JP3798218B2 - Secondary battery protection circuit - Google Patents

Secondary battery protection circuit Download PDF

Info

Publication number
JP3798218B2
JP3798218B2 JP2000093055A JP2000093055A JP3798218B2 JP 3798218 B2 JP3798218 B2 JP 3798218B2 JP 2000093055 A JP2000093055 A JP 2000093055A JP 2000093055 A JP2000093055 A JP 2000093055A JP 3798218 B2 JP3798218 B2 JP 3798218B2
Authority
JP
Japan
Prior art keywords
secondary battery
ptc
resistance heating
heating element
protection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000093055A
Other languages
Japanese (ja)
Other versions
JP2001286067A (en
Inventor
徳彦 繁田
憲良 南波
哲哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2000093055A priority Critical patent/JP3798218B2/en
Publication of JP2001286067A publication Critical patent/JP2001286067A/en
Application granted granted Critical
Publication of JP3798218B2 publication Critical patent/JP3798218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、充電・放電を行う2次電池の過充電等をPTC素子を用いて抑制する2次電池用保護回路に関する。
【0002】
【従来の技術】
これまでニッケル・カドミウム、ニッケル水素型などの充電可能な2次電池が携帯型電子機器(携帯型ラジオ、携帯型テープレコーダ、携帯型光ディスクプレーヤ、携帯型ビデオレコーダ、携帯電話器、ノートブック型パーソナルコンピュータ等)に用いられてきた。これらの電子機器は年々小型化・軽量化が進み、長時間の連続駆動時間が求められていることから、体積当たりの放電容量が大きいリチウムイオン型2次電池の需要が伸びている。
【0003】
リチウムイオン型2次電池は上記長所を有しているが、電圧の極端な上昇や降下による特性劣化が大きいという短所を有している。また、短絡時の破壊を防ぐために、精密な電池電圧の管理を行う保護回路を有しているのが通常である。
【0004】
すなわち、2次電池の充電は、電池電圧をモニタして設定電圧に達した後はその電圧以上に充電電圧が上がらないよう定電圧で充電を続けることにより行われる。ところが、リチウムイオン型2次電池では、何らかの理由により充電電圧が設定値を超えて上昇すると、電解液の熱分解、極板の分解等不可逆的な反応が起こり、熱暴走状態になり最悪電池は発煙・発火するという危険な状態となる。
【0005】
したがって、リチウムイオン型2次電池の充電では、通常、充電電圧をモニタし、充電電圧が設定値を超えて上昇するおそれが生じると充電を止める保護回路が設けられている。そして、万一この保護回路が機能しなかったり破損したりした場合のために、2重3重の保護手段を設けてリチウムイオン型2次電池の熱暴走状態の発生を防止するようにしている。
【0006】
保護手段の1つとして、温度上昇と共に抵抗値が高くなる特性を有するPTC(Positive Temperature Coefficient)素子が用いられている。PTC素子は、通常ある温度で抵抗値が急激に上昇する特性(PTC特性)を有し、抵抗変化率は3桁以上、材料によっては6桁以上に達するものもある。PTC素子は、外部の雰囲気で加熱されたり、大電流が流れることによるジュール熱の発生で暖まると抵抗値が高くなることを利用して、加熱保護素子や過電流保護素子として用いられている。
【0007】
2次電池の保護回路は、2次電池にPTC素子が直列に接続され、この直列回路の両端に負荷(放電時)や充電器(充電時)が接続される。この構成により、放電時の短絡等による過電流、充電時の保護回路の故障による過充電電流が流れると、直列に接続されるPTC素子の抵抗値がジュール熱により急激に上昇し、過電流を抑制するように作用する。なお、2次電池と直列につなぐために、PTC素子の抵抗値は、通常時は低い方が望ましい。放電時は無駄な電力を消費することによる連続通電時間の短縮、充電時は充電時間の延長につながるからである。
【0008】
また、リチウムイオン型2次電池は、元来熱安定性が低いために周囲温度が上昇したときは充放電を制限するのが望ましい。そこで、PTC素子は、リチウムイオン型2次電池と電気的に直列に接続されると共に、熱的に接触して配置される。これにより、リチウムイオン型2次電池の温度上昇をPTC素子自身が検知して抵抗値を高くし、充電電流を抑えることができるようにしている。
【0009】
【発明が解決しようとする課題】
既に説明したがリチウムイオン型2次電池の過充電による発熱は熱暴走を発生させる危険を伴うので、PTC素子を用いた保護回路は極めて短時間で所望の機能を発揮する必要がある。さらに、リチウムイオン型2次電池等は、一旦過充電等により異常発熱を生じてしまうと性能や安定性が劣化してしまうので、保護回路により電池温度を下げた後も再充電するには危険が伴う。したがって、電池温度が下がっても充電電流を低減した状態に維持できるようにする必要がある。
【0010】
本発明の目的は、過電圧充電による電池温度の上昇を検知して充電電流を効果的に低減すると共に、電池温度が下がっても充電電流を低減した状態に維持して2次電池を安全に保護する2次電池用保護回路を提供することにある。
【0011】
【課題を解決するための手段】
上記目的は、2次電池に対して電気的に直列に接続され且つ熱的に接触するPTC素子と、前記2次電池及び前記PTC素子に対して電気的に並列に接続され且つ前記PTC素子と熱的に接触し、前記2次電池の発熱で前記PTC素子の抵抗値が上昇することにより、流れる電流の電流値が増大する抵抗加熱素子とを有することを特徴とする2次電池用保護回路によって達成される。
【0012】
本発明によれば、充電時に2次電池が異常発熱すると、まずPTC素子が抵抗値を高くさせて充電電流を抑制する。すると、電流の大部分が加熱抵抗素子を流れて加熱抵抗素子が発熱しPTC素子が加熱される。これにより、充電電流の抑制動作を継続することができる。この電流抑制動作は、電池温度が下がっても維持される。
【0013】
また上記本発明の2次電池用保護回路は、前記2次電池の充電時には前記抵抗加熱素子を回路に接続し、放電時には切断する切替手段を有することを特徴とする。本発明によれば、充電時の2次電池保護の実効が図れるだけでなく、放電時の消費電力の抑制ができるようになる。
【0014】
また上記本発明の2次電池用保護回路は、前記PTC素子と抵抗加熱素子との間に形成された共通電極と、前記PTC素子を介して前記共通電極と対向配置されたPTC側電極と、前記抵抗加熱素子を介して前記共通電極と対向配置された加熱素子側電極とを有し、前記PTC側電極、PTC素子、共通電極、抵抗加熱素子、加熱素子側電極の順に積層されて一体的に形成されていることを特徴とする。
本発明によれば、PTC素子と抵抗加熱素子の熱接触を確実にでき、また回路の小型化が図れる。
【0015】
また上記本発明の2次電池用保護回路において、前記PTC素子の動作温度は100℃以下であることを特徴とする。本発明によれば、2次電池が危険な温度状態に達する前に確実に保護動作を開始できるようになる。
【0016】
また、上記本発明の2次電池用保護回路において、前記抵抗加熱素子はPTC特性を有することを特徴とする。本発明によれば、抵抗加熱素子の発熱特性をPTC素子のそれに合わせることができるようになる。
【0017】
上記本発明の2次電池用保護回路において、前記抵抗加熱素子の動作温度は前記PTC素子の動作温度よりも高いことを特徴とする。本発明によれば、PTC素子が電流抑制動作を開始した後に抵抗加熱素子が発熱動作を開始できるようになる。
【0018】
上記本発明の2次電池用保護回路において、前記PTC素子は、熱可塑性のポリマーに導電性粒子を分散させた導電性ポリマー材料を含むことを特徴とする。こうすることにより、室温抵抗値を低減でき、また保護回路の成形が容易になる。
さらに、上記本発明の2次電池用保護回路において、前記PTC素子は、一旦トリップ状態になると前記抵抗加熱素子に加熱し続けられて前記トリップ状態から復帰しないことを特徴とする。こうすることにより、2次電池温度が下がっても充電電流を低減した状態を維持して、危険な充電が再開されるのを防止することができる。
【0019】
【発明の実施の形態】
本発明の一実施の形態による2次電池用保護回路を図1乃至図6を用いて説明する。図1は、本実施の形態による2次電池用保護回路の構成図である。図1に示すように、この2次電池用保護回路は、2次電池1と直列接続されるPTC素子3に抵抗加熱素子5を並列接続して構成されている。この直並列回路が入出力端子7、9間に接続されている。2次電池1とPTC素子3は、熱的に接触した状態で配置されている。また、PTC素子3と抵抗加熱素子5も、同様に熱的に接触した状態で配置されている。入出力端子7、9間には、放電時は負荷が接続され、充電時は充電器が接続される。
【0020】
図1に示すように、2次電池1の正極は入出力端子9と抵抗加熱素子5の一端に接続されている。2次電池1の負極はPTC素子3を介して入出力端子7及び抵抗加熱素子5の他端に接続されている。本実施形態では2次電池1にリチウムイオン型2次電池を用いているが、他の2次電池についても本実施形態を適用することができる。
【0021】
PTC特性を持つ材料は、無機セラミック系と有機ポリマー系に大別される。前者にはドープされたチタン酸バリウムがあり、後者には主に熱可塑性のポリマーに導電性粒子を分散させた導電性ポリマー材料がある。有機ポリマー系については米国特許第3243753号明細書及び同3351882号明細書等に開示されている。室温(定常時)抵抗値を低減できること、成形が容易であることから、本実施の形態では後者の導電性ポリマー材料を用いることが好ましい。
【0022】
PTC素子3の室温抵抗値は、2次電池1の内部抵抗値と同等かそれ以下であることが好ましく、具体的には100mΩ以下、より好ましくは50mΩ以下、さらに好ましくは20mΩ以下である。2次電池1の小型化に伴い、小型のPTC素子が望まれているが、PTC素子3の抵抗値を下げるには必然的に表面積を大きくする必要がある。よって材料の体積抵抗値は低いものほどよい。
【0023】
また、2次電池1の安全を確保するため、PTC素子3の動作温度は高くても100℃、好ましくは70〜90℃前後に設定するのがよい。動作温度が高すぎると、PTC素子3の抵抗値が高くなって電流抑制動作をしているトリップ状態になったときには、すでに2次電池1は熱暴走状態の危険な状態に移行している可能性があるからである。
【0024】
このようなPTC素子3は、例えば本願発明者達により提案された特開平10−214705号公報、特開平11−168005号公報、特開平11−195506号公報等に開示されている。
【0025】
一方、抵抗加熱素子5については、2次電池1に異常がない場合には、充電電流が主に抵抗値の低い2次電池1〜PTC素子3側に流れるようにする必要がある。また、通常状態で無駄な電力を消費しないようにする必要がある。したがって、抵抗加熱素子5の抵抗値は、2次電池1の内部抵抗値とPTC素子3の抵抗値の和よりも高くし、少なくとも1桁、好ましくは2桁以上高く設定する。この抵抗加熱素子5には、通常の抵抗加熱ヒータの他、自己温度制御性のPTCヒータも用いることができる。その際、動作温度はPTC素子3のそれよりも若干高く設定することが望ましい。
【0026】
本実施の形態の好ましい例として、PTC素子3と抵抗加熱素子5を一体化してもよい。これにより、両者の安定した熱接触を確実に得ることができる。図2は、PTC素子3と抵抗加熱素子5を一体化した保護素子21を用いた2次電池用保護回路の構成例である。図2に示すように、保護素子21は、共通電極23を挟んで対向するPTC層25と抵抗加熱層27とを有している。PTC層25の共通電極23との接触面に対向する表面には電極29が張り付けられている。抵抗加熱層27の共通電極23との接触面に対向する表面には電極31が張り付けられている。このように、保護素子21は、PTC側電極29、PTC層25、共通電極23、抵抗加熱層27、加熱素子側電極31の順に積層されて一体的に形成されおり、PTC層25と抵抗加熱層27とを熱的に良好に接続することができる。
【0027】
保護素子21の共通電極23は入出力端子7に接続される。抵抗加熱層27側の電極31は入出力端子9と2次電池1の正極に接続される。また、PTC層25側の電極29は2次電池1の負極に接続される。これにより、図1に示した回路構成と同様な電気的接続関係が得られる。
【0028】
PTC素子と抵抗加熱素子、あるいはPTC素子とPTC特性を有する抵抗加熱素子とを積層して一体化した保護素子は、例えば、特公昭60−4446789号公報(文献1)に開示されている。当該公報には、PTC素子に熱供給装置を設けた電気装置が開示されている。また特公昭62−45673号公報(文献2)には、高抵抗値を有するPTCシートにそれよりも10-3倍Ω・cm以下の抵抗値を有する低抵抗のシートを密着しそれに電極を設けた自己温度制御型発熱素子が開示されている。また、特開昭55−95203号公報(文献3)には、粒子系と表面積を規定したカーボンブラックを含むCW要素とPTC要素とを順次的に通って走る電路に沿い電流が流れるように電極を設けた電気装置が開示されている。
【0029】
しかし、これら文献1〜3に記載されたものは全て、PTC素子と抵抗加熱素子とが電気的に直列に接続されており、通常状態における2次電池の放電時には無駄な電力消費が避けられないという欠点を有している。
【0030】
さて、本実施の形態による2次電池用保護回路の充電時の動作について図1を用いて説明する。2次電池1に発熱異常がない場合には、充電電流は主に抵抗値の低いPTC素子3及び2次電池1側に流れる。抵抗加熱素子5での発熱量は無視できる程度に軽微である。
【0031】
2次電池1の異常や充電器の故障による充電電圧の上昇により2次電池1が異常加熱すると、熱的に接触したPTC素子3の温度が上昇しその抵抗値が高くなる(トリップ状態)。これにより、直列につながれた2次電池1に流れる充電電流を抑制する保護動作が開始される。さらに、2次電池1の内部抵抗値とPTC素子3の抵抗値の和が抵抗加熱素子5の抵抗値を上回ると、主に抵抗加熱素子5に電流が流れるようになり、2次電池1へ流れる充電電流の電流値はますます低減される。
【0032】
抵抗加熱素子5に電流が流れて発熱し、温度が上昇すると、これに熱接触したPTC素子3の温度がさらに上がり抵抗値がさらに高くさせられるので、さらに2次電池1に流れる電流値は減少する。これにより、2次電池1は、危険な温度状態へ到達することなく温度が降下する。このように、抵抗加熱素子5を設けることによりPTC素子3は電流抑制の保護動作を迅速に行うことができる。
【0033】
リチウムイオン型2次電池等は、一旦過充電等により異常発熱を生じてしまうと性能や安定性が劣化してしまうので、保護回路により電池温度を下げた後も再充電するには危険が伴う。これに対して本実施の形態による保護回路は、充電電流を絞ることで電池温度が低下しても、PTC素子3は電気的に並列接続された抵抗加熱素子5により加熱され続けてトリップ状態から復帰しない。そのため、電池温度が下がっても充電電流を低減した状態を維持して、危険な充電が再開されるのを防止することができる。
【0034】
仮に、上記文献1〜3に記載されたように、抵抗加熱素子5がPTC素子3に直列に接続されていたら、PTC素子3の動作により電流が減少すると抵抗加熱素子5による加熱は不十分になる。その結果PTC素子3の温度が下がって抵抗値が低くなると、電池温度の低下の程度によっては再充電が起こる可能性がある。これに対して本実施の形態では抵抗加熱素子5をPTC素子3に並列接続しているので、抵抗加熱素子5はPTC素子3を加熱し続けることができ2次電池の再充電を防止することができる。
【0035】
なお、トリップ状態にあるPTC素子3に対して、何らかの原因により抵抗加熱素子5を流れる電流が減少して抵抗加熱素子5による加熱が不十分となると、PTC素子3の抵抗値は低くなる。しかしながら、PTC素子3の抵抗値が抵抗加熱素子5の抵抗値を下回ったとしても、その時点で充電電流はPTC素子3に流れるようになるため、PTC素子3はジュール熱で発熱する。従って、PTC素子3による電流抑制は継続されて充電電流が再度増加することはない。
【0036】
このように本実施の形態によれば、危険な再充電を生じないようにすることができる。充電を再開するには充電器からの通電を一度切断して、PTC素子3の温度を完全に下げてから行うようにする。こうすることにより意図しないPTC素子3の保護動作からの復帰を防ぐことができる。
【0037】
図1及び図2に示す2次電池用保護回路は、2次電池の充放電のいずれにおいても抵抗加熱素子5(図2では抵抗加熱層27)が回路に接続されたままの構成になっている。ところがこの構成では、放電時は負荷と抵抗加熱素子5が並列に接続されていることになり、負荷の抵抗値によっては負荷にほとんど電流が流れなくなる可能性がある。そこで、抵抗加熱素子5は充電時のみ接続し、放電時は回路から切り離す切替手段を設けるようにしてもよい。図3乃至図5は、切替手段を備えた2次電池用保護回路の一例を示している。
【0038】
図3において、入出力端子7、9間に負荷11が接続されている。例えば入出力端子9と抵抗加熱素子5の一端との間にスイッチ13が設けられている。スイッチ13としては、機械的な接点を有するものや電気的に切り離す回路スイッチを用いることができる。
【0039】
図4において、保護素子21を納めた電池パックに、第3の端子(充電用端子)41が設けられ、抵抗加熱層27側の電極31と入出力端子9との接続(図2参照)を断って、電極31が第3の端子(充電用端子)41に接続されている。充電時には充電器側で充電用端子41と入出力端子9を短絡するようにし、放電時(負荷と接続されるとき)は充電用端子41に接続せず抵抗加熱素子5を切り離すようにする。
【0040】
図5において、保護素子21を納めた電池パックに、プッシュスイッチ15が設けられ、抵抗加熱層27側の電極31と入出力端子9との接続(図2参照)を断って、電極31がプッシュスイッチ15の一端に接続され、入出力端子9がプッシュスイッチ15の他端に接続されている。放電時にはプッシュスイッチ15がオフになるようにして電極31と入出力端子9間を電気的に切断する。充電器に電池パックが挿入されるとプッシュスイッチ15が押されて電極31と入出力端子9とが接続されるようになっている。
【0041】
図6は、本実施の形態による2次電池用保護回路の実装状態を説明する図である。図6(a)は、2次電池1の外観を示す斜視図であり、図6(b)は、図6(a)に示す2次電池1への実装方向側から見た2次電池用保護回路の外観を示す斜視図である。また、図6(c)は、保護素子21の構成を示している。
【0042】
図6(a)に示すように2次電池1は薄い直方体形状をしている。保護素子21を密着させて取り付ける取り付け位置52の両側面に電池の正負極が設けられている。図では正極50だけが示されている。
【0043】
図6(b)、(c)に示すように、保護素子21の共通電極23からはリード線44が引き出されている。また、PTC素子側電極29からはリード線40が引き出され、抵抗加熱素子側電極31からはリード線42が引き出されている。図6(b)に示すように、リード線40は2次電池1の不図示の負極と接続する配線板54に接続される。リード線42は不図示の入出力端子9と接続する配線板58に接続される。配線板58は途中で分岐した配線板56が2次電池の正極50に接続される。リード線44は、不図示の入出力端子7に接続される。
【0044】
このような構成で、保護素子21のPTC素子25側が2次電池1の取り付け位置52に密着して取り付けられて良好な熱的接触が得られるようになっている。以下、本実施の形態を具体的な実施例と比較例とを用いて説明する。
【0045】
(実施例)
[PTC層]
高密度ポリエチレン(日本ポリケム製、製品名HY540)と等量のパラフィンワックス(日本精蝋製、商品名HNP−10)、両者の合計重量の4倍のフィラメント状Ni粉(INCO社製、商品名Type255ニッケルパウダ)を150℃、ミル中で混練し、ポリエチレンとワックスの合計重量の1.0重量%のシランカップリング剤(信越化学工業製、商品名KBE1003)、これの20重量%の有機過酸化物(化薬アクゾ製、商品名トリゴノックスD−T50)を混練物中に滴下し60分間混練した。混練物を150℃で厚さ約0.6mmのシート状に成形し、ジブチルすずジラウレート20重量%乳濁水液に浸積し、65℃で8時間架橋処理を行った。
【0046】
このシートを2枚の厚さ25μmのNi箔に挟み150℃で全体を0.4mmとなるよう加熱圧着し、直径10mmの円盤状に打ち抜き、温度−抵抗曲線を測定したところ、室温抵抗5mΩ、動作温度は75℃であった。
【0047】
[抵抗加熱層]
低密度ポリエチレン(日本ポリケム製、製品名LC500)の66重量%のカーボンブラック(東海カーボン製、商品名トーカブラック#4500)をミル中120℃で混練し、混練物にポリエチレンの1.0重量%のシランカップリング剤(信越化学工業製、商品名KBE1003)、これの20重量%の有機過酸化物(化薬アクゾ製、商品名トリゴノックス29A)を混練物中に滴下し20分間混練した。混練物を120℃で厚さ約0.6mmのシート状に成形し、ジブチルすずジラウレート20重量%乳濁水液に浸積し、65℃で8時間架橋処理を行った。
【0048】
このシートを2枚の厚さ25μmのNi箔に挟み150℃で全体を0.4mmとなるよう加熱圧着し、直径10mmの円盤状に打ち抜き、温度−抵抗曲線を測定したところ、室温抵抗値は1.2Ω、動作温度は90℃であった。
【0049】
[保護素子]
厚さ25μmのNi箔/架橋済みPTCシート/Ni箔/架橋済み抵抗加熱シート/Ni箔の順に挟み、全体を0.8mmになるように150℃で加熱圧着し、直径10mmの円盤状に打ち抜いた。
【0050】
[保護回路]
保護素子の各電極と0.55Ahrのリチウムイオン2次電池1を図2のように接続し、入出力端子7、9には充電用の電源を接続した。
【0051】
[充電試験]
充電電圧5Vまでは1Aの定電流の条件で充電を行った。電池電圧約4.3Vに達すると電池温度が上昇し始め、約75℃でPTC素子が動作し、充電電流は50mAに制限された。その後3時間放置しても充電電流が上昇することはなかった。
【0052】
(比較例)
実施例のPTC素体のみを電極に挟んで厚さ0.4mm、直径10mmの円盤状のPTC素子を作製し、電池と電源間に直列につなぎ、素子と電池を熱的に接触させ、実施例と同様の充電拭験を行った。
【0053】
PTC素子が動作した後の残留電流は500mAで、実施例に比ベ10倍であった。
【0054】
本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態では、PTC素子と抵抗加熱素子5が一体化構成された保護素子について説明したが、PTC素子と抵抗加熱素子5は、それぞれ個別部品で構成してもよい。
【0055】
【発明の効果】
以上の通り、本発明によれば、過電圧充電による電池温度の上昇を検知して充電電流を効果的に低減すると共に、電池温度が下がっても充電電流を低減した状態に維持して2次電池を安全に保護することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による2次電池用保護回路の構成を示す図である。
【図2】PTC素子と抵抗加熱素子を一体化した保護素子を用いた2次電池用保護回路の構成例である。
【図3】抵抗加熱素子を放電時は回路から切り離す切替手段を備えた2次電池用保護回路の構成図である。
【図4】抵抗加熱素子を放電時に回路から切り離す切替手段を備えた2次電池用保護回路の構成図である。
【図5】抵抗加熱素子を放電時に回路から切り離す切替手段を備えた2次電池用保護回路の構成図である。
【図6】本発明の一実施の形態による2次電池用保護回路の実装状態を説明する図である。
【符号の説明】
1 2次電池
3 PTC素子
5 抵抗加熱素子
7、9 入出力端子
11 負荷
13 スイッチ
15 プッシュスイッチ
21 保護素子
23 共通電極
25 PTC層
27 抵抗加熱層
29、31 電極
40、42、44 リード線
41 第3の端子(充電用端子)
50 正極
52 取り付け位置
54、56、58 配線板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery protection circuit that uses a PTC element to suppress overcharge of a secondary battery that performs charging and discharging.
[0002]
[Prior art]
Rechargeable secondary batteries such as nickel, cadmium and nickel metal hydride have been used in portable electronic devices (portable radios, portable tape recorders, portable optical disk players, portable video recorders, portable telephones, notebook personal computers) Computer). Since these electronic devices are becoming smaller and lighter year by year, and a long continuous driving time is required, demand for lithium ion secondary batteries having a large discharge capacity per volume is increasing.
[0003]
The lithium ion secondary battery has the above-mentioned advantages, but has a disadvantage that the characteristic deterioration due to the extreme rise and fall of the voltage is large. Moreover, in order to prevent destruction at the time of a short circuit, it is normal to have a protection circuit that performs precise battery voltage management.
[0004]
That is, the secondary battery is charged by monitoring the battery voltage and continuing charging at a constant voltage so that the charging voltage does not increase beyond that voltage after reaching the set voltage. However, in a lithium ion type secondary battery, if the charging voltage rises above a set value for some reason, an irreversible reaction such as thermal decomposition of the electrolytic solution, decomposition of the electrode plate occurs, and a thermal runaway state occurs and the worst battery is It becomes a dangerous state of smoking and ignition.
[0005]
Therefore, when charging a lithium ion type secondary battery, a protection circuit is usually provided that monitors the charging voltage and stops charging when there is a risk that the charging voltage will rise beyond a set value. In the event that this protection circuit does not function or is damaged, double and triple protection means are provided to prevent the occurrence of a thermal runaway state of the lithium ion secondary battery. .
[0006]
As one of the protection means, a PTC (Positive Temperature Coefficient) element having a characteristic that the resistance value increases as the temperature rises is used. A PTC element usually has a characteristic (PTC characteristic) in which a resistance value rapidly increases at a certain temperature, and a resistance change rate is 3 digits or more, and some materials reach 6 digits or more. The PTC element is used as a heating protection element or an overcurrent protection element by utilizing the fact that the resistance value increases when heated in an external atmosphere or warmed by generation of Joule heat due to a large current flowing.
[0007]
In the protection circuit for the secondary battery, the PTC element is connected in series to the secondary battery, and a load (during discharging) and a charger (during charging) are connected to both ends of the series circuit. With this configuration, when an overcurrent due to a short circuit at the time of discharge or an overcharge current due to a failure of the protection circuit at the time of charging flows, the resistance value of the PTC elements connected in series rapidly increases due to Joule heat, and the overcurrent is reduced. Acts to suppress. In order to connect in series with the secondary battery, it is desirable that the resistance value of the PTC element is normally low. This is because the continuous energization time is shortened by consuming useless power during discharging, and the charging time is extended during charging.
[0008]
Moreover, since lithium ion secondary batteries are inherently low in thermal stability, it is desirable to limit charging and discharging when the ambient temperature rises. Therefore, the PTC element is electrically connected in series with the lithium ion secondary battery and is disposed in thermal contact. Thereby, the temperature rise of the lithium ion type secondary battery is detected by the PTC element itself so that the resistance value is increased and the charging current can be suppressed.
[0009]
[Problems to be solved by the invention]
As already described, since heat generation due to overcharging of the lithium ion secondary battery involves a risk of causing thermal runaway, a protection circuit using a PTC element needs to exhibit a desired function in a very short time. In addition, once a lithium-ion type secondary battery or the like generates abnormal heat due to overcharging or the like, the performance and stability deteriorate, so it is dangerous to recharge even after the battery temperature is lowered by the protection circuit. Is accompanied. Therefore, it is necessary to be able to maintain a state where the charging current is reduced even when the battery temperature decreases.
[0010]
The object of the present invention is to detect a rise in battery temperature due to overvoltage charging to effectively reduce the charging current, and to keep the charging current in a reduced state even when the battery temperature is lowered, thereby protecting the secondary battery safely. Another object of the present invention is to provide a secondary battery protection circuit.
[0011]
[Means for Solving the Problems]
The object is to provide a PTC element electrically connected in series and in thermal contact with a secondary battery, and electrically connected in parallel to the secondary battery and the PTC element and with the PTC element. A secondary battery protection circuit comprising a resistance heating element that is in thermal contact and increases a current value of a flowing current by increasing a resistance value of the PTC element due to heat generation of the secondary battery. Achieved by:
[0012]
According to the present invention, when the secondary battery abnormally generates heat during charging, the PTC element first increases the resistance value to suppress the charging current. Then, most of the current flows through the heating resistance element, the heating resistance element generates heat, and the PTC element is heated. Thereby, the suppression operation of charging current can be continued. This current suppression operation is maintained even when the battery temperature decreases.
[0013]
Further, the secondary battery protection circuit of the present invention is characterized in that it has switching means for connecting the resistance heating element to the circuit when the secondary battery is charged and disconnecting when the secondary battery is discharged. According to the present invention, not only can secondary battery protection be effective during charging, but also power consumption during discharging can be suppressed.
[0014]
Further, the secondary battery protection circuit of the present invention includes a common electrode formed between the PTC element and the resistance heating element, a PTC side electrode disposed to face the common electrode via the PTC element, A heating element side electrode disposed opposite to the common electrode through the resistance heating element, and the PTC side electrode, the PTC element, the common electrode, the resistance heating element, and the heating element side electrode are laminated in order and integrated It is characterized by being formed.
According to the present invention, the thermal contact between the PTC element and the resistance heating element can be ensured, and the circuit can be miniaturized.
[0015]
In the secondary battery protection circuit of the present invention, the operating temperature of the PTC element is 100 ° C. or lower. According to the present invention, the protection operation can be surely started before the secondary battery reaches a dangerous temperature state.
[0016]
In the secondary battery protection circuit of the present invention, the resistance heating element has a PTC characteristic. According to the present invention, the heat generation characteristics of the resistance heating element can be matched with those of the PTC element.
[0017]
In the protection circuit for a secondary battery of the present invention, an operating temperature of the resistance heating element is higher than an operating temperature of the PTC element. According to the present invention, the resistance heating element can start the heat generation operation after the PTC element starts the current suppressing operation.
[0018]
In the protection circuit for a secondary battery of the present invention, the PTC element includes a conductive polymer material in which conductive particles are dispersed in a thermoplastic polymer. By doing so, the room temperature resistance value can be reduced, and the protection circuit can be easily formed.
Furthermore, in the secondary battery protection circuit according to the present invention, once the PTC element is in a trip state, the resistance heating element continues to be heated and does not return from the trip state. By doing so, it is possible to maintain a state where the charging current is reduced even when the secondary battery temperature is lowered, and to prevent dangerous charging from being resumed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
A protection circuit for a secondary battery according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a secondary battery protection circuit according to the present embodiment. As shown in FIG. 1, the secondary battery protection circuit is configured by connecting a resistance heating element 5 in parallel to a PTC element 3 connected in series with the secondary battery 1. This series-parallel circuit is connected between the input / output terminals 7 and 9. The secondary battery 1 and the PTC element 3 are disposed in thermal contact. Similarly, the PTC element 3 and the resistance heating element 5 are also arranged in thermal contact with each other. A load is connected between the input / output terminals 7 and 9 during discharging, and a charger is connected during charging.
[0020]
As shown in FIG. 1, the positive electrode of the secondary battery 1 is connected to the input / output terminal 9 and one end of the resistance heating element 5. The negative electrode of the secondary battery 1 is connected to the input / output terminal 7 and the other end of the resistance heating element 5 through the PTC element 3. In the present embodiment, a lithium ion secondary battery is used as the secondary battery 1, but the present embodiment can be applied to other secondary batteries.
[0021]
Materials having PTC characteristics are roughly classified into inorganic ceramic systems and organic polymer systems. The former includes doped barium titanate, and the latter mainly includes a conductive polymer material in which conductive particles are dispersed in a thermoplastic polymer. The organic polymer system is disclosed in US Pat. Nos. 3,243,753 and 3,351,882. In this embodiment, it is preferable to use the latter conductive polymer material because the room temperature (steady state) resistance value can be reduced and molding is easy.
[0022]
The room temperature resistance value of the PTC element 3 is preferably equal to or less than the internal resistance value of the secondary battery 1, specifically 100 mΩ or less, more preferably 50 mΩ or less, and even more preferably 20 mΩ or less. With the miniaturization of the secondary battery 1, a small PTC element is desired. However, in order to reduce the resistance value of the PTC element 3, it is necessary to increase the surface area. Therefore, the lower the volume resistance value of the material, the better.
[0023]
In order to ensure the safety of the secondary battery 1, the operating temperature of the PTC element 3 is preferably set to 100 ° C., preferably around 70 to 90 ° C. at the highest. If the operating temperature is too high, the resistance value of the PTC element 3 becomes high and the secondary battery 1 may have already shifted to a dangerous state of a thermal runaway state when it enters a trip state in which a current suppressing operation is performed. Because there is sex.
[0024]
Such a PTC element 3 is disclosed in, for example, Japanese Patent Laid-Open Nos. 10-214705, 11-168005, and 11-195506 proposed by the inventors of the present application.
[0025]
On the other hand, regarding the resistance heating element 5, when there is no abnormality in the secondary battery 1, it is necessary to make the charging current flow mainly to the secondary battery 1 to the PTC element 3 side having a low resistance value. Moreover, it is necessary not to consume useless power in the normal state. Therefore, the resistance value of the resistance heating element 5 is set higher than the sum of the internal resistance value of the secondary battery 1 and the resistance value of the PTC element 3, and is set higher by at least one digit, preferably two digits or more. As the resistance heating element 5, a self-temperature controllable PTC heater can be used in addition to a normal resistance heater. At that time, it is desirable to set the operating temperature slightly higher than that of the PTC element 3.
[0026]
As a preferred example of the present embodiment, the PTC element 3 and the resistance heating element 5 may be integrated. Thereby, the stable thermal contact of both can be obtained reliably. FIG. 2 is a configuration example of a protection circuit for a secondary battery using a protection element 21 in which the PTC element 3 and the resistance heating element 5 are integrated. As shown in FIG. 2, the protection element 21 includes a PTC layer 25 and a resistance heating layer 27 that face each other with the common electrode 23 interposed therebetween. An electrode 29 is attached to the surface of the PTC layer 25 that faces the contact surface with the common electrode 23. An electrode 31 is attached to the surface of the resistance heating layer 27 that faces the contact surface with the common electrode 23. As described above, the protection element 21 is integrally formed by sequentially stacking the PTC side electrode 29, the PTC layer 25, the common electrode 23, the resistance heating layer 27, and the heating element side electrode 31. The layer 27 can be thermally connected well.
[0027]
The common electrode 23 of the protection element 21 is connected to the input / output terminal 7. The electrode 31 on the resistance heating layer 27 side is connected to the input / output terminal 9 and the positive electrode of the secondary battery 1. The electrode 29 on the PTC layer 25 side is connected to the negative electrode of the secondary battery 1. Thereby, the electrical connection relationship similar to the circuit configuration shown in FIG. 1 is obtained.
[0028]
A protective element in which a PTC element and a resistance heating element, or a PTC element and a resistance heating element having PTC characteristics are stacked and integrated is disclosed in, for example, Japanese Patent Publication No. 60-4446789 (Reference 1). This publication discloses an electric device in which a heat supply device is provided in a PTC element. In Japanese Examined Patent Publication No. 62-45673 (Document 2), a PTC sheet having a high resistance value is in close contact with a low resistance sheet having a resistance value of 10 −3 times Ω · cm or less, and an electrode is provided thereon. Further, a self-temperature control type heating element is disclosed. Japanese Patent Application Laid-Open No. 55-95203 (Reference 3) discloses an electrode in which an electric current flows along an electric circuit that sequentially passes through a CW element and a PTC element containing carbon black having a defined particle system and surface area. An electrical device provided with a is disclosed.
[0029]
However, in all of these documents 1 to 3, the PTC element and the resistance heating element are electrically connected in series, and wasteful power consumption is inevitable when the secondary battery is discharged in a normal state. Has the disadvantages.
[0030]
Now, an operation during charging of the secondary battery protection circuit according to the present embodiment will be described with reference to FIG. When there is no heat generation abnormality in the secondary battery 1, the charging current flows mainly to the PTC element 3 and the secondary battery 1 side having a low resistance value. The amount of heat generated by the resistance heating element 5 is negligibly small.
[0031]
When the secondary battery 1 is abnormally heated due to an increase in the charging voltage due to an abnormality in the secondary battery 1 or a failure of the charger, the temperature of the PTC element 3 in thermal contact rises and its resistance value increases (trip state). Thereby, the protection operation which suppresses the charging current which flows into the secondary battery 1 connected in series is started. Further, when the sum of the internal resistance value of the secondary battery 1 and the resistance value of the PTC element 3 exceeds the resistance value of the resistance heating element 5, a current flows mainly through the resistance heating element 5, and the secondary battery 1. The value of the charging current that flows is further reduced.
[0032]
When a current flows through the resistance heating element 5 to generate heat and the temperature rises, the temperature of the PTC element 3 in thermal contact with the resistance heating element 5 further increases and the resistance value is further increased. To do. As a result, the temperature of the secondary battery 1 drops without reaching a dangerous temperature state. Thus, the provision of the resistance heating element 5 allows the PTC element 3 to quickly perform a current suppression protection operation.
[0033]
Lithium-ion type secondary batteries, etc., once they generate abnormal heat due to overcharging, etc., will degrade performance and stability, so there is a risk of recharging even after the battery temperature has been lowered by the protection circuit. . On the other hand, in the protection circuit according to the present embodiment, even if the battery temperature is lowered by reducing the charging current, the PTC element 3 continues to be heated by the resistance heating element 5 that is electrically connected in parallel, and thus from the trip state. Does not return. For this reason, even when the battery temperature is lowered, the state where the charging current is reduced can be maintained, and dangerous charging can be prevented from being resumed.
[0034]
If the resistance heating element 5 is connected in series to the PTC element 3 as described in the above documents 1 to 3, if the current decreases due to the operation of the PTC element 3, the heating by the resistance heating element 5 is insufficient. Become. As a result, when the temperature of the PTC element 3 decreases and the resistance value decreases, recharging may occur depending on the degree of decrease in battery temperature. On the other hand, since the resistance heating element 5 is connected in parallel to the PTC element 3 in this embodiment, the resistance heating element 5 can continue to heat the PTC element 3 and prevent recharging of the secondary battery. Can do.
[0035]
When the current flowing through the resistance heating element 5 is reduced for some reason and the heating by the resistance heating element 5 becomes insufficient for the PTC element 3 in a tripped state, the resistance value of the PTC element 3 becomes low. However, even if the resistance value of the PTC element 3 falls below the resistance value of the resistance heating element 5, the charging current flows to the PTC element 3 at that time, so that the PTC element 3 generates heat due to Joule heat. Therefore, the current suppression by the PTC element 3 is continued and the charging current does not increase again.
[0036]
Thus, according to the present embodiment, dangerous recharging can be prevented from occurring. In order to resume the charging, the energization from the charger is once cut off and the temperature of the PTC element 3 is completely lowered. By doing so, it is possible to prevent an unintended return from the protective operation of the PTC element 3.
[0037]
The secondary battery protection circuit shown in FIGS. 1 and 2 has a configuration in which the resistance heating element 5 (the resistance heating layer 27 in FIG. 2) remains connected to the circuit in both charging and discharging of the secondary battery. Yes. However, in this configuration, the load and the resistance heating element 5 are connected in parallel during discharge, and there is a possibility that almost no current flows through the load depending on the resistance value of the load. Therefore, the resistance heating element 5 may be connected only at the time of charging and may be provided with a switching means for disconnecting from the circuit at the time of discharging. 3 to 5 show an example of a secondary battery protection circuit including a switching unit.
[0038]
In FIG. 3, a load 11 is connected between the input / output terminals 7 and 9. For example, a switch 13 is provided between the input / output terminal 9 and one end of the resistance heating element 5. As the switch 13, a switch having a mechanical contact or a circuit switch that is electrically disconnected can be used.
[0039]
In FIG. 4, the battery pack containing the protection element 21 is provided with a third terminal (charging terminal) 41 for connection between the electrode 31 on the resistance heating layer 27 side and the input / output terminal 9 (see FIG. 2). In other words, the electrode 31 is connected to a third terminal (charging terminal) 41. During charging, the charging terminal 41 and the input / output terminal 9 are short-circuited on the charger side, and during discharging (when connected to a load), the resistance heating element 5 is disconnected without being connected to the charging terminal 41.
[0040]
In FIG. 5, the push switch 15 is provided in the battery pack that houses the protection element 21, the connection between the electrode 31 on the resistance heating layer 27 side and the input / output terminal 9 is cut off (see FIG. 2), and the electrode 31 is pushed. The input / output terminal 9 is connected to the other end of the push switch 15. At the time of discharging, the push switch 15 is turned off to electrically disconnect between the electrode 31 and the input / output terminal 9. When the battery pack is inserted into the charger, the push switch 15 is pushed and the electrode 31 and the input / output terminal 9 are connected.
[0041]
FIG. 6 is a diagram illustrating a mounting state of the secondary battery protection circuit according to the present embodiment. FIG. 6A is a perspective view showing the external appearance of the secondary battery 1, and FIG. 6B is a diagram for the secondary battery as viewed from the mounting direction side to the secondary battery 1 shown in FIG. It is a perspective view which shows the external appearance of a protection circuit. FIG. 6C shows the configuration of the protection element 21.
[0042]
As shown in FIG. 6A, the secondary battery 1 has a thin rectangular parallelepiped shape. The positive and negative electrodes of the battery are provided on both side surfaces of the attachment position 52 where the protective element 21 is attached in close contact. Only the positive electrode 50 is shown in the figure.
[0043]
As shown in FIGS. 6B and 6C, the lead wire 44 is drawn from the common electrode 23 of the protection element 21. A lead wire 40 is drawn from the PTC element side electrode 29, and a lead wire 42 is drawn from the resistance heating element side electrode 31. As shown in FIG. 6B, the lead wire 40 is connected to a wiring board 54 connected to a negative electrode (not shown) of the secondary battery 1. The lead wire 42 is connected to a wiring board 58 connected to the input / output terminal 9 (not shown). The wiring board 56 branched in the middle is connected to the positive electrode 50 of the secondary battery. The lead wire 44 is connected to the input / output terminal 7 (not shown).
[0044]
With such a configuration, the PTC element 25 side of the protection element 21 is attached in close contact with the attachment position 52 of the secondary battery 1 so that good thermal contact can be obtained. Hereinafter, the present embodiment will be described using specific examples and comparative examples.
[0045]
(Example)
[PTC layer]
High density polyethylene (Nippon Polychem, product name HY540) and equivalent amount of paraffin wax (Nippon Seiwa, product name HNP-10), filamentary Ni powder 4 times the total weight of both (INCO, product name) (Type 255 nickel powder) is kneaded in a mill at 150 ° C., and 1.0% by weight of the total weight of polyethylene and wax is a silane coupling agent (trade name KBE1003, manufactured by Shin-Etsu Chemical Co., Ltd.), 20% by weight of the organic solvent. An oxide (trade name Trigonox DT50, manufactured by Kayaku Akzo) was dropped into the kneaded product and kneaded for 60 minutes. The kneaded product was formed into a sheet having a thickness of about 0.6 mm at 150 ° C., immersed in a 20% by weight dibutyltin dilaurate emulsion, and subjected to crosslinking treatment at 65 ° C. for 8 hours.
[0046]
This sheet was sandwiched between two Ni foils with a thickness of 25 μm and heat-pressed at 150 ° C. to a total thickness of 0.4 mm, punched into a disk shape with a diameter of 10 mm, and a temperature-resistance curve was measured. The operating temperature was 75 ° C.
[0047]
[Resistance heating layer]
66% by weight of low density polyethylene (manufactured by Nippon Polychem, product name LC500) of 66% by weight of carbon black (manufactured by Tokai Carbon, trade name of Toka Black # 4500) is kneaded in a mill at 120 ° C., and 1.0% by weight of polyethylene in the kneaded product A silane coupling agent (trade name KBE1003, manufactured by Shin-Etsu Chemical Co., Ltd.) and 20% by weight of an organic peroxide (product name: Trigonox 29A, manufactured by Kayaku Akzo) were dropped into the kneaded product and kneaded for 20 minutes. The kneaded product was formed into a sheet having a thickness of about 0.6 mm at 120 ° C., immersed in a 20% by weight dibutyltin dilaurate emulsion, and subjected to crosslinking treatment at 65 ° C. for 8 hours.
[0048]
This sheet was sandwiched between two Ni foils with a thickness of 25 μm and heat-pressed at 150 ° C. to a total thickness of 0.4 mm, punched into a disk shape with a diameter of 10 mm, and a temperature-resistance curve was measured. 1.2Ω and the operating temperature was 90 ° C.
[0049]
[Protective element]
A 25 μm thick Ni foil / cross-linked PTC sheet / Ni foil / cross-linked resistance heating sheet / Ni foil are sandwiched in this order and heat-pressed at 150 ° C. to a total of 0.8 mm, and punched into a disk shape with a diameter of 10 mm It was.
[0050]
[Protection circuit]
Each electrode of the protective element and a 0.55 Ahr lithium ion secondary battery 1 were connected as shown in FIG. 2, and a power supply for charging was connected to the input / output terminals 7 and 9.
[0051]
[Charge test]
Charging was performed under a constant current condition of 1 A up to a charging voltage of 5V. When the battery voltage reached about 4.3 V, the battery temperature began to rise, the PTC element operated at about 75 ° C., and the charging current was limited to 50 mA. Thereafter, the charging current did not increase even after standing for 3 hours.
[0052]
(Comparative example)
A disc-shaped PTC element having a thickness of 0.4 mm and a diameter of 10 mm is produced by sandwiching only the PTC element body of the example between the electrodes, connected in series between the battery and the power source, and the element and the battery are brought into thermal contact with each other. The same charge wiping test as in the example was performed.
[0053]
The residual current after the operation of the PTC element was 500 mA, which was 10 times that of the example.
[0054]
The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above-described embodiment, the protection element in which the PTC element and the resistance heating element 5 are integrally configured has been described. However, the PTC element and the resistance heating element 5 may be configured by individual components.
[0055]
【The invention's effect】
As described above, according to the present invention, an increase in battery temperature due to overvoltage charging is detected and the charging current is effectively reduced, and even when the battery temperature decreases, the charging current is reduced and the secondary battery is maintained. Can be safely protected.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a protection circuit for a secondary battery according to an embodiment of the present invention.
FIG. 2 is a configuration example of a protection circuit for a secondary battery using a protection element in which a PTC element and a resistance heating element are integrated.
FIG. 3 is a configuration diagram of a secondary battery protection circuit including switching means for disconnecting the resistance heating element from the circuit during discharge.
FIG. 4 is a configuration diagram of a secondary battery protection circuit including switching means for disconnecting the resistance heating element from the circuit during discharge.
FIG. 5 is a configuration diagram of a secondary battery protection circuit including switching means for disconnecting the resistance heating element from the circuit during discharging.
FIG. 6 is a diagram illustrating a mounted state of the secondary battery protection circuit according to the embodiment of the present invention.
[Explanation of symbols]
1 Secondary battery 3 PTC element 5 Resistance heating element 7, 9 Input / output terminal 11 Load 13 Switch 15 Push switch 21 Protection element 23 Common electrode 25 PTC layer 27 Resistance heating layer 29, 31 Electrodes 40, 42, 44 Lead wire 41 First 3 terminal (charging terminal)
50 Positive electrode 52 Mounting position 54, 56, 58 Wiring board

Claims (7)

2次電池に対して電気的に直列に接続され且つ熱的に接触するPTC素子と、
前記2次電池及び前記PTC素子に対して電気的に並列に接続され且つ前記PTC素子と熱的に接触し、前記2次電池の発熱で前記PTC素子の抵抗値が上昇することにより、流れる電流の電流値が増大する抵抗加熱素子と
を有することを特徴とする2次電池用保護回路。
A PTC element electrically connected in series and in thermal contact with the secondary battery;
A current that flows when the secondary battery and the PTC element are electrically connected in parallel and are in thermal contact with the PTC element, and the resistance value of the PTC element increases due to the heat generated by the secondary battery. And a resistance heating element that increases the current value of the secondary battery.
請求項1記載の2次電池用保護回路であって、
前記2次電池の充電時には前記抵抗加熱素子を回路に接続し、放電時には切断する切替手段を有すること
を特徴とする2次電池用保護回路。
A protection circuit for a secondary battery according to claim 1,
A protective circuit for a secondary battery, comprising switching means for connecting the resistance heating element to the circuit when the secondary battery is charged and disconnecting when the secondary battery is discharged.
請求項1又は2に記載の2次電池用保護回路であって、
前記PTC素子と抵抗加熱素子との間に形成された共通電極と、
前記PTC素子を介して前記共通電極と対向配置されたPTC側電極と、
前記抵抗加熱素子を介して前記共通電極と対向配置された加熱素子側電極とを有し、
前記PTC側電極、PTC素子、共通電極、抵抗加熱素子、加熱素子側電極の順に積層されて一体的に形成されていること
を特徴とする2次電池用保護回路。
The secondary battery protection circuit according to claim 1 or 2,
A common electrode formed between the PTC element and the resistance heating element;
A PTC side electrode disposed opposite to the common electrode through the PTC element;
A heating element side electrode disposed opposite to the common electrode via the resistance heating element;
The protective circuit for a secondary battery, wherein the PTC side electrode, the PTC element, the common electrode, the resistance heating element, and the heating element side electrode are laminated in order and integrally formed.
請求項1乃至3のいずれか1項に記載の2次電池用保護回路であって、
前記PTC素子の動作温度は100℃以下であること
を特徴とする2次電池用保護回路。
The secondary battery protection circuit according to any one of claims 1 to 3,
The operating temperature of the PTC element is 100 ° C. or less.
請求項1乃至4のいずれか1項に記載の2次電池用保護回路であって、
前記抵抗加熱素子はPTC特性を有すること
を特徴とする2次電池用保護回路。
The secondary battery protection circuit according to any one of claims 1 to 4,
The said resistance heating element has a PTC characteristic. The protection circuit for secondary batteries characterized by the above-mentioned.
請求項1乃至5のいずれか1項に記載の2次電池用保護回路であって、
前記抵抗加熱素子の動作温度は前記PTC素子の動作温度よりも高いこと
を特徴とする2次電池用保護回路。
A secondary battery protection circuit according to any one of claims 1 to 5,
The secondary battery protection circuit, wherein an operating temperature of the resistance heating element is higher than an operating temperature of the PTC element.
請求項1乃至6のいずれか1項に記載の2次電池用保護回路であって、
前記PTC素子は、一旦トリップ状態になると前記抵抗加熱素子に加熱し続けられて前記トリップ状態から復帰しないこと
を特徴とする2次電池用保護回路。
The secondary battery protection circuit according to any one of claims 1 to 6,
The secondary battery protection circuit according to claim 1, wherein once the PTC element is in a trip state, the resistance heating element is continuously heated and does not return from the trip state .
JP2000093055A 2000-03-30 2000-03-30 Secondary battery protection circuit Expired - Fee Related JP3798218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093055A JP3798218B2 (en) 2000-03-30 2000-03-30 Secondary battery protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093055A JP3798218B2 (en) 2000-03-30 2000-03-30 Secondary battery protection circuit

Publications (2)

Publication Number Publication Date
JP2001286067A JP2001286067A (en) 2001-10-12
JP3798218B2 true JP3798218B2 (en) 2006-07-19

Family

ID=18608292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093055A Expired - Fee Related JP3798218B2 (en) 2000-03-30 2000-03-30 Secondary battery protection circuit

Country Status (1)

Country Link
JP (1) JP3798218B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734830B1 (en) * 2005-01-14 2007-07-03 한국전자통신연구원 Li secondary battery having discharge means
JP4497141B2 (en) * 2006-08-25 2010-07-07 Tdk株式会社 PTC element and battery protection system
KR101128423B1 (en) * 2008-04-28 2012-03-23 에스케이이노베이션 주식회사 Safety switch of secondary battery for electric vehicle, charge and discharge system of secondary battery for electric vehicle using there
WO2015149186A1 (en) * 2014-04-02 2015-10-08 Corvus Energy Ltd. Method, system, and apparatus for inhibiting thermal runaway of a battery cell

Also Published As

Publication number Publication date
JP2001286067A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
US9614254B2 (en) Safety device for preventing overcharge and secondary battery therewith
EP1784891B1 (en) A safety device for preventing overcharge of secondary batteries and secondary batteries therewith
TWI258236B (en) Safety element for battery and battery with the same
KR100882433B1 (en) Secondary battery having constant-voltage device
JPH1154110A (en) Battery protective device having positive characteristic temperature element
JP2008507248A5 (en)
JP3699381B2 (en) Secondary battery with protection circuit
JP3798218B2 (en) Secondary battery protection circuit
JP3798217B2 (en) Secondary battery protection circuit
GB2349284A (en) Preventing overcharge of lithium cells
EP1839352A1 (en) Lithium secondary battery including discharge unit
JP5073204B2 (en) Polymer PTC element
JP2001283828A (en) Polymer lithium secondary battery
KR20070033853A (en) Safety element for preventing overcharge of secondary battery and secondary battery combined with safety element
KR20070088991A (en) Stable secondary battery without pcm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees