passed through the discharge port (5) at a flow rate of 0.001 to 30 [m / sec]. The area of foam covering the surface of the test liquid in the measurement container (1) by pouring or circulating into the measurement container (1) and / or blowing gas from the gas blowing pipe (7) and / or covering the surface of the test liquid in the measurement container (1) And a method for measuring a foam amount of a liquid, characterized by measuring a length.
JP03554197A 1997-02-03 1997-02-03 Apparatus for measuring small amount of foaming liquid and measuring method thereof Expired - Fee Related JP3799393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03554197A JP3799393B2 (en) 1997-02-03 1997-02-03 Apparatus for measuring small amount of foaming liquid and measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03554197A JP3799393B2 (en) 1997-02-03 1997-02-03 Apparatus for measuring small amount of foaming liquid and measuring method thereof

Publications (2)

Publication Number Publication Date
JPH10221057A JPH10221057A (en) 1998-08-21
JP3799393B2 true JP3799393B2 (en) 2006-07-19

Family

ID=12444603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03554197A Expired - Fee Related JP3799393B2 (en) 1997-02-03 1997-02-03 Apparatus for measuring small amount of foaming liquid and measuring method thereof

Country Status (1)

Country Link
JP (1) JP3799393B2 (en)

Also Published As

Publication number Publication date
JPH10221057A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
US4732689A (en) Feeder assembly for adding dissolvable agent to a flowing liquid
US6955341B2 (en) Apparatus for dissolving gas into liquid
KR940000131A (en) Improved water treatment system
JPS585059B2 (en) Method and device for humidifying and warming breathing gas
BRPI1104076A2 (en) method for determining the viscosity of structurally viscous fluids or beverages and device for determining the viscosity of structurally viscous fluids or beverages
DK151210B (en) Apparatus for weighing powdered material and liquid and admixing the powder into the liquid
JP3799393B2 (en) Apparatus for measuring small amount of foaming liquid and measuring method thereof
US20230416125A1 (en) High-efficiency airlift pump
AU700562B2 (en) Apparatus for growing organisms by moist air
ITMI962501A1 (en) AERATION AND MIXING UNITS PARTICULARLY FOR WASTE WATER
KR20220091605A (en) Improved filter system for removing and/or neutralizing undissolved oils, greases and salts and/or metal debris in/in water containing emulsions
Scott et al. Transport of solids by gas‐liquid mixtures in horizontal pipes
US20020144536A1 (en) Method and apparatus for measuring the amount of entrained gases in a liquid sample
JPS5925630B2 (en) Equipment for treating contaminated liquids
Kawabata et al. Experiments on Removal of Hydrophilic Fine Particles in Bubbly Flow
JP2002543960A (en) Gas-liquid mixing apparatus and method
Evans et al. Mass transfer in a confined plunging liquid jet bubble column
KR101294975B1 (en) Device for removing bubble and system for circulating chemical liquid
JP5955745B2 (en) Swirl aeration tank
Ebner et al. Characterization of hydrodynamic regimes in horizontal two-phase flow Part I: Pressure drop measurements
KR102549851B1 (en) Liquid-Air Contact Device for Preventing Droplet
Rieser et al. Permeability to interbubble gas diffusion in liquid foam
SU764697A1 (en) Mass-exchange apparatus
CA2391870C (en) Device for increasing ph of an aqueous stream
US1922411A (en) Automatic continuous liming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees