JP3798836B2 - 2-Substituted benzothiazole derivatives and prophylactic / therapeutic agents for diabetic complications containing the same - Google Patents

2-Substituted benzothiazole derivatives and prophylactic / therapeutic agents for diabetic complications containing the same Download PDF

Info

Publication number
JP3798836B2
JP3798836B2 JP32944695A JP32944695A JP3798836B2 JP 3798836 B2 JP3798836 B2 JP 3798836B2 JP 32944695 A JP32944695 A JP 32944695A JP 32944695 A JP32944695 A JP 32944695A JP 3798836 B2 JP3798836 B2 JP 3798836B2
Authority
JP
Japan
Prior art keywords
group
atom
lower alkyl
general formula
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32944695A
Other languages
Japanese (ja)
Other versions
JPH08208631A (en
Inventor
知士 青塚
尚樹 阿部
直樹 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aska Pharmaceutical Co Ltd
Original Assignee
Aska Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aska Pharmaceutical Co Ltd filed Critical Aska Pharmaceutical Co Ltd
Priority to JP32944695A priority Critical patent/JP3798836B2/en
Publication of JPH08208631A publication Critical patent/JPH08208631A/en
Application granted granted Critical
Publication of JP3798836B2 publication Critical patent/JP3798836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,糖尿病の合併症の治療に効果的なアルドースリダクターゼ阻害作用を有する新規な2−置換ベンゾチアゾール誘導体またはその医薬的に許容される塩およびそれを含有する薬剤に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来より糖尿病の発症が増加してきており,その治療薬としてインシュリンや種々の血糖降下剤が用いられている。しかし,これらの治療薬は,糖尿病の増加と共に問題となっている種々の合併症の治療薬としてはその有効性には限界があり,新しい概念に基づく糖尿病合併症治療剤が望まれている。
【0003】
糖尿病で高血糖状態になると,末梢神経,網膜,水晶体,角膜,血管,腎糸球体などのインスリン非依存性組織のグルコース濃度が高まり,ポリオール経路を介したグルコース代謝が亢進され,ソルビトールなどのポリオールが蓄積され合併症を引き起こす。そこで,グルコース代謝の酵素であるアルドースリダクターゼを阻害することにより,糖尿病性合併症の予防および治療を行う方法が研究されている。
【0004】
これらの目的で合成された化合物のうち,例えば,特開昭64-3173 号,特開平1-211585号,特開平3-5481号,特開平4-234321号,特開平5-92961 号,特開平6-172353号,特開平6-199851号,特開平6-279423号および特開平6-279453号公報においてはある種のベンゾチアゾール誘導体がアルドースリダクターゼ阻害作用を有することが記載されている。しかし,これらの化合物群も未だ充分なものとは言えず,さらに優れたアルドースリダクターゼ阻害活性を有する糖尿病合併症治療剤の開発が望まれている。
【0005】
【課題を解決するための手段】
本発明は,一般式(1)
【化15】

Figure 0003798836
Figure 0003798836
〔式中,Xはハロゲン原子,R1 およびR2 は同一もしくは相異なる水素原子またはハロゲン原子,Aはメチレン基またはイオウ原子,−B−COOR3 は,
一般式(2)
【化16】
Figure 0003798836
Figure 0003798836
(式中,R3 は水素原子またはC1 〜C3 の低級アルキル基,Yは水素原子,ハロゲン原子,C1 〜C3 の低級アルキル基,カルボキシル基またはジ低級アルキルアミノ基,nは1〜3の整数)
または,一般式(3)
【化17】
Figure 0003798836
Figure 0003798836
(式中,R3 ,Y,nは前記と同様)
または,一般式(4)
【化18】
Figure 0003798836
Figure 0003798836
(式中,Zは酸素原子またはイオウ原子,R3 は前記と同様,R4 はC1 〜C3 の低級アルキル基または置換基を有してもよいフェニル基,ベンジル基もしくはフェネチル基)
または,一般式(5)
【化19】
Figure 0003798836
Figure 0003798836
(式中,R3 は前記と同様,mは2〜5の整数,但し,Aがイオウ原子である場合を除く)
のいずれかで表される基を示す〕
で表されるベンゾチアゾール誘導体またはその医薬的に許容される塩,これらを有効成分として含有するアルドースリダクターゼ阻害剤およびこれらを有効成分として含有する糖尿病合併症予防・治療剤に関する。
【0006】
上記一般式(1)において,Xはハロゲン原子で,具体的にはフッ素原子または塩素原子であり,好ましくはフッ素原子である。また,R1 およびR2 は同一もしくは相異なる水素原子またはハロゲン原子で,ハロゲン原子としてはフッ素原子または塩素原子が含まれ,なかでもフッ素原子が好ましい。
【0007】
上記一般式(2)および一般式(3)において,R3 は水素原子またはC1 〜C3 (炭素が1ないし3個)の低級アルキル基であり,C1 〜C3 の低級アルキル基としては,メチル基,エチル基,n−プロピル基およびi−プロピル基が含まれる。また,Yは水素原子,ハロゲン原子,C1 〜C3 の低級アルキル基,カルボキシル基またはジ低級アルキルアミノ基であり,ハロゲン原子としてはフッ素原子,塩素原子,臭素原子およびヨウ素原子が含まれ,C1 〜C3 の低級アルキル基としては,メチル基,エチル基,n−プロピル基およびi−プロピル基が含まれ,ジ低級アルキルアミノ基としては,ジメチルアミノ基,ジエチルアミノ基,ジn−プロピルアミノ基,およびジi−プロピルアミノ基が含まれる。
【0008】
上記一般式(4)において,R4 はC1 〜C3 の低級アルキル基または置換基を有してもよいフェニル基,ベンジル基もしくはフェネチル基であり,C1 〜C3 の低級アルキル基としては,メチル基,エチル基,n−プロピル基およびi−プロピル基が含まれ,置換基を有してもよいフェニル基,ベンジル基もしくはフェネチル基としては,ベンゼン環上の任意の位置に,ハロゲン原子またはC1 〜C3 の低級アルキル基を置換基として有してもよいフェニル基,ベンジル基もしくはフェネチル基が含まれ,具体的には,フェニル基,ベンジル基,フェネチル基,ハロゲン原子としてフッ素原子,塩素原子もしくは臭素原子で置換されたフェニル基,ベンジル基,フェネチル基およびC1 〜C3 の低級アルキル基として,メチル基,エチル基,n−プロピル基もしくはi−プロピル基で置換されたフェニル基,ベンジル基,フェネチル基が含まれる。
【0009】
本発明は,一般式(1)における−B−COOR3 が上記一般式(2)で表されるベンゾチアゾール誘導体を含み,好適なものとしては,一般式(6)
【化20】
Figure 0003798836
Figure 0003798836
(式中,X,R1 ,R2 ,R3 ,Yおよびnは前記と同様)
で表されるベンゾチアゾール誘導体を包含する。当該化合物として,具体的には次のような化合物が挙げられる。
【0010】
(1) 3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸
(2) 3−[(4,5−ジクロロベンゾチアゾール−2−イル)メチル]フェニル酢酸
(3) 3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸
(4) 3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニルプロピオン酸
(5) 上記カルボン酸のメチル,エチル,n−プロピルおよびi−プロピルの各エステル
【0011】
また,本発明は,一般式(1)における−B−COOR3 が上記一般式(3)で表されるベンゾチアゾール誘導体を含み,好適なものとしては,一般式(7)
【化21】
Figure 0003798836
(7)
(式中,X,R1 ,R2 ,R3 ,Yおよびnは前記と同様)
で表されるベンゾチアゾール誘導体を包含する。当該化合物として,具体的には次のような化合物が挙げられる。
【0012】
(1) 3−[2−(4,5−ジフルオロベンゾチアゾール−2−イル)エチル]安息香酸
(2) 3−[2−(4,5−ジクロロベンゾチアゾール−2−イル)エチル]安息香酸
(3) 3−[2−(4,5,7−トリフルオロベンゾチアゾール−2−イル)エチル]安息香酸
(4) 3−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピル]安息香酸
(5) 上記カルボン酸のメチル,エチル,n−プロピルおよびi−プロピルの各エステル
【0013】
さらに,本発明は,一般式(1)における−B−COOR3 が上記一般式(4)で表されるベンゾチアゾール誘導体を含み,好適なものとしては,一般式(8)
【化22】
Figure 0003798836
Figure 0003798836
(式中,X,Z,R1 ,R2 ,R3 およびR4 は前記と同様)
または,一般式(9)
【化23】
Figure 0003798836
Figure 0003798836
(式中,X,Z,R1 ,R2 ,R3 およびR4 は前記と同様)
で表されるベンゾチアゾール誘導体を包含する。当該化合物として,具体的には次のような化合物が挙げられる。
【0014】
(1) N−[3−(4,5−ジフルオロベンゾチアゾール−2−イル)プロピオニル]−N−メチルグリシン
(2) N−[3−(4,5−ジクロロベンゾチアゾール−2−イル)プロピオニル]−N−メチルグリシン
(3) N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−メチルグリシン
(4) N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−フェニルグリシン
(5) N−ベンジル−N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]グリシン
(6) N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−フェネチルグリシン
(7) N−[3−(4,5−ジフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]−N−メチルグリシン
(8) N−[3−(4,5−ジクロロベンゾチアゾール−2−イル)−1−チオキソプロピル]−N−メチルグリシン
(9) N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]−N−メチルグリシン
(10)N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]−N−フェニルグリシン
(11)N−ベンジル−N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]グリシン
(12)N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]−N−フェネチルグリシン
(13)N−[2−(4,5,7−トリフルオロベンゾチアゾール−2−イルチオ)アセチル]−N−フェニルグリシン
(14)上記カルボン酸のメチル,エチル,n−プロピルおよびi−プロピルの各エステル
【0015】
上記に加えて,本発明は,一般式(1)における−B−COOR3 が上記一般式(5)で表されるベンゾチアゾール誘導体を含み,好適なものとしては,一般式(10)
【化24】
Figure 0003798836
Figure 0003798836
(式中,X,R1 ,R2 ,R3 およびmは前記と同様)
または,一般式(11)
【化25】
Figure 0003798836
Figure 0003798836
(式中,X,R1 ,R2 ,R3 およびmは前記と同様)
で表されるベンゾチアゾール誘導体を包含する。当該化合物として,具体的には次のような化合物が挙げられる。
【0016】
(1) 4−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ブタン酸
(2) 5−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ペンタン酸
(3) 6−(4,5−ジフルオロベンゾチアゾール−2−イル)ヘキサン酸
(4) 6−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ヘキサン酸
(5) 7−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ヘプタン酸
(6) 5−(4,5−ジフルオロベンゾチアゾール−2−イルチオ)ペンタン酸
(7) 5−(4,5,7−トリフルオロベンゾチアゾール−2−イルチオ)ペンタン酸
(8) 上記カルボン酸のメチル,エチル,n−プロピルおよびi−プロピルの各エステル
【0017】
さらに、本発明の好適な化合物として、具体的に次のような化合物が挙げられる。
(1)2−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸
(2)4−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸
(3)3−[(5,7−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸
(4)3−[(6,7−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸
(5)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−メチルフェニル酢酸
(6)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−エチルフェニル酢酸
(7)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−フルオロフェニル酢酸
(8)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−クロロフェニル酢酸
(9)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−ブロモフェニル酢酸
(10)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−ヨードフェニル酢酸
(11)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−カルボキシルフェニル酢酸
(12)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−ジメチルアミノフェニル酢酸
(13)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−2−クロロフェニル酢酸
(14)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−メチルフェニル酢酸
(15)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−フルオロフェニル酢酸
(16)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−クロロフェニル酢酸
(17)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ブロモフェニル酢酸
(18)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ヨードフェニル酢酸
(19)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−カルボキシルフェニル酢酸
(20)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ジメチルアミノフェニル酢酸
(21)上記カルボン酸のメチル,エチル,n−プロピルおよびi−プロピルの各エステル
【0018】
本発明は,上記一般式(1)で表されるベンゾチアゾール誘導体の医薬的に許容される塩も含んでおり,このような塩としては,医学上もしくは薬学上からみて使用可能な無毒性ないし低毒性の塩基性塩または酸性塩が含まれる。当該塩基性塩としては,無機塩基および有機塩基の塩が挙げられ,具体的にはアルカリ金属塩,アルカリ土類金属塩,有機アミン塩が挙げられ,より具体的には,リチウム塩,ナトリウム塩,カリウム塩,カルシウム塩,マグネシウム塩,トリエチルアミン塩,ピリジン塩等が挙げられる。また,酸性塩としては,無機酸塩および有機酸塩が含まれ,具体的には,塩酸塩,臭化水素酸塩,硫酸塩,酢酸塩,プロピオン酸塩,クエン酸塩,コハク酸塩,酒石酸塩およびメタンスルホン酸塩等が含まれる。
【0019】
本発明の化合物は,種々の方法で製造できるが,その代表的な方法として,例えば次のようにして製造することができる。
(A)本発明の好適な化合物である一般式(6)
【化26】
Figure 0003798836
Figure 0003798836
(式中,X,R1 ,R2 ,R3 ,Yおよびnは前記と同様)
で表されるベンゾチアゾ−ル誘導体は,例えば,[製造法1]に示す方法により製造することができる。
【化27】
Figure 0003798836
Figure 0003798836
【0020】
すなわち,一般式(6)の化合物は,一般式(12)(式中,X,R1 およびR2 は前記と同様)で表される化合物またはその酸付加塩と,一般式(13)(式中,R3 ,Yおよびnは前記と同様)で表される化合物を,必要なら塩基の存在下,好ましくは不活性気体雰囲気下で反応させることにより製造できるが,一般式(13)の酸塩化物に代えて,カルボン酸自体の他にそのエステル体や酸無水物などの自体公知の反応性誘導体を用いることも可能である。本反応は溶媒の存在下もしくは非存在下に行うことができ,溶媒の存在下に反応を行う場合は反応に悪影響を及ぼさない常用の溶媒が使用可能であるが,好適なものとして,N,N−ジメチルホルムアミド,N−メチルピロリドン等が挙げられる。反応温度は20〜200℃程度,好ましくは60℃〜還流温度程度である。
【0021】
一般式(6)で表されるベンゾチアゾール誘導体がエステル体で得られた場合は,当該エステルを,塩基または酸の存在下,加水分解に付すことにより,相当するカルボン酸を製造することができる。この加水分解反応に用いられる好適な塩基としては,例えば水酸化ナトリウム,水酸化カリウム等のアルカリ金属水酸化物,炭酸ナトリウム,炭酸カリウム等のアルカリ金属炭酸塩等が挙げられる。また,好適な酸としては,ギ酸,酢酸,プロピオン酸,トリフルオロ酢酸,ベンゼンスルホン酸,パラトルエンスルホン酸等の有機酸および塩酸,臭化水素酸,硫酸,燐酸等の無機酸が挙げられる。
【0022】
加水分解反応は,通常,水,アセトン,ジオキサン,ジクロロメタン,メタノール,エタノール,プロパノール,ピリジン,N,N−ジメチルホルムアミド等のような反応に悪影響を及ぼさない常用の溶媒またはそれらの混合物中で行われ,この反応で使用される塩基または酸が溶液状である場合には,それを溶媒として使用することもできる。反応温度は特に限定されず,冷却下から加熱下までの範囲で反応が行われる。
【0023】
一般式(12)で表される化合物は,公知の方法[ジャーナル オブ メディシナル ケミストリー(Journal of Medicinal Chemistry),34巻,108−122頁,1991年]等により製造可能であり,また,一般式(13)で表される化合物は,公知の方法[インターナショナル ジャーナル オブ プレパラティブ プロテイン リサーチ (Int. Journal of Prpt. Protein Res.),29巻,331−346頁,1987年]等により製造可能である。
【0024】
(B)本発明の好適な化合物である一般式(7)
【化28】
Figure 0003798836
Figure 0003798836
(式中,X,R1 ,R2 ,R3 ,Yおよびnは前記と同様)
で表されるベンゾチアゾ−ル誘導体は,例えば,[製造法2]に示す方法により製造することができる。
【化29】
Figure 0003798836
Figure 0003798836
【0025】
すなわち,一般式(7)の化合物は,一般式(12)(式中,X,R1 およびR2 は前記と同様)で表される化合物またはその酸付加塩と,一般式(14)(式中,R3 ,Yおよびnは前記と同様)で表される化合物とを,好ましくは不活性気体雰囲気下で反応させることにより製造できる。このときの好適な溶媒としては,メタノール,エタノール,プロパノール等の低級アルコールを用いるのがよい。また,反応温度としては,20〜200℃,好ましくは60℃〜用いた溶媒の還流温度が好適であるが,一方,この様な溶媒を用いない場合は,化合物(12)の酸付加塩と化合物(14)とを90〜250℃の温度で溶融することによって反応させてもよい。ここで得られたエステル体の加水分解は[製造法1]における場合と同様に行うことができる。
【0026】
(C)本発明の好適な化合物である一般式(8)
【化30】
Figure 0003798836
Figure 0003798836
(式中,X,Z,R1 ,R2 ,R3 およびR4 は前記と同様)
で表されるベンゾチアゾール誘導体は,例えば,[製造法3]に示す方法により製造することができる。
【化31】
Figure 0003798836
Figure 0003798836
【0027】
すなわち,一般式(8)の化合物は,一般式(15)(式中,X,R1 およびR2 は前記と同様)で表される化合物と一般式(16)(式中,R3 およびR4 は前記と同様)で表される化合物を縮合反応に付すことにより製造される。この反応は,1)DCC(ジシクロヘキシルカルボジイミド)またはWSC{1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド}等の脱水縮合剤を用いる方法,2)酸ハロゲン化物を経る方法,3)混合酸無水物を経る方法等により行うことができる。
【0028】
上記1)の方法は,DCCまたはWSC等の縮合剤の存在下,溶媒中で3級アミンの存在下または非存在下に行うことができる。本反応に好適な溶媒としては,塩化メチレン,テトラヒドロフラン,クロロホルム,ジエチルエーテル,ベンゼン,トルエン,N,N−ジメチルホルムアミド等が挙げられ,好適な3級アミンとしては,ピリジン,トリエチルアミン,ピコリン等が挙げられる。
【0029】
上記2)の方法は,一般式(15)のカルボン酸を前記1)と同様の溶媒の存在下もしくは非存在下,塩化チオニル,オキサリルクロリド等の酸ハロゲン化物と−20℃〜還流温度程度で反応させ,得られた一般式(15)の酸ハロゲン化物を前記1)の場合と同様の溶媒および3級アミンを用いて,一般式(16)の化合物と反応させることにより行われる。
【0030】
上記3)の方法は,一般式(15)のカルボン酸を前記1)と同様の溶媒の存在下もしくは非存在下に,前記1)と同様の3級アミンの存在下,クロロギ酸エチル,ピバロイルクロリド,トシルクロリド,メシルクロリド等の酸ハロゲン化物と反応させて得られた一般式(15)の酸無水物を,一般式(16)と前記1)と同様の溶媒中反応させることにより行われる。
これら1)〜3)の方法においてはいずれも反応温度は20〜60℃程度であり,アルゴン,窒素等の不活性ガス雰囲気下,無水条件で行うことが好ましい。
【0031】
上記の方法により,一般式(8)の化合物においてZが酸素原子のものが得られるが,これらを溶媒中五硫化リン等の硫化剤と反応させることにより,一般式(8)の化合物においてZがイオウ原子のものが製造できる。本反応は,通常,ベンゼン,トルエン,キシレン,ヘキサンなど反応に悪影響を及ぼさない常用の溶媒中で行われ,反応温度は−20℃〜還流温度程度である。
【0032】
以上のようにして得られる一般式(8)の化合物のエステル体は,必要なら一般式(6)の化合物の場合と同様にして加水分解反応に付すことにより,相当するカルボン酸を製造することができる。
【0033】
(D)本発明の好適な化合物である一般式(9)
【化32】
Figure 0003798836
Figure 0003798836
(式中,X,Z,R1 ,R2 ,R3 およびR4 は前記と同様)
で表されるベンゾチアゾール誘導体は,例えば,[製造法4]に示す方法により製造することができる。
【化33】
Figure 0003798836
Figure 0003798836
【0034】
すなわち,一般式(9)の化合物において,Zが酸素原子である化合物のエステル体(9a)は,一般式(17)(式中,X,R1 およびR2 は前記と同様)で表される化合物と一般式(18)(式中,Wはハロゲン原子,メンタンスルホニル基またはパラトルエンスホニル基,R3 およびR4 は前記と同様;ただし,R3 が水素原子である場合を除く)で表される化合物を適当な塩基の存在下,必要なら不活性気体雰囲気下で反応させることにより製造できる。本反応に用いられる塩基とは,例えば,水素化ナトリウム等のアルカリ金属水素化物,水素化カルシウム等のアルカリ土類金属水素化物,水酸化ナトリウム,水酸化カリウム等のアルカリ金属水酸化物,炭酸ナトリウム,炭酸カリウム等のアルカリ金属炭酸塩,ナトリウムメトキシド,ナトリウムエトキシド,カリウム第3級ブトキシド等のアルカリ金属アルコキシド等が挙げられる。なお,一般式(18)の化合物におけるハロゲン原子としては,特に塩素原子または臭素原子が好ましい。
【0035】
上記の反応は通常反応に悪影響を及ぼさない常用の溶媒またはそれらの混合物中で行われる。特に好ましい溶媒としては,N,N−ジメチルホルムアミド,テトラヒドロフラン,ジメチルスルホキシド等が挙げられる。反応温度は特に限定されないが,好ましくは0〜100℃程度である。
【0036】
上記の方法により,エステル体(9a)が製造できるが,相当するカルボン酸(9b)は,上記[製造法4ii)]において一般式(19)(式中,X,R1 ,R2 およびR4 は前記と同様)で表される化合物をモノクロル酢酸またはモノブロム酢酸等のモノハロゲン化酢酸と適当な塩基の存在下,必要なら不活性気体雰囲気下で反応させることにより製造できる。本反応は,通常反応に悪影響を及ぼさない常用の溶媒またはそれらの混合物中で行われ,特に好ましい溶媒としては,N,N−ジメチルホルムアミド,ジメチルスルホキシド等が挙げられる。また,用いられる塩基としては,例えば,炭酸ナトリウム,炭酸カリウム等のアルカリ金属炭酸塩,ナトリウムメトキシド,ナトリウムエトキシド,カリウム第3級ブトキシド等のアルカリ金属アルコキシド等が挙げられる。反応温度は特に限定されないが,好ましくは−20〜80℃程度である。
【0037】
(E)本発明の好適な化合物である一般式(10)
【化34】
Figure 0003798836
Figure 0003798836
(式中,X,R1 ,R2 ,R3 およびmは前記と同様)
で表されるベンゾチアゾール誘導体は,例えば,[製造法5]に示す方法により製造することができる。
【化35】
Figure 0003798836
Figure 0003798836
【0038】
すなわち,一般式(10)の化合物は,一般式(12a)(式中,X,R1 およびR2 は前記と同様)で表される化合物もしくはその酸付加塩を,一般式(20)(式中,R3 およびmは前記と同様)または一般式(21)(式中,R3 およびmは前記と同様)で表される化合物と,必要なら塩基の存在下,好ましくは不活性気体雰囲気下で反応させることにより製造できる。この反応は上記[製造法1]または[製造法2]と実質的に同様な条件で反応を行うことができ,また,得られたエステルを同様に加水分解して相当するカルボン酸を製造することができる。
【0039】
また,一般式(10)で表される化合物のカルボン酸は,一般式(12a)の化合物と一般式(22)(式中,mは前記と同様)で表される酸無水物との反応により製造することができる。この反応は溶媒の存在下もしくは非存在下に行うことができ,溶媒の存在下に反応を行う場合,反応に悪影響を及ぼさない常用の溶媒が使用可能であるが,特に好適なものは,N,N−ジメチルホルムアミド,N−メチルピロリドン等が挙げられる。反応温度は特に限定されないが,室温〜150℃程度が好ましい。
【0040】
(F)本発明の好適な化合物である一般式(11)
【化36】
Figure 0003798836
Figure 0003798836
(式中,X,R1 ,R2 ,R3 およびmは前記と同様)
で表されるベンゾチアゾール誘導体は,例えば,[製造法6]に示す方法により製造することができる。
【化37】
Figure 0003798836
Figure 0003798836
【0041】
すなわち,一般式(11)の化合物は,一般式(17)(式中,X,R1 およびR2 は前記と同様)で表される化合物と一般式(23)(式中,Wはハロゲン原子,メンタンスルホニル基またはパラトルエンスホニル基,mおよびR3 は前記と同様)で表される化合物を,前記[製造法4i )]と同様な条件で反応することにより製造することができ,また,得られたエステルを同様に加水分解して相当するカルボン酸を製造することができる。
【0042】
(G)さらに、本発明の好適な化合物である一般式(26)(式中、X,R1 ,R2 ,R3 およびYは前記と同様)で表される誘導体は、例えば、[製造法7]に示す方法により製造することができる。
【化38】
Figure 0003798836
Figure 0003798836
すなわち、一般式(26)の化合物は、一般式(12)の化合物もしくはその酸付加塩と一般式(24)(式中、Yは前記と同様)で表される化合物を、必要なら塩基の存在下、好ましくは不活性気体雰囲気下で反応させた後、一般式(25)(式中、R3 は前記と同様)で表される化合物と反応させることにより製造される。一般式(25)の化合物としては、水,メタノール,エタノール等が好ましい。
一般式(12)の化合物と一般式(24)の化合物の反応の好ましい溶媒は、N−メチルピロリドン,ジメチルホルムアミドであり、反応温度は氷冷下〜100℃程度が好ましい。一般式(26)の化合物がエステルで得られた場合、加水分解して相当するカルボン酸を製造することができる。
また、一般式(26)の化合物は、一般式(12)の化合物もしくはその酸付加塩と一般式(27)(式中、Yは前記と同様)で表される化合物を反応して得られる一般式(28)(式中、X,R1 ,R2 およびYは前記と同様)の化合物を酸加水分解に付すことにより製造することができる。
一般式(12)の化合物と一般式(27)の化合物の反応は、必要ならば酸の存在下、好ましくは不活性気体雰囲気下で行われる。本反応は溶媒の存在下、もしくは非存在下に行うことができ、溶媒の存在下に反応を行う場合は、反応に悪影響を及ぼさない常用の溶媒が使用可能であるが、好適なものとして、メタノール,エタノール,プロパノール等が挙げられる。また、酸としては、塩酸,臭化水素酸,硫酸,硝酸,燐酸等の無機酸および蟻酸,酢酸等の有機酸が挙げられるが、中でも硫酸,塩酸等の強酸が好ましく、反応温度は60〜200℃程度が好ましい。一般式(27)の化合物は、公知の物質であるか、または公知の方法(例:特開昭64−19067号)により容易に製造可能である。
一般式(28)の化合物の酸加水分解に好適な酸としては、硫酸,塩酸,臭化水素酸,リン酸,トリフルオロ酢酸等が挙げられる。本反応は、水,アセトン,ジオキサン等の反応に悪影響を及ぼさない常用の溶媒またはそれらの混合物中で行われ、反応温度は60℃〜還流温度が好ましい。
【0043】
上記のような製造法で得られる本発明の化合物中,一般式(8)
【化39】
Figure 0003798836
Figure 0003798836
(式中,X,Z,R1 ,R2 ,R3 およびR4 は前記と同様)
で表される化合物は,アミドの回転障害に基づく(E)体と(Z)体の幾何異性体の混合物を含むが,これらは必要に応じて自体公知の手段によって純粋な異性体に分離することができるので,本発明はこれらの幾何異性体も包含している。
【0044】
本発明の化合物は,例えば,抽出,分画,クロマトグラフィー,分別,結晶化,再結晶等の常法により単離,精製することができる。このようにして製造された本発明の化合物は,所望に応じて常法により医薬として許容される塩類に変化させることができる。
【0045】
本発明は,上記一般式(1)で表されるベンゾチアゾール誘導体またはその医薬的に許容される塩を有効成分として含有するアルドースリダクターゼ阻害剤およびこれらを有効成分として含有する糖尿病合併症予防・治療剤にも関する。
【0046】
アルドースリダクターゼは,アルド・ケト還元酵素の一員で,グルコースをソルビトールに変換する酵素であり,生体内の各組織に広く分布している。本酵素は,ソルビトールをフルクトースに変換するソルビトール脱水素酵素とともにグルコースからソルビトールを経てフルクトースに到る「ポリオール代謝経路」において働く酵素であるが,糖尿病状態においては,慢性的な高血糖症により,細胞内へのグルコース取り込みが上昇し,ポリオール代謝経路を介したグルコース代謝が亢進され,ソルビトールなどのポリオールが蓄積され種々の合併症を引き起こすと考えられている。
本発明の化合物は,上記アルドースリダクターゼの活性を阻害するものであり,糖尿病合併症の成因に係わりのあるとされているソルビトールなどのポリオールの蓄積を抑制する作用を有するので,種々の糖尿病合併症の予防・治療に有用である。ここで,糖尿病合併症としては,具体的に,白内障,角膜症,網膜症,末梢その他の神経障害,腎症等が挙げられ,本発明の化合物は上記作用等によりこれらの疾病に対してその予防剤としても治療剤としても使用し得るものである。
【0047】
本発明におけるアルドースリダクターゼ阻害剤および糖尿病合併症予防・治療剤は,本発明の化合物単独で用いてもよいが,好ましくは薬剤学的に許容される添加物を加えるのが良い。本発明薬剤の投与経路としては,経口,注射および眼,口腔,直腸などへの粘膜投与による方法が採用され,各投与経路に応じた具体的な製剤は以下の通りである。
経口投与による場合,上記添加物としては,経口剤を構成できる製剤成分であって本発明の目的を達成し得るものならばどのようなものでも良いが,通常は賦形剤,結合剤,崩壊剤,滑沢剤,コーティング剤など公知の製剤成分が選択される。従って,本発明薬剤における具体的な経口剤としては,錠剤,顆粒剤,細粒剤,散剤,シロップ剤,カプセル剤などの剤形が挙げられる。
【0048】
注射による場合,上記添加物としては,水性注射剤あるいは非水性注射剤を構成できる製剤成分が使用され,通常は溶解剤ないし溶解補助剤,懸濁化剤,pH調整剤,安定剤などの公知の製剤成分が使用されるが,さらに投与時に溶解あるいは懸濁して使用するための粉末注射剤を構成する公知の製剤成分であっても良い。
粘膜投与による場合,上記添加物としては,水性あるいは非水性の液剤,ゲル剤および軟膏剤を構成できる製剤成分が使用され,通常は溶解剤,溶解補助剤,懸濁化剤,乳化剤,緩衝剤,安定剤,保存剤,ワセリン,精製ラノリン,流動パラフィン,プラチスベース(商品名:米国スクイブ・アンド・サンズ社)などの公知の製剤成分が使用される。
【0049】
上記製剤成分を使用して所望の経口剤,注射剤ないし粘膜投与剤を得るためには,第十二改正日本薬局方(日局XII )記載の製造法ないしこれに適当なモデフィケーションを加えた製造法によって製造することができる。
本発明薬剤の投与対象は哺乳動物,ヒトであるが,前述のようにアルドースリダクターゼの活性を阻害し,組織内のソルビトールの蓄積,増加を抑制する目的で使用できるので,本発明薬剤は,殊に,インシュリンおよび合成血糖降下剤のような血糖調節剤のみでは発症を防ぎきれず治療が困難な種々の糖尿病合併症の予防・治療のため有効である。
【0050】
本発明薬剤に係わる化合物は低毒性であり,その投与量は,本発明化合物の量に換算した場合,経口剤として使用する場合は,通常1〜1,500mg(/日)程度であり,好ましくは5〜1,000mg(/日)程度であり,また,注射剤として使用する場合は通常1〜500mg(/日)程度であり,好ましくは3〜300mg(/日)程度である。
さらに,粘膜投与剤として使用する場合は,通常1〜500mg(/日)程度であり,好ましくは3〜300mg(/日)程度である。
上記投与量は,具体的には糖尿病の罹病期間,患者の年齢,性別,体重などを考慮してその最適量が決められる。
本発明薬剤を治療剤として使用する場合の治療対象は,白内障,角膜症,網膜症,末梢その他の神経障害,腎症などの糖尿病合併症の発症患者であるが,これらの合併症が未発症の患者に対して合併症の予防の目的で投与することもできる。なお,本発明薬剤は単独で用いても良いが,もちろんインシュリンおよび糖尿病用剤(例:クロルプロパミド,アセトヘキサミド,トルブタミド)などと併用することが可能である。
【0051】
【試験例】
次に,一般式(1)で表される本発明の化合物の有効性を示す薬理試験例の方法・成績について説明するが,ここに例示していない本発明の化合物についても同様の効果が認められた。
【0052】
1)アルドースリダクターゼ阻害作用
〈酵素の調製〉アルドースリダクターゼ酵素標品の調製は,ブタ水晶体よりハイマン(S.Hayman)らの方法〔ジャーナル オブ バイオロジカル ケミストリー(Journal of Biological Chemistry ),240巻,877〜882頁,1965年〕により行った。すなわち,冷凍保存(−80℃)したブタの水晶体を蒸留水にてホモジナイズし,10,000Gで15分間遠心分離した。その上清を40%硫酸アンモニウム溶液とし,さらに10,000Gで10分間遠心分離して得た上清を0.05M塩化ナトリウム溶液中で一晩透析して得た透析内液を酵素標品として用いた。
【0053】
〈活性測定〉アルドースリダクターゼの活性測定は,上記ハイマン等の方法により行った。すなわち,最終濃度0.4M硫酸リチウム,0.1mM NADPH(還元型nicotinamide adenine dinucleotide phosphate )および基質として3mM dl −グリセルアルデヒドを含むように調製した40mMリン酸緩衝液(pH6.2)200μlに上記の酵素溶液25μlおよび1%DMSOに溶解させた種々の濃度の被験化合物溶液25μlをそれぞれ加えた。その後,37℃で2分間反応させ,340nmの吸光度変化を自動分析装置(日立7070)を用いて測定した。また,被験化合物溶液の代わりに1%DMSOを加えた場合の吸光度変化量を100%とした。被験化合物の阻害作用を表1に示した。表中のIC50値(M)はアルドースリダクターゼ活性を50%抑制する本発明の化合物の濃度を表す。
【0054】
【表1】
Figure 0003798836
【0055】
2)実験的糖尿病ラットにおける組織内ソルビトール蓄積抑制作用
(予防的効果)
Sprague-Dawleyラット(雄,6週齢,1群5〜6匹)を18時間絶食し,ストレプトゾトシン(SIGMA社)60mg/kgを尾静脈に注射して糖尿病ラットを作製した。被験化合物はストレプトゾトシンを注射してから4,8及び24時間後に10mg/kgもしくは30mg/kgをそれぞれ0.5%カルボキシメチルセルロース懸濁液として経口投与した。この間ラットは飼料と水を自由に与えて飼育し,最終投与3時間後に組織(坐骨神経,レンズ)中のソルビトール含量をベルグメイヤー(H.U.Bergmeyer )らの方法〔メソッズ オブ エンザイマティック アナリシス(Methods of Enzymatic Analysis ),3巻,1323〜1330頁,1974年〕によりSDH(ソルビトール脱水素酵素)とNAD(β-nicotinamide adenine dinucleotide)を用いる酵素法にて測定した。結果は,被験化合物の代わりに溶媒である0.5%カルボキシメチルセルロース溶液を投与したコントロール群の値を100%としたときの百分率(%)として示した。本発明化合物についての結果を表2に示す。
【0056】
【表2】
Figure 0003798836
【0057】
3)安全性試験
本発明の化合物の安全性を下記試験により確認した。
正常ICR系マウス(雄,7週齢,1群5匹)を18時間絶食した後,実施例1-ii),5-ii),19-ii),21,22-ii)および23-ii)の化合物1000mg/kgをそれぞれ0.5%カルボキシメチルセルロース懸濁液として経口投与した。対照群には0.5%カルボキシメチルセルロース溶液のみを経口投与し,その後7日間にわたり観察した。この間マウスは飼料と水を自由に与えて飼育した。その結果,前記実施例の化合物を投与されたマウスにはいずれも死亡例はなく,体重も対照群と同様に推移した。
【0058】
4)実験的糖尿病ラットにおける組織内ソルビトール蓄積抑制作用
(治療的効果)
Sprague−Dawleyラット(雄,6週齢,1群5〜6匹)を18時間絶食し、ストレプトゾトシン(SIGMA社)60mg/kgを尾静脈内に投与して糖尿病ラットを作製した。被験化合物は、ストレプトゾトシンの投与7日後から1日1回5日間 1〜10mg/kgの用量で0.5%カルボキシメチルセルロース懸濁液として経口投与した。この間ラットは飼料と水を自由に与えて飼育した。最終投与3時間後に組織(坐骨神経,レンズ)中のソルビトール含量をベルグメイヤー(H.U.Bergmeyer)らの方法[メソッズ オブ
エンザイマティック アナリシス(Methods of EnzymaticAnalysis),3巻,1323−1330頁,1974年]により、SDH(ソルビトール脱水素酵素)とNAD(β−nicotinamide adenine dinucleotide)を用いる酵素法にて測定した。結果は、被験化合物の代わりに溶媒である0.5%カルボキシメチルセルロース溶液を投与したコントロール群の値を100%としたときの百分率(%)として示した。本発明化合物についての結果を表3に示す。
【0059】
【表3】
Figure 0003798836
【0060】
【実施例】
実施例1
i)モノメチル1,3−フェニレンジアセテート(531mg ,2.6mmol )をベンゼン(5ml )に溶解し,塩化チオニル(607mg ,5.2mmol )をゆっくりと加えた。2時間加熱還流した後,過剰な塩化チオニルを減圧下留去してモノメチル1,3−フェニレンジアセテート酸塩化物を得た。窒素気流下2−アミノ−3,4,6−トリフルオロチオフェノール(507mg ,2.8mmol )をN−メチルピロリドン(NMP)(5ml )に溶解し,これに得られたモノメチル1,3−フェニレンジアセテート酸塩化物をゆっくりと加え,100℃で2時間攪拌した。放冷後,反応液を水で希釈し酢酸エチルで抽出した。有機層を乾燥後溶媒留去し得られた残渣をシリカゲルカラムで精製し,メチル 3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニルアセテート(267mg ,27%)を油状物として得た。
【0061】
NMR(CDCl3 )δ:3.64(2H,s),3.70(3H,s),4.45(2H,s),6.9-7.1(1H,m),7.2−7.4(4H,m)
MS:351 (M+ ),291,277
【0062】
ii)メチル 3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニルアセテート(231mg ,0.66mmol)を水(5ml )−ジオキサン(5ml )の混合液に溶解し2規定水酸化ナトリウム(2ml ,4mmol)を滴下した後,2時間攪拌した。反応液を水で希釈しエーテルで洗浄後,10%塩酸で酸性とし酢酸エチルで抽出した。有機層を乾燥後溶媒留去し得られた残渣をイソプロピルエーテルから再結晶し,3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸(134mg ,90%)を無色粉末として得た。
【0063】
融点132 〜134 ℃
NMR(CDCl3 )δ:3.67(2H,s),4.45(2H,s),6.9-7.1(1H,m),7.2-7.4(4H,m)
MS:337 (M+ ),293,277
【0064】
実施例2
i)3−ヨード安息香酸エチル(2g,7.2mmol ),酢酸パラジウム(16mg,0.072mmol ),トリエチルアミン(729mg ,7.2mmol )及びアクリロニトリル(480mg ,9.0mmol )をアセトニトリル(10ml)に溶解し,窒素気流下3時間還流攪拌した。さらに酢酸パラジウム(16mg,0.072mmol )を反応液に加えた後,9時間還流攪拌した。反応液を水で希釈した後,酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後,乾燥し溶媒留去して得られた残渣をシリカゲルカラムで精製し3−(2−シアノビニル)安息香酸エチル(808mg ,55%)をE体とZ体の混合物(E:Z=3:1)の油状物として得た。
【0065】
NMR(E:Z=3:1)(CDCl3 )δ:1.42(3H,t,J=7.3Hz),4.41(2H,q,J=7.3Hz),5.98(5.54)(1H,d,Jtrans=16.8Hz,Jcis=12.6Hz),7.45(7.24)(1H,d,Jtrans=16.8Hz,Jcis=12.6Hz),7.50(7.55)(1H,dd,J=8.0Hz and 7.7Hz),7.63(1H,d,J=7.7Hz),8.11(8.16)(1H,d,J=8.0Hz),8.14(8.31)(1H,s)
【0066】
ii)3−(2−シアノビニル)安息香酸エチル(800mg ,4.0mmol )をメタノール(30ml)に溶解し,10%パラジウム炭素を静かに加えた。この反応液を水素雰囲気下,3気圧で10時間攪拌した。反応液中の固形物を濾別後,濾液を溶媒留去し,3−(2−シアノエチル)安息香酸エチル(682mg ,84%)を無色油状物として得た。
【0067】
NMR(CDCl3 )δ:1.40(3H,t,J=7.3Hz),2.67(1H,t,J=7.3Hz),3.02(1H,t,J=7.3Hz),4.39(2H,q,J=7.3Hz),7.3-7.5(2H,m),7.91(1H,s),7.96(1H,d,J=6.3Hz)
【0068】
iii)塩化亜鉛(26mg,0.19mmol)をクロロベンゼン(3ml )に溶解した。これに,2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(269mg ,1.2mmol )及びエチル 3−(2−シアノエチル)ベンゾエート(254mg ,1.2mmol )をそれぞれクロロベンゼン(1ml )に溶解したものを加え,40時間加熱還流を行った。反応液の溶媒を留去し,塩化メチレンを加えた。水洗,乾燥後溶媒留去し得られた残渣をシリカゲルカラムで精製し,エチル 3−[2−(4,5,7−トリフルオロベンゾチアゾール−2−イル)エチル]ベンゾエート(133mg ,30%)を油状物として得た。
【0069】
NMR(CDCl3 )δ:1.40(t,3H,J=7.2Hz),3.28(t,2H,J=7.8Hz),3.48(t,2H,J=7.8Hz),4.38(q,2H,J=7.2Hz),6.9-7.1(1H,m),7.37(br.t,1H,J=7.6Hz),7.43(br.d,1H,J=7.6Hz),7.92(br.d,1H,J=7.6Hz),7.95(1H,s)
【0070】
iv)エチル 3−[2−(4,5,7−トリフルオロベンゾチアゾール−2−イル)エチル]ベンゾエート(133mg ,0.36mmol)を水(5ml )−ジオキサン(5ml )の混合溶媒に溶解し,2規定水酸化ナトリウム(2ml )を滴下し,室温で7時間攪拌した。反応液を水で希釈した後エーテルで洗浄し,水層を10%塩酸で酸性とし,酢酸エチルで抽出した。乾燥後,溶媒留去し得られた粗結晶をエーテルから再結晶し,3−[2−(4,5,7−トリフルオロベンゾチアゾール−2−イル)エチル]安息香酸(82mg,68% )を無色結晶として得た。
【0071】
融点190℃(分解)
NMR(CDCl3 )δ:3.31(2H,t,J=7.6Hz),3.51(2H,t,J=7.6Hz),6.9-7.1(1H,m),7.42(1H,t,J=7,6Hz),7.50(1H,d,J=7.6Hz),8.00(1H,d,J=7.6Hz),8.03(1H,s)
MS:337 (M+ ),319,291,216,135
【0072】
実施例3
i)
Method A
NMP(6ml )に2−アミノ−3,4,6−トリフルオロチオフェノール(1.61g ,9mmol )とエチルサクシニルクロリド(1.48g ,9mmol )を加え,窒素気流下に100℃で1時間加熱,攪拌した。反応液を氷水中に注ぎ込み,酢酸エチルで抽出した。有機層を水洗,乾燥後溶媒留去して得られた残渣をシリカゲルカラムで精製してエチル 3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオナート(1.12g ,43% )を油状物として得た。
メタノール(8ml ),水(6ml ),2規定水酸化ナトリウム(2ml ,4mmol )の混合液にエチル 3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオナート(1.1g ,3.8mmol )を加え,室温で15分間攪拌した。反応液を水で希釈した後酢酸エチルで抽出した。有機層を水洗,乾燥後溶媒留去し得られた残渣をヘキサン−イソプロピルエーテルから再結晶して3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオン酸(840mg ,85% )を無色針状晶として得た。
【0073】
融点123〜125℃
NMR(CDCl3 )δ:3.06(2H,t,J=7.1Hz),3.46(2H,t,J=7.1Hz),6.98-7.09(1H,m)
【0074】
Method B
窒素気流下に無水コハク酸(1.0g,10mmol)のNMP(5ml )溶液を,2−アミノ−3,4,6−トリフルオロチオフェノール(1.79g ,10mmol)のNMP(5ml )溶液に室温で滴下した後,100℃に1時間加熱した。反応液を炭酸ナトリウム水溶液で希釈して塩基性にした後,エーテルで洗浄した。水層を7%塩酸で酸性にした後酢酸エチルで抽出した。有機層を水洗,乾燥後溶媒留去して得られた粗結晶をヘキサン−イソプロピルエーテルで洗い3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオン酸(2.16g ,83% )を得た。
【0075】
ii)サルコシンエチルエステル塩酸塩(307mg ,2mmol )及び1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(WSC ・HCl )(422mg ,2.2mmol ),3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオン酸(522mg ,2mmol ),トリエチルアミン(220mg ,2.2mmol )を塩化メチレン(10ml)に加え室温で15時間攪拌した。反応液を水洗,乾燥後溶媒留去して得られた残渣をシリカゲルカラムで精製してN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−メチルグリシン エチルエステル(610mg ,85% )を油状物として得た。
【0076】
NMR(CDCl3 )δ:1.26(1.29)(3H,t,J=7.2Hz),3.06(2.92)(2H,t,J=6.9Hz),3.13(3.00)(3H,s),3.45(2H,t,J=6.9Hz),4.13(4.10)(2H,q,J=7.2Hz),6.95-7.06(1H,m)
本品は異性体EとZの混合物と考えられその存在比はNMR法により4:1と推定される。
MS:360 (M+ ),243,215
【0077】
iii)N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−メチルグリシン エチルエステル(290mg ,0.8mmol )のメタノール(2ml )溶液に2規定水酸化ナトリウム(0.5ml ,1mmol )を加え室温で30分間攪拌した。反応液を水で希釈し,エーテル洗浄した後,水層を7%塩酸で酸性にして酢酸エチル抽出した。有機層を水洗,乾燥後溶媒留去して得られた残渣をエタノール−イソプロピルエーテルから再結晶してN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−メチルグリシン(185mg ,70% )を得た。
【0078】
融点138〜140℃
NMR(CDCl3 )δ:3.08(2.98)(2H,t,J=6.9Hz),3.16(3.01)(3H,s),3.50(2H,t,J=6.9Hz),4.18(4.15)(2H,s),6.95-7.06(1H,m) 本品は異性体EとZの混合物と考えられその存在比はNMR法により4:1と推定される。
MS:348 (M+ ),216
【0079】
実施例4
i)トルエン(5ml )- N,Nジメチルホルムアミド(DMF)(1ml )混合溶液に実施例3−i)で得られた3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオン酸(522mg ,2mmol )を溶解し,塩化チオニル(357mg ,3mmol )を加えて室温で1時間攪拌した。この反応液に氷冷下,N−フェニルグリシンメチルエステル塩酸塩(403mg ,2mmol )とトリエチルアミン(400mg ,4mmol )を加え,2時間攪拌した。反応液を水で希釈し,酢酸エチル抽出した。有機層を水洗,乾燥後溶媒留去して得られた残渣をシリカゲルカラムで精製してN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−フェニルグリシン メチルエステル(240mg ,29% )を油状物として得た。
【0080】
NMR(CDCl3 )δ:2.78(2H,t,J=6.9Hz),3.44(2H,t,J=6.9Hz),3.73(3H,s),4.40(2H,s),6.93-7.03(1H,m),7.3-7.5(5H,m) MS:408 (M+ ),244,215
【0081】
ii)水(3ml )−ジオキサン(6ml )の混合溶媒にN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−フェニルグリシン メチルエステル(420mg ,1mmol )を溶解し,氷冷下攪拌しながら2規定水酸化ナトリウム(1.2mmol )を滴下した。室温で1時間攪拌を続けた後,反応液を水で希釈し,エーテル洗浄した。水層を7%塩酸で酸性にして酢酸エチル抽出した。有機層を水洗,乾燥後溶媒留去して得られた残渣を酢酸エチル−イソプロピルエーテルから結晶化させてN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−フェニルグリシン(210mg ,52% )を無色粉末として得た。
【0082】
融点121〜124℃
NMR(CDCl3 )δ:2.77(2H,t,J=6.8Hz),3.43(2H,t,J=6.8Hz),4.41(2H,s),6.93-7.03(1H,m),7.3-7.5(5H,m)
MS:394 (M+ ),376,245,244
【0083】
実施例5
i)塩化メチレン(10ml)に実施例3−i)で得られた3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオン酸(522mg ,2mmol )及びWSC・HCl(422mg ,2.2mmol ),N−ベンジルグリシン エチルエステル(386mg ,2mmol )を加え,室温で15時間攪拌した。この反応液を7%塩酸,水の順に洗い有機層を乾燥後溶媒留去した。残渣をシリカゲルカラムで精製してN−ベンジル−N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]グリシン エチルエステル(680mg ,78% )を油状物として得た。
【0084】
NMR(CDCl3 )δ:1.23(3H,t,J=7.1Hz),3.16(2.98)(2H,t,J=6.6Hz),3.53(3.56)(2H,t,J=6.6Hz),4.04(4.03)(2H,s),4.16(2H,q,J=7.1Hz),4.69(4.67)(2H,s),6.95-7.05(1H,m),7.2-7.4(5H,m)
本品は異性体EとZの混合物と考えられその存在比はNMR法により2:1と推定される。
MS:436 (M+ ),244,216,192
【0085】
ii)N−ベンジル−N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]グリシン エチルエステル(650mg ,1.5mmol )を用い,実施例4−ii)の合成に準じて操作しイソプロピルエーテルから結晶化させN−ベンジル−N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]グリシン(535mg ,87% )を無色粉末として得た。
【0086】
融点144〜146℃
NMR(CDCl3 )δ:3.17(2.98)(2H,t,J=6.9Hz),3.53(3.56)(2H,t,J=6.9Hz),4.08(4.06)(2H,s),4.70(4.67)(2H,s),6.95-7.06(1H,m),7.15-7.45(5H,m) 本品は異性体EとZの混合物と考えられその存在比はNMR法により3:1と推定される。
MS:408 (M+ ),244,216,164
【0087】
実施例6
i)N−フェネチルグリシン エチルエステル(414mg ,2mmol )を用い,実施例5−i)の合成に準じて操作し酢酸エチル−ヘキサンから結晶化させてN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−フェネチルグリシン エチルエステル(680mg ,76% )を無色粉末として得た。
【0088】
融点78〜81℃
NMR(CDCl3 )δ:1.25(1.27)(3H,t,J=7.2Hz),2.78-2.98(4H,m),3.39(3.50)(2H,t,J=6.9Hz),3.65(3.62)(2H,t,J=6.9Hz),4.02(3.93)(2H,s),4.17(4.20)(2H,q,J=7.2Hz),6.95-7.05(1H,m),7.15-7.35(5H,m)本品は異性体EとZの混合物と考えられその存在比はNMR法により7:3と推定される。
MS:450 (M+ ),244,216
【0089】
ii)N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−フェネチルグリシン エチルエステル(225mg ,0.5mmol )を用い,実施例4−ii)の合成に準じて操作しN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−フェネチルグリシン(185mg ,88% )を無色粉末として得た。
【0090】
融点139〜140℃
NMR(CDCl3 )δ:2.76-2.95(4H,m),3.38(3.51)(2H,t,J=6.9Hz),3.67(3.64)(2H,t,J=6.9Hz),4.06(3.96)(2H,s),6.95-7.05(1H,m),7.1-7.35(5H,m) 本品は異性体EとZの混合物と考えられその存在比はNMR法により9:2と推定される。
MS :331,318,244
【0091】
実施例7
i)ベンゼン(10ml)に実施例3−ii)で得られたN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−メチルグリシン エチルエステル(610mg ,1.7mmol )と5硫化燐(378mg ,1.7mmol )を加え60℃で3時間加熱した。有機層をデカントした後,残渣をエーテルで抽出した。全有機層を集め水洗,乾燥後溶媒留去して得られた残渣をヘキサン−イソプロピルエーテルから結晶化させてN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピオニル]−N−メチルグリシン
エチルエステル(225mg ,35% )を無色結晶として得た。
【0092】
融点83〜85℃
NMR(CDCl3 )δ:1.28(1.32)(3H,t,J=6.9Hz),3.33(3.21)(2H,t,J=6.9Hz),3.45(3.51)(3H,s),3.75(3.78)(2H,t,J=6.9Hz),4.24(4.27)(2H,q,J=6.9Hz),4.76(4.52)(2H,s),6.96-7.06(1H,m)
本品は異性体EとZの混合物と考えられその存在比はNMR法により4:1と推定される。
MS:376(M+ ),259,227,216
【0093】
ii)水(3ml )−ジオキサン(6ml )の混合溶媒にN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]−N−メチルグリシン エチルエステル(190mg ,0.5mmol )を溶解し,氷冷下攪拌しながら2規定水酸化ナトリウム(0.6mmol )を滴下した。室温で1時間攪拌を続けた後,反応液を水で希釈し,エーテル洗浄した。水層を7%塩酸で酸性にして酢酸エチル抽出した。有機層を水洗,乾燥後溶媒留去して得られた残渣をイソプロピルエーテルから結晶化させてN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]−N−メチルグリシン(155mg ,88% )を淡褐色粉末として得た。
【0094】
融点150〜152℃
NMR(CDCl3 )δ:3.32(3.21)(2H,t,J=6.8Hz),3.45(3.50)(3H,s),3.74(3.71)(2H,t,J=6.8Hz),4.75(4.52)(2H,s),7.07-7.17(1H,m) 本品は異性体EとZの混合物と考えられその存在比はNMR法により4:1と推定される。
MS:348(M+ ),216
【0095】
実施例8
i)N−ベンジル−N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]グリシン エチルエステル(実施例5−i) )(700mg ,1.6mmol )を用い,実施例7−i)の合成法に準じて操作し酢酸エチル−ヘキサンから結晶化させてN−ベンジル−N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]グリシン エチルエステル(330mg ,46% )を無色粉末として得た。
【0096】
融点86〜88℃
NMR(CDCl3 )δ:1.23(1.26)(3H,t,J=7.2Hz),3.43(3.27)(2H,t,J=6.7Hz),3.79(3.85)(2H,t,J=6.7Hz),4.19(4.20)(2H,q,J=7.2Hz),4.62(4.45)(2H,s),5.03(5.39)(2H,s),5.94-7.04(1H,m),7.1-7.5(5H,m) 本品は異性体EとZの混合物と考えられその存在比はNMR法により3:1と推定される。
MS:452(M+ ),259,227,216
【0097】
ii)N−ベンジル−N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]グリシン エチルエステル(220mg ,0.5mmol )を用い,実施例7−ii)の合成法に準じて操作し酢酸エチル−ヘキサンから結晶化させてN−ベンジル−N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピル]グリシン(170mg ,80% )を無色粉末として得た。
【0098】
融点138〜140℃
NMR(CDCl3 )δ:3.44(3.29)(2H,t,J=6.8Hz),3.80(3.84)(2H,t,J=6.8Hz),4.68(4.51)(2H,s),5.03(5.39)(2H,s),6.96-7.06(1H,m),7.1-7.5(5H,m) 本品は異性体EとZの混合物と考えられその存在比はNMR法により4:1と推定される。
MS:424(M+ ),408,391,315
【0099】
実施例9
i)塩化メチレン(20ml)にN−フェニルグリシン メチルエステル(2.02g ,10mmol)とピリジン(1.58g ,20mmol)を加え攪拌した。この混合物にクロルアセチルクロライド(1.13g ,10mmol)の塩化メチレン(3ml )溶液を室温で滴下し,15時間攪拌を続けた後,反応液を水で洗浄,乾燥後溶媒留去した。残渣をイソプロピルエーテルから結晶化させてN−クロロアセチル−N−フェニルグリシンメチルエステル(1.67g ,70% )を無色粉末として得た。
TLC(CH2Cl2:MeOH =19:1) Rf=0.75
【0100】
ii)DMSO(6ml )に4,5,7−トリフルオロ−2−メルカプトベンゾチアゾ−ル(442mg ,2 mmol)およびN−クロロアセチル−N−フェニルグリシン メチルエステル(479mg ,2 mmol),炭酸カルシウム(276mg ,2 mmol),ヨウ化カリウム(20mg)を加え室温で1時間攪拌した。反応液を水で希釈し,7%塩酸で酸性とした後酢酸エチルで抽出した。有機層を水洗,乾燥した後溶媒留去して得られた残渣をイソプロピルエーテルから結晶化させてN−[2−(4,5,7−トリフルオロベンゾチアゾール−2−イルチオ)アセチル]−N−フェニルグリシン メチルエステル(700mg ,82 %)を無色粉末として得た。
【0101】
融点145〜147℃
NMR(CDCl3 )δ:3.74(3H,s),4.08(2H,s),4.44(2H,s),6.88-6.99(1H,m),7.39-7.60(5H,m)
【0102】
実施例10
i)ジメチルスルホキシド(DMSO)(15ml)にα−クロロアセトアニリド(850mg ,5mmol )及び4,5,7−トリフルオロ−2−メルカプトベンゾチアゾール(1.1g,5mmol ),炭酸カリウム(690mg ,5mmol ),ヨウ化カリウム(50mg)を加え,室温で4時間攪拌した。反応液を水で希釈し,7%塩酸で酸性とした後酢酸エチルで抽出した。有機層を水洗,乾燥後溶媒留去して得た粗生成物をシリカゲルカラムで精製して2−(4,5,7−トリフルオロベンゾチアゾール−2−イルチオ)−N−フェニルアセトアミド(0.97g ,52% )を得た。
【0103】
NMR(CDCl3 )δ:4.09(2H,s),6.99-7.10(1H,m),7.10(1H,t),7.32(2H,dd),7.57(2H,d),9.55(1H,bs)
【0104】
ii)DMSO(5ml )に2−(4,5,7−トリフルオロベンゾチアゾール−2−イルチオ)−N−フェニルアセトアミド(354mg ,1mmol )及びブロモ酢酸(278mg ,2mmol ),炭酸カリウム(414mg ,3mmol )を加え,窒素気流下室温で5時間攪拌した。反応液を水で希釈し,酢酸エチルで洗浄した。水層を7%塩酸で酸性にした後酢酸エチルで抽出した。有機層を水洗,乾燥後溶媒留去して得た粗結晶を酢酸エチル−ヘキサンから再結晶してN−[2−(4,5,7−トリフルオロベンゾチアゾール−2−イルチオ)アセチル]−N−フェニルグリシン(80mg,19% )を微黄色結晶として得た。
【0105】
融点174〜176℃
NMR(CDCl3 )δ:3.40(2H,s),4.10(2H,s),6.71-6.82(1H,m),7.40-7.60(5H,m)
MS:412(M+ ),394,368,367
【0106】
実施例11
2−アミノ−3,4,6−トリフルオロチオフェノール(200mg ,1.1mmol )を窒素気流下N−メチルピロリドン(NMP)(1ml )に溶解し,この溶液に無水グルタル酸(127mg ,1.1mmol )を室温下ゆっくりと加え,100℃で6時間攪拌した。反応液を自然放冷した後,水で希釈し酢酸エチルで抽出した。有機層を炭酸水素ナトリウムで洗い,アルカリ層を10%塩酸で酸性とし,再び酢酸エチルで抽出した。全有機層を乾燥後溶媒留去して得られた残渣をアセトニトリルから再結晶し,4−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ブタン酸(133mg ,44% )を得た。
【0107】
融点113〜114℃
NMR(CDCl3 )δ:2.26(2H,tt,J=7.6Hz and 7.3Hz),2.56(2H,t,J=7.3Hz),3.25(2H,t,J=7.6Hz),6.9-7.1(1H,m)
MS:275(M+ ),257,216
【0108】
実施例12
アジピン酸(10.0g ,68mmol)を無水酢酸(50ml)中で,3時間加熱還流した。過剰量の無水酢酸を減圧下除去し,無水アジピン酸(7.4g)を得た。2−アミノ−3,4,6−トリフルオロチオフェノール(200mg ,1.1mmol )を窒素気流下NMP(1ml )に溶解し,この溶液に無水アジピン酸(143mg ,1.1mmol )をゆっくりと加え100℃で6時間加熱攪拌した。反応液を自然放冷した後,水で希釈し酢酸エチルで抽出した。有機層を炭酸水素ナトリウム水溶液で抽出後,アルカリ層を10%塩酸で酸性とし,再び酢酸エチルで抽出した。全有機層を乾燥後溶媒留去して得られた残渣をアセトニトリルから再結晶し,5−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ペンタン酸(81mg,26% )を得た。
【0109】
融点122〜124℃
NMR(CDCl3 )δ:1.7-1.9(1H,m),1.9-2.2(1H,m),2.45(2H,t,J=7.2Hz),3.18(2H,t,J=7.4Hz),6.9-7.1(1H,m)
MS:289(M+ ),216
【0110】
実施例13
i)2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(647mg ,3mmol )及び6−シアノヘキサン酸 エチルエステル(507mg ,3mmol ),エタノール(0.5ml )をキシレン(6ml )に加え,窒素気流下60時間加熱還流した。反応液を水洗,乾燥後溶媒留去して得られた残渣をシリカゲルカラムで精製して6−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ヘキサン酸
エチルエステル(395mg ,40% )を油状物として得た。
【0111】
NMR(CDCl3 )δ:1.25(3H,t,J=7.1Hz),1.46-1.98(6H,m),2.33(2H,t,J=7.3Hz),3.15(2H,t,J=7.4Hz),4.12(2H,q,J=7.1Hz),6.95-7.06(1H,m)
MS:331(M+ ),203
【0112】
ii)メタノール(3ml )に6−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ヘキサン酸 エチルエステル(390mg ,1.18mmol)及び2規定水酸化ナトリウム(0.7ml ,1.4mmol )を加え,室温で1時間攪拌した。反応液を水で希釈し,エーテル洗浄した後,水層に7%塩酸を加えて酸性とし酢酸エチル抽出した。有機層を水洗,乾燥後溶媒留去して得られた残渣をヘキサン−イソプロピルエーテルから結晶化させて,6−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ヘキサン酸(170mg ,48% )を無色粉末として得た。
【0113】
融点84〜86℃
NMR(CDCl3 )δ:1.45-1.98(6H,m),2.39(2H,t,J=7.3Hz),3.16(2H,t,J=7.8Hz),6.95-7.06(1H,m)
MS:303(M+ ),203,167
【0114】
実施例14
i)スベリン酸モノメチルエステル(500mg ,2.7mmol )をベンゼン(5ml )に溶解し,室温下塩化チオニル(632mg ,5.4mmol )をゆっくりと加え,2時間加熱還流した。過剰量の塩化チオニルを減圧下留去した後,2−アミノ−3,4,6−トリフルオロチオフェノール(500mg ,2.8mmol )のNMP(5ml )溶液に,室温下ゆっくりと加え100℃で窒素気流下23時間加熱攪拌した。反応液を自然放冷した後,水で希釈し酢酸エチルで抽出した。有機層を乾燥後溶媒留去して得られた残渣をシリカゲルカラムで精製し7−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ヘプタン酸 メチルエステル(407mg ,46% )を油状物として得た。
【0115】
NMR(CDCl3 )δ:1.2-1.6(4H,m),1.6-1.8(2H,m),1.8-2.0(2H,m),2.31(2H,br.t,J=5.5Hz),3.14(2H,br.t,J=6.3Hz),3.67(3H,s),6.9-7.1(1H,m)MS:331(M+ ),258,216,202
【0116】
ii)7−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ヘプタン酸 メチルエステル(407mg ,1.2mmol)を水(7ml )−ジオキサン(7ml )の混合溶媒に溶解し,室温下2規定水酸化ナトリウム(4ml )を滴下した後,室温下5時間攪拌した。さらに2規定水酸化ナトリウム(2ml )を滴下し,1時間攪拌した。反応液を水で希釈し,酢酸エチルで抽出し,水層に塩酸を加えて酸性とし酢酸エチルで抽出した。有機層を水洗,乾燥後溶媒留去して得られた残渣をイソプロピルエーテルから結晶化させて,7−(4,5,7−トリフルオロベンゾチアゾール−2−イル)ヘプタン酸(189mg ,50% )を無色粉末として得た。
【0117】
融点116〜118℃
NMR(CDCl3 )δ:1.3-1.5(4H,m),1.5-1.8(2H,m),1.8-2.0(2H,m),2.37(2H,t,J=7.4Hz),3.15(2H,t,J=7.8Hz),6.9-7.1(1H,m)
MS:317(M+ ),258,216,203
【0118】
実施例15
i)水素化ナトリウム(60%in oil)(220mg ,5.5mmol )をDMF(2ml )に懸濁し水浴中で攪拌した。4,5,7−トリフルオロ−2−メルカプトベンゾチアゾール(1.1g,5mmol )のDMF(5ml )溶液を氷冷下に滴下した後,室温で30分間攪拌を続けた。再度反応液を水浴中で冷却し,エチル 5−ブロモペンタノエート(1.05g ,5mmol )のDMF(3ml )溶液を滴下した後,室温で2時間攪拌した。反応液を水で希釈後,7%塩酸で酸性化し,酢酸エチルで抽出した。有機層を飽和食塩水で洗い,乾燥後溶媒を留去した。残渣の油状物をシリカゲルカラムで精製し,5−(4,5,7−トリフルオロベンゾチアゾール−2−イルチオ)ペンタン酸 エチルエステル(1.1g,64% )を油状物として得た。
【0119】
NMR(CDCl3 )δ:1.26(3H,t,J=7Hz),1.75-1.95(4H,m),2.38(2H,t,J=6.9Hz),3.42(2H,t,J=6.9Hz),4.15(2H,q,J=7.1Hz),6.89-6.98(1H,m) MS:349(M+ ),303,247,221
【0120】
ii)ジオキサン(5ml ),メタノール(2.5ml )及び水(2.5ml )の混合液に5−(4,5,7−トリフルオロベンゾチアゾール−2−イルチオ)ペンタン酸エチルエステル(590mg ,2mmol )と水酸化ナトリウム(100mg ,2.5mmol )を加え室温で15時間攪拌した。反応液を水で希釈し,エーテルで洗浄した後,水層を7%塩酸で酸性化し,酢酸エチルで抽出した。有機層を飽和食塩水で洗い,乾燥後溶媒留去した。残渣の油状物をシリカゲルカラムで精製した後ヘキサン−イソプロピルエーテルから結晶化させ,5−(4,5,7−トリフルオロベンゾチアゾール−2−イルチオ)ペンタン酸(170mg ,31% )を無色粉末として得た。
【0121】
融点56〜58℃
NMR(CDCl3 )δ:1.78-1.99(4H,m),2.45(2H,t,J=7.1Hz),3.43(2H,t,J=6.9Hz),6.88-6.99(1H,m)
MS:321(M+ ),248,234,221
【0122】
実施例16
i)1,3−フェニレンジ酢酸 モノエチルエステル(1.48g,6.7mmol)をベンゼン(15ml)に溶解し塩化チオニル(1.6g,13.4mmol)を室温下で滴下して加えた。反応液を2時間加熱還流した後、溶媒を減圧下留去して酸クロリドを得た。酸クロリドをNMP(2.0ml)中に溶解し窒素気流下氷冷しながら撹拌した。2−アミノ−4,6−ジフルオロチオフェノール(1.00g,6.2mmol)をNMP(2.0ml)中に溶解して滴下しながら加えた後一晩撹拌した。再び氷冷した反応液にトリエチルアミン(0.63g,6.2mmol)を加えてさらに100℃で6時間撹拌した。水で希釈後酢酸エチルで抽出、有機層を重曹水、飽和食塩水で洗浄後、乾燥後減圧下溶媒を留去して油状残渣を得た。この油状残渣をシリカゲルカラムで精製しイソプロピルエーテルより結晶化して3−[(5,7−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(0.690g,32%)を得た。
【0123】
融点66−67℃
NMR(CDCl3)δ:1.24(3H,t,J=7.3Hz),3.62(2H,s),4.15(2H,q,J=7.3Hz),4.42(2H,s),7.2-7.4(4H,m),6.89(1H,ddd,J=2.3,9.2 and 9.2Hz),7.51(1H,bdd,J=2.3 and 9.2Hz).
MS:347(M+ ),318,274.
【0124】
ii)3−[(5,7−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(610mg,1.8mmol)を用い実施例4−ii)の合成に準じて操作しイソプロピルエーテルから結晶化させ3−[(5,7−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸(430mg,75%)を白色粉末として得た。
【0125】
融点102−104℃
NMR(CDCl3)δ:3.66(2H,s),4.42(2H,s),6.88(1H,ddd,J=2.3, 9.2 and 9.2Hz),7.2-7.4(4H,m),7.51(1H,bdd,J=2.3 and 8.9Hz).
MS:319(M+ ),275,259.
【0126】
実施例17
i)1,3−フェニレンジ酢酸 モノエチルエステル(2.87g,10.5mmol)と2−アミノ−5,6−ジフルオロチオフェノール(2.0g,11.7mmol)を用い、実施例16−i)の合成に準じて操作し3−[(6,7−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(1.89g,44%)を淡黄色油状物として得た。
【0127】
NMR(CDCl3)δ:1.24(3H,t,J=7.3Hz),3.62(2H,s),4.15(2H,q,J=7.3Hz),4.40(2H,s),7.2-7.4(4H,m),7.6-7.8(1H,m).MS:347(M+ ),318,301,274.
【0128】
ii)3−[(6,7−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(1.2g,3.5mmol)を用い実施例4−ii)の合成に準じて操作しイソプロピルエーテルから結晶化させ3−[(6,7−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸(1.0g,90%)を無色粉末として得た。
【0129】
融点109−111℃
NMR(CDCl3)δ:3.66(2H,s),4.41(2H,s),7.2-7.4(5H,m),7.6-7.8(1H,m).
MS:319(M+ ),275,136.
【0130】
実施例18
i)1,4−フェニレンジ酢酸 モノエチルエステル(510mg,2.1mmol)と2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(2.0g,11.7mmol)を用い、実施例16−i)の合成に準じて操作し4−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(270mg,35%)を無色粉末として得た。
【0131】
融点75−77℃
NMR(CDCl3)δ:1.26(3H,t,J=7.1),3.62(2H,s),4.16(2H,q,J=7.1Hz),4.44(2H,s),6.9-7.1(1H,m),7.29(2H,br.d,J=8.6Hz),7.34(2H,br.d,J=8.6Hz).MS:365(M+ ),292,146,104.
【0132】
ii)4−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(250mg,0.7mmol)を用い実施例4−ii)の合成法に準じて操作し酢酸エチルより結晶化して4−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸(98mg,42%)を無色板状晶として得た。
【0133】
融点173−175℃
NMR(CDCl3)δ:3.67(2H,s),4.45(2H,s),6.9-7.1(1H,m),7.30(2H,br.d,J=8.6Hz),7.35(2H,br.d,J=8.6Hz).
MS:337(M+ ),292,267.
【0134】
実施例19
i)1,3−フェニレンジ酢酸 モノエチルエステル(847mg,3.3mmol)と2−アミノ−3,4−ジクロロチオフェノール塩酸塩(831mg,4.3mmol)を用い、実施例16−i)の合成に準じて操作し3−[(4,5−ジクロロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(706mg,56%)を淡黄色油状物として得た。
【0135】
NMR(CDCl3)δ:1.24(3H,t,J=7.3Hz),4.48(2H,s),3.61(2H,s),4.15(2H,q,J=7.3Hz),7.2-7.4(4H,m),7.41(1H,d,J=8.6Hz),7.58(1H,d,J=8.6Hz).MS:379(M+ ),306,291.
【0136】
ii)3−[(4,5−ジクロロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(647mg,1.7mmol)を用い、実施例4−ii)の合成に準じて操作し、メタノールから結晶化させ3−[(4,5−ジクロロベンゾチアゾール−2−イル)メチル]フェニル酢酸(477mg,80%)を針状結晶として得た。
【0137】
融点150−152℃
NMR(CDCl3)δ:3.66(2H,s),4.48(2H,s),7.2-7.4(4H,m),7.57(1H,d,J=8.6Hz),7.58(1H,d,J=8.6Hz).
MS:351(M+ ),307,291,152.
【0138】
実施例20
i)1,2−フェニレンジ酢酸(2.0g,10.3mmol)をベンゼン(40ml)に溶解し室温下塩化チオニル(6.20g,51.8mmol)をゆっくりと加えた。反応液を2時間加熱還流した後、冷却後、溶媒を減圧下留去した。得られた酸クロリド(2.38g,10.3mmol)をNMP(10ml)に溶解し氷冷下撹拌した。2−アミノ−3,4,6−トリフルオロチオフェノール(0.615g,3.4mmol)をNMP(10ml)に溶解し反応液に添加し、窒素気流下1時間撹拌した後、エタノール(10ml)を添加した。過剰なエタノールを減圧下留去し、さらに100℃で2時間撹拌した。水で希釈後、酢酸エチル抽出した。有機層は、乾燥後減圧下濃縮し残渣を得た。この残渣をシリカゲルカラムで精製し2−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(0.503g,41%)を淡黄色油状物として得た。
【0139】
NMR(CDCl3)δ:1.20(3H,t,J=7.3Hz),3.71(2H,s),4.08(2H,q,J=7.3Hz),4.56(2H,s),6.9-7.1(1H,m),7.3-7.4(4H,m).MS:365(M+ ),319,290.
【0140】
ii)2−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸 エチルエステル(445mg,1.2mmol)を用い実施例4−ii)の合成に準じて操作し、クロロホルム−ヘキサンより結晶化して2−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸(209mg,48%)を無色針状晶として得た。
【0141】
融点124−126℃
NMR(CDCl3)δ:3.75(2H,s),4.52(2H,s),6.9-7.0(1H,m),7.2-7.4(4H,m).
MS:337(M+ ),319,290.
【0142】
実施例21
1,3−フェニレンジ酢酸(1.5g,7.7mmol)をベンゼン(30ml)に溶解し室温下塩化チオニル(3.28g,27.6mmol)をゆっくりと加えた。反応液を2時間加熱還流した後、溶媒を減圧下留去した。得られた酸クロリド(1.05g,4.6mmol)をN−メチルピロリドン(NMP)(1.5ml)に溶解し氷冷下撹拌した。2−アミノ−3,4−ジフルオロチオフェノール(1.11g,6.9mmol)及びトリエチルアミン(0.70g,6.9mmol)を反応液に添加した後、窒素気流下、100℃で2時間撹拌した。水で希釈後、酢酸エチル抽出したのち、有機層を乾燥後減圧下濃縮し残渣を得た。この残渣をシリカゲルカラムで精製した。さらにイソプロピルエーテルより結晶化して3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]フェニル酢酸(0.245g,17%)を無色粉末として得た。
【0143】
融点154−155℃
NMR(CDCl3)δ:3.66(2H,s),4.45(2H,s),7.1-7.4(5H,m),7.4-7.5(1H,m).
MS:319(M+ ),275,156.
【0144】
実施例22
i)1,3−ビスシアノメチル−5−メチルベンゼン(2.89g,17mmol)および2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(3.66g,17mmol)を無水エタノールに加え、オートクレーブ中窒素雰囲気下で170℃で15時間加熱した。反応後溶媒留去し、残渣をシリカゲルカラムで精製後、酢酸エチル−ヘキサンから再結晶して3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−メチルフェニルアセトニトリル(1.86g,33%)を得た。
【0145】
融点110−113℃
NMR(CDCl3)δ:2.36(3H,s),3.71(2H,s),4.42(2H,s),6.95-7.05(1H,m),7.10-7.14(3H,m).
MS:332(M+ ),305,290.
【0146】
ii)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−メチルフェニルアセトニトリル(420mg,1.27mmol)を50%硫酸中で2時間加熱還流した後、水で希釈し、酢酸エチルで抽出した。有機層を水洗し乾燥後溶媒留去して得られた粗結晶をエタノール−ヘキサンから再結晶して3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−メチルフェニル酢酸(290mg,87%)を無色粉末として得た。
【0147】
融点127−129℃
NMR(CDCl3)δ:2.34(3H,s),3.62(2H,s),4.41(2H,s),7.0-7.1(4H,m).
MS:351(M+ ),307.
【0148】
実施例23
i)1,3−ビスシアノメチル−5−メチルベンゼン(680mg,4mmol)および2−アミノ−3,4−ジフルオロチオフェノール塩酸塩(888mg,4.5mmol)を用い実施例22−i)の合成に準じて操作し、酢酸エチル−ヘキサンから再結晶して3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−メチルフェニルアセトニトリル(210mg,17%)を無色の粉末として得た。
【0149】
融点84−86℃
NMR(CDCl3)δ:2.36(3H,s),3.72(2H,s),4.42(2H,s),7.09-7.28(4H,m),7.45-7.50(1H,m).
MS:314(M+ ),287.
【0150】
ii)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−メチルフェニルアセトニトリル(400mg,1.27mmol)を用い実施例22−ii)の合成に準じて操作し、エタノール−ヘキサンから再結晶して3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−5−メチルフェニル酢酸(340mg,80%)を無色の粉末として得た。
【0151】
融点139−141℃
NMR(CDCl3)δ:2.33(3H,s),3.62(2H,s),4.40(2H,s),7.0-7.5(5H,m).
MS:333(M+ ),288,272.
【0152】
実施例24
i)1,3−ビスシアノメチル−2−クロロベンゼン(870mg,4.4mmol)および2−アミノ−3,4−ジフルオロチオフェノール塩酸塩(956mg,4.8mmol)を用い実施例22−i)の合成に準じて操作し、酢酸エチル−ヘキサンから再結晶して3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−2−クロロフェニルアセトニトリル(295mg,20%)を無色粉末として得た。
【0153】
融点152−154℃
NMR(CDCl3)δ:3.89(2H,s),4.64(2H,s),7.22-7.55(5H,m).
MSm/z:334(M+ ),299,259.
【0154】
ii)3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−2−クロロフェニルアセトニトリル(400mg,1.20mmol)を用い実施例22−ii)の合成に準じて操作し、アセトニトリル−エタノールから再結晶して3−[(4,5−ジフルオロベンゾチアゾール−2−イル)メチル]−2−クロロフェニル酢酸(380mg,90%)を無色の粉末として得た。
【0155】
融点198℃(dec.)
NMR(CDCl3)δ:3.66(2H,s),4.51(2H,s),7.15-7.48(5H,m).
MS:318(M+ −Cl),272.
【0156】
実施例25
i)1,3−ビスシアノメチル−2−クロロベンゼン(953mg,5mmol)および2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(1,078mg,10mmol)を用い、実施例22−i)の合成に準じて操作し酢酸エチル−ヘキサンから結晶化させて3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−2−クロロフェニルアセトニトリル(410mg,23%)を無色粉末として得た。
【0157】
融点148−151℃
NMR(CDCl3)δ:3.89(2H,s),4.64(2H,s),7.0-7.1(1H,m),7.3-7.6(3H,m).
MS:352(M+ ),317,277.
【0158】
ii)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−2−クロロフェニルアセトニトリル(370mg,1.05mmol)を用い、実施例22−ii)の合成に準じて操作しエタノール−ヘキサンから結晶化させて3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−2−クロロフェニル酢酸(290mg,87%)を得た。
【0159】
融点156−158℃
NMR(CDCl3)δ:3.89(2H,s),4.64(2H,s),6.96-7.05(1H,m),7.3-7.4(3H,m).
MS:336(M+ −Cl),290.
【0160】
実施例26
i)1,3−ビスシアノメチル−5−フルオロベンゼン(1.6g,9.2mmol)および2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(1.98g,9.2mmol)を用い、実施例22−i)の合成に準じて操作しイソプロピルエーテルから結晶化させて3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−フルオロフェニルアセトニトリル(868mg,28%)を無色粉末として得た。
【0161】
融点91−94℃
NMR(CDCl3)δ:3.77(2H,s),4.46(2H,s),6.9-7.1(3H,m),7.14(1H,bs).
MS:336(M+ ),309,295.
【0162】
ii)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−フルオロフェニルアセトニトリル(600mg,2.4mmol)を用い実施例22−ii)の合成に準じて操作し、イソプロピルエーテルから再結晶して3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−フルオロフェニル酢酸(717mg,85%)を無色の粉末として得た。
【0163】
融点139−142℃
NMR(CDCl3)δ:3.66(2H,s),4.44(2H,s),6.9-7.1(3H,m),7.08(1H,bs).
MS:355(M+ ),311,295.
【0164】
実施例27
i)1,3−ビスシアノメチル−5−クロロベンゼン(650mg,3.4mmol)および2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(735mg,3.4mmol)を用い、実施例22−i)の合成に準じて操作しイソプロピルエーテルから結晶化させて3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−クロロフェニルアセトニトリル(333mg,28%)を無色粉末として得た。
【0165】
融点114−117℃
NMR(CDCl3)δ:3.75(2H,s),4.45(2H,s),6.9-7.1(1H,s),7.24(1H,bs),7.31(1H,bs),7.35(1H,bs).
MS:352(M+ ),325,277.
【0166】
ii)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−クロロフェニルアセトニトリル(300mg,0.8mmol)を用い実施例22−ii)の合成に準じて操作し、イソプロピルエーテルから再結晶して3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−クロロフェニル酢酸(244mg,77%)を無色の粉末として得た。
【0167】
融点177−179℃
NMR(CDCl3)δ:3.64(2H,s),4.43(2H,s),6.9-7.1(1H,m),7.19(1H,bs),7.26(1H,bs),7.29(1H,bs).
MS:371(M+ ),327,290.
【0168】
実施例28
i)1,3−ビスシアノメチル−5−ブロモベンゼン(1.9g,8.1mmol)および2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(1.74g,8.1mmol)を用い、実施例22−i)の合成に準じて操作しイソプロピルエーテルから結晶化させて3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ブロモフェニルアセトニトリル(532mg,18%)を無色粉末として得た。
【0169】
融点119−124℃
NMR(CDCl3)δ:3.74(2H,s),4.44(2H,s),6.9-7.1(1H,m),7.29(1H,bs),7.47(1H,bs),7.50(1H,bs).
MS:396(M+ ),371,277.
【0170】
ii)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ブロモフェニルアセトニトリル(500mg,1.2mmol)を用い実施例22−ii)の合成に準じて操作し、イソプロピルエーテルから再結晶して3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ブロモフェニル酢酸(372mg,71%)を無色の粉末として得た。
【0171】
融点183−185℃
NMR(CDCl3)δ:3.64(2H,s),4.42(2H,s),6.9-7.1(1H,m),7.24(1H,bs),7.42(1H,bs),7.45(1H,bs).
MS:415(M+ ),371,290.
【0172】
実施例29
i)1,3−ビスシアノメチル−5−ヨードベンゼン(420mg,1.49mmol)および2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(321mg,1.49mmol)を用い、実施例22−i)の合成に準じて操作し酢酸エチル−ヘキサンから結晶化させて3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ヨードフェニルアセトニトリル(240mg,36%)を無色粉末として得た。
【0173】
融点127−130℃
NMR(CDCl3)δ:3.72(2H,s),4.41(2H,s),7.0-7.1(1H,m),7.32(1H,bs),7.66(1H,bs),7.70(1H,bs).
MS:444(M+ ),417,277.
【0174】
ii)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ヨードフェニルアセトニトリル(240mg,0.54mmol)を用い実施例22−ii)の合成に準じて操作し、酢酸エチル−ヘキサンから再結晶して3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ヨードフェニル酢酸(163mg,65%)を無色の粉末として得た。
【0175】
融点171−173℃
NMR(CDCl3)δ:3.61(2H,s),4.40(2H,s),7.0-7.1(1H,m),7.27(1H,bs),7.62(1H,bs),7.65(1H,bs).
MS:463(M+ ),419,290.
【0176】
実施例30
i)3,5−ビスシアノメチル安息香酸(1,819mg,8.5mmol)および2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(2,015mg,9.3mmol)を用い、実施例22−i)の合成に準じて操作し酢酸エチル−ヘキサンから結晶化させて3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−シアノメチル安息香酸 メチル(470mg,15%)を無色粉末として得た。
【0177】
融点130−132℃
NMR(CDCl3)δ:3.82(2H,s),3.94(3H,s),4.53(2H,s),7.56(1H,s),7.98(1H,s),8.03(1H,s).
MS:376(M+ ),349,316,277.
【0178】
ii)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−シアノメチル安息香酸 メチル(376mg,1mmol)を用い実施例22−ii)の合成に準じて操作し、酢酸エチル−イソプロピルエーテルから再結晶して3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−カルボキシメチル安息香酸(170mg,45%)を無色の粉末として得た。
【0179】
融点203−205℃
NMR(CDCl3)δ:3.65(2H,s),4.51(2H,s),7.0-7.1(1H,m),7.51(1H,s),7.95(2H,s).
MS:381(M+ ),335,319,290.
【0180】
実施例31
i)1,3−ビスシアノメチル−5−ジメチルアミノベンゼン(440mg,2.2mmol)および2−アミノ−3,4,6−トリフルオロチオフェノール塩酸塩(474mg,2.2mmol)を用い、実施例22−i)の合成に準じて操作しイソプロピルエーテルから結晶化させて3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ジメチルアミノフェニルアセトニトリル(234mg,30%)を無色粉末として得た。
【0181】
融点99−100℃
NMR(CDCl3)δ:2.98(6H,s),3.70(2H,s),4.39(2H,s),6.58(1H,s),6.62(2H,s),6.9-7.0(1H,m).
MSm/z:361(M+ ).
【0182】
ii)3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ジメチルアミノフェニルアセトニトリル(200mg,0.55mmol)を用い実施例22−ii)の合成に準じて操作し、エタノール−ヘキサンから再結晶して3−[(4,5,7−トリフルオロベンゾチアゾール−2−イル)メチル]−5−ジメチルアミノフェニル酢酸(158mg,75%)を無色の粉末として得た。
【0183】
融点114−115℃
NMR(CDCl3)δ:2.96(6H,s),3.61(2H,s),4.39(2H,s),6.58(1H,s),6.61(1H,s),6.64(1H,s),6.9-7.0(1H,m).
MS:380(M+ ),336,319,290.
【0184】
実施例32
i)N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)プロピオニル]−N−フェニルグリシン メチルエステル(365mg,0.9mmol)を用い、実施例7−i)の合成に準じて操作し、シリカゲルカラムにより精製し、N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピオニル]−N−フェニルグリシン メチルエステル(310mg,73%)を油状物として得た。
【0185】
NMR(CDCl3)δ:3.02(2H,t,J=6.9Hz),3.69(2H,t,J=6.9Hz),3.75(3H,s),4.90(2H,s),6.9-7.0(1H,m),7.3-7.5(5H,m).MS:424(M+ ),316,216.
【0186】
ii)N−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピオニル]−N−フェニルグリシン メチルエステル(300mg,0.7mmol)を用い実施例4−ii)の合成に準じて操作しイソプロピルエーテルから結晶化させN−[3−(4,5,7−トリフルオロベンゾチアゾール−2−イル)−1−チオキソプロピオニル]−N−フェニルグリシン(235mg,82%)を淡褐色粉末として得た。
【0187】
融点173−176℃
NMR(CDCl3)δ:3.02(2H,t,J=6.9Hz),3.69(2H,t,J=6.9Hz),4.94(2H,s),6.9-7.0(1H,m),7.3-7.5(5H,m).
MS:410(M+ ),245,217.
【0188】
製剤例1
錠剤1錠中の処方例(全量200mg):本発明化合物 50mg,結晶セルロ−ス 100mg,乳糖 48mg,トウモロコシデンプン 50mg,ステアリン酸マグネシウム 2mg
上記処方について日本薬局方(日局XII )製剤総則の公知方法に従って錠剤を製した。
【0189】
製剤例2
カプセル剤1カプセル中の処方例(全量200mg):本発明化合物 50mg,乳糖 120mg,トウモロコシデンプン 28mg,ステアリン酸マグネシウム 2mg
上記処方について日本薬局方(日局XII )製剤総則の公知方法に従ってカプセル剤を得た。
【0190】
製剤例3
注射剤1アンプル中の処方例(全量2ml):本発明化合物 5mg,塩化ナトリウム 3mg,公知のpH調整剤 適量(pH6.5〜7.5に調整),メチルパラベン 1mg,注射用水 適量
上記処方について日本薬局方(日局XII )製剤総則の公知方法に従って注射剤を得た。
【0191】
製剤例4
点眼剤1容器中の処方例(全量15ml):本発明化合物 10mg,塩化ナトリウム 10mg,メチルパラベン 7.5mg,滅菌精製水 適量
上記処方について日本薬局方(日局XII )製剤総則の公知方法に従って点眼剤を得た。
【0192】
【発明の効果】
本発明の化合物は,優れたアルドースリダクターゼ阻害作用を有し,白内障,角膜症,網膜症,末梢その他の神経障害,腎症などの糖尿病合併症の予防並びに治療に有用である。本発明の化合物を上記の疾病の治療あるいは予防を目的として投与する場合は,経口的または非経口的に投与可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel 2-substituted benzothiazole derivative having a aldose reductase inhibitory action effective for the treatment of diabetic complications, or a pharmaceutically acceptable salt thereof, and a drug containing the same.
[0002]
[Background Art and Problems to be Solved by the Invention]
Diabetes mellitus has been increasing in the past, and insulin and various hypoglycemic agents have been used as therapeutic agents. However, these therapeutic agents are limited in their effectiveness as therapeutic agents for various complications that are becoming a problem with the increase of diabetes, and a therapeutic agent for diabetic complications based on a new concept is desired.
[0003]
When hyperglycemia occurs in diabetes, the glucose concentration of insulin-independent tissues such as peripheral nerves, retina, lens, cornea, blood vessels, and kidney glomeruli increases, glucose metabolism through the polyol pathway is increased, and polyols such as sorbitol Accumulates and causes complications. Therefore, methods for preventing and treating diabetic complications by inhibiting aldose reductase, an enzyme of glucose metabolism, have been studied.
[0004]
Among the compounds synthesized for these purposes, for example, JP-A 64-3173, JP-A 1-211585, JP-A 3-5481, JP-A-4-34321, JP-A-5-92961, Kaihei 6-17253, JP-A-6-199851, JP-A-6-79423 and JP-A-6-279453 describe that certain benzothiazole derivatives have an aldose reductase inhibitory action. However, these compound groups are still not sufficient, and the development of a therapeutic agent for diabetic complications having further excellent aldose reductase inhibitory activity is desired.
[0005]
[Means for Solving the Problems]
The present invention relates to a general formula (1)
Embedded image
Figure 0003798836
Figure 0003798836
[Wherein X is a halogen atom, R 1 And R 2 Are the same or different hydrogen atoms or halogen atoms, A is a methylene group or sulfur atom, -B-COOR Three Is
General formula (2)
Embedded image
Figure 0003798836
Figure 0003798836
(Where R Three Is a hydrogen atom or a C1-C3 lower alkyl group, Y is a hydrogen atom, halogen atom, C1-C3 lower alkyl group, carboxyl group or di-lower alkylamino group, n is an integer of 1 to 3)
Or general formula (3)
Embedded image
Figure 0003798836
Figure 0003798836
(Where R Three , Y, n are the same as above)
Or general formula (4)
Embedded image
Figure 0003798836
Figure 0003798836
(In the formula, Z is an oxygen atom or a sulfur atom, R Three Is the same as above, R Four Is a C1-C3 lower alkyl group or an optionally substituted phenyl group, benzyl group or phenethyl group)
Or general formula (5)
Embedded image
Figure 0003798836
Figure 0003798836
(Where R Three Is the same as above, m is an integer of 2 to 5 except that A is a sulfur atom)
A group represented by any one of
Or a pharmaceutically acceptable salt thereof, an aldose reductase inhibitor containing these as active ingredients, and a prophylactic / therapeutic agent for diabetic complications containing these as active ingredients.
[0006]
In the general formula (1), X is a halogen atom, specifically a fluorine atom or a chlorine atom, preferably a fluorine atom. R 1 And R 2 Are the same or different hydrogen atoms or halogen atoms. The halogen atom includes a fluorine atom or a chlorine atom, and a fluorine atom is preferred.
[0007]
In the above general formula (2) and general formula (3), R Three Is a hydrogen atom or a lower alkyl group of C1 to C3 (1 to 3 carbon atoms), and the lower alkyl group of C1 to C3 includes a methyl group, an ethyl group, an n-propyl group and an i-propyl group. . Y is a hydrogen atom, a halogen atom, a C1-C3 lower alkyl group, a carboxyl group or a di-lower alkylamino group, and the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, The lower alkyl group of C3 includes a methyl group, an ethyl group, an n-propyl group and an i-propyl group, and the dilower alkylamino group includes a dimethylamino group, a diethylamino group, a di-n-propylamino group, and Di-propylamino groups are included.
[0008]
In the general formula (4), R Four Is a C1-C3 lower alkyl group or an optionally substituted phenyl group, benzyl group or phenethyl group. Examples of the C1-C3 lower alkyl group include methyl, ethyl, n-propyl and i -A phenyl group, benzyl group or phenethyl group which contains a propyl group and may have a substituent has a halogen atom or a C1-C3 lower alkyl group as a substituent at any position on the benzene ring. A phenyl group, a benzyl group, or a phenethyl group, specifically, a phenyl group, a benzyl group, a phenethyl group, a phenyl group substituted with a fluorine atom, a chlorine atom, or a bromine atom as a halogen atom, a benzyl group , Phenethyl group and C1 -C3 lower alkyl group as methyl, ethyl, n-propyl or i-propyl A phenyl group, a benzyl group, and a phenethyl group substituted with a group.
[0009]
The present invention relates to -B-COOR in the general formula (1). Three Includes a benzothiazole derivative represented by the above general formula (2), and preferred examples include the general formula (6)
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, R 1 , R 2 , R Three , Y and n are the same as above)
The benzothiazole derivative represented by these is included. Specific examples of the compound include the following compounds.
[0010]
(1) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] phenylacetic acid
(2) 3-[(4,5-Dichlorobenzothiazol-2-yl) methyl] phenylacetic acid
(3) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid
(4) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylpropionic acid
(5) Methyl, ethyl, n-propyl and i-propyl esters of the above carboxylic acids
[0011]
In addition, the present invention provides -B-COOR in the general formula (1). Three Includes a benzothiazole derivative represented by the above general formula (3), and preferred examples include the general formula (7)
Embedded image
Figure 0003798836
(7)
(Where X, R 1 , R 2 , R Three , Y and n are the same as above)
The benzothiazole derivative represented by these is included. Specific examples of the compound include the following compounds.
[0012]
(1) 3- [2- (4,5-Difluorobenzothiazol-2-yl) ethyl] benzoic acid
(2) 3- [2- (4,5-Dichlorobenzothiazol-2-yl) ethyl] benzoic acid
(3) 3- [2- (4,5,7-trifluorobenzothiazol-2-yl) ethyl] benzoic acid
(4) 3- [3- (4,5,7-trifluorobenzothiazol-2-yl) propyl] benzoic acid
(5) Methyl, ethyl, n-propyl and i-propyl esters of the above carboxylic acids
[0013]
Furthermore, the present invention relates to -B-COOR in the general formula (1). Three Includes a benzothiazole derivative represented by the above general formula (4), and preferred examples include the general formula (8)
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, Z, R 1 , R 2 , R Three And R Four Is the same as above)
Or the general formula (9)
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, Z, R 1 , R 2 , R Three And R Four Is the same as above)
The benzothiazole derivative represented by these is included. Specific examples of the compound include the following compounds.
[0014]
(1) N- [3- (4,5-difluorobenzothiazol-2-yl) propionyl] -N-methylglycine
(2) N- [3- (4,5-dichlorobenzothiazol-2-yl) propionyl] -N-methylglycine
(3) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-methylglycine
(4) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-phenylglycine
(5) N-benzyl-N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] glycine
(6) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-phenethylglycine
(7) N- [3- (4,5-Difluorobenzothiazol-2-yl) -1-thioxopropyl] -N-methylglycine
(8) N- [3- (4,5-dichlorobenzothiazol-2-yl) -1-thioxopropyl] -N-methylglycine
(9) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropyl] -N-methylglycine
(10) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropyl] -N-phenylglycine
(11) N-benzyl-N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropyl] glycine
(12) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropyl] -N-phenethylglycine
(13) N- [2- (4,5,7-trifluorobenzothiazol-2-ylthio) acetyl] -N-phenylglycine
(14) Methyl, ethyl, n-propyl and i-propyl esters of the above carboxylic acids
[0015]
In addition to the above, the present invention provides -B-COOR in the general formula (1). Three Includes a benzothiazole derivative represented by the above general formula (5), and preferred examples include the general formula (10)
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, R 1 , R 2 , R Three And m are the same as above)
Or general formula (11)
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, R 1 , R 2 , R Three And m are the same as above)
The benzothiazole derivative represented by these is included. Specific examples of the compound include the following compounds.
[0016]
(1) 4- (4,5,7-trifluorobenzothiazol-2-yl) butanoic acid
(2) 5- (4,5,7-trifluorobenzothiazol-2-yl) pentanoic acid
(3) 6- (4,5-Difluorobenzothiazol-2-yl) hexanoic acid
(4) 6- (4,5,7-trifluorobenzothiazol-2-yl) hexanoic acid
(5) 7- (4,5,7-trifluorobenzothiazol-2-yl) heptanoic acid
(6) 5- (4,5-Difluorobenzothiazol-2-ylthio) pentanoic acid
(7) 5- (4,5,7-trifluorobenzothiazol-2-ylthio) pentanoic acid
(8) Methyl, ethyl, n-propyl and i-propyl esters of the above carboxylic acids
[0017]
Furthermore, specific examples of the compound of the present invention include the following compounds.
(1) 2-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid
(2) 4-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid
(3) 3-[(5,7-Difluorobenzothiazol-2-yl) methyl] phenylacetic acid
(4) 3-[(6,7-Difluorobenzothiazol-2-yl) methyl] phenylacetic acid
(5) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] -5-methylphenylacetic acid
(6) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] -5-ethylphenylacetic acid
(7) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] -5-fluorophenylacetic acid
(8) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] -5-chlorophenylacetic acid
(9) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] -5-bromophenylacetic acid
(10) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] -5-iodophenylacetic acid
(11) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] -5-carboxylphenylacetic acid
(12) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] -5-dimethylaminophenylacetic acid
(13) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -2-chlorophenylacetic acid
(14) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-methylphenylacetic acid
(15) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-fluorophenylacetic acid
(16) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-chlorophenylacetic acid
(17) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-bromophenylacetic acid
(18) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-iodophenylacetic acid
(19) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-carboxylphenylacetic acid
(20) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-dimethylaminophenylacetic acid
(21) Methyl, ethyl, n-propyl and i-propyl esters of the above carboxylic acids
[0018]
The present invention also includes a pharmaceutically acceptable salt of the benzothiazole derivative represented by the above general formula (1). Examples of such a salt include non-toxic or medically usable pharmaceuticals. Low-toxic basic salts or acidic salts are included. Examples of the basic salt include salts of inorganic bases and organic bases, specifically, alkali metal salts, alkaline earth metal salts, organic amine salts, and more specifically lithium salts, sodium salts. , Potassium salt, calcium salt, magnesium salt, triethylamine salt, pyridine salt and the like. In addition, the acid salts include inorganic acid salts and organic acid salts, specifically, hydrochloride, hydrobromide, sulfate, acetate, propionate, citrate, succinate, Tartrate and methanesulfonate are included.
[0019]
The compound of the present invention can be produced by various methods, and a typical method thereof can be produced, for example, as follows.
(A) General formula (6) which is a suitable compound of the present invention
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, R 1 , R 2 , R Three , Y and n are the same as above)
Can be produced, for example, by the method shown in [Production Method 1].
Embedded image
Figure 0003798836
Figure 0003798836
[0020]
That is, the compound of the general formula (6) has the general formula (12) (wherein X, R 1 And R 2 Is the same as described above, or an acid addition salt thereof, and a general formula (13) (wherein R Three , Y and n are the same as described above) can be produced by reacting in the presence of a base, preferably in an inert gas atmosphere, if necessary, but the acid chloride of the general formula (13) can be used instead. In addition to the carboxylic acid itself, it is also possible to use a reactive derivative known per se, such as its ester or acid anhydride. This reaction can be carried out in the presence or absence of a solvent. When the reaction is carried out in the presence of a solvent, a conventional solvent that does not adversely influence the reaction can be used. N-dimethylformamide, N-methylpyrrolidone and the like can be mentioned. The reaction temperature is about 20 to 200 ° C, preferably about 60 ° C to the reflux temperature.
[0021]
When the benzothiazole derivative represented by the general formula (6) is obtained in an ester form, the corresponding carboxylic acid can be produced by subjecting the ester to hydrolysis in the presence of a base or an acid. . Suitable bases used for this hydrolysis reaction include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, and the like. Suitable acids include organic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, benzenesulfonic acid and paratoluenesulfonic acid, and inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid and phosphoric acid.
[0022]
The hydrolysis reaction is usually carried out in a conventional solvent or a mixture thereof that does not adversely influence the reaction, such as water, acetone, dioxane, dichloromethane, methanol, ethanol, propanol, pyridine, N, N-dimethylformamide and the like. If the base or acid used in this reaction is in the form of a solution, it can be used as a solvent. The reaction temperature is not particularly limited, and the reaction is performed in the range from cooling to heating.
[0023]
The compound represented by the general formula (12) can be produced by a known method [Journal of Medicinal Chemistry, 34, 108-122, 1991]. The compound represented by 13) can be produced by a known method [Int. Journal of Prpt. Protein Res., 29, 331-346, 1987].
[0024]
(B) General formula (7) which is a suitable compound of the present invention
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, R 1 , R 2 , R Three , Y and n are the same as above)
Can be produced, for example, by the method shown in [Production Method 2].
Embedded image
Figure 0003798836
Figure 0003798836
[0025]
That is, the compound of the general formula (7) has the general formula (12) (wherein X, R 1 And R 2 Is the same as described above, or an acid addition salt thereof, and a general formula (14) (wherein R Three , Y, and n are the same as described above), and the compound is preferably reacted by reacting in a inert gas atmosphere. As a suitable solvent at this time, it is preferable to use a lower alcohol such as methanol, ethanol or propanol. The reaction temperature is preferably 20 to 200 ° C., preferably 60 ° C. to the reflux temperature of the solvent used. On the other hand, when such a solvent is not used, the acid addition salt of compound (12) The compound (14) may be reacted by melting at a temperature of 90 to 250 ° C. The ester obtained here can be hydrolyzed in the same manner as in [Production Method 1].
[0026]
(C) General formula (8) which is a suitable compound of the present invention
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, Z, R 1 , R 2 , R Three And R Four Is the same as above)
Can be produced, for example, by the method shown in [Production Method 3].
Embedded image
Figure 0003798836
Figure 0003798836
[0027]
That is, the compound of the general formula (8) has the general formula (15) (wherein X, R 1 And R 2 Is the same as defined above and a compound represented by the general formula (16) (wherein R Three And R Four Is produced by subjecting a compound represented by the above formula to a condensation reaction. This reaction consists of 1) a method using a dehydration condensing agent such as DCC (dicyclohexylcarbodiimide) or WSC {1- (3-dimethylaminopropyl) -3-ethylcarbodiimide}, 2) a method via acid halide, and 3) mixing. It can be performed by a method through an acid anhydride.
[0028]
The method 1) can be carried out in the presence of a tertiary amine in a solvent in the presence of a condensing agent such as DCC or WSC. Suitable solvents for this reaction include methylene chloride, tetrahydrofuran, chloroform, diethyl ether, benzene, toluene, N, N-dimethylformamide and the like, and preferred tertiary amines include pyridine, triethylamine, picoline and the like. It is done.
[0029]
In the method of 2), the carboxylic acid of the general formula (15) is reacted with an acid halide such as thionyl chloride or oxalyl chloride in the presence or absence of the same solvent as in the above 1) at about −20 ° C. to reflux temperature. The reaction is carried out by reacting the resulting acid halide of the general formula (15) with the compound of the general formula (16) using the same solvent and tertiary amine as in 1) above.
[0030]
In the above method 3), the carboxylic acid of the general formula (15) is added in the presence or absence of a solvent similar to 1) above, in the presence of a tertiary amine similar to 1) above, in the presence of ethyl chloroformate, By reacting the acid anhydride of the general formula (15) obtained by reacting with an acid halide such as baroyl chloride, tosyl chloride, mesyl chloride, etc. in the same solvent as in the above 1) Done.
In any of these methods 1) to 3), the reaction temperature is about 20 to 60 ° C., and it is preferably carried out under an inert gas atmosphere such as argon and nitrogen under anhydrous conditions.
[0031]
According to the above method, a compound of the general formula (8) in which Z is an oxygen atom is obtained. By reacting these with a sulfurizing agent such as phosphorus pentasulfide in a solvent, Z in the compound of the general formula (8) is obtained. Can be produced with sulfur atoms. This reaction is usually performed in a conventional solvent that does not adversely influence the reaction, such as benzene, toluene, xylene, and hexane, and the reaction temperature is about −20 ° C. to the reflux temperature.
[0032]
The ester of the compound of the general formula (8) obtained as described above is subjected to a hydrolysis reaction in the same manner as in the case of the compound of the general formula (6), if necessary, to produce the corresponding carboxylic acid. Can do.
[0033]
(D) General formula (9) which is a suitable compound of the present invention
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, Z, R 1 , R 2 , R Three And R Four Is the same as above)
Can be produced, for example, by the method shown in [Production Method 4].
Embedded image
Figure 0003798836
Figure 0003798836
[0034]
That is, in the compound of the general formula (9), the ester form (9a) of the compound in which Z is an oxygen atom is represented by the general formula (17) (wherein X, R 1 And R 2 And a compound represented by the general formula (18) (W is a halogen atom, a menthanesulfonyl group or a paratoluenesulfonyl group, R Three And R Four Is as above; except that R Three In the presence of a suitable base, and if necessary, in an inert gas atmosphere. Examples of the base used in this reaction include alkali metal hydrides such as sodium hydride, alkaline earth metal hydrides such as calcium hydride, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and sodium carbonate. Alkali metal carbonates such as potassium carbonate, alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium tertiary butoxide and the like. The halogen atom in the compound of general formula (18) is particularly preferably a chlorine atom or a bromine atom.
[0035]
The above reaction is usually carried out in a conventional solvent or a mixture thereof that does not adversely influence the reaction. Particularly preferred solvents include N, N-dimethylformamide, tetrahydrofuran, dimethyl sulfoxide and the like. Although reaction temperature is not specifically limited, Preferably it is about 0-100 degreeC.
[0036]
The ester (9a) can be produced by the above method, but the corresponding carboxylic acid (9b) is represented by the general formula (19) in the above [Production Method 4ii)], wherein X, R 1 , R 2 And R Four Can be produced by reacting monohalogenated acetic acid such as monochloroacetic acid or monobromoacetic acid in the presence of a suitable base in an inert gas atmosphere if necessary. This reaction is usually carried out in a conventional solvent or a mixture thereof that does not adversely influence the reaction, and particularly preferred solvents include N, N-dimethylformamide, dimethyl sulfoxide and the like. Examples of the base to be used include alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium tertiary butoxide. Although reaction temperature is not specifically limited, Preferably it is about -20-80 degreeC.
[0037]
(E) General formula (10) which is a suitable compound of the present invention
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, R 1 , R 2 , R Three And m are the same as above)
Can be produced, for example, by the method shown in [Production Method 5].
Embedded image
Figure 0003798836
Figure 0003798836
[0038]
That is, the compound of the general formula (10) has the general formula (12a) (wherein X, R 1 And R 2 Is a compound represented by the general formula (20) (wherein R Three And m are as defined above) or general formula (21) (wherein R Three And m are the same as described above) and can be produced by reacting in the presence of a base, preferably in an inert gas atmosphere, if necessary. This reaction can be carried out under substantially the same conditions as in the above [Production Method 1] or [Production Method 2], and the resulting ester is similarly hydrolyzed to produce the corresponding carboxylic acid. be able to.
[0039]
The carboxylic acid of the compound represented by the general formula (10) is a reaction between the compound of the general formula (12a) and the acid anhydride represented by the general formula (22) (wherein m is as defined above). Can be manufactured. This reaction can be carried out in the presence or absence of a solvent. When the reaction is carried out in the presence of a solvent, a conventional solvent that does not adversely influence the reaction can be used. Particularly preferred is N , N-dimethylformamide, N-methylpyrrolidone and the like. Although reaction temperature is not specifically limited, Room temperature-about 150 degreeC is preferable.
[0040]
(F) General formula (11) which is a suitable compound of the present invention
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, R 1 , R 2 , R Three And m are the same as above)
Can be produced, for example, by the method shown in [Production Method 6].
Embedded image
Figure 0003798836
Figure 0003798836
[0041]
That is, the compound of the general formula (11) has the general formula (17) (wherein X, R 1 And R 2 And a compound represented by the general formula (23) (wherein W is a halogen atom, a menthanesulfonyl group or a paratoluenesulfonyl group, m and R) Three Can be produced by reacting the compound represented by the same method as in [Production Method 4i)], and the resulting ester is similarly hydrolyzed to give the corresponding carboxylic acid. Acid can be produced.
[0042]
(G) Furthermore, the general formula (26) (in the formula, X, R) which is a preferred compound of the present invention 1 , R 2 , R Three And Y are as defined above, for example, and can be produced by the method shown in [Production Method 7].
Embedded image
Figure 0003798836
Figure 0003798836
That is, the compound of the general formula (26) is a compound of the general formula (12) or an acid addition salt thereof and a compound represented by the general formula (24) (wherein Y is as defined above), After reacting in the presence, preferably in an inert gas atmosphere, general formula (25) (wherein R Three Is produced by reacting with a compound represented by the same formula as above. As the compound of the general formula (25), water, methanol, ethanol and the like are preferable.
Preferable solvents for the reaction of the compound of the general formula (12) and the compound of the general formula (24) are N-methylpyrrolidone and dimethylformamide, and the reaction temperature is preferably about 100 ° C. under ice cooling. When the compound of general formula (26) is obtained as an ester, it can be hydrolyzed to produce the corresponding carboxylic acid.
The compound of general formula (26) is obtained by reacting the compound of general formula (12) or an acid addition salt thereof with a compound represented by general formula (27) (wherein Y is the same as described above). General formula (28) (wherein X, R 1 , R 2 And Y can be produced by subjecting a compound of the same formula as above to acid hydrolysis.
The reaction of the compound of the general formula (12) and the compound of the general formula (27) is performed in the presence of an acid, if necessary, preferably in an inert gas atmosphere. This reaction can be carried out in the presence or absence of a solvent, and when the reaction is carried out in the presence of a solvent, a conventional solvent that does not adversely influence the reaction can be used. Examples include methanol, ethanol, propanol and the like. Examples of the acid include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as formic acid and acetic acid. Among them, strong acids such as sulfuric acid and hydrochloric acid are preferable, and the reaction temperature is 60 to 60. About 200 ° C. is preferable. The compound of the general formula (27) is a known substance or can be easily produced by a known method (for example, JP-A No. 64-19067).
Suitable acids for acid hydrolysis of the compound of general formula (28) include sulfuric acid, hydrochloric acid, hydrobromic acid, phosphoric acid, trifluoroacetic acid and the like. This reaction is carried out in a conventional solvent that does not adversely influence the reaction such as water, acetone, dioxane or a mixture thereof, and the reaction temperature is preferably 60 ° C. to reflux temperature.
[0043]
Among the compounds of the present invention obtained by the production method as described above, the compound represented by the general formula (8)
Embedded image
Figure 0003798836
Figure 0003798836
(Where X, Z, R 1 , R 2 , R Three And R Four Is the same as above)
The compound represented by the formula includes a mixture of geometric isomers of the (E) and (Z) isomers based on the rotational hindrance of the amide, but these are separated into pure isomers by means known per se as necessary. As such, the present invention also encompasses these geometric isomers.
[0044]
The compound of the present invention can be isolated and purified by a conventional method such as extraction, fractionation, chromatography, fractionation, crystallization, recrystallization and the like. The compound of the present invention thus produced can be converted into a pharmaceutically acceptable salt by a conventional method as desired.
[0045]
The present invention relates to an aldose reductase inhibitor containing a benzothiazole derivative represented by the above general formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient, and prevention / treatment of diabetic complications containing these as an active ingredient Also related to agents.
[0046]
Aldose reductase is a member of the aldo-keto reductase, an enzyme that converts glucose into sorbitol, and is widely distributed in tissues in the body. This enzyme is an enzyme that works in the “polyol metabolic pathway” from glucose through sorbitol to fructose together with sorbitol dehydrogenase that converts sorbitol into fructose. It is thought that glucose uptake into the inside increases, glucose metabolism through the polyol metabolic pathway is enhanced, and polyols such as sorbitol accumulate and cause various complications.
The compound of the present invention inhibits the activity of the above-mentioned aldose reductase and has an action of suppressing the accumulation of polyols such as sorbitol, which is considered to be related to the cause of diabetic complications. Useful for prevention and treatment of Specific examples of diabetic complications include cataract, keratopathy, retinopathy, peripheral and other neurological disorders, nephropathy and the like. It can be used as a prophylactic or therapeutic agent.
[0047]
The aldose reductase inhibitor and the diabetic complication preventive / therapeutic agent in the present invention may be used alone, but preferably a pharmaceutically acceptable additive is added. As the route of administration of the drug of the present invention, oral, injection, and mucosal administration to the eye, oral cavity, rectum, etc. are employed. Specific preparations according to each route of administration are as follows.
In the case of oral administration, the additive may be any formulation component that can constitute an oral preparation and can achieve the object of the present invention. Known pharmaceutical ingredients such as agents, lubricants, and coating agents are selected. Accordingly, specific oral preparations for the drug of the present invention include dosage forms such as tablets, granules, fine granules, powders, syrups, capsules and the like.
[0048]
In the case of injection, as the above-mentioned additive, a pharmaceutical ingredient that can constitute an aqueous injection or non-aqueous injection is used. Usually, known additives such as a solubilizing agent, a solubilizing agent, a suspending agent, a pH adjusting agent, and a stabilizing agent are used. However, it may be a known formulation component constituting a powder injection for use by dissolving or suspending at the time of administration.
In the case of mucosal administration, as the above-mentioned additives, pharmaceutical ingredients that can form aqueous or non-aqueous liquids, gels and ointments are used, and usually, solubilizers, solubilizers, suspending agents, emulsifiers, buffering agents. , Stabilizers, preservatives, petrolatum, purified lanolin, liquid paraffin, Platis base (trade name: US Squibb and Sons) and other known pharmaceutical ingredients are used.
[0049]
In order to obtain a desired oral preparation, injection or mucosal preparation by using the above-mentioned preparation ingredients, the production method described in the 12th revised Japanese Pharmacopoeia (JP XI XII) or an appropriate modification is added thereto. It can be manufactured by different manufacturing methods.
The subject of administration of the drug of the present invention is a mammal or a human, but as described above, it can be used for the purpose of inhibiting the activity of aldose reductase and suppressing the accumulation and increase of sorbitol in the tissue. In addition, it is effective for the prevention and treatment of various diabetic complications that cannot be prevented with only glycemic regulators such as insulin and synthetic hypoglycemic agents.
[0050]
The compound relating to the drug of the present invention has low toxicity, and its dosage is usually about 1 to 1,500 mg (/ day) when used as an oral preparation when converted to the amount of the compound of the present invention, preferably Is about 5 to 1,000 mg (/ day), and when used as an injection, it is usually about 1 to 500 mg (/ day), preferably about 3 to 300 mg (/ day).
Furthermore, when used as a mucosal agent, it is usually about 1 to 500 mg (/ day), preferably about 3 to 300 mg (/ day).
Specifically, the optimal dose is determined in consideration of the duration of diabetes, the age, sex, and weight of the patient.
The subject of treatment when the drug of the present invention is used as a therapeutic agent is a patient who develops diabetic complications such as cataract, keratopathy, retinopathy, peripheral and other neurological disorders, nephropathy, etc. Can also be administered to other patients for the purpose of preventing complications. The drug of the present invention may be used alone, but can of course be used in combination with insulin and diabetic agents (eg, chlorpropamide, acetohexamide, tolbutamide) and the like.
[0051]
[Test example]
Next, methods and results of pharmacological test examples showing the effectiveness of the compound of the present invention represented by the general formula (1) will be described, but the same effect was recognized for the compound of the present invention not exemplified here. It was.
[0052]
1) Aldose reductase inhibitory action
<Preparation of enzyme> Preparation of aldose reductase enzyme preparation was carried out by the method of S. Hayman et al. (Journal of Biological Chemistry, 240, 877-882, 1965) from porcine lens. It went by. That is, a frozen lens (−80 ° C.) of porcine lens was homogenized with distilled water and centrifuged at 10,000 G for 15 minutes. The supernatant was made into a 40% ammonium sulfate solution, and the supernatant obtained by further centrifuging at 10,000 G for 10 minutes was dialyzed overnight in 0.05 M sodium chloride solution. It was.
[0053]
<Activity measurement> The activity of aldose reductase was measured by the method of Heimann et al. That is, the final concentration of 0.4 M lithium sulfate, 0.1 mM NADPH (reduced nicotinamide adenine dinucleotide phosphate) and 200 μl of 40 mM phosphate buffer (pH 6.2) prepared to contain 3 mM dl-glyceraldehyde as a substrate were added to the above. 25 μl of an enzyme solution and 25 μl of a test compound solution of various concentrations dissolved in 1% DMSO were added. Then, it was made to react at 37 degreeC for 2 minute (s), and the absorbance change of 340 nm was measured using the automatic analyzer (Hitachi 7070). Further, the amount of change in absorbance when 1% DMSO was added instead of the test compound solution was defined as 100%. The inhibitory action of the test compound is shown in Table 1. IC in the table 50 The value (M) represents the concentration of the compound of the invention that inhibits aldose reductase activity by 50%.
[0054]
[Table 1]
Figure 0003798836
[0055]
2) Inhibition of tissue sorbitol accumulation in experimental diabetic rats
(Preventive effect)
Sprague-Dawley rats (male, 6 weeks old, 5 to 6 mice per group) were fasted for 18 hours, and streptozotocin (SIGMA) 60 mg / kg was injected into the tail vein to prepare diabetic rats. The test compound was orally administered as a 0.5% carboxymethylcellulose suspension at 4, 8 and 24 hours after injection of streptozotocin, respectively at 10 mg / kg or 30 mg / kg. During this period, rats were fed with food and water freely, and after 3 hours of final administration, the sorbitol content in tissues (sciatic nerve, lens) was determined by the method of HUBergmeyer et al. [Methods of Enzymatic Analysis (Methods of Enzymatic Analysis). ), Vol. 3, 1323-1330, 1974] by an enzymatic method using SDH (sorbitol dehydrogenase) and NAD (β-nicotinamide adenine dinucleotide). The results are shown as a percentage (%) when the value of the control group administered with a 0.5% carboxymethylcellulose solution as a solvent instead of the test compound is taken as 100%. The results for the compounds of the present invention are shown in Table 2.
[0056]
[Table 2]
Figure 0003798836
[0057]
3) Safety test
The safety of the compound of the present invention was confirmed by the following test.
Normal ICR strain mice (male, 7 weeks old, 5 mice per group) were fasted for 18 hours, and then Examples 1-ii), 5-ii), 19-ii), 21, 22-ii) and 23-ii. ) Compound (1000 mg / kg) was orally administered as a 0.5% carboxymethylcellulose suspension. Only 0.5% carboxymethylcellulose solution was orally administered to the control group, and then observed over 7 days. During this time, the mice were fed with free feed and water. As a result, none of the mice to which the compound of the above example was administered died, and the body weight was changed in the same manner as in the control group.
[0058]
4) Inhibition of tissue sorbitol accumulation in experimental diabetic rats
(Therapeutic effect)
Sprague-Dawley rats (male, 6 weeks of age, 5-6 animals per group) were fasted for 18 hours, and streptozotocin (SIGMA) 60 mg / kg was administered into the tail vein to prepare diabetic rats. The test compound was orally administered as a 0.5% carboxymethyl cellulose suspension at a dose of 1 to 10 mg / kg once a day for 5 days from 7 days after administration of streptozotocin. During this time, rats were fed with food and water ad libitum. Three hours after the final administration, the sorbitol content in the tissues (sciatic nerve, lens) was determined by the method of H. Bergmeyer et al. [Methods of
Enzymatic analysis (Methods of Enzymatic Analysis), Vol. 3, 1323-1330, 1974] was measured by an enzymatic method using SDH (sorbitol dehydrogenase) and NAD (β-nicotinamide adenine dinucleotide). The results are shown as a percentage (%) when the value of the control group administered with a 0.5% carboxymethylcellulose solution as a solvent instead of the test compound is taken as 100%. The results for the compounds of the present invention are shown in Table 3.
[0059]
[Table 3]
Figure 0003798836
[0060]
【Example】
Example 1
i) Monomethyl 1,3-phenylenediacetate (531 mg, 2.6 mmol) was dissolved in benzene (5 ml) and thionyl chloride (607 mg, 5.2 mmol) was slowly added. After heating under reflux for 2 hours, excess thionyl chloride was distilled off under reduced pressure to obtain monomethyl 1,3-phenylene diacetate hydrochloride. Under a nitrogen stream, 2-amino-3,4,6-trifluorothiophenol (507 mg, 2.8 mmol) was dissolved in N-methylpyrrolidone (NMP) (5 ml), and the resulting monomethyl 1,3-phenylenedioxide was dissolved therein. Acetate chloride was slowly added and stirred at 100 ° C. for 2 hours. After cooling, the reaction solution was diluted with water and extracted with ethyl acetate. The organic layer was dried and the solvent was distilled off. The resulting residue was purified with a silica gel column, and methyl 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenyl acetate (267 mg, 27%) Was obtained as an oil.
[0061]
NMR (CDCl Three ) Δ: 3.64 (2H, s), 3.70 (3H, s), 4.45 (2H, s), 6.9-7.1 (1H, m), 7.2-7.4 (4H, m)
MS: 351 (M + ), 291,277
[0062]
ii) Methyl 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenyl acetate (231 mg, 0.66 mmol) was dissolved in a mixture of water (5 ml) -dioxane (5 ml) to give 2N. Sodium hydroxide (2 ml, 4 mmol) was added dropwise, followed by stirring for 2 hours. The reaction mixture was diluted with water, washed with ether, acidified with 10% hydrochloric acid, and extracted with ethyl acetate. The organic layer was dried and the solvent was evaporated. The resulting residue was recrystallized from isopropyl ether to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid (134 mg, 90%). Was obtained as a colorless powder.
[0063]
Melting point 132-134 ℃
NMR (CDCl Three ) Δ: 3.67 (2H, s), 4.45 (2H, s), 6.9-7.1 (1H, m), 7.2-7.4 (4H, m)
MS: 337 (M + ), 293,277
[0064]
Example 2
i) Dissolve ethyl 3-iodobenzoate (2 g, 7.2 mmol), palladium acetate (16 mg, 0.072 mmol), triethylamine (729 mg, 7.2 mmol) and acrylonitrile (480 mg, 9.0 mmol) in acetonitrile (10 ml), and add nitrogen stream The mixture was stirred at reflux for 3 hours. Further, palladium acetate (16 mg, 0.072 mmol) was added to the reaction solution, and the mixture was stirred at reflux for 9 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and evaporated to give a residue, which was purified with a silica gel column. Ethyl 3- (2-cyanovinyl) benzoate (808 mg, 55%) was converted into E and Z forms. Obtained as an oily mixture (E: Z = 3: 1).
[0065]
NMR (E: Z = 3: 1) (CDCl Three ) Δ: 1.42 (3H, t, J = 7.3Hz), 4.41 (2H, q, J = 7.3Hz), 5.98 (5.54) (1H, d, Jtrans = 16.8Hz, Jcis = 12.6Hz), 7.45 (7.24 ) (1H, d, Jtrans = 16.8Hz, Jcis = 12.6Hz), 7.50 (7.55) (1H, dd, J = 8.0Hz and 7.7Hz), 7.63 (1H, d, J = 7.7Hz), 8.11 (8.16 ) (1H, d, J = 8.0Hz), 8.14 (8.31) (1H, s)
[0066]
ii) Ethyl 3- (2-cyanovinyl) benzoate (800 mg, 4.0 mmol) was dissolved in methanol (30 ml) and 10% palladium on carbon was added gently. The reaction was stirred at 3 atm for 10 hours under hydrogen atmosphere. The solid in the reaction mixture was filtered off, and the filtrate was evaporated to give ethyl 3- (2-cyanoethyl) benzoate (682 mg, 84%) as a colorless oil.
[0067]
NMR (CDCl Three ) Δ: 1.40 (3H, t, J = 7.3Hz), 2.67 (1H, t, J = 7.3Hz), 3.02 (1H, t, J = 7.3Hz), 4.39 (2H, q, J = 7.3Hz) , 7.3-7.5 (2H, m), 7.91 (1H, s), 7.96 (1H, d, J = 6.3Hz)
[0068]
iii) Zinc chloride (26 mg, 0.19 mmol) was dissolved in chlorobenzene (3 ml). To this, 2-amino-3,4,6-trifluorothiophenol hydrochloride (269 mg, 1.2 mmol) and ethyl 3- (2-cyanoethyl) benzoate (254 mg, 1.2 mmol) were dissolved in chlorobenzene (1 ml), respectively. The mixture was added and heated to reflux for 40 hours. The solvent of the reaction solution was distilled off, and methylene chloride was added. After washing with water and drying, the solvent was distilled off and the resulting residue was purified with a silica gel column. Ethyl 3- [2- (4,5,7-trifluorobenzothiazol-2-yl) ethyl] benzoate (133 mg, 30%) Was obtained as an oil.
[0069]
NMR (CDCl Three ) Δ: 1.40 (t, 3H, J = 7.2Hz), 3.28 (t, 2H, J = 7.8Hz), 3.48 (t, 2H, J = 7.8Hz), 4.38 (q, 2H, J = 7.2Hz) , 6.9-7.1 (1H, m), 7.37 (br.t, 1H, J = 7.6Hz), 7.43 (br.d, 1H, J = 7.6Hz), 7.92 (br.d, 1H, J = 7.6Hz) ), 7.95 (1H, s)
[0070]
iv) Ethyl 3- [2- (4,5,7-trifluorobenzothiazol-2-yl) ethyl] benzoate (133 mg, 0.36 mmol) is dissolved in a mixed solvent of water (5 ml) -dioxane (5 ml), 2N sodium hydroxide (2 ml) was added dropwise and stirred at room temperature for 7 hours. The reaction mixture was diluted with water and washed with ether. The aqueous layer was acidified with 10% hydrochloric acid and extracted with ethyl acetate. After drying, the crude crystals obtained by distilling off the solvent were recrystallized from ether to give 3- [2- (4,5,7-trifluorobenzothiazol-2-yl) ethyl] benzoic acid (82 mg, 68%) Was obtained as colorless crystals.
[0071]
Melting point 190 ° C (decomposition)
NMR (CDCl Three ) Δ: 3.31 (2H, t, J = 7.6Hz), 3.51 (2H, t, J = 7.6Hz), 6.9-7.1 (1H, m), 7.42 (1H, t, J = 7,6Hz), 7.50 (1H, d, J = 7.6Hz), 8.00 (1H, d, J = 7.6Hz), 8.03 (1H, s)
MS: 337 (M + ), 319,291,216,135
[0072]
Example 3
i)
Method A
Add 2-amino-3,4,6-trifluorothiophenol (1.61 g, 9 mmol) and ethyl succinyl chloride (1.48 g, 9 mmol) to NMP (6 ml), and heat and stir at 100 ° C. for 1 hour under a nitrogen stream. did. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting residue was purified with a silica gel column to obtain ethyl 3- (4,5,7-trifluorobenzothiazol-2-yl) propionate (1.12 g, 43%). Was obtained as an oil.
Ethyl 3- (4,5,7-trifluorobenzothiazol-2-yl) propionate (1.1 g, 3.8 mmol) was added to a mixture of methanol (8 ml), water (6 ml) and 2N sodium hydroxide (2 ml, 4 mmol). ) And stirred at room temperature for 15 minutes. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting residue was recrystallized from hexane-isopropyl ether to give 3- (4,5,7-trifluorobenzothiazol-2-yl) propionic acid (840 mg, 85% ) Were obtained as colorless needles.
[0073]
Melting point: 123-125 ° C
NMR (CDCl Three ) Δ: 3.06 (2H, t, J = 7.1Hz), 3.46 (2H, t, J = 7.1Hz), 6.98-7.09 (1H, m)
[0074]
Method B
Under nitrogen flow, succinic anhydride (1.0 g, 10 mmol) in NMP (5 ml) solution was added to 2-amino-3,4,6-trifluorothiophenol (1.79 g, 10 mmol) in NMP (5 ml) solution at room temperature. After dripping, it heated at 100 degreeC for 1 hour. The reaction solution was made basic by diluting with an aqueous sodium carbonate solution and then washed with ether. The aqueous layer was acidified with 7% hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting crude crystals were washed with hexane-isopropyl ether and 3- (4,5,7-trifluorobenzothiazol-2-yl) propionic acid (2.16 g, 83% )
[0075]
ii) Sarcosine ethyl ester hydrochloride (307 mg, 2 mmol) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (WSC.HCl) (422 mg, 2.2 mmol), 3- (4,5,7- Trifluorobenzothiazol-2-yl) propionic acid (522 mg, 2 mmol) and triethylamine (220 mg, 2.2 mmol) were added to methylene chloride (10 ml) and stirred at room temperature for 15 hours. The reaction mixture was washed with water, dried and the solvent was distilled off. The residue obtained was purified with a silica gel column to give N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-methyl. Glycine ethyl ester (610 mg, 85%) was obtained as an oil.
[0076]
NMR (CDCl Three ) Δ: 1.26 (1.29) (3H, t, J = 7.2Hz), 3.06 (2.92) (2H, t, J = 6.9Hz), 3.13 (3.00) (3H, s), 3.45 (2H, t, J = 6.9Hz), 4.13 (4.10) (2H, q, J = 7.2Hz), 6.95-7.06 (1H, m)
This product is considered to be a mixture of isomers E and Z, and the abundance ratio is estimated to be 4: 1 by NMR method.
MS: 360 (M + ), 243,215
[0077]
iii) 2N sodium hydroxide in a solution of N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-methylglycine ethyl ester (290 mg, 0.8 mmol) in methanol (2 ml) (0.5 ml, 1 mmol) was added and stirred at room temperature for 30 minutes. The reaction mixture was diluted with water and washed with ether. The aqueous layer was acidified with 7% hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was evaporated. The residue obtained was recrystallized from ethanol-isopropyl ether to give N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl]- N-methylglycine (185 mg, 70%) was obtained.
[0078]
Melting point 138-140 ° C
NMR (CDCl Three ) Δ: 3.08 (2.98) (2H, t, J = 6.9Hz), 3.16 (3.01) (3H, s), 3.50 (2H, t, J = 6.9Hz), 4.18 (4.15) (2H, s), 6.95-7.06 (1H, m) This product is considered to be a mixture of isomers E and Z, and its abundance ratio is estimated to be 4: 1 by NMR method.
MS: 348 (M + ), 216
[0079]
Example 4
i) 3- (4,5,7-trifluorobenzothiazol-2-yl) propion obtained in Example 3-i) in a mixed solution of toluene (5 ml) -N, N dimethylformamide (DMF) (1 ml) The acid (522 mg, 2 mmol) was dissolved, thionyl chloride (357 mg, 3 mmol) was added, and the mixture was stirred at room temperature for 1 hour. Under ice-cooling, N-phenylglycine methyl ester hydrochloride (403 mg, 2 mmol) and triethylamine (400 mg, 4 mmol) were added to the reaction solution and stirred for 2 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting residue was purified with a silica gel column to give N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-phenyl. Glycine methyl ester (240 mg, 29%) was obtained as an oil.
[0080]
NMR (CDCl Three ) Δ: 2.78 (2H, t, J = 6.9Hz), 3.44 (2H, t, J = 6.9Hz), 3.73 (3H, s), 4.40 (2H, s), 6.93-7.03 (1H, m), 7.3-7.5 (5H, m) MS: 408 (M + ), 244,215
[0081]
ii) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-phenylglycine methyl ester (420 mg, 1 mmol) in a mixed solvent of water (3 ml) -dioxane (6 ml) 2N sodium hydroxide (1.2 mmol) was added dropwise with stirring under ice cooling. After stirring at room temperature for 1 hour, the reaction solution was diluted with water and washed with ether. The aqueous layer was acidified with 7% hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting residue was crystallized from ethyl acetate-isopropyl ether to give N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl]. -N-phenylglycine (210 mg, 52%) was obtained as a colorless powder.
[0082]
Melting point 121-124 ° C
NMR (CDCl Three ) Δ: 2.77 (2H, t, J = 6.8Hz), 3.43 (2H, t, J = 6.8Hz), 4.41 (2H, s), 6.93-7.03 (1H, m), 7.3-7.5 (5H, m )
MS: 394 (M + ), 376,245,244
[0083]
Example 5
i) 3- (4,5,7-trifluorobenzothiazol-2-yl) propionic acid (522 mg, 2 mmol) obtained in Example 3-i) and WSC.HCl (422 mg, 10 ml) in methylene chloride (10 ml) 2.2 mmol), N-benzylglycine ethyl ester (386 mg, 2 mmol) was added, and the mixture was stirred at room temperature for 15 hours. The reaction solution was washed with 7% hydrochloric acid and water in that order, the organic layer was dried, and the solvent was distilled off. The residue was purified on a silica gel column to give N-benzyl-N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] glycine ethyl ester (680 mg, 78%) as an oil. .
[0084]
NMR (CDCl Three ) Δ: 1.23 (3H, t, J = 7.1Hz), 3.16 (2.98) (2H, t, J = 6.6Hz), 3.53 (3.56) (2H, t, J = 6.6Hz), 4.04 (4.03) ( 2H, s), 4.16 (2H, q, J = 7.1Hz), 4.69 (4.67) (2H, s), 6.95-7.05 (1H, m), 7.2-7.4 (5H, m)
This product is considered to be a mixture of isomers E and Z, and its abundance ratio is estimated to be 2: 1 by NMR method.
MS: 436 (M + ), 244,216,192
[0085]
ii) N-benzyl-N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] glycine ethyl ester (650 mg, 1.5 mmol) was used for the synthesis of Example 4-ii) According to the same procedure, crystallization from isopropyl ether gave N-benzyl-N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] glycine (535 mg, 87%) as a colorless powder. .
[0086]
Melting point 144-146 ° C
NMR (CDCl Three ) Δ: 3.17 (2.98) (2H, t, J = 6.9Hz), 3.53 (3.56) (2H, t, J = 6.9Hz), 4.08 (4.06) (2H, s), 4.70 (4.67) (2H, s), 6.95-7.06 (1H, m), 7.15-7.45 (5H, m) This product is considered to be a mixture of isomers E and Z, and its abundance ratio is estimated to be 3: 1 by NMR method.
MS: 408 (M + ), 244,216,164
[0087]
Example 6
i) N-phenethylglycine ethyl ester (414 mg, 2 mmol) was operated according to the synthesis of Example 5-i) and crystallized from ethyl acetate-hexane to give N- [3- (4,5,7- Trifluorobenzothiazol-2-yl) propionyl] -N-phenethylglycine ethyl ester (680 mg, 76%) was obtained as a colorless powder.
[0088]
Melting point 78-81 ° C
NMR (CDCl Three ) Δ: 1.25 (1.27) (3H, t, J = 7.2Hz), 2.78-2.98 (4H, m), 3.39 (3.50) (2H, t, J = 6.9Hz), 3.65 (3.62) (2H, t , J = 6.9Hz), 4.02 (3.93) (2H, s), 4.17 (4.20) (2H, q, J = 7.2Hz), 6.95-7.05 (1H, m), 7.15-7.35 (5H, m) The product is considered to be a mixture of isomers E and Z, and the abundance ratio is estimated to be 7: 3 by NMR method.
MS: 450 (M +), 244, 216
[0089]
ii) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-phenethylglycine ethyl ester (225 mg, 0.5 mmol) was used for the synthesis of Example 4-ii) According to the same procedure, N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-phenethylglycine (185 mg, 88%) was obtained as a colorless powder.
[0090]
Melting point 139-140 ° C
NMR (CDCl Three ): 2.76-2.95 (4H, m), 3.38 (3.51) (2H, t, J = 6.9Hz), 3.67 (3.64) (2H, t, J = 6.9Hz), 4.06 (3.96) (2H, s ), 6.95-7.05 (1H, m), 7.1-7.35 (5H, m) This product is considered to be a mixture of isomers E and Z, and the abundance ratio is estimated to be 9: 2 by NMR method.
MS: 331,318,244
[0091]
Example 7
i) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-methylglycine ethyl ester (610 mg, obtained in Example 3-ii) in benzene (10 ml) 1.7 mmol) and phosphorus pentasulfide (378 mg, 1.7 mmol) were added and heated at 60 ° C. for 3 hours. After decanting the organic layer, the residue was extracted with ether. The entire organic layer was collected, washed with water, dried and the solvent was distilled off. The residue obtained was crystallized from hexane-isopropyl ether to give N- [3- (4,5,7-trifluorobenzothiazol-2-yl)- 1-Thioxopropionyl] -N-methylglycine
The ethyl ester (225 mg, 35%) was obtained as colorless crystals.
[0092]
Melting point 83-85 ° C
NMR (CDCl Three ) Δ: 1.28 (1.32) (3H, t, J = 6.9Hz), 3.33 (3.21) (2H, t, J = 6.9Hz), 3.45 (3.51) (3H, s), 3.75 (3.78) (2H, t, J = 6.9Hz), 4.24 (4.27) (2H, q, J = 6.9Hz), 4.76 (4.52) (2H, s), 6.96-7.06 (1H, m)
This product is considered to be a mixture of isomers E and Z, and the abundance ratio is estimated to be 4: 1 by NMR method.
MS: 376 (M + ), 259,227,216
[0093]
ii) N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropyl] -N-methylglycine ethyl ester in a mixed solvent of water (3 ml) -dioxane (6 ml) (190 mg, 0.5 mmol) was dissolved, and 2N sodium hydroxide (0.6 mmol) was added dropwise with stirring under ice cooling. After stirring at room temperature for 1 hour, the reaction solution was diluted with water and washed with ether. The aqueous layer was acidified with 7% hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting residue was crystallized from isopropyl ether to give N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxo. Propyl] -N-methylglycine (155 mg, 88%) was obtained as a light brown powder.
[0094]
Melting point 150-152 ° C
NMR (CDCl Three ) Δ: 3.32 (3.21) (2H, t, J = 6.8Hz), 3.45 (3.50) (3H, s), 3.74 (3.71) (2H, t, J = 6.8Hz), 4.75 (4.52) (2H, s), 7.07-7.17 (1H, m) This product is considered to be a mixture of isomers E and Z, and the abundance ratio is estimated to be 4: 1 by NMR method.
MS: 348 (M + ), 216
[0095]
Example 8
i) N-benzyl-N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] glycine ethyl ester (Example 5-i)) (700 mg, 1.6 mmol) N-benzyl-N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-- operated according to the synthesis method of Example 7-i) and crystallized from ethyl acetate-hexane. Thioxopropyl] glycine ethyl ester (330 mg, 46%) was obtained as a colorless powder.
[0096]
Melting point 86-88 ° C
NMR (CDCl Three ) Δ: 1.23 (1.26) (3H, t, J = 7.2Hz), 3.43 (3.27) (2H, t, J = 6.7Hz), 3.79 (3.85) (2H, t, J = 6.7Hz), 4.19 ( 4.20) (2H, q, J = 7.2Hz), 4.62 (4.45) (2H, s), 5.03 (5.39) (2H, s), 5.94-7.04 (1H, m), 7.1-7.5 (5H, m) This product is considered to be a mixture of isomers E and Z, and the abundance ratio is estimated to be 3: 1 by NMR method.
MS: 452 (M + ), 259,227,216
[0097]
ii) Using N-benzyl-N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropyl] glycine ethyl ester (220 mg, 0.5 mmol), Example 7- ii) N-benzyl-N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropyl, which is operated according to the synthesis method and crystallized from ethyl acetate-hexane Glycine (170 mg, 80%) was obtained as a colorless powder.
[0098]
Melting point 138-140 ° C
NMR (CDCl Three ) Δ: 3.44 (3.29) (2H, t, J = 6.8Hz), 3.80 (3.84) (2H, t, J = 6.8Hz), 4.68 (4.51) (2H, s), 5.03 (5.39) (2H, s), 6.96-7.06 (1H, m), 7.1-7.5 (5H, m) This product is considered to be a mixture of isomers E and Z, and its abundance ratio is estimated to be 4: 1 by NMR method.
MS: 424 (M + ), 408,391,315
[0099]
Example 9
i) N-phenylglycine methyl ester (2.02 g, 10 mmol) and pyridine (1.58 g, 20 mmol) were added to methylene chloride (20 ml) and stirred. To this mixture, a solution of chloroacetyl chloride (1.13 g, 10 mmol) in methylene chloride (3 ml) was added dropwise at room temperature, and stirring was continued for 15 hours. The reaction solution was washed with water, dried and the solvent was distilled off. The residue was crystallized from isopropyl ether to give N-chloroacetyl-N-phenylglycine methyl ester (1.67 g, 70%) as a colorless powder.
TLC (CH 2 Cl 2 : MeOH = 19: 1) Rf = 0.75
[0100]
ii) 4,5,7-trifluoro-2-mercaptobenzothiazol (442 mg, 2 mmol) and N-chloroacetyl-N-phenylglycine methyl ester (479 mg, 2 mmol), carbonic acid in DMSO (6 ml) Calcium (276 mg, 2 mmol) and potassium iodide (20 mg) were added, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was diluted with water, acidified with 7% hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The residue obtained was crystallized from isopropyl ether to give N- [2- (4,5,7-trifluorobenzothiazol-2-ylthio) acetyl] -N. -Phenylglycine methyl ester (700 mg, 82%) was obtained as a colorless powder.
[0101]
Melting point: 145-147 ° C
NMR (CDCl Three ) Δ: 3.74 (3H, s), 4.08 (2H, s), 4.44 (2H, s), 6.88-6.99 (1H, m), 7.39-7.60 (5H, m)
[0102]
Example 10
i) Dimethylsulfoxide (DMSO) (15 ml) to α-chloroacetanilide (850 mg, 5 mmol) and 4,5,7-trifluoro-2-mercaptobenzothiazole (1.1 g, 5 mmol), potassium carbonate (690 mg, 5 mmol), Potassium iodide (50 mg) was added, and the mixture was stirred at room temperature for 4 hours. The reaction mixture was diluted with water, acidified with 7% hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting crude product was purified with a silica gel column to give 2- (4,5,7-trifluorobenzothiazol-2-ylthio) -N-phenylacetamide (0.97 g). , 52%).
[0103]
NMR (CDCl Three ) Δ: 4.09 (2H, s), 6.99-7.10 (1H, m), 7.10 (1H, t), 7.32 (2H, dd), 7.57 (2H, d), 9.55 (1H, bs)
[0104]
ii) 2- (4,5,7-trifluorobenzothiazol-2-ylthio) -N-phenylacetamide (354 mg, 1 mmol) and bromoacetic acid (278 mg, 2 mmol), potassium carbonate (414 mg, 3 mmol) in DMSO (5 ml) ) And stirred at room temperature for 5 hours under a nitrogen stream. The reaction was diluted with water and washed with ethyl acetate. The aqueous layer was acidified with 7% hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting crude crystals were recrystallized from ethyl acetate-hexane to give N- [2- (4,5,7-trifluorobenzothiazol-2-ylthio) acetyl]- N-phenylglycine (80 mg, 19%) was obtained as slightly yellow crystals.
[0105]
Melting point 174-176 ° C
NMR (CDCl Three ) Δ: 3.40 (2H, s), 4.10 (2H, s), 6.71-6.82 (1H, m), 7.40-7.60 (5H, m)
MS: 412 (M + ), 394,368,367
[0106]
Example 11
2-Amino-3,4,6-trifluorothiophenol (200 mg, 1.1 mmol) was dissolved in N-methylpyrrolidone (NMP) (1 ml) under a nitrogen stream, and glutaric anhydride (127 mg, 1.1 mmol) was dissolved in this solution. Was slowly added at room temperature and stirred at 100 ° C. for 6 hours. The reaction mixture was allowed to cool naturally, diluted with water and extracted with ethyl acetate. The organic layer was washed with sodium bicarbonate, the alkaline layer was acidified with 10% hydrochloric acid and extracted again with ethyl acetate. The residue obtained by evaporating the solvent after drying all organic layers was recrystallized from acetonitrile to give 4- (4,5,7-trifluorobenzothiazol-2-yl) butanoic acid (133 mg, 44%). It was.
[0107]
Melting point 113-114 ° C
NMR (CDCl Three ) Δ: 2.26 (2H, tt, J = 7.6Hz and 7.3Hz), 2.56 (2H, t, J = 7.3Hz), 3.25 (2H, t, J = 7.6Hz), 6.9-7.1 (1H, m)
MS: 275 (M + ), 257,216
[0108]
Example 12
Adipic acid (10.0 g, 68 mmol) was heated to reflux in acetic anhydride (50 ml) for 3 hours. Excess acetic anhydride was removed under reduced pressure to obtain adipic anhydride (7.4 g). 2-Amino-3,4,6-trifluorothiophenol (200 mg, 1.1 mmol) was dissolved in NMP (1 ml) under a nitrogen stream, and adipic anhydride (143 mg, 1.1 mmol) was slowly added to this solution at 100 ° C. And stirred for 6 hours. The reaction mixture was allowed to cool naturally, diluted with water and extracted with ethyl acetate. The organic layer was extracted with aqueous sodium hydrogen carbonate solution, the alkaline layer was acidified with 10% hydrochloric acid, and extracted again with ethyl acetate. The residue obtained by evaporating the solvent after drying all organic layers was recrystallized from acetonitrile to give 5- (4,5,7-trifluorobenzothiazol-2-yl) pentanoic acid (81 mg, 26%). It was.
[0109]
Melting point 122-124 ° C
NMR (CDCl Three ) Δ: 1.7-1.9 (1H, m), 1.9-2.2 (1H, m), 2.45 (2H, t, J = 7.2Hz), 3.18 (2H, t, J = 7.4Hz), 6.9-7.1 (1H , m)
MS: 289 (M + ), 216
[0110]
Example 13
i) 2-amino-3,4,6-trifluorothiophenol hydrochloride (647 mg, 3 mmol) and 6-cyanohexanoic acid ethyl ester (507 mg, 3 mmol), ethanol (0.5 ml) are added to xylene (6 ml), The mixture was heated to reflux for 60 hours under a nitrogen stream. The reaction mixture was washed with water, dried, and the solvent was distilled off. The resulting residue was purified with a silica gel column to give 6- (4,5,7-trifluorobenzothiazol-2-yl) hexanoic acid.
The ethyl ester (395 mg, 40%) was obtained as an oil.
[0111]
NMR (CDCl Three ) Δ: 1.25 (3H, t, J = 7.1Hz), 1.46-1.98 (6H, m), 2.33 (2H, t, J = 7.3Hz), 3.15 (2H, t, J = 7.4Hz), 4.12 ( 2H, q, J = 7.1Hz), 6.95-7.06 (1H, m)
MS: 331 (M + ), 203
[0112]
ii) 6- (4,5,7-trifluorobenzothiazol-2-yl) hexanoic acid ethyl ester (390 mg, 1.18 mmol) and 2N sodium hydroxide (0.7 ml, 1.4 mmol) were added to methanol (3 ml). And stirred at room temperature for 1 hour. The reaction mixture was diluted with water and washed with ether, and the aqueous layer was acidified with 7% hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water, dried and evaporated to give a residue, which was crystallized from hexane-isopropyl ether to give 6- (4,5,7-trifluorobenzothiazol-2-yl) hexanoic acid (170 mg, 48%) was obtained as a colorless powder.
[0113]
84-86 ° C
NMR (CDCl Three ) Δ: 1.45-1.98 (6H, m), 2.39 (2H, t, J = 7.3Hz), 3.16 (2H, t, J = 7.8Hz), 6.95-7.06 (1H, m)
MS: 303 (M + ), 203,167
[0114]
Example 14
i) Suberic acid monomethyl ester (500 mg, 2.7 mmol) was dissolved in benzene (5 ml), thionyl chloride (632 mg, 5.4 mmol) was slowly added at room temperature, and the mixture was heated to reflux for 2 hours. Excess thionyl chloride was distilled off under reduced pressure, and then slowly added to a solution of 2-amino-3,4,6-trifluorothiophenol (500 mg, 2.8 mmol) in NMP (5 ml) at room temperature at 100 ° C. The mixture was heated and stirred for 23 hours under an air stream. The reaction mixture was allowed to cool naturally, diluted with water and extracted with ethyl acetate. The residue obtained by evaporating the solvent after drying the organic layer was purified with a silica gel column, and 7- (4,5,7-trifluorobenzothiazol-2-yl) heptanoic acid methyl ester (407 mg, 46%) was oily. Obtained as a thing.
[0115]
NMR (CDCl Three ) Δ: 1.2-1.6 (4H, m), 1.6-1.8 (2H, m), 1.8-2.0 (2H, m), 2.31 (2H, br.t, J = 5.5Hz), 3.14 (2H, br. t, J = 6.3Hz), 3.67 (3H, s), 6.9-7.1 (1H, m) MS: 331 (M + ), 258,216,202
[0116]
ii) 7- (4,5,7-trifluorobenzothiazol-2-yl) heptanoic acid methyl ester (407 mg, 1.2 mmol) was dissolved in a mixed solvent of water (7 ml) -dioxane (7 ml) and stirred at room temperature. Normal sodium hydroxide (4 ml) was added dropwise, and the mixture was stirred at room temperature for 5 hours. Further, 2N sodium hydroxide (2 ml) was added dropwise and stirred for 1 hour. The reaction mixture was diluted with water and extracted with ethyl acetate. The aqueous layer was acidified with hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting residue was crystallized from isopropyl ether to give 7- (4,5,7-trifluorobenzothiazol-2-yl) heptanoic acid (189 mg, 50% ) Was obtained as a colorless powder.
[0117]
Melting point 116-118 ° C
NMR (CDCl Three ) Δ: 1.3-1.5 (4H, m), 1.5-1.8 (2H, m), 1.8-2.0 (2H, m), 2.37 (2H, t, J = 7.4Hz), 3.15 (2H, t, J = 7.8Hz), 6.9-7.1 (1H, m)
MS: 317 (M + ), 258,216,203
[0118]
Example 15
i) Sodium hydride (60% in oil) (220 mg, 5.5 mmol) was suspended in DMF (2 ml) and stirred in a water bath. A solution of 4,5,7-trifluoro-2-mercaptobenzothiazole (1.1 g, 5 mmol) in DMF (5 ml) was added dropwise under ice cooling, and stirring was continued at room temperature for 30 minutes. The reaction mixture was cooled again in a water bath, and a solution of ethyl 5-bromopentanoate (1.05 g, 5 mmol) in DMF (3 ml) was added dropwise, followed by stirring at room temperature for 2 hours. The reaction mixture was diluted with water, acidified with 7% hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and the solvent was distilled off. The residual oil was purified with a silica gel column to give 5- (4,5,7-trifluorobenzothiazol-2-ylthio) pentanoic acid ethyl ester (1.1 g, 64%) as an oil.
[0119]
NMR (CDCl Three ) Δ: 1.26 (3H, t, J = 7Hz), 1.75-1.95 (4H, m), 2.38 (2H, t, J = 6.9Hz), 3.42 (2H, t, J = 6.9Hz), 4.15 (2H , q, J = 7.1Hz), 6.89-6.98 (1H, m) MS: 349 (M + ), 303,247,221
[0120]
ii) 5- (4,5,7-trifluorobenzothiazol-2-ylthio) pentanoic acid ethyl ester (590 mg, 2 mmol) in a mixture of dioxane (5 ml), methanol (2.5 ml) and water (2.5 ml) Sodium hydroxide (100 mg, 2.5 mmol) was added and stirred at room temperature for 15 hours. The reaction mixture was diluted with water and washed with ether. The aqueous layer was acidified with 7% hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and evaporated. The residual oil was purified by silica gel column and crystallized from hexane-isopropyl ether to give 5- (4,5,7-trifluorobenzothiazol-2-ylthio) pentanoic acid (170 mg, 31%) as a colorless powder. Obtained.
[0121]
Melting point 56-58 ° C
NMR (CDCl Three ) Δ: 1.78-1.99 (4H, m), 2.45 (2H, t, J = 7.1Hz), 3.43 (2H, t, J = 6.9Hz), 6.88-6.99 (1H, m)
MS: 321 (M + ), 248,234,221
[0122]
Example 16
i) 1,3-phenylenediacetic acid monoethyl ester (1.48 g, 6.7 mmol) was dissolved in benzene (15 ml), and thionyl chloride (1.6 g, 13.4 mmol) was added dropwise at room temperature. The reaction solution was heated to reflux for 2 hours, and then the solvent was distilled off under reduced pressure to obtain acid chloride. The acid chloride was dissolved in NMP (2.0 ml) and stirred while cooling with ice in a nitrogen stream. 2-Amino-4,6-difluorothiophenol (1.00 g, 6.2 mmol) was dissolved in NMP (2.0 ml) and added dropwise, followed by stirring overnight. Triethylamine (0.63 g, 6.2 mmol) was added to the ice-cooled reaction solution again, and the mixture was further stirred at 100 ° C. for 6 hours. The mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with aqueous sodium hydrogen carbonate and saturated brine, dried and evaporated under reduced pressure to give an oily residue. The oily residue was purified with a silica gel column and crystallized from isopropyl ether to give 3-[(5,7-difluorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (0.690 g, 32%).
[0123]
Melting point 66-67 ° C
NMR (CDCl Three ) δ: 1.24 (3H, t, J = 7.3Hz), 3.62 (2H, s), 4.15 (2H, q, J = 7.3Hz), 4.42 (2H, s), 7.2-7.4 (4H, m), 6.89 (1H, ddd, J = 2.3,9.2 and 9.2Hz), 7.51 (1H, bdd, J = 2.3 and 9.2Hz).
MS: 347 (M + ), 318, 274.
[0124]
ii) 3-[(5,7-Difluorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (610 mg, 1.8 mmol) was operated according to the synthesis of Example 4-ii) and crystallized from isopropyl ether. To give 3-[(5,7-difluorobenzothiazol-2-yl) methyl] phenylacetic acid (430 mg, 75%) as a white powder.
[0125]
Melting point 102-104 ° C
NMR (CDCl Three ) δ: 3.66 (2H, s), 4.42 (2H, s), 6.88 (1H, ddd, J = 2.3, 9.2 and 9.2Hz), 7.2-7.4 (4H, m), 7.51 (1H, bdd, J = 2.3 and 8.9Hz).
MS: 319 (M + ), 275, 259.
[0126]
Example 17
i) Example 16-i using 1,3-phenylenediacetic acid monoethyl ester (2.87 g, 10.5 mmol) and 2-amino-5,6-difluorothiophenol (2.0 g, 11.7 mmol) ) To give 3-[(6,7-difluorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (1.89 g, 44%) as a pale yellow oil.
[0127]
NMR (CDCl Three ) δ: 1.24 (3H, t, J = 7.3Hz), 3.62 (2H, s), 4.15 (2H, q, J = 7.3Hz), 4.40 (2H, s), 7.2-7.4 (4H, m), 7.6-7.8 (1H, m). MS: 347 (M + ), 318, 301, 274.
[0128]
ii) 3-[(6,7-difluorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (1.2 g, 3.5 mmol) was used according to the synthesis of Example 4-ii) and isopropyl ether To give 3-[(6,7-difluorobenzothiazol-2-yl) methyl] phenylacetic acid (1.0 g, 90%) as a colorless powder.
[0129]
Melting point 109-111 ° C
NMR (CDCl Three ) δ: 3.66 (2H, s), 4.41 (2H, s), 7.2-7.4 (5H, m), 7.6-7.8 (1H, m).
MS: 319 (M + ), 275, 136.
[0130]
Example 18
i) Examples using 1,4-phenylenediacetic acid monoethyl ester (510 mg, 2.1 mmol) and 2-amino-3,4,6-trifluorothiophenol hydrochloride (2.0 g, 11.7 mmol) According to the synthesis of 16-i), 4-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (270 mg, 35%) was obtained as a colorless powder.
[0131]
Melting point 75-77 ° C
NMR (CDCl Three ) δ: 1.26 (3H, t, J = 7.1), 3.62 (2H, s), 4.16 (2H, q, J = 7.1Hz), 4.44 (2H, s), 6.9-7.1 (1H, m), 7.29 (2H, br.d, J = 8.6Hz), 7.34 (2H, br.d, J = 8.6Hz). MS: 365 (M + ), 292, 146, 104.
[0132]
ii) 4-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (250 mg, 0.7 mmol) was used according to the synthesis method of Example 4-ii). Crystallization from ethyl acetate gave 4-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid (98 mg, 42%) as colorless plate crystals.
[0133]
Melting point 173-175 ° C.
NMR (CDCl Three ) δ: 3.67 (2H, s), 4.45 (2H, s), 6.9-7.1 (1H, m), 7.30 (2H, br.d, J = 8.6Hz), 7.35 (2H, br.d, J = 8.6Hz).
MS: 337 (M + ), 292, 267.
[0134]
Example 19
i) Using of 1,3-phenylenediacetic acid monoethyl ester (847 mg, 3.3 mmol) and 2-amino-3,4-dichlorothiophenol hydrochloride (831 mg, 4.3 mmol), Example 16-i) According to the synthesis, 3-[(4,5-dichlorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (706 mg, 56%) was obtained as a pale yellow oil.
[0135]
NMR (CDCl Three ) δ: 1.24 (3H, t, J = 7.3Hz), 4.48 (2H, s), 3.61 (2H, s), 4.15 (2H, q, J = 7.3Hz), 7.2-7.4 (4H, m), 7.41 (1H, d, J = 8.6Hz), 7.58 (1H, d, J = 8.6Hz). MS: 379 (M + ), 306, 291.
[0136]
ii) 3-[(4,5-dichlorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (647 mg, 1.7 mmol) was used according to the synthesis of Example 4-ii) and from methanol Crystallization gave 3-[(4,5-dichlorobenzothiazol-2-yl) methyl] phenylacetic acid (477 mg, 80%) as needle crystals.
[0137]
150-152 ° C
NMR (CDCl Three ) δ: 3.66 (2H, s), 4.48 (2H, s), 7.2-7.4 (4H, m), 7.57 (1H, d, J = 8.6Hz), 7.58 (1H, d, J = 8.6Hz).
MS: 351 (M + ), 307, 291, 152.
[0138]
Example 20
i) 1,2-phenylenediacetic acid (2.0 g, 10.3 mmol) was dissolved in benzene (40 ml), and thionyl chloride (6.20 g, 51.8 mmol) was slowly added at room temperature. The reaction solution was heated to reflux for 2 hours, and after cooling, the solvent was distilled off under reduced pressure. The obtained acid chloride (2.38 g, 10.3 mmol) was dissolved in NMP (10 ml) and stirred under ice cooling. 2-Amino-3,4,6-trifluorothiophenol (0.615 g, 3.4 mmol) was dissolved in NMP (10 ml), added to the reaction solution, stirred for 1 hour under a nitrogen stream, and then ethanol (10 ml). Was added. Excess ethanol was distilled off under reduced pressure, and the mixture was further stirred at 100 ° C. for 2 hours. The mixture was diluted with water and extracted with ethyl acetate. The organic layer was dried and concentrated under reduced pressure to obtain a residue. The residue was purified with a silica gel column to give 2-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (0.503 g, 41%) as a pale yellow oil.
[0139]
NMR (CDCl Three ) δ: 1.20 (3H, t, J = 7.3Hz), 3.71 (2H, s), 4.08 (2H, q, J = 7.3Hz), 4.56 (2H, s), 6.9-7.1 (1H, m), 7.3-7.4 (4H, m). MS: 365 (M + ), 319, 290.
[0140]
ii) 2-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid ethyl ester (445 mg, 1.2 mmol) was operated according to the synthesis of Example 4-ii) Crystallization from chloroform-hexane gave 2-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] phenylacetic acid (209 mg, 48%) as colorless needle crystals.
[0141]
Melting point 124-126 ° C
NMR (CDCl Three ) δ: 3.75 (2H, s), 4.52 (2H, s), 6.9-7.0 (1H, m), 7.2-7.4 (4H, m).
MS: 337 (M + ), 319, 290.
[0142]
Example 21
1,3-phenylenediacetic acid (1.5 g, 7.7 mmol) was dissolved in benzene (30 ml), and thionyl chloride (3.28 g, 27.6 mmol) was slowly added at room temperature. The reaction solution was heated to reflux for 2 hours, and then the solvent was distilled off under reduced pressure. The obtained acid chloride (1.05 g, 4.6 mmol) was dissolved in N-methylpyrrolidone (NMP) (1.5 ml) and stirred under ice cooling. 2-amino-3,4-difluorothiophenol (1.11 g, 6.9 mmol) and triethylamine (0.70 g, 6.9 mmol) were added to the reaction solution, and then stirred at 100 ° C. for 2 hours under a nitrogen stream. . After dilution with water and extraction with ethyl acetate, the organic layer was dried and concentrated under reduced pressure to give a residue. This residue was purified on a silica gel column. Further, crystallization from isopropyl ether gave 3-[(4,5-difluorobenzothiazol-2-yl) methyl] phenylacetic acid (0.245 g, 17%) as a colorless powder.
[0143]
Melting point 154-155 ° C
NMR (CDCl Three ) δ: 3.66 (2H, s), 4.45 (2H, s), 7.1-7.4 (5H, m), 7.4-7.5 (1H, m).
MS: 319 (M + ), 275, 156.
[0144]
Example 22
i) 1,3-biscyanomethyl-5-methylbenzene (2.89 g, 17 mmol) and 2-amino-3,4,6-trifluorothiophenol hydrochloride (3.66 g, 17 mmol) were added to absolute ethanol. The mixture was heated at 170 ° C. for 15 hours in a nitrogen atmosphere in an autoclave. After the reaction, the solvent was distilled off. The residue was purified with a silica gel column and recrystallized from ethyl acetate-hexane to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-methylphenyl. Acetonitrile (1.86 g, 33%) was obtained.
[0145]
Melting point 110-113 ° C
NMR (CDCl Three ) δ: 2.36 (3H, s), 3.71 (2H, s), 4.42 (2H, s), 6.95-7.05 (1H, m), 7.10-7.14 (3H, m).
MS: 332 (M + ), 305, 290.
[0146]
ii) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-methylphenylacetonitrile (420 mg, 1.27 mmol) was heated under reflux for 2 hours in 50% sulfuric acid, Diluted with and extracted with ethyl acetate. The organic layer was washed with water, dried and the solvent was distilled off. The resulting crude crystals were recrystallized from ethanol-hexane to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5- Methylphenylacetic acid (290 mg, 87%) was obtained as a colorless powder.
[0147]
Melting point 127-129 ° C
NMR (CDCl Three ) δ: 2.34 (3H, s), 3.62 (2H, s), 4.41 (2H, s), 7.0-7.1 (4H, m).
MS: 351 (M + ), 307.
[0148]
Example 23
i) Synthesis of Example 22-i) using 1,3-biscyanomethyl-5-methylbenzene (680 mg, 4 mmol) and 2-amino-3,4-difluorothiophenol hydrochloride (888 mg, 4.5 mmol) And recrystallized from ethyl acetate-hexane to give 3-[(4,5-difluorobenzothiazol-2-yl) methyl] -5-methylphenylacetonitrile (210 mg, 17%) as a colorless powder. Obtained.
[0149]
84-86 ° C
NMR (CDCl Three ) δ: 2.36 (3H, s), 3.72 (2H, s), 4.42 (2H, s), 7.09-7.28 (4H, m), 7.45-7.50 (1H, m).
MS: 314 (M + ), 287.
[0150]
ii) 3-[(4,5-difluorobenzothiazol-2-yl) methyl] -5-methylphenylacetonitrile (400 mg, 1.27 mmol) was used according to the synthesis of Example 22-ii) and ethanol Recrystallization from hexane gave 3-[(4,5-difluorobenzothiazol-2-yl) methyl] -5-methylphenylacetic acid (340 mg, 80%) as a colorless powder.
[0151]
Melting point 139-141 ° C
NMR (CDCl Three ) δ: 2.33 (3H, s), 3.62 (2H, s), 4.40 (2H, s), 7.0-7.5 (5H, m).
MS: 333 (M + ), 288, 272.
[0152]
Example 24
i) Example 22-i) using 1,3-biscyanomethyl-2-chlorobenzene (870 mg, 4.4 mmol) and 2-amino-3,4-difluorothiophenol hydrochloride (956 mg, 4.8 mmol) According to the synthesis, recrystallization from ethyl acetate-hexane gave 3-[(4,5-difluorobenzothiazol-2-yl) methyl] -2-chlorophenylacetonitrile (295 mg, 20%) as a colorless powder. It was.
[0153]
Melting point 152-154 ° C
NMR (CDCl Three ) δ: 3.89 (2H, s), 4.64 (2H, s), 7.22-7.55 (5H, m).
MS m / z: 334 (M + ), 299, 259.
[0154]
ii) 3-[(4,5-Difluorobenzothiazol-2-yl) methyl] -2-chlorophenylacetonitrile (400 mg, 1.20 mmol) was used according to the synthesis of Example 22-ii) and acetonitrile- Recrystallization from ethanol gave 3-[(4,5-difluorobenzothiazol-2-yl) methyl] -2-chlorophenylacetic acid (380 mg, 90%) as a colorless powder.
[0155]
Melting point 198 ° C. (dec.)
NMR (CDCl Three ) δ: 3.66 (2H, s), 4.51 (2H, s), 7.15-7.48 (5H, m).
MS: 318 (M + -Cl), 272.
[0156]
Example 25
i) Example 22-i using 1,3-biscyanomethyl-2-chlorobenzene (953 mg, 5 mmol) and 2-amino-3,4,6-trifluorothiophenol hydrochloride (1,078 mg, 10 mmol) ) And crystallized from ethyl acetate-hexane to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -2-chlorophenylacetonitrile (410 mg, 23%). Obtained as a colorless powder.
[0157]
Melting point: 148-151 ° C
NMR (CDCl Three ) δ: 3.89 (2H, s), 4.64 (2H, s), 7.0-7.1 (1H, m), 7.3-7.6 (3H, m).
MS: 352 (M + ), 317, 277.
[0158]
ii) Operation according to the synthesis of Example 22-ii) using 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -2-chlorophenylacetonitrile (370 mg, 1.05 mmol). Crystallization from ethanol-hexane gave 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -2-chlorophenylacetic acid (290 mg, 87%).
[0159]
Melting point 156-158 ° C
NMR (CDCl Three ) δ: 3.89 (2H, s), 4.64 (2H, s), 6.96-7.05 (1H, m), 7.3-7.4 (3H, m).
MS: 336 (M + -Cl), 290.
[0160]
Example 26
i) 1,3-biscyanomethyl-5-fluorobenzene (1.6 g, 9.2 mmol) and 2-amino-3,4,6-trifluorothiophenol hydrochloride (1.98 g, 9.2 mmol). And was operated according to the synthesis of Example 22-i) and crystallized from isopropyl ether to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-fluorophenylacetonitrile ( 868 mg, 28%) was obtained as a colorless powder.
[0161]
Melting point 91-94 ° C
NMR (CDCl Three ) δ: 3.77 (2H, s), 4.46 (2H, s), 6.9-7.1 (3H, m), 7.14 (1H, bs).
MS: 336 (M + ), 309, 295.
[0162]
ii) Operation according to the synthesis of Example 22-ii) using 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-fluorophenylacetonitrile (600 mg, 2.4 mmol). And recrystallized from isopropyl ether to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-fluorophenylacetic acid (717 mg, 85%) as a colorless powder.
[0163]
Melting point 139-142 ° C
NMR (CDCl Three ) δ: 3.66 (2H, s), 4.44 (2H, s), 6.9-7.1 (3H, m), 7.08 (1H, bs).
MS: 355 (M + ), 311, 295.
[0164]
Example 27
i) Example 22 with 1,3-biscyanomethyl-5-chlorobenzene (650 mg, 3.4 mmol) and 2-amino-3,4,6-trifluorothiophenol hydrochloride (735 mg, 3.4 mmol) -I) was operated according to the synthesis and crystallized from isopropyl ether to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-chlorophenylacetonitrile (333 mg, 28%). Obtained as a colorless powder.
[0165]
Melting point 114-117 ° C
NMR (CDCl Three ) δ: 3.75 (2H, s), 4.45 (2H, s), 6.9-7.1 (1H, s), 7.24 (1H, bs), 7.31 (1H, bs), 7.35 (1H, bs).
MS: 352 (M + ), 325, 277.
[0166]
ii) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-chlorophenylacetonitrile (300 mg, 0.8 mmol) was used according to the synthesis of Example 22-ii). And recrystallized from isopropyl ether to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-chlorophenylacetic acid (244 mg, 77%) as a colorless powder.
[0167]
Melting point 177-179 ° C
NMR (CDCl Three ) δ: 3.64 (2H, s), 4.43 (2H, s), 6.9-7.1 (1H, m), 7.19 (1H, bs), 7.26 (1H, bs), 7.29 (1H, bs).
MS: 371 (M + ), 327, 290.
[0168]
Example 28
i) 1,3-biscyanomethyl-5-bromobenzene (1.9 g, 8.1 mmol) and 2-amino-3,4,6-trifluorothiophenol hydrochloride (1.74 g, 8.1 mmol) And was operated according to the synthesis of Example 22-i) and crystallized from isopropyl ether to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-bromophenylacetonitrile ( 532 mg, 18%) was obtained as a colorless powder.
[0169]
Melting point 119-124 ° C
NMR (CDCl Three ) δ: 3.74 (2H, s), 4.44 (2H, s), 6.9-7.1 (1H, m), 7.29 (1H, bs), 7.47 (1H, bs), 7.50 (1H, bs).
MS: 396 (M + ), 371, 277.
[0170]
ii) Operation according to the synthesis of Example 22-ii) using 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-bromophenylacetonitrile (500 mg, 1.2 mmol). And recrystallized from isopropyl ether to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-bromophenylacetic acid (372 mg, 71%) as a colorless powder.
[0171]
Melting point 183-185 ° C
NMR (CDCl Three ) δ: 3.64 (2H, s), 4.42 (2H, s), 6.9-7.1 (1H, m), 7.24 (1H, bs), 7.42 (1H, bs), 7.45 (1H, bs).
MS: 415 (M + ), 371, 290.
[0172]
Example 29
i) Examples using 1,3-biscyanomethyl-5-iodobenzene (420 mg, 1.49 mmol) and 2-amino-3,4,6-trifluorothiophenol hydrochloride (321 mg, 1.49 mmol) 22-i) and was crystallized from ethyl acetate-hexane to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-iodophenylacetonitrile (240 mg, 36%) as a colorless powder.
[0173]
Melting point 127-130 ° C
NMR (CDCl Three ) δ: 3.72 (2H, s), 4.41 (2H, s), 7.0-7.1 (1H, m), 7.32 (1H, bs), 7.66 (1H, bs), 7.70 (1H, bs).
MS: 444 (M + ), 417, 277.
[0174]
ii) Operation according to the synthesis of Example 22-ii) using 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-iodophenylacetonitrile (240 mg, 0.54 mmol). And recrystallized from ethyl acetate-hexane to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-iodophenylacetic acid (163 mg, 65%) as a colorless powder. It was.
[0175]
Melting point 171-173 ° C.
NMR (CDCl Three ) δ: 3.61 (2H, s), 4.40 (2H, s), 7.0-7.1 (1H, m), 7.27 (1H, bs), 7.62 (1H, bs), 7.65 (1H, bs).
MS: 463 (M + ), 419, 290.
[0176]
Example 30
i) Performed with 3,5-biscyanomethylbenzoic acid (1,819 mg, 8.5 mmol) and 2-amino-3,4,6-trifluorothiophenol hydrochloride (2,015 mg, 9.3 mmol) Methyl 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-cyanomethylbenzoate, operated according to the synthesis of Example 22-i) and crystallized from ethyl acetate-hexane ( 470 mg, 15%) was obtained as a colorless powder.
[0177]
Melting point 130-132 ° C
NMR (CDCl Three ) δ: 3.82 (2H, s), 3.94 (3H, s), 4.53 (2H, s), 7.56 (1H, s), 7.98 (1H, s), 8.03 (1H, s).
MS: 376 (M + ), 349, 316, 277.
[0178]
ii) 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-cyanomethylbenzoate using methyl (376 mg, 1 mmol) and operating according to the synthesis of Example 22-ii). And recrystallized from ethyl acetate-isopropyl ether to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-carboxymethylbenzoic acid (170 mg, 45%) as a colorless powder. Obtained.
[0179]
Melting point 203-205 ° C
NMR (CDCl Three ) δ: 3.65 (2H, s), 4.51 (2H, s), 7.0-7.1 (1H, m), 7.51 (1H, s), 7.95 (2H, s).
MS: 381 (M + ), 335, 319, 290.
[0180]
Example 31
i) Performed with 1,3-biscyanomethyl-5-dimethylaminobenzene (440 mg, 2.2 mmol) and 2-amino-3,4,6-trifluorothiophenol hydrochloride (474 mg, 2.2 mmol) Operate according to the synthesis of Example 22-i) and crystallize from isopropyl ether to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-dimethylaminophenylacetonitrile (234 mg, 30%) as a colorless powder.
[0181]
Melting point 99-100 ° C
NMR (CDCl Three ) δ: 2.98 (6H, s), 3.70 (2H, s), 4.39 (2H, s), 6.58 (1H, s), 6.62 (2H, s), 6.9-7.0 (1H, m).
MS m / z: 361 (M + ).
[0182]
ii) According to the synthesis of Example 22-ii) using 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-dimethylaminophenylacetonitrile (200 mg, 0.55 mmol). And recrystallized from ethanol-hexane to give 3-[(4,5,7-trifluorobenzothiazol-2-yl) methyl] -5-dimethylaminophenylacetic acid (158 mg, 75%) as a colorless powder. Obtained.
[0183]
Melting point 114-115 ° C
NMR (CDCl Three ) δ: 2.96 (6H, s), 3.61 (2H, s), 4.39 (2H, s), 6.58 (1H, s), 6.61 (1H, s), 6.64 (1H, s), 6.9-7.0 (1H) , m).
MS: 380 (M + ), 336, 319, 290.
[0184]
Example 32
i) Synthesis of Example 7-i) using N- [3- (4,5,7-trifluorobenzothiazol-2-yl) propionyl] -N-phenylglycine methyl ester (365 mg, 0.9 mmol) And purified by silica gel column, and N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropionyl] -N-phenylglycine methyl ester (310 mg, 73%) was obtained as an oil.
[0185]
NMR (CDCl Three ) δ: 3.02 (2H, t, J = 6.9Hz), 3.69 (2H, t, J = 6.9Hz), 3.75 (3H, s), 4.90 (2H, s), 6.9-7.0 (1H, m), 7.3-7.5 (5H, m). MS: 424 (M + ), 316, 216.
[0186]
ii) Example 4-using N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropionyl] -N-phenylglycine methyl ester (300 mg, 0.7 mmol) Operated according to the synthesis of ii) and crystallized from isopropyl ether to give N- [3- (4,5,7-trifluorobenzothiazol-2-yl) -1-thioxopropionyl] -N-phenylglycine (235 mg , 82%) as a light brown powder.
[0187]
Melting point 173-176 ° C
NMR (CDCl Three ) δ: 3.02 (2H, t, J = 6.9Hz), 3.69 (2H, t, J = 6.9Hz), 4.94 (2H, s), 6.9-7.0 (1H, m), 7.3-7.5 (5H, m ).
MS: 410 (M + ), 245, 217.
[0188]
Formulation Example 1
Formulation example in one tablet (total amount 200 mg): Compound of the present invention 50 mg, crystalline cellulose 100 mg, lactose 48 mg, corn starch 50 mg, magnesium stearate 2 mg
About the said prescription, the tablet was manufactured in accordance with the well-known method of the Japanese Pharmacopoeia (Japan Pharmacopoeia XII) formulation general rules.
[0189]
Formulation Example 2
Formulation example in one capsule (total amount 200 mg): Compound of the present invention 50 mg, lactose 120 mg, corn starch 28 mg, magnesium stearate 2 mg
About the said prescription, the capsule was obtained in accordance with the well-known method of the Japanese Pharmacopoeia (Japan Pharmacopoeia XII) formulation general rules.
[0190]
Formulation Example 3
Formulation example in 1 ampule for injection (total amount 2 ml): 5 mg of the present compound, 3 mg of sodium chloride, appropriate amount of known pH adjusting agent (adjusted to pH 6.5 to 7.5), methylparaben 1 mg, appropriate amount of water for injection
About the said prescription, the injection was obtained in accordance with the well-known method of the Japanese Pharmacopoeia (Japan Pharmacopoeia XII) formulation general rules.
[0191]
Formulation Example 4
Formulation example in one eye drop container (total amount: 15 ml): Compound of the present invention 10 mg, sodium chloride 10 mg, methylparaben 7.5 mg, sterilized purified water appropriate amount
An eye drop was obtained in accordance with the known method of the Japanese Pharmacopoeia (Japan Pharmacopoeia XII) General Rules for Preparations.
[0192]
【The invention's effect】
The compound of the present invention has an excellent aldose reductase inhibitory action and is useful for the prevention and treatment of diabetic complications such as cataracts, keratopathy, retinopathy, peripheral and other neurological disorders, and nephropathy. When the compound of the present invention is administered for the purpose of treating or preventing the above-mentioned diseases, it can be administered orally or parenterally.

Claims (19)

一般式
Figure 0003798836
〔式中,Xはハロゲン原子,R1 およびR2 は同一もしくは相異なる水素原子またはハロゲン原子,Aはメチレン基またはイオウ原子,−B−COOR3 は,
一般式
Figure 0003798836
(式中,R3 は水素原子またはC1 〜C3 の低級アルキル基,Yは水素原子,ハロゲン原子,C1 〜C3 の低級アルキル基,カルボキシル基またはジ低級アルキルアミノ基,nは1〜3の整数)
または,一般式
Figure 0003798836
(式中,R3 は水素原子またはC1 〜C3 の低級アルキル基,Yは水素原子,ハロゲン原子,C1 〜C3 の低級アルキル基,カルボキシル基またはジ低級アルキルアミノ基,nは1〜3の整数)
または,一般式
Figure 0003798836
(式中,Zは酸素原子またはイオウ原子,R3 は水素原子またはC1 〜C3 の低級アルキル基,R4 はC1 〜C3 の低級アルキル基または置換基を有してもよいフェニル基,ベンジル基もしくはフェネチル基)
または,一般式
Figure 0003798836
(式中,R3 は水素原子またはC1 〜C3 の低級アルキル基,mは2〜5の整数,但し,Aがイオウ原子である場合を除く)のいずれかで表される基を示す〕
で表されるベンゾチアゾ−ル誘導体またはその医薬的に許容される塩。
General formula
Figure 0003798836
[Wherein X is a halogen atom, R 1 and R 2 are the same or different hydrogen atoms or halogen atoms, A is a methylene group or sulfur atom, and —B—COOR 3 is
General formula
Figure 0003798836
(Wherein R 3 is a hydrogen atom or a C 1 -C 3 lower alkyl group, Y is a hydrogen atom, halogen atom, C 1 -C 3 lower alkyl group, carboxyl group or di-lower alkyl amino group, n is an integer of 1 to 3) )
Or general formula
Figure 0003798836
(Wherein R 3 is a hydrogen atom or a C 1 -C 3 lower alkyl group, Y is a hydrogen atom, halogen atom, C 1 -C 3 lower alkyl group, carboxyl group or di-lower alkyl amino group, n is an integer of 1 to 3) )
Or general formula
Figure 0003798836
Wherein Z is an oxygen atom or a sulfur atom, R 3 is a hydrogen atom or a C1-C3 lower alkyl group, R 4 is a C1-C3 lower alkyl group or an optionally substituted phenyl group, a benzyl group Or phenethyl group)
Or general formula
Figure 0003798836
(Wherein R 3 represents a hydrogen atom or a C1 to C3 lower alkyl group, m represents an integer of 2 to 5 except that A is a sulfur atom)
Or a pharmaceutically acceptable salt thereof.
−B−COOR3 が,
一般式
Figure 0003798836
(式中,R3 は水素原子またはC1 〜C3 の低級アルキル基,Yは水素原子,ハロゲン原子,C1 〜C3 の低級アルキル基,カルボキシル基またはジ低級アルキルアミノ基,nは1〜3の整数)
である請求項1に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。
-B-COOR 3 is
General formula
Figure 0003798836
(Wherein R 3 is a hydrogen atom or a C 1 -C 3 lower alkyl group, Y is a hydrogen atom, halogen atom, C 1 -C 3 lower alkyl group, carboxyl group or di-lower alkyl amino group, n is an integer of 1 to 3) )
The benzothiazole derivative according to claim 1 or a pharmaceutically acceptable salt thereof.
一般式
Figure 0003798836
(式中,Xはハロゲン原子,R1 およびR2 は同一もしくは相異なる水素原子またはハロゲン原子,R3 は水素原子またはC1 〜C3 の低級アルキル基,Yは水素原子,ハロゲン原子,C1 〜C3 の低級アルキル基,カルボキシル基またはジ低級アルキルアミノ基,nは1〜3の整数)
で表される請求項2に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。
General formula
Figure 0003798836
(Wherein X is a halogen atom, R 1 and R 2 are the same or different hydrogen atoms or halogen atoms, R 3 is a hydrogen atom or a C 1 -C 3 lower alkyl group, Y is a hydrogen atom, a halogen atom, C 1 -C 3 Lower alkyl group, carboxyl group or di-lower alkylamino group, n is an integer of 1 to 3)
The benzothiazole derivative of Claim 2 represented by these, or its pharmaceutically acceptable salt.
Xがフッ素原子である請求項3に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。The benzothiazole derivative or a pharmaceutically acceptable salt thereof according to claim 3, wherein X is a fluorine atom. nが1である請求項4に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。The benzothiazole derivative or a pharmaceutically acceptable salt thereof according to claim 4, wherein n is 1. −B−COOR3 が,
一般式
Figure 0003798836
(式中,R3 は水素原子またはC1 〜C3 の低級アルキル基,Yは水素原子,ハロゲン原子,C1 〜C3 の低級アルキル基,カルボキシル基またはジ低級アルキルアミノ基,nは1〜3の整数)
である請求項1に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。
-B-COOR 3 is
General formula
Figure 0003798836
(Wherein R 3 is a hydrogen atom or a C 1 -C 3 lower alkyl group, Y is a hydrogen atom, halogen atom, C 1 -C 3 lower alkyl group, carboxyl group or di-lower alkyl amino group, n is an integer of 1 to 3) )
The benzothiazole derivative according to claim 1 or a pharmaceutically acceptable salt thereof.
一般式
Figure 0003798836
(式中,Xはハロゲン原子,R1 およびR2 は同一もしくは相異なる水素原子またはハロゲン原子,R3 は水素原子またはC1 〜C3 の低級アルキル基,Yは水素原子,ハロゲン原子,C1 〜C3 の低級アルキル基,カルボキシル基またはジ低級アルキルアミノ基,nは1〜3の整数)
で表される請求項6に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。
General formula
Figure 0003798836
(Wherein X is a halogen atom, R 1 and R 2 are the same or different hydrogen atoms or halogen atoms, R 3 is a hydrogen atom or a C 1 -C 3 lower alkyl group, Y is a hydrogen atom, a halogen atom, C 1 -C 3 Lower alkyl group, carboxyl group or di-lower alkylamino group, n is an integer of 1 to 3)
The benzothiazole derivative of Claim 6 represented by these, or its pharmaceutically acceptable salt.
Xがフッ素原子である請求項7に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。The benzothiazole derivative or a pharmaceutically acceptable salt thereof according to claim 7, wherein X is a fluorine atom. nが1である請求項8に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。9. The benzothiazole derivative or a pharmaceutically acceptable salt thereof according to claim 8, wherein n is 1. −B−COOR3 が,
一般式
Figure 0003798836
(式中,Zは酸素原子またはイオウ原子,R3 は水素原子またはC1 〜C3 の低級アルキル基,R4 はC1 〜C3 の低級アルキル基または置換基を有してもよいフェニル基,ベンジル基もしくはフェネチル基)
である請求項1に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。
-B-COOR 3 is
General formula
Figure 0003798836
Wherein Z is an oxygen atom or a sulfur atom, R 3 is a hydrogen atom or a C1-C3 lower alkyl group, R 4 is a C1-C3 lower alkyl group or an optionally substituted phenyl group, a benzyl group Or phenethyl group)
The benzothiazole derivative according to claim 1 or a pharmaceutically acceptable salt thereof.
一般式
Figure 0003798836
(式中,Xはハロゲン原子,R1 およびR2 は同一もしくは相異なる水素原子またはハロゲン原子,Zは酸素原子またはイオウ原子,R3 は水素原子またはC1-C3 の低級アルキル基,R4 はC1 〜C3 の低級アルキル基または置換基を有してもよいフェニル基,ベンジル基もしくはフェネチル基)
で表される請求項10に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。
General formula
Figure 0003798836
Wherein X is a halogen atom, R 1 and R 2 are the same or different hydrogen atoms or halogen atoms, Z is an oxygen atom or a sulfur atom, R 3 is a hydrogen atom or a C1-C3 lower alkyl group, R 4 is C1-C3 lower alkyl group or optionally substituted phenyl group, benzyl group or phenethyl group)
The benzothiazole derivative of Claim 10 represented by these, or its pharmaceutically acceptable salt.
Xがフッ素原子である請求項11に記載のベンゾチアゾ−ル誘導体またはその医薬的に許容される塩。The benzothiazol derivative or a pharmaceutically acceptable salt thereof according to claim 11, wherein X is a fluorine atom. 一般式
Figure 0003798836
(式中,Xはハロゲン原子,R1 およびR2 は同一もしくは相異なる水素原子またはハロゲン原子,Zは酸素原子またはイオウ原子,R3 は水素原子またはC1-C3 の低級アルキル基,R4 はC1 〜C3 の低級アルキル基または置換基を有してもよいフェニル基,ベンジル基もしくはフェネチル基)
で表される請求項10に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。
General formula
Figure 0003798836
Wherein X is a halogen atom, R 1 and R 2 are the same or different hydrogen atoms or halogen atoms, Z is an oxygen atom or a sulfur atom, R 3 is a hydrogen atom or a C1-C3 lower alkyl group, R 4 is C1-C3 lower alkyl group or optionally substituted phenyl group, benzyl group or phenethyl group)
The benzothiazole derivative of Claim 10 represented by these, or its pharmaceutically acceptable salt.
Xがフッ素原子で,R4 が置換基を有してもよいフェニル基である請求項13に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。The benzothiazole derivative or a pharmaceutically acceptable salt thereof according to claim 13, wherein X is a fluorine atom, and R 4 is a phenyl group which may have a substituent. −B−COOR3
一般式
Figure 0003798836
(式中,R3 は水素原子またはC1 〜C3 の低級アルキル基,mは2〜5の整数,但し,Aがイオウ原子である場合を除く)である請求項1に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。
-B-COOR 3 is a general formula
Figure 0003798836
The benzothiazole derivative according to claim 1, wherein R 3 is a hydrogen atom or a C 1 -C 3 lower alkyl group, m is an integer of 2 to 5 except that A is a sulfur atom. Its pharmaceutically acceptable salt.
一般式
Figure 0003798836
(式中,Xはハロゲン原子,R1 およびR2 は同一もしくは相異なる水素原子またはハロゲン原子,R3 は水素原子またはC1 〜C3 の低級アルキル基,mは2〜5の整数)
で表される請求項15に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩。
General formula
Figure 0003798836
(Wherein X is a halogen atom, R 1 and R 2 are the same or different hydrogen atoms or halogen atoms, R 3 is a hydrogen atom or a C 1 -C 3 lower alkyl group, m is an integer of 2-5)
The benzothiazole derivative of Claim 15 represented by these, or its pharmaceutically acceptable salt.
Xがフッ素原子で,mが4である請求項16に記載のベンゾチアゾ−ル誘導体またはその医薬的に許容される塩。The benzothiazol derivative or a pharmaceutically acceptable salt thereof according to claim 16, wherein X is a fluorine atom and m is 4. 請求項1に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩を有効成分として含有するアルドースリダクターゼ阻害剤。An aldose reductase inhibitor comprising the benzothiazole derivative according to claim 1 or a pharmaceutically acceptable salt thereof as an active ingredient. 請求項1に記載のベンゾチアゾール誘導体またはその医薬的に許容される塩を有効成分として含有する糖尿病合併症予防・治療剤。A prophylactic / therapeutic agent for diabetic complications comprising the benzothiazole derivative according to claim 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
JP32944695A 1994-11-29 1995-11-27 2-Substituted benzothiazole derivatives and prophylactic / therapeutic agents for diabetic complications containing the same Expired - Fee Related JP3798836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32944695A JP3798836B2 (en) 1994-11-29 1995-11-27 2-Substituted benzothiazole derivatives and prophylactic / therapeutic agents for diabetic complications containing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-317809 1994-11-29
JP31780994 1994-11-29
JP32944695A JP3798836B2 (en) 1994-11-29 1995-11-27 2-Substituted benzothiazole derivatives and prophylactic / therapeutic agents for diabetic complications containing the same

Publications (2)

Publication Number Publication Date
JPH08208631A JPH08208631A (en) 1996-08-13
JP3798836B2 true JP3798836B2 (en) 2006-07-19

Family

ID=26569149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32944695A Expired - Fee Related JP3798836B2 (en) 1994-11-29 1995-11-27 2-Substituted benzothiazole derivatives and prophylactic / therapeutic agents for diabetic complications containing the same

Country Status (1)

Country Link
JP (1) JP3798836B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089399A (en) * 2004-09-22 2006-04-06 Hajime Fukuda Type-2 antidiabetic
JP5244604B2 (en) * 2006-10-13 2013-07-24 あすか製薬株式会社 Method for producing benzothiazole compound

Also Published As

Publication number Publication date
JPH08208631A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
EP0684242B1 (en) Isoxazolidinedione derivative and use thereof
US4771050A (en) Thiolactam-n-acetic acid derivatives
US5700819A (en) 2-substituted benzothiazole derivatives and prophylactic and therapeutic agents for the treatment of diabetic complications
RU2095354C1 (en) Thiazolidine compounds, method of preparation thereof, method of reducing sugar content in blood of mammals
KR101069276B1 (en) Compounds for the treatment of metabolic disorders
JPWO2005021486A1 (en) Ester derivatives and their pharmaceutical uses
JP3798836B2 (en) 2-Substituted benzothiazole derivatives and prophylactic / therapeutic agents for diabetic complications containing the same
KR100299558B1 (en) Benzothiazole compound, preparation method thereof and use
JPH0536436B2 (en)
DK166147B (en) N-OE6-METHOXY-5- (PERFLOURALKYL) -1-NAPHTHOYLAA-N-METHYLGYLINES AND THEIR THIONAPHTHOYLANALOGUE, THEIR PREPARATION AND PHARMACEUTICAL PREPARATIONS CONTAINING THEM
US5681843A (en) Parabanic acid derivatives
JPS61286359A (en) N-((5-(trifluoromethyl)-6-methoxy-1-naphthalenyl) thioxomethyl or carbonyl)-n-methylglycineamide
CA2165503A1 (en) 1,4-benzoxazine derivative, pharmaceutical composition containing the same and use thereof
JP2876144B2 (en) 3-Phenylcoumarin-7-yloxyacetic acid derivatives and their preparation and use
EP0718290A1 (en) Carboxyalkyl heterocyclic derivatives
WO1992009594A1 (en) Chromone derivative and aldose reductase inhibitor containing the same as active ingredient
JP3195455B2 (en) Quinoline-3-acetic acid derivatives, their production and use
KR870001239B1 (en) Process for preparing tetrahydro-beta-carboline derivatives
WO1994022875A1 (en) Pyridothiazineacetic acid compound, process for producing the same, and use thereof
WO1995007898A1 (en) Succinamic acid compound, process for producing the same, and use thereof
JP2000509726A (en) Oxiranecarboxylic acids for the treatment of diabetes
KR100298003B1 (en) 1,4-benzoxazine-2-acetic acid compound, preparation method thereof and use
KR20020025091A (en) Benzimidazole compounds and drugs containing the same
WO1998013357A1 (en) Benzo[1,4]thiazine derivatives and drugs comprising the same
US7145013B2 (en) 3-thia-4-arylquinolin-2-one derivatives

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees