JP3798185B2 - Rotary polygon mirror processing apparatus and processing method - Google Patents

Rotary polygon mirror processing apparatus and processing method Download PDF

Info

Publication number
JP3798185B2
JP3798185B2 JP16474299A JP16474299A JP3798185B2 JP 3798185 B2 JP3798185 B2 JP 3798185B2 JP 16474299 A JP16474299 A JP 16474299A JP 16474299 A JP16474299 A JP 16474299A JP 3798185 B2 JP3798185 B2 JP 3798185B2
Authority
JP
Japan
Prior art keywords
polygon mirror
rotary polygon
expansion
rotary
contraction part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16474299A
Other languages
Japanese (ja)
Other versions
JP2000233334A (en
Inventor
秀樹 今野
紳一 尾崎
文刀 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16474299A priority Critical patent/JP3798185B2/en
Publication of JP2000233334A publication Critical patent/JP2000233334A/en
Application granted granted Critical
Publication of JP3798185B2 publication Critical patent/JP3798185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複写機、レーザービームプリンター、ファクシミリなどの画像形成装置、画像読取装置等の光偏向器として用いることができる回転多面鏡の加工装置および加工方法に関する。
【0002】
【従来の技術】
レーザー複写機、レーザービームプリンター、レーザーファクシミリなどに用いられる画像形成装置、画像読取装置では、レーザー光を感光体または原稿上で主走査方向に走査しながら感光体または原稿を副走査方向に移動させることにより、感光体上に所定の静電潜像を形成し、または原稿上の画像を読み取る。レーザー光を主走査方向に走査するために光偏向器が用いられ、光偏向器として一般には回転多面鏡が用いられる。回転多面鏡は外周面に複数の光反射面が等間隔に形成されていて、これをモータによって高速回転駆動しながら上記光反射面にレーザービームを照射すると、レーザービームは各光反射面ごとに偏向され、感光体または原稿上を走査し、上記のように静電潜像の形成や画像読み取りを行うことができる。回転多面鏡の各光反射面の表面粗さ、平面度、面倒れ精度等を含む加工、組立精度は、走査光の集光スポット精度、走査ピッチ精度等に大きく影響するため、回転多面鏡の各光反射面の加工精度は厳しく管理する必要がある。
【0003】
図15〜図17は、回転多面鏡の例と、その従来の加工装置の例および上記回転多面鏡を用いたスキャナモータのロータ部分の例を示す。図15に示す回転多面鏡71は、中心孔78を有するとともに周方向に等間隔に複数(図示の例では6個)の光反射面を有している。このような回転多面鏡71を得るための加工装置は、図16に示すように、加工治具80、治具ベース18、角度割り出し盤16、回転工具31等を有してなる。加工治具80は、治具ベース18に縦向きに固定され、上下方向の中心より下方寄りに鍔部82を有し、上半部に小径の回転多面鏡保持部84を有し、さらにその上にねじ部85を有している。回転多面鏡保持部84には複数個の回転多面鏡71の上記中心孔78が嵌められることによって複数個の回転多面鏡71が重ねられている。上記ねじ部85には座金状のクランパー86が嵌められ、さらにその上から締め付けねじ88がねじ込まれている。ねじ88の締め付けによってクランパー86の下端面が回転多面鏡保持部84を下方に押し、加工治具80の上記回転多面鏡保持部84の下端である段部とクランパー86との間で複数個の回転多面鏡71が強固に保持されている。
【0004】
複数個の回転多面鏡71を保持した加工治具80は、その下端部が治具ベース18の取付孔に挿入され、この取付孔の周縁に上方に突出して形成された突堤19に加工治具80の鍔部82が当接している。そして、この状態で治具ベース18が加工治具80に強固に固定されるように適宜の固定手段が用いられる。治具ベース18は角度割り出し機構16の上に取り付けられている。角度割り出し機構16は治具ベース18を所定角度ずつ回転させ回転角度を割り出すことができる。
【0005】
上記のようにして固定された加工治具80で保持されている複数個の回転多面鏡71の側方には回転工具31がある。回転工具31は水平方向の回転軸37を中心として回転駆動され、回転多面鏡71との対向面側に加工工具33が取り付けられている。回転工具31は、これを回転軸37を中心として回転駆動しながら水平方向と垂直方向に移動させることにより、回転多面鏡71の一つの光反射面を切削加工することができる。一つの光反射面の加工が終了したなら、角度割り出し機構16によって治具ベース18および回転多面鏡71とともに加工治具80を回転させながら所定の回転角度を割り出し、その位置で治具ベース18を固定して回転工具31により同様に別の光反射面を加工する。このようにして順次光反射面を加工し、全ての光反射面の加工が終了したら加工治具80から回転多面鏡71を取り外す。
【0006】
加工済の回転多面鏡71はスキャナモータのロータに一体に取り付けられる。図17はその例で、カップを下向きにした形のロータヨーク75は上面に円形の膨出部79を有し、この膨出部79に回転多面鏡71の中心孔78が嵌められる。ロータヨーク75は軸孔を有し、この軸孔に軸74が圧入されて、ロータヨーク75に軸74が一体に取り付けられている。軸74には回転多面鏡71の上から押さえ板72が嵌められ、その上から止めリング73が軸74にはめられることにより、押さえ板72の介在のもとにロータヨーク75に回転多面鏡71が一体に取り付けられている。ロータヨーク75の内周面には円筒状のロータマグネット76が固着されている。周知のように、ロータマグネット76は図示されないステータコアの外周面と対向し、ステータコアに巻かれた複数のコイルへ通電し、また通電を切り換えることにより、回転多面鏡71とともにロータを回転させることができる。
【0007】
【発明が解決しようとする課題】
ところで、回転多面鏡を回転駆動するスキャナモータは、技術の進歩に伴い回転の高速化が要求される。高速回転化に伴い、ロータの回転中心に対する回転多面鏡の中心位置精度や、各光反射面の面精度その他の面状態が高精度であることが要求される。仮に、これらの要求精度を満たしていないとすれば、回転中心のずれ、偏重心等によって円滑な回転状態を得ることができず、高速化が不可能であるとか、振動、騒音の原因となる、というような様々な問題を生じる。
【0008】
しかるに、図16に示したような従来の回転多面鏡の加工装置、ないしは加工方法によれば、回転多面鏡単独で加工し、加工後、何点かの部品とともに組み付けてロータを構成するものであるため、個々の部品が有する加工誤差が積み上げられ、これに組付時の誤差が加わり、高速回転に要求される精度を得ることは非常に難しい。ここで、要求精度の例を挙げて比較しながら説明すると、鏡面加工された光反射面の平面度(以下これを「面精度」という)は、現状では4/5λ(λ=633nm)であるにの対し、要求精度は1/4λである。また、ロータヨークの回転中心線に対する鏡面加工された各光反射面の平行度(以下これを「面倒れ」という)は、現状が100秒であるのに対し、25秒が要求されている。
【0009】
現状と同じ構成部品で高速回転に要求される精度を満足させようとすると、各部品単位の精度を今まで以上に高精度化しなければならず、部品コストが高騰する。例えば、図17に示す例では、ロータヨーク75に回転の中心となる軸74が圧入により一体に取り付けられ、その後ロータヨーク75の上面に、その膨出部79に回転多面鏡71の中心孔がはめられることにより回転多面鏡71が取り付けられる。この回転多面鏡71の取り付け時に、ロータの回転中心線となる軸74とロータヨーク75上面との直角度、これに加えてロータヨーク75上面に取り付けられる回転多面鏡71の底面と各光反射面との直角度が面倒れ精度となる。そのため、軸74、ロータヨーク75、回転多面鏡の各部品の精度向上、さらに、これら各部品の組付精度などの向上を図る必要があり、部品コストの高騰、組立コストの高騰の要因となっていた。
【0010】
また、図16について説明したように、回転多面鏡の光反射面は切削加工によって鏡面仕上げされるが、その切削加工中は加工工具が回転多面鏡の被削面に接触するため、切削加工抵抗が発生する。上記回転工具31のような工具を使用した加工方法では、加工工具33が回転工具31の回転軸37を中心として回転し、被削物である回転多面鏡は固定されているため、加工工具33が被削面に接触している間は切削加工抵抗が工具33の回転方向に発生する。この切削加工抵抗は、被削面とこの被削面を有する回転多面鏡本体を変形させる力として作用する。被削面から加工工具33が抜けると、それまで被削面および回転多面鏡本体を変形させていた力はゼロとなり、被削物を元に戻そうとする反発力が発生する。この被削物を元に戻そうとする反発力が発生した直後に、回転してきた次の加工工具33が再度被削面に接触し、被削面および回転多面鏡本体を変形させようとする切削加工抵抗が発生する。このような、被削面および回転多面鏡本体を変形させようとする切削加工抵抗と、この抵抗がゼロとなって被削物である回転多面鏡を元に戻そうとする反発力とが交互に繰り返して発生し、被削面の加工が終了するまで続く。
【0011】
このようにして、被削面に切削加工抵抗と反発力とが交互に継続して発生し、被削面が微小ではあるが動かされる。この動きのことを加工の現場では被削物の「ビビリ」といい、回転多面鏡の鏡面加工においてビビリが大きいと、面精度を悪化させる原因となる。このビビリの大きさは、切削抵抗のかかる点(以下これを「力点」という)と被削面にかかる切削加工抵抗に対して支えとなる支点との距離に関係し、上記力点と支点との距離が長くなればなるほどビビリも大きくなる。ビビリが大きくなると、加工された光反射面の面精度も悪くなるので、力点と支点との距離を極力短くして鏡面加工を行うのが望ましい。
【0012】
本発明は以上のような従来技術の問題点に鑑みてなされたもので、第1の目的は、各構成部品の精度向上、組付精度向上を低コストで容易に図ることができ、もって、回転の高速化の要求に低コストで応えることができる回転多面鏡加工装置および加工方法を提供することにある。
本発明の第2の目的は、加工時に、回転多面鏡と一体の回転中心部材に傷が付かないように工夫して、回転むらによる形成画像の品質低下、読み取り品質の低下を防止し、かつ、画像形成装置または読取装置の短命化を防止することができる回転多面鏡加工装置および加工方法を提供することにある。
本発明の第3の目的は、加工時に、加工抵抗がかかる力点と加工抵抗に対して支えとなる支点との距離を短くすることを可能にして、加工時の回転多面鏡のいわゆるビビリを抑え、加工された光反射面の面精度を高めることができる回転多面鏡加工装置および加工方法を提供することにある。
【0013】
【課題を解決するための手段】
請求項1記載の発明は、筒状の回転中心部材を有する回転多面鏡の加工装置であって、回転操作される回転操作体と、拡大し縮小することによって回転多面鏡と一体の上記回転中心部材を保持しこの保持を解除する拡縮部と、上記回転操作体の回転運動を上記拡縮部に伝達して拡縮部を拡大させ縮小させる運動変換手段とを具備する保持手段が角度割り出し機構に取り付けられ、上記拡縮部は、軸線方向へ移動する移動体とともに内外に配置されており、上記移動体は、軸線方向への移動によって拡縮部を拡大させ縮小させるテーパー面を有するとともに、上記回転中心部材の中心孔にはまって回転多面鏡の回転中心位置出しを行う位置出し部を有し、上記角度割り出し機構は、回転多面鏡の各鏡面を加工するために上記保持手段を所定角度ずつ回転させ回転角度を割り出すものであることを特徴とする。
【0014】
拡縮部は、請求項2記載の発明のように、この拡縮部によって保持される回転多面鏡と一体の回転中心部材よりも硬度の低い金属または非金属から構成することができる。
保持手段の拡縮部は、請求項3記載の発明のように、拡大することによって回転多面鏡の筒状の回転中心部材を保持するように構成することができる。
【0015】
請求項4記載の発明は、モータのロータヨークと一体に設けられるとともに回転中心部材として軸を一体に有する回転多面鏡の加工装置であって、回転操作される回転操作体と、拡大し縮小することによって回転多面鏡と一体の上記軸を保持しこの保持を解除する拡縮部と、上記回転操作体の回転運動を上記拡縮部に伝達して拡縮部を拡大させ縮小させる運動変換手段とを具備する保持手段が角度割り出し機構に取り付けられ、上記拡縮部は、軸線方向への移動によって拡縮部を拡大し縮小するテーパー面を有していて縮小することにより上記軸の外周を保持し、上記角度割り出し機構は、回転多面鏡の各鏡面を加工するために上記保持手段を所定角度ずつ回転させ回転角度を割り出すものであることを特徴とする
【0016】
請求項5記載の発明は、請求項4記載の発明において、回転多面鏡と一体の軸には位置決め部材が嵌められ、この位置決め部材は保持手段によって位置規制され、上記軸の中心が保持手段の中心に合わせられていることを特徴とする。
請求項6記載の発明は、請求項4記載の発明において、拡縮部は、この拡縮部によって保持される回転多面鏡と一体の軸の材質よりも硬度の低い金属または非金属からなることを特徴とする。
【0017】
請求項7記載の発明は、請求項4記載の発明において、拡縮部は、回転多面鏡と一体の軸と当接する介在部材を有することを特徴とする。
請求項8記載の発明は、請求項4記載の発明において、介在部材は、この介在部材によって保持される回転多面鏡と一体の軸の材質よりも硬度の低い金属または非金属からなることを特徴とする。
【0018】
請求項9記載の発明は、回転操作体と、拡縮部と、運動変換手段とを具備する保持手段を用い、上記回転操作体を回転操作することにより、この回転力を上記運動変換手段が上記拡縮部に伝達して拡縮部を拡大縮小させ、この拡縮部の拡大縮小によって回転多面鏡と一体の回転中心部材を上記保持手段の拡縮部で保持し、角度割り出し機構により上記保持手段を所定角度ずつ回転させ回転角度を割り出して回転多面鏡の各鏡面を加工する回転多面鏡加工方法であって、回転多面鏡と一体の回転中心部材が筒状の部材の場合、保持手段の拡縮部が拡大して上記筒状の部材の内周を保持することを特徴とする
【0019】
請求項10記載の発明は、回転操作体と、拡縮部と、運動変換手段とを具備する保持手段を用い、上記回転操作体を回転操作することにより、この回転力を上記運動変換手段が上記拡縮部に伝達して拡縮部を拡大縮小させ、この拡縮部の拡大縮小によって回転多面鏡と一体の回転中心部材を上記保持手段の拡縮部で保持し、角度割り出し機構により上記保持手段を所定角度ずつ回転させ回転角度を割り出して回転多面鏡の各鏡面を加工する回転多面鏡加工方法であって、回転多面鏡と一体の回転中心部材が軸の場合、保持手段の拡縮部が縮小して上記軸の外周を保持することを特徴とする
【0021】
【発明の実施の形態】
以下、図1〜図14を参照しながら本発明に係る回転多面鏡加工装置および加工方法の実施の形態について説明する。
図1〜図4は回転多面鏡がその回転中心部材として筒状の部材を有する形式の加工装置および加工方法の実施の形態を示す。図1において、回転多面鏡11は周面に適宜数の平滑な光反射面を周方向に等間隔で有するとともに、下面側に円形の凹部を有し、この凹部に筒状の部材からなる回転中心部材12の一端部が嵌合されて回転多面鏡11と一体に設けられている。上記回転中心部材12の外周側には扁平なカップ状のロータヨーク13が嵌合されて固着され、ロータヨーク13の周壁内周面にはロータマグネット14が固着されている。上記筒状の部材12は、例えば空気動圧軸受の回転側の軸受部材を構成していて、内周面に対向させて動圧軸受の固定側の軸受部材を配置し、回転側と固定側の軸受部材の相対向する面の少なくとも一方側に動圧発生用グルーブを形成することにより、上記回転多面鏡11、筒状の部材12、ロータヨーク13、ロータマグネット14を含むロータを無接触で回転自在に支持することができる。周知の通り、ロータマグネット14の内周面はステータコアの外周面と適宜の間隙をおいて対向し、ステータコアの各突極に巻かれた駆動コイルへの通電を切り換えることによって上記ロータを回転駆動することができる。
【0022】
上記回転多面鏡11の加工装置の実施形態を図2に示す。図2において、符号16は角度割り出し機構を示す。この角度割り出し機構16の上には治具ベース18が載せられている。治具ベース18は回転多面鏡加工治具20をはめるための縦方向に向いた円筒状の中心孔を有し、この中心孔の上面周縁が立ち上がった円形の突堤19を有している。上記加工治具20は、縦方向に向けた状態で下端寄りの位置に鍔部22を有している。円筒面をなす加工治具20の下部を治具ベース18の上記中心孔にはめることにより上記鍔部22の下面が治具ベース18の突堤19に当たり、加工治具20が上下方向に位置決めされるとともに、加工治具20の中心軸線が治具ベース18の中心軸線に合致するように位置決めされている。また、治具ベース18の中心軸線は角度割り出し機構16の回転中心軸線と一致するようにあらかじめ調整してある。
【0023】
図3にも示すように、加工治具20の上端部外周にはねじ24が形成されていて、このねじ24にはリング状の回転操作体30がねじ込まれ、その上からロックナット32がねじ込まれている。加工治具20の上端には拡縮部34が配置されている。拡縮部34は工作機械などにおいてワークやバイトなどを保持するチャックに類似のものと考えてよく、周方向に等間隔に分割されることによって形成された複数個の部分円筒状の部材が全体として円筒形をなすように配置されている。拡縮部34は適宜のばね付勢力により径を拡大する向きに付勢されている。拡縮部34と加工治具20の上端部中心孔に、軸線方向への移動体として位置出しテーパーピン26が上下方向に移動可能に挿入されている。加工治具20の上端近くに形成された孔とテーパーピン26の下端部に形成された孔を水平方向に貫いてピン28が挿入されている。加工治具20の上記孔は上下方向の長孔となっていてこの長孔の範囲でピン28が相対移動可能であるのに対し、テーパーピン26の孔に対してはピン28が相対移動不可能にまたはこれに近い状態で嵌められている。
【0024】
テーパーピン26の上端部外周面は、上から下に向かって連続的に径が小さくなるテーパー面25になっていて、このテーパー面25に対向する拡縮部34の内周面も、上記テーパー面25に接するテーパー面となっている。従って、テーパーピン26が上下動すると、テーパー面25が拡縮部34の内周面を外側に向かって押し、また、テーパー面25が拡縮部34の内周面から逃げて拡縮部34の径が拡大し、また、縮小するようになっている。この拡縮部34の外周には、加工しようとする回転多面鏡11と一体の前記回転中心部材12の中心孔が挿入される。そして、テーパーピン26の上端部外周には、上記のように拡縮部34に回転中心部材12の中心孔を挿入したとき、回転中心部材12の中心孔面に摺接して回転中心部材12および回転多面鏡11の位置出しを行い、加工治具20の中心軸線と回転多面鏡11の中心軸線とを一致させるための鍔状の位置出し部27を一体に有している。上記ピン28の両端部は加工治具20の外周面から突出していて、このピン28の突出両端部上面には前記回転操作体30が当たっている。また、回転操作体30の下端外周部にはピン28の両端を覆う周壁30aが一体に形成されている。
【0025】
加工治具20に対して回転操作体30を回転操作すると、回転操作体30が加工治具20のねじ24に沿って上下動し、この回転操作体30の上下動に伴いピン28、テーパーピン26が上下動し、テーパーピン26のテーパー面25によって拡縮部34が拡大し縮小する。拡縮部34が拡大することによってその外周面を上記回転中心部材12の中心孔周面に当接させ、回転中心部材12とともに回転多面鏡11を保持することができる。上記ピン28、テーパーピン26、そのテーパー面25は、回転操作体30の回転運動を上記拡縮部34に伝達して拡縮部34を拡大させ縮小させる運動変換手段を構成している。また、上記回転操作体30、上記運動変換手段および拡縮部34は、回転多面鏡11の保持手段10を構成している。拡縮部34は、軸線方向への移動体である上記テーパーピン26とともに内外に配置されて二重構造になって、上記テーパーピン26の移動によって拡大し縮小して回転多面鏡11と一体の回転中心部材12を保持し、この保持を解除することができる。前記ロックナット32は、上記のように回転多面鏡11を保持した状態で回転させ、回転操作体30に押し付けることにより、回転操作体30の緩みを防止することができる。
【0026】
前記角度割り出し機構16は、治具ベース18を介して上記保持手段10を所定角度ずつ回転させ回転角度を割り出すことができる。保持手段10の側方には回転工具31が配置されている。図16において説明したように、回転工具31は水平方向の回転軸37を中心として回転駆動され、回転多面鏡11との対向面側に加工工具33が取り付けられていて、上記回転軸37を中心として回転駆動しながら水平方向と垂直方向に移動させることにより、回転多面鏡11の一つの光反射面を加工することができる。一つの光反射面の加工が終了したなら、角度割り出し機構16によって治具ベース18および回転多面鏡11とともに加工治具20を回転させながら所定の回転角度を割り出し、その位置で治具ベース18を固定して回転工具31により同様に別の光反射面を加工することができる。
【0027】
以上説明した回転多面鏡加工装置を用いた回転多面鏡加工方法について順を追って説明する。まず、拡縮部34を縮小させた状態でその外周に回転多面鏡11と一体の回転中心部材12の内周側をはめる。このとき、位置出し部27が回転中心部材12の内周に摺接し、保持手段10に対する回転多面鏡のおおよその中心位置出しが行われる。次に回転操作体30を回転操作してねじ24に沿い下に向かって移動させ、回転操作体30でピン28を押し下げてテーパーピン26を下降させる。これにより前述のとおり拡縮部34が拡大し、拡縮部34の外周面が回転中心部材12の内面に当接して回転多面鏡11が保持手段10によって強固に保持される。この保持状態をロックナット32の締め付けによって維持することができる。保持手段10によって回転多面鏡11を保持した状態では、加工治具20の中心軸線と保持手段10の中心軸線とが一致している。
【0028】
次に回転工具31を駆動し、回転多面鏡11の一つの光反射面を鏡面加工する。一つの光反射面の鏡面加工が終了したら、角度割り出し機構16によって治具ベース18および回転多面鏡11とともに加工治具20を回転させながら所定の回転角度を割り出し、その位置で治具ベース18を固定して回転工具31により同様に別の光反射面を加工する。上記角度割り出し機構16の回転中心軸線と加工治具20および回転中心部材12の中心軸線は一致しているため、鏡面加工された各光反射面は、回転中心部材12の中心軸線との相対位置関係が精度よく仕上げられる。このようにして順次光反射面を加工し、全ての光反射面の加工が終了したら加工治具20から回転多面鏡11を取り外す。
【0029】
以上説明した実施の形態によれば、保持手段10の回転操作体30を回転操作して拡縮部34を拡大させることにより、回転多面鏡11と一体の筒状の回転中心部材12を保持し、角度割り出し機構16により上記保持手段10を所定角度ずつ回転させ回転角度を割り出しながら回転多面鏡11の各鏡面を加工するようにしたため、拡縮部34が均等に拡大することにより回転多面鏡11の中心軸線が回転多面鏡加工治具20の中心線に一致し、角度割り出し機構16によって回転多面鏡11とともに加工治具20を回転させ所定の回転角度を割り出しながら、回転多面鏡11の各光反射面を回転中心軸に対する位置精度および平行度を良好に保ち、精度よく鏡面加工することができる。
【0030】
しかも、回転多面鏡11と一体の回転中心部材12を拡縮部34で保持して鏡面加工するため、状来の加工装置および加工方法のように回転多面鏡単独で加工するものと異なり、個々の部品の精度誤差の積み上げがなく、面倒れ精度の良好な回転多面鏡を容易にローコストで得ることができる。また、部品組付による精度誤差の積み上げも少なく、この点からも精度の良い回転多面鏡をすることができる。このように精度よく鏡面加工することができるため、回転多面鏡を用いた光走査装置の高速化、高品質化を図ることができる。
【0031】
拡縮部34による回転多面鏡11と一体の筒状の回転中心部材12の保持力が弱いと、加工時に回転多面鏡11が動き、加工された光反射面の面精度が悪化し、場合によっては、回転多面鏡11が動いて回転中心部材12や加工治具20、回転工具31などに過大な負荷がかかり、これらを損傷させる原因となる。逆に拡縮部34による回転中心部材12の保持力が強いと、回転中心部材12や回転多面鏡11を変形させた状態で保持することになるため、この状態で加工し、拡縮部34を縮小させて回転中心部材12とともに回転多面鏡11を取り外すと、回転中心部材12および回転多面鏡11の変形が戻り、回転多面鏡11の加工面が変形して面精度を悪化させることになる。しかし、前述の実施の形態によれば、回転操作体30の回転によってテーパーピン26を下降させ、拡縮部34を均一に拡大させて上記回転中心部材12を保持するため、回転中心部材12および回転多面鏡11の変形が少なく、また、例えば回転操作体30の回転トルクを管理することによって保持力を管理することができるため、保持力の過不足による上記のような不具合を防止することができる。
【0032】
拡縮部34が回転多面鏡11と一体の回転中心部材12に当接することによって回転中心部材12の内周面に傷が付くと、回転多面鏡11の回転精度、寿命等に悪影響を及ぼすことになる。そこで、拡縮部34で回転中心部材12を保持したとき回転中心部材12の内周面に傷が付かないように、拡縮部34は回転中心部材12よりも硬度の低い金属または非金属からなることが望ましい。
また、図4に示すように、拡縮部34の外周に回転中心部材12よりも硬度の低い金属または非金属からなるカラー38を取り付け、拡縮部34が拡大したとき、上記カラー38が回転中心部材12の内周面に当接して回転中心部材12を保持するようにしてもよい。こうすることによって、拡縮部34で回転中心部材12を保持したとき回転中心部材12の内周面に傷が付くことを防止することができる。図4に示す実施の形態は、カラー38を有する点以外は図3に示す構成と同じであるから、説明は省略する。
【0033】
本発明の技術思想は、回転多面鏡と一体の回転中心部材として、筒状の部材ではなく、円柱状の軸を有するものにも適用することができる。図5〜図8はその実施の形態を示す。図5は回転多面鏡41を含むモータのロータ40の例を示すもので、回転多面鏡41は円筒状のロータヨーク42と一体に成形され、回転多面鏡41の回転中心位置に形成された中心孔には回転中心部材として円柱状の軸43が圧入されて、回転多面鏡41と一体に軸43が設けられている。ロータヨーク42の内周面には円筒状のロータマグネット44が固着されている。軸43は適宜のラジアル軸受によってその中心軸線を中心にして回転可能に保持される。ロータマグネット44の内周面は図示されないステータコアの外周面と間隙をおいて対向し、ステータコアの複数の突極に巻かれた駆動コイルへの通電を制御することによってロータ40が回転駆動される。
【0034】
上記回転多面鏡41の加工装置および加工方法の実施の形態を図6〜図8に示す。図6、図7に示す加工装置の大半は図2、図3に示す加工装置と同様に、角度割り出し機構16、治具ベース18、ピン28、回転操作体30、回転工具31、ロックナット32等を有し、同様に構成されている。この加工装置が図2、図3に示す加工装置と異なる点は、保持手段10の構成である。治具ベース18の中心孔にはめて固定される加工治具60は、図2、図3に示す例の加工治具20と外観上はよく似ていて、治具ベース18の突堤19に当接する鍔部62を有しており、さらに、加工治具60の筒状上端部64の内周側にテーパーピン状の部材が配置されて二重構造になっているが、図2、図3に示す例と異なって、上記内側のテーパーピン状の部材が拡縮部50となっている。上記筒状上端部64に形成された上下方向の長孔と拡縮部50の下端部に形成された嵌合孔とを貫いてピン28が水平方向に嵌められ、図2、図3に示す例と同様に、回転操作部材30の回転操作に伴い、ピン28を介して拡縮部50が上下方向に移動するようになっている。
【0035】
拡縮部50は前述のチャックに類似した構成になっており、周方向に等間隔に分割されることによって形成された複数個の部材が全体として円筒形をなすように配置され、適宜のばね付勢力により、径を縮小する向きに付勢されている。拡縮部50の上部外周面は上から下に向かって連続的に径が小さくなるテーパー面52になっていて、このテーパー面52に対向する上記筒状上端部64の内周面も、上記テーパー面52に接するテーパー面となっている。従って、拡縮部50が上下動すると、テーパー面52が上記筒状上端部64のテーパー面に沿って内側に向かって押され、また、テーパー面52が筒状上端部64のテーパー面に沿って外側に広がり、もって拡縮部50の中心孔54の径が拡大し、また、縮小するようになっている。
【0036】
拡縮部50が拡大している状態でその中心孔54に前記回転多面鏡41と一体の軸43が嵌められるが、その前に軸43に位置決め部材70が嵌められる。位置決め部材70は扁平なカップを伏せた形の部材で、軸43が貫通する中心孔と内周壁面との相対位置関係が精度よく加工されている。位置決め部材70の中心孔に軸43を貫通させた状態で軸43を拡縮部50の中心孔54に挿入したとき、位置決め部材70の周壁内面が上記筒状上端部64の外周面に沿って嵌まる。この状態で回転操作体30を回転操作し、ピン28を介して拡縮部50を下降させると、上記のように拡縮部50が縮小する。このとき拡縮部50は縮小しながら下降し、これに伴って位置決め部材70が上記筒状上端部64と回転多面鏡41との間に挟み込まれ上下方向に位置規制される。そして、この位置決め部材70によって保持手段10に対する軸43の位置が規制されて保持手段10の中心軸線と軸43の中心軸線とが一致する。
【0037】
ここにおいて角度割り出し機構16による加工治具60の回転中心軸線と軸43の回転中心軸線とが一致し、角度割り出し機構16により回転角度を割り出しながら回転工具31を駆動し、回転多面鏡の各光反射面を鏡面加工する。こうして、前述の実施の形態と同様に回転多面鏡41の回転中心となる軸43の中心軸線に対し各光反射面が位置精度よくかつ面倒れ精度よく加工される。全ての光反射面の鏡面加工が終了したら、回転操作体30を逆向きに回転操作して拡縮部50を拡大させ、軸43、回転多面鏡41等を一体に有するロータ40を取り外す。
【0038】
前述の実施の形態では、拡縮部が拡大することによって回転多面鏡と一体の回転中心部材を保持し、各光反射面を鏡面加工するものであるのに対し、図5〜図7に示す実施の形態は、拡縮部50が縮小することによって、回転多面鏡41と一体の部材である軸43を保持し、各光反射面を鏡面加工する点で異なるものであるが、両者は技術的には共通のものであり、共通の作用効果を奏する。
【0039】
拡縮部を縮小させて回転多面鏡と一体の回転中心部材を保持する場合も、回転中心部材に傷を付けないようにすることが望ましい。そこで、拡縮部50は、この拡縮部50によって保持される回転多面鏡41と一体の部材である軸43の材質よりも硬度の低い金属または非金属で形成するのが望ましい。
また、図8に示すように、拡縮部50の内周側に上記軸43の材質よりも硬度の低い金属または非金属で形成したスリーブ状の介在部材72を嵌め、この介在部材72を介して上記軸43を挟持するようにしてもよい。
【0040】
図6〜図8に示す実施の形態において、回転多面鏡41の光反射面を切削加工するとき、各部に力がかかる。この力がかかる各点を図9に示す。前記回転工具33は被削面100に接触しながら、図9に示すように上から下に移動して被削面100を切削加工する。このとき被削面100と工具33との接触点に切削加工抵抗が生じ、これが力点101となる。図示の例では、力点101に回転多面鏡41を上から下に押しつける力が生じる。このときの支点102は、軸43を挟持している拡縮部50の上端にある。軸43と回転多面鏡41との連結部が作用点103となり、この作用点103を経由して、上記支点102を中心に、回転多面鏡41を下方に押しつける力が働く。上記力点101から支点102までの距離が長いと、加工中に生じる前述のいわゆるビビリが大きくなり、加工精度等の上から望ましくない。図9に示す例では力点101から支点102までの距離が比較的長くなっているので、この距離をなるべく短くするのが望ましい。
【0041】
図6〜図8に示す実施の形態では、保持手段10に取り付けられた位置決め部材70によって保持手段10に対する軸43の位置を規制し、保持手段10の中心軸線と軸43の中心軸線とを一致させている。上記位置決め部材の形状を工夫してこれを有効に利用することにより、力点101から支点102までの距離を短くすることができる。その実施の形態を図10、図11に示す。
【0042】
図10において、位置決め部材105は、扁平な二つのカップを背中合わせにした形、換言すれば、円筒の中心軸線方向中央に底部を一体に形成することにより、底部の上下にそれぞれ円筒部106、107を形成した形をしている。位置決め部材105の下側の円筒部106は、その内周壁面が前記加工治具60の筒状上端部64の外周面に上から嵌まっている。位置決め部材105の中心孔に軸43を貫通させた状態で軸43を拡縮部50の中心孔に挿入することにより、保持手段10の中心軸線と軸43の中心軸線とを一致させることができる。一方、位置決め部材105の上側の円筒部107の上面に回転多面鏡41の内側天井面を当接させる。この状態で拡縮部50を縮小させ、軸43を挟持して、前述のように回転多面鏡41の各光反射面を鏡面加工する。
【0043】
図10に示す例によれば、加工時の力点101に近い位置で位置決め部材105の上側の円筒部107と回転多面鏡41の天井面を当接させ、この当接面を加工抵抗に対する支持面、すなわち支点102としているため、力点101と支点102との距離が短くなり、加工時の回転多面鏡41のいわゆるビビリの発生が抑制され、加工された光反射面の面精度を高めることができる。
【0044】
図11に示す実施の形態は、図6〜図8に示す実施の形態における回転多面鏡と同じ構成の回転多面鏡41を加工するものであるが、この回転多面鏡41を上下反転させた姿勢で加工するものである。図11において、位置決め部材110は、下側に前記加工治具60の筒状上端部64の外周面に上から嵌まる円筒面111と、上側に回転多面鏡41の端面が当接する周壁112とを有してなる。回転多面鏡41を上下反転させ、位置決め部材110の中心孔に回転多面鏡41と一体の軸43を貫通させた状態で、軸43を拡縮部50の中心孔に挿入する。これにより、保持手段10の中心軸線と軸43の中心軸線とを一致させることができる。一方、位置決め部材110の上記周壁112の上面に回転多面鏡41の端面を当接させる。この状態で拡縮部50を縮小させ、軸43を挟持して、前述のように回転多面鏡41の各光反射面を鏡面加工する。
【0045】
図11に示す実施の形態においても、加工時の力点101に近い位置で位置決め部材110の上側の周壁112と回転多面鏡41の端面を当接させ、この当接面を、加工抵抗に対する支持面、すなわち支点102としているため、力点101と支点102との距離が短くなり、加工時の回転多面鏡41のいわゆるビビリの発生が抑制され、加工された光反射面の面精度を高めることができる。
【0046】
図5〜図11に示す回転多面鏡41は、モータのロータケースを兼ねており、円筒状のロータヨーク42を一体に有している。ロータヨーク42の内周面にはロータマグネット44が圧入によって固着されている。ロータマグネット44の圧入によってロータヨーク42が歪むことがあり得るが、ロータヨーク42は鏡面加工面100である光反射面から軸線方向にずれた位置にあり、かつ、ロータヨーク42は比較的薄肉になっているため、ロータヨーク42の歪みが鏡面加工面100に至ることはなく、鏡面加工面100の精度を損なうことがないような形状になっている。
【0047】
図12に示す実施の形態における回転多面鏡は、図5〜図11に示す実施の形態における回転多面鏡の変形例というべきものである。図12において、回転多面鏡141は、外周面に鏡面100からなる複数の光反射面を有する円板状の部分と、その下面側に突出して一体に形成された円筒状のロータヨーク142と、上記円板状の部分の上側に突出して一体に形成された小径の有底筒部145とを有してなる。ロータヨーク142の内周面にはロータマグネット144が圧入によって固着されている。上記有底筒部145の中心には軸143が圧入され、軸143が回転多面鏡141と一体に、かつ、ロータヨーク142側に伸び出た形で固着されている。
【0048】
このように構成された回転多面鏡141の場合も、ロータヨーク142は被削面100から軸線方向にずれた位置にあり、かつ、ロータヨーク142は比較的薄肉になっているため、ロータヨーク142の歪みが被削面100に至ることはない。さらに、軸143の圧入位置も、被削面100から軸線方向にずれた位置である有底筒部145の底部中心にあるため、軸143の圧入によって生じるロータヨーク142の歪みが被削面100に至ることはなく、被削面100の精度を損なうことがないような形状になっている。
【0049】
ところで、図12に示す実施の形態では、図9に示す位置決め部材70と同じ構成の位置決め部材70を有しており、力点101である被削面100と工具33との接触点と、軸43を挟持している拡縮部50の上端の支点102と、軸43と回転多面鏡41との連結部の作用点103との関係が図9に示す例とほぼ同様になり、力点101から支点102までの距離が比較的長くなっている。この距離は、前述のようになるべく短くするのが望ましい。力点101から支点102までの距離を短くした実施の形態を図13、図14に示す。
【0050】
図13に示す実施の形態は、位置決め部材115の形状を、フランジ117付の扁平なカップ状とし、これを伏せた姿勢で上記カップの内周面を前記加工治具60の筒状上端部64の外周面に上から嵌め、上記フランジ部117に上記ロータヨーク142の下端面を当接させたものである。位置決め部材115の中心孔に軸143を貫通させた状態で軸143を拡縮部50の中心孔に挿入し、拡縮部50を縮小させることにより、保持手段10に対する軸43の位置が規制されて保持手段10の中心軸線と軸43の中心軸線とが一致する。
【0051】
図13に示す実施の形態によれば、位置決め部材115のフランジ117と、回転多面鏡141と一体のロータヨーク142の下端面との当接面が支点102となり、回転多面鏡141の円板状本体とロータヨーク142との連結部が作用103点となる。被削面100を切削加工するとき、切削加工抵抗が生じて力点101に上から下に向かって押しつけ力が働くと、上記支点102を中心に、作用点103を経由して回転多面鏡141を下方に押しつける力が働く。しかしながら、位置決め部材115のフランジ117に回転多面鏡141の支持面を設け、この支持面を回転多面鏡141の加工面近くにしたため、力点101から支点102までの距離が短くなり、加工時のいわゆるビビリが抑制され、加工された光反射面の面精度を高めることができる。
【0052】
図14に示す実施の形態は、上記回転多面鏡141を上下反転させた姿勢で加工するようにしたものである。保持手段10に取り付けられた位置決め部材120は、下側中心部に、加工治具60の筒状上端部64の外周面に上から嵌まる円筒状の孔123を有し、上側中心部に、回転多面鏡141の有底筒部145を空間的余裕を持って受け入れる円筒状の孔121と、上側外周に、回転多面鏡141の加工面近くで加工抵抗に対する支持面となる円筒状の周壁122を有してなる。回転多面鏡141はこれを上下反転させた姿勢で、その軸143を位置決め部材115の中心孔に貫通させ、拡縮部50の中心孔に挿入し、拡縮部50を縮小させ、保持手段10の中心軸線と軸143の中心軸線とが一致した状態で軸143を挟持し、回転多面鏡141の被削面を切削加工する。
【0053】
図14に示す実施の形態によれば、力点101のすぐ近くに支点102をおくことができ、加工時のいわゆるビビリが抑制され、加工された光反射面の面精度を高めることができる。
【0054】
【発明の効果】
本発明によれば、回転操作される回転操作体と、拡大し縮小することによって回転多面鏡と一体の回転中心部材を保持しこの保持を解除する拡縮部と、上記回転操作体の回転運動を上記拡縮部に伝達して拡縮部を拡大させ縮小させる運動変換手段とを具備する保持手段が角度割り出し機構に取り付けられていて、上記角度割り出し機構により上記保持手段を所定角度ずつ回転させ回転角度を割り出して回転多面鏡の各鏡面を加工するようにしたため、拡縮部が均等に拡大縮小することにより回転多面鏡の中心軸線が保持手段の中心線に一致し、角度割り出し機構によって回転多面鏡とともに保持手段を回転させ所定の回転角度を割り出しながら、回転多面鏡の各光反射面を、回転中心軸に対する位置精度および平行度を良好に保ち、精度よく鏡面加工することができる。しかも、回転多面鏡と一体の回転中心部材を拡縮部で保持して鏡面加工するため、従来の加工装置および加工方法のように回転多面鏡を単独の部品の状態で加工するものと異なり、個々の部品の精度誤差の積み上げがなく、面倒れ精度の良好な回転多面鏡を容易にローコストで得ることができる。このように精度よく鏡面加工することができるため、回転多面鏡を用いた光走査装置の高速化、高品質化を図ることができる。
【0055】
請求項2、請求項、請求項記載の発明によれば、拡縮部は、この拡縮部によって保持される回転多面鏡と一体の回転中心部材の材質よりも硬度の低い金属または非金属からなり、あるいは回転多面鏡と一体の回転中心部材と当接する介在部材の材質を、この介在部材によって保持される回転多面鏡と一体の回転中心部材の材質よりも硬度の低い金属または非金属にしたため、拡縮部で回転中心部材を保持したとき回転中心部材に傷が付くことを防止することができ、傷による回転多面鏡の回転精度、回転性能、寿命等に悪影響を与えることを防止することができる。
【0056】
請求項記載の発明によれば、保持手段に位置決め部材を取り付け、この位置決め部材は、回転多面鏡の加工面近くで加工抵抗に対する支持面を有しているため、加工時に、加工抵抗がかかる力点と加工抵抗に対して支えとなる支点との距離を短くすることが可能であり、加工時の回転多面鏡のいわゆるビビリを抑え、加工された光反射面の面精度を高めることができる。
【図面の簡単な説明】
【図1】本発明にかかる加工装置および加工方法によって得られる回転多面鏡の例を示す(a)は分解斜視図、(b)は縦断面図である。
【図2】本発明にかかる回転多面鏡加工装置および加工方法の実施の形態を示す縦断面図である。
【図3】同上実施の形態の要部を拡大して示す縦断面図である。
【図4】本発明にかかる回転多面鏡加工装置および加工方法の別の実施の形態の要部を示す縦断面図である。
【図5】本発明にかかる加工装置および加工方法によって得られる回転多面鏡の別の例を示す(a)は分解斜視図、(b)は縦断面図である。
【図6】本発明にかかる回転多面鏡加工装置および加工方法のさらに別の実施の形態を示す縦断面図である。
【図7】同上実施の形態の要部を拡大して示す縦断面図である。
【図8】本発明にかかる回転多面鏡加工装置および加工方法のさらに別の実施の形態の要部を示す縦断面図である。
【図9】本発明にかかる回転多面鏡加工装置および加工方法のさらに別の実施の形態を示す縦断面図である。
【図10】本発明にかかる回転多面鏡加工装置および加工方法のさらに別の実施の形態を示す縦断面図である。
【図11】本発明にかかる回転多面鏡加工装置および加工方法のさらに別の実施の形態を示す縦断面図である。
【図12】本発明にかかる回転多面鏡加工装置および加工方法のさらに別の実施の形態を示す縦断面図である。
【図13】本発明にかかる回転多面鏡加工装置および加工方法のさらに別の実施の形態を示す縦断面図である。
【図14】本発明にかかる回転多面鏡加工装置および加工方法のさらに別の実施の形態を示す縦断面図である。
【図15】従来の回転多面鏡の一般的な例を示す斜視図である。
【図16】従来の回転多面鏡加工装置および加工方法の例を示す縦断面図である。
【図17】従来の回転多面鏡回転駆動装置の例を示す分解斜視図である。
【符号の説明】
10 保持手段
11 回転多面鏡
12 回転中心部材
16 角度割り出し機構
25 テーパー面
26 運動変換手段としてのテーパーピン
27 位置出し部
28 運動変換手段としてのピン
30 回転操作体
34 拡縮部
41 回転多面鏡
42 ロータヨーク
43 回転中心部材としての軸
50 拡縮部
70 位置決め部材
72 介在部材
105 位置決め部材
110 位置決め部材
115 位置決め部材
120 位置決め部材
141 回転多面鏡
143 軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing apparatus and a processing method for a rotating polygon mirror that can be used as an optical deflector for an image forming apparatus such as a copying machine, a laser beam printer, a facsimile, or an image reading apparatus.
[0002]
[Prior art]
In image forming apparatuses and image reading apparatuses used for laser copying machines, laser beam printers, laser facsimiles, etc., the photosensitive member or the original is moved in the sub-scanning direction while scanning the laser light on the photosensitive member or the original in the main scanning direction. As a result, a predetermined electrostatic latent image is formed on the photosensitive member, or the image on the original is read. An optical deflector is used to scan the laser light in the main scanning direction, and a rotating polygon mirror is generally used as the optical deflector. A rotating polygon mirror has a plurality of light reflecting surfaces formed at equal intervals on the outer peripheral surface. When a laser beam is irradiated onto the light reflecting surface while being driven to rotate at high speed by a motor, the laser beam is divided into each light reflecting surface. It is deflected and can scan a photoconductor or a document, and can form an electrostatic latent image or read an image as described above. The processing and assembly accuracy including the surface roughness, flatness, surface tilt accuracy, etc. of each light reflecting surface of the rotating polygon mirror greatly affect the condensing spot accuracy, scanning pitch accuracy, etc. of the scanning light. It is necessary to strictly manage the processing accuracy of each light reflecting surface.
[0003]
15 to 17 show an example of a rotating polygon mirror, an example of a conventional processing apparatus thereof, and an example of a rotor portion of a scanner motor using the rotating polygon mirror. A rotary polygon mirror 71 shown in FIG. 15 has a center hole 78 and a plurality of (six in the illustrated example) light reflecting surfaces at equal intervals in the circumferential direction. A processing apparatus for obtaining such a rotary polygon mirror 71 includes a processing jig 80, a jig base 18, an angle indexing board 16, a rotary tool 31, and the like as shown in FIG. The processing jig 80 is fixed to the jig base 18 in a vertical direction, has a flange portion 82 below the center in the vertical direction, and has a small-diameter rotary polygon mirror holding portion 84 in the upper half portion. A threaded portion 85 is provided on the top. A plurality of rotary polygon mirrors 71 are stacked on the rotary polygon mirror holding portion 84 by fitting the center holes 78 of the plurality of rotary polygon mirrors 71. A washer-like clamper 86 is fitted into the screw portion 85, and a clamping screw 88 is screwed thereon. When the screw 88 is tightened, the lower end surface of the clamper 86 pushes the rotary polygon mirror holding portion 84 downward, and a plurality of gaps between the stepped portion which is the lower end of the rotary polygon mirror holding portion 84 of the processing jig 80 and the clamper 86. The rotary polygon mirror 71 is firmly held.
[0004]
The processing jig 80 holding a plurality of rotary polygon mirrors 71 is inserted into the mounting hole of the jig base 18 at the lower end thereof, and the processing jig is formed on the jetty 19 formed so as to protrude upward from the peripheral edge of the mounting hole. 80 flanges 82 are in contact with each other. In this state, an appropriate fixing means is used so that the jig base 18 is firmly fixed to the processing jig 80. The jig base 18 is mounted on the angle indexing mechanism 16. The angle indexing mechanism 16 can determine the rotation angle by rotating the jig base 18 by a predetermined angle.
[0005]
There is a rotating tool 31 on the side of the plurality of rotary polygon mirrors 71 held by the processing jig 80 fixed as described above. The rotary tool 31 is driven to rotate about a horizontal rotary shaft 37, and a processing tool 33 is attached to the surface facing the rotary polygon mirror 71. The rotary tool 31 can cut one light reflecting surface of the rotary polygon mirror 71 by moving the rotary tool 31 in the horizontal direction and the vertical direction while rotationally driving the rotary tool 31 around the rotary shaft 37. When the processing of one light reflecting surface is completed, the angle indexing mechanism 16 determines a predetermined rotation angle while rotating the processing jig 80 together with the jig base 18 and the rotary polygon mirror 71, and the jig base 18 is positioned at that position. Then, another light reflecting surface is processed in the same manner by the rotary tool 31. In this way, the light reflecting surfaces are sequentially processed, and when the processing of all the light reflecting surfaces is completed, the rotary polygon mirror 71 is removed from the processing jig 80.
[0006]
The processed rotary polygon mirror 71 is integrally attached to the rotor of the scanner motor. FIG. 17 shows an example, and a rotor yoke 75 with the cup facing downward has a circular bulging portion 79 on the upper surface, and the central hole 78 of the rotary polygon mirror 71 is fitted into the bulging portion 79. The rotor yoke 75 has a shaft hole. The shaft 74 is press-fitted into the shaft hole, and the shaft 74 is integrally attached to the rotor yoke 75. A holding plate 72 is fitted onto the shaft 74 from above the rotating polygon mirror 71, and a retaining ring 73 is fitted onto the shaft 74 from above, whereby the rotating polygon mirror 71 is attached to the rotor yoke 75 with the holding plate 72 interposed. It is attached integrally. A cylindrical rotor magnet 76 is fixed to the inner peripheral surface of the rotor yoke 75. As is well known, the rotor magnet 76 faces the outer peripheral surface of a stator core (not shown), and the rotor can be rotated together with the rotary polygon mirror 71 by energizing a plurality of coils wound around the stator core and switching the energization. .
[0007]
[Problems to be solved by the invention]
By the way, a scanner motor that rotationally drives a rotary polygon mirror is required to increase the rotation speed as the technology advances. As the rotation speed increases, the center position accuracy of the rotary polygon mirror with respect to the rotation center of the rotor, the surface accuracy of each light reflecting surface, and other surface states are required to be high accuracy. If these required precisions are not satisfied, a smooth rotation state cannot be obtained due to a shift in the center of rotation, an eccentric center of gravity, etc., and high speed cannot be achieved, or vibration and noise are caused. Cause various problems.
[0008]
However, according to the conventional rotating polygon mirror processing apparatus or processing method as shown in FIG. 16, the rotating polygon mirror is processed alone, and after processing, is assembled with some parts to constitute the rotor. For this reason, processing errors of individual parts are accumulated, and errors at the time of assembly are added to this, so that it is very difficult to obtain the accuracy required for high-speed rotation. Here, to explain by comparison with an example of the required accuracy, the flatness of the mirror-reflected light reflecting surface (hereinafter referred to as “surface accuracy”) is 4 / 5λ (λ = 633 nm) at present. On the other hand, the required accuracy is 1 / 4λ. Further, the parallelism of each mirror-finished light reflecting surface with respect to the rotation center line of the rotor yoke (hereinafter referred to as “surface collapse”) is 25 seconds, while the current state is 100 seconds.
[0009]
In order to satisfy the accuracy required for high-speed rotation with the same components as the current situation, the accuracy of each component must be increased more than before, and the cost of the components increases. For example, in the example shown in FIG. 17, a shaft 74 as a center of rotation is integrally attached to the rotor yoke 75 by press fitting, and then the central hole of the rotary polygon mirror 71 is fitted to the bulging portion 79 on the upper surface of the rotor yoke 75. Thus, the rotary polygon mirror 71 is attached. When the rotary polygon mirror 71 is attached, the perpendicularity between the shaft 74, which is the rotation center line of the rotor, and the upper surface of the rotor yoke 75, in addition to the bottom surface of the rotary polygon mirror 71 attached to the upper surface of the rotor yoke 75 and each light reflecting surface The perpendicularity is a surface tilt accuracy. For this reason, it is necessary to improve the accuracy of each component of the shaft 74, the rotor yoke 75, and the rotary polygon mirror, and further improve the assembly accuracy of these components, which is a cause of a rise in component costs and assembly costs. It was.
[0010]
In addition, as described with reference to FIG. 16, the light reflecting surface of the rotary polygon mirror is mirror-finished by cutting, but the cutting tool is in contact with the work surface of the rotary polygon mirror during the cutting process, so that the cutting resistance is low. appear. In the machining method using the tool such as the rotary tool 31, the machining tool 33 rotates around the rotation axis 37 of the rotary tool 31, and the rotary polygon mirror that is a work is fixed. While the is in contact with the work surface, cutting resistance is generated in the direction of rotation of the tool 33. This cutting resistance acts as a force that deforms the work surface and the rotary polygon mirror body having the work surface. When the processing tool 33 comes off from the work surface, the force that has deformed the work surface and the rotary polygon mirror body until then becomes zero, and a repulsive force is generated to return the work to its original state. Immediately after the repulsive force to return the workpiece to its original state is generated, the next machining tool 33 that has rotated again comes into contact with the work surface, and the cutting work tries to deform the work surface and the rotary polygon mirror body. Resistance is generated. Such cutting resistance that tries to deform the work surface and the rotary polygon mirror body and the repulsive force that tries to return the rotary polygon mirror that is the work piece to zero when this resistance becomes zero alternately It occurs repeatedly and continues until machining of the work surface is completed.
[0011]
In this way, cutting resistance and repulsive force are alternately and continuously generated on the work surface, and the work surface is moved although it is minute. This movement is called “battery” of the work piece at the machining site. If the chatter is large in the mirror surface processing of the rotary polygon mirror, the surface accuracy is deteriorated. The size of the chatter is related to the distance between the point where the cutting force is applied (hereinafter referred to as “power point”) and the fulcrum that supports the cutting force applied to the work surface, and the distance between the force point and the fulcrum. The longer the is, the greater the chatter. When chatter increases, the surface accuracy of the processed light reflecting surface also deteriorates. Therefore, it is desirable to perform mirror surface processing with the distance between the power point and the fulcrum as short as possible.
[0012]
The present invention has been made in view of the above-described problems of the prior art, and the first object is to easily improve the accuracy of each component and the assembly accuracy at a low cost. An object of the present invention is to provide a rotary polygon mirror processing apparatus and a processing method that can meet the demand for high speed rotation at low cost.
The second object of the present invention is to devise so that the rotation center member integrated with the rotary polygon mirror is not damaged during processing, to prevent deterioration of the formed image quality and reading quality due to uneven rotation, and Another object of the present invention is to provide a rotating polygon mirror processing apparatus and a processing method capable of preventing an image forming apparatus or a reading apparatus from being shortened.
The third object of the present invention is to suppress the so-called chattering of the rotary polygon mirror during processing by making it possible to shorten the distance between the force point on which processing resistance is applied and the fulcrum that supports the processing resistance during processing. Another object of the present invention is to provide a rotating polygon mirror processing apparatus and a processing method capable of improving the surface accuracy of a processed light reflecting surface.
[0013]
[Means for Solving the Problems]
  The invention described in claim 1A rotary polygon mirror processing apparatus having a cylindrical rotation center member,A rotating operation body that is rotated and integrated with the rotating polygon mirror by enlarging and reducingthe aboveAn angle indexing mechanism comprising: an expansion / contraction section that holds and releases the rotation center member; and a motion conversion means that transmits the rotational motion of the rotary operation body to the expansion / contraction section to expand and contract the expansion / contraction section. Attached toThe expanding / contracting portion is disposed inside and outside together with a moving body that moves in the axial direction, and the moving body has a tapered surface that expands and contracts the expanding / contracting portion by movement in the axial direction, and the rotation center member It has a positioning part that locates the rotation center of the rotary polygon mirror in the center hole,Above angle indexing mechanismTo process each mirror surface of the rotating polygon mirrorRotate the holding means by a predetermined angle to determine the rotation angleWhatIt is characterized by that.
[0014]
  As in the second aspect of the present invention, the expansion / contraction part can be made of a metal or a non-metal having a lower hardness than the rotation center member integrated with the rotary polygon mirror held by the expansion / contraction part.
  The expansion / contraction part of the holding means isAs in the invention of claim 3,Holds the cylindrical rotating center member of the rotating polygon mirror by enlargingCan be configured to.
[0015]
  The invention according to claim 4A processing apparatus for a rotary polygon mirror that is provided integrally with a rotor yoke of a motor and that has a shaft as a rotation center member. The rotary operation body is rotated, and the rotation polygon is enlarged and reduced so as to be integrated with the rotary polygon mirror. A holding means comprising an expansion / contraction part for holding the shaft and releasing the holding, and a motion conversion means for transmitting the rotational motion of the rotary operating body to the expansion / contraction part to expand and contract the expansion / contraction part is attached to the angle indexing mechanism. The expanding / contracting portion has a tapered surface that expands and contracts the expanding / contracting portion by movement in the axial direction, and holds the outer periphery of the shaft by contracting, and the angle indexing mechanism is provided for each of the rotary polygon mirrors. In order to process the mirror surface, the holding means is rotated by a predetermined angle to determine the rotation angle..
[0016]
  According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the positioning member is fitted to the shaft integral with the rotary polygon mirror, the positioning member is regulated by the holding means, and the center of the shaft is the holding means. It is characterized by being centered.
  The invention according to claim 6 is the invention according to claim 4, wherein the expansion / contraction part is made of a metal or non-metal having a lower hardness than the material of the shaft integral with the rotary polygon mirror held by the expansion / contraction part. And
[0017]
  According to a seventh aspect of the present invention, in the fourth aspect of the present invention, the expansion / contraction part has an interposition member that abuts on a shaft integral with the rotary polygon mirror.
  The invention according to claim 8 is the invention according to claim 4, wherein the interposed member is made of a metal or non-metal having a lower hardness than the material of the shaft integral with the rotary polygon mirror held by the interposed member. And
[0018]
  According to the ninth aspect of the present invention, by using the holding means including the rotary operation body, the expansion / contraction part, and the motion conversion means, and by rotating the rotary operation body, the rotational force is converted by the motion conversion means. The enlargement / reduction part is transmitted to the enlargement / reduction part, and the enlargement / reduction part is enlarged / reduced. By the enlargement / reduction of the enlargement / reduction part, the rotation center member integrated with the rotary polygon mirror is held by the enlargement / reduction part of the holding means. Rotating polygon mirror processing method that processes each mirror surface of the rotating polygon mirror by rotating each rotation and calculating the rotation angle, and when the rotation center member integrated with the rotating polygon mirror is a cylindrical member, the expansion / contraction part of the holding means is expanded And holding the inner periphery of the cylindrical member.
[0019]
  The invention according to claim 10 uses the holding means including the rotation operation body, the expansion / contraction part, and the motion conversion means, and rotates the rotation operation body so that the motion conversion means converts the rotational force into the rotation force. The enlargement / reduction part is transmitted to the enlargement / reduction part, and the enlargement / reduction part is enlarged / reduced. By the enlargement / reduction of the enlargement / reduction part, the rotation center member integrated with the rotary polygon mirror is held by the enlargement / reduction part of the holding means. Rotating polygon mirror processing method for processing each mirror surface of the rotating polygon mirror by rotating each rotation and calculating the rotation angle, when the rotation center member integrated with the rotating polygon mirror is a shaft, the expansion / contraction part of the holding means is reduced It is characterized by holding the outer periphery of the shaft.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a rotating polygon mirror processing apparatus and a processing method according to the present invention will be described with reference to FIGS.
1 to 4 show an embodiment of a processing apparatus and a processing method of a type in which a rotary polygon mirror has a cylindrical member as its rotation center member. In FIG. 1, the rotating polygonal mirror 11 has an appropriate number of smooth light reflecting surfaces on the peripheral surface at equal intervals in the circumferential direction, and has a circular concave portion on the lower surface side, and a rotation made of a cylindrical member in the concave portion. One end of the center member 12 is fitted and provided integrally with the rotary polygon mirror 11. A flat cup-shaped rotor yoke 13 is fitted and fixed to the outer peripheral side of the rotation center member 12, and a rotor magnet 14 is fixed to the inner peripheral surface of the peripheral wall of the rotor yoke 13. The cylindrical member 12 constitutes, for example, a rotation-side bearing member of an air dynamic pressure bearing, and a bearing member on the fixed side of the dynamic pressure bearing is disposed so as to face the inner peripheral surface, and the rotation side and the fixed side are arranged. By forming a dynamic pressure generating groove on at least one side of the opposing surfaces of the bearing member, the rotor including the rotary polygon mirror 11, the cylindrical member 12, the rotor yoke 13, and the rotor magnet 14 is rotated without contact. It can be supported freely. As is well known, the inner peripheral surface of the rotor magnet 14 faces the outer peripheral surface of the stator core with an appropriate gap, and the rotor is rotationally driven by switching energization to the drive coils wound around the salient poles of the stator core. be able to.
[0022]
An embodiment of the processing apparatus for the rotary polygon mirror 11 is shown in FIG. In FIG. 2, reference numeral 16 denotes an angle indexing mechanism. A jig base 18 is placed on the angle indexing mechanism 16. The jig base 18 has a cylindrical center hole oriented in the longitudinal direction for fitting the rotary polygon mirror processing jig 20, and has a circular jetty 19 whose upper peripheral edge of the center hole rises. The said processing jig 20 has the collar part 22 in the position near a lower end in the state which faced the vertical direction. By fitting the lower part of the processing jig 20 having a cylindrical surface into the central hole of the jig base 18, the lower surface of the flange 22 hits the jetty 19 of the jig base 18, and the processing jig 20 is positioned in the vertical direction. At the same time, the center axis of the processing jig 20 is positioned so as to match the center axis of the jig base 18. The center axis of the jig base 18 is adjusted in advance so as to coincide with the rotation center axis of the angle indexing mechanism 16.
[0023]
As shown in FIG. 3, a screw 24 is formed on the outer periphery of the upper end portion of the processing jig 20, and a ring-shaped rotary operation body 30 is screwed into the screw 24, and a lock nut 32 is screwed thereon. It is. An expansion / contraction part 34 is disposed at the upper end of the processing jig 20. The expansion / contraction part 34 may be considered to be similar to a chuck for holding a workpiece, a tool, or the like in a machine tool or the like, and a plurality of partial cylindrical members formed by being divided at equal intervals in the circumferential direction as a whole. It is arranged so as to form a cylindrical shape. The expansion / contraction part 34 is urged | biased by the direction which expands a diameter with the appropriate spring urging | biasing force. A positioning taper pin 26 is inserted into the expansion / contraction portion 34 and the center hole of the upper end portion of the processing jig 20 as a movable body in the axial direction so as to be movable in the vertical direction. A pin 28 is inserted through a hole formed near the upper end of the processing jig 20 and a hole formed at the lower end of the taper pin 26 in the horizontal direction. The hole of the processing jig 20 is a long hole in the vertical direction, and the pin 28 can be moved relative to the range of the long hole, whereas the pin 28 cannot move relative to the hole of the taper pin 26. It fits in or close to possible.
[0024]
The outer peripheral surface of the upper end portion of the taper pin 26 is a tapered surface 25 whose diameter continuously decreases from the top to the bottom, and the inner peripheral surface of the expansion / contraction portion 34 facing the taper surface 25 is also the taper surface. The taper surface is in contact with 25. Therefore, when the taper pin 26 moves up and down, the taper surface 25 pushes the inner peripheral surface of the expansion / contraction portion 34 outward, and the taper surface 25 escapes from the inner peripheral surface of the expansion / contraction portion 34 so that the diameter of the expansion / contraction portion 34 increases. It is designed to expand and contract. A center hole of the rotation center member 12 integral with the rotary polygon mirror 11 to be processed is inserted into the outer periphery of the expansion / contraction portion 34. When the center hole of the rotation center member 12 is inserted into the expansion / contraction part 34 as described above on the outer periphery of the upper end portion of the taper pin 26, the rotation center member 12 and the rotation center member 12 are in sliding contact with the center hole surface of the rotation center member 12. The polygonal mirror 11 is positioned, and a bowl-shaped positioning part 27 for making the central axis of the processing jig 20 coincide with the central axis of the rotary polygonal mirror 11 is integrally provided. Both ends of the pin 28 protrude from the outer peripheral surface of the processing jig 20, and the rotary operation body 30 is in contact with the upper surface of the protruding both ends of the pin 28. Further, a peripheral wall 30 a that covers both ends of the pin 28 is integrally formed on the outer peripheral portion of the lower end of the rotary operation body 30.
[0025]
When the rotary operation body 30 is rotated with respect to the processing jig 20, the rotary operation body 30 moves up and down along the screw 24 of the processing jig 20. As the rotary operation body 30 moves up and down, the pin 28 and the taper pin are moved. 26 moves up and down, and the expansion / contraction part 34 expands and contracts by the tapered surface 25 of the taper pin 26. When the expansion / contraction part 34 is enlarged, the outer peripheral surface thereof is brought into contact with the peripheral surface of the center hole of the rotation center member 12, and the rotary polygon mirror 11 can be held together with the rotation center member 12. The pin 28, the taper pin 26, and the taper surface 25 constitute a motion conversion means that transmits the rotational motion of the rotary operation body 30 to the expansion / contraction part 34 to expand and contract the expansion / contraction part 34. Further, the rotary operation body 30, the motion conversion means and the expansion / contraction part 34 constitute a holding means 10 for the rotary polygon mirror 11. The expansion / contraction part 34 is disposed inside and outside together with the taper pin 26 that is a moving body in the axial direction to form a double structure, and expands and contracts by the movement of the taper pin 26 to rotate integrally with the rotary polygon mirror 11. The center member 12 is held and this holding can be released. The lock nut 32 can be prevented from being loosened by rotating the lock nut 32 while holding the rotary polygon mirror 11 and pressing the lock nut 32 against the rotary operation body 30.
[0026]
The angle indexing mechanism 16 can determine the rotation angle by rotating the holding means 10 by a predetermined angle via the jig base 18. A rotary tool 31 is arranged on the side of the holding means 10. As described with reference to FIG. 16, the rotary tool 31 is driven to rotate about the horizontal rotation shaft 37, and the processing tool 33 is attached to the surface facing the rotary polygonal mirror 11, and the rotation shaft 37 is centered. As described above, one light reflecting surface of the rotary polygon mirror 11 can be processed by moving in the horizontal direction and the vertical direction while being rotationally driven. When the processing of one light reflecting surface is completed, the angle indexing mechanism 16 determines a predetermined rotation angle while rotating the processing jig 20 together with the jig base 18 and the rotary polygon mirror 11, and the jig base 18 is positioned at that position. Another light reflecting surface can be similarly processed by the rotary tool 31 while being fixed.
[0027]
The rotating polygon mirror processing method using the rotating polygon mirror processing apparatus described above will be described in order. First, the inner peripheral side of the rotation center member 12 integrated with the rotary polygon mirror 11 is fitted to the outer periphery of the expansion / contraction portion 34 in a contracted state. At this time, the positioning portion 27 comes into sliding contact with the inner periphery of the rotation center member 12 and the approximate center positioning of the rotary polygon mirror with respect to the holding means 10 is performed. Next, the rotary operation body 30 is rotated and moved downward along the screw 24, and the pin 28 is pushed down by the rotary operation body 30 to lower the taper pin 26. As a result, the expansion / contraction part 34 expands as described above, the outer peripheral surface of the expansion / contraction part 34 abuts against the inner surface of the rotation center member 12, and the rotary polygon mirror 11 is firmly held by the holding means 10. This holding state can be maintained by tightening the lock nut 32. In a state where the rotary polygon mirror 11 is held by the holding means 10, the central axis of the processing jig 20 and the central axis of the holding means 10 coincide.
[0028]
Next, the rotary tool 31 is driven, and one light reflecting surface of the rotary polygon mirror 11 is mirror-finished. When mirror processing of one light reflecting surface is completed, a predetermined rotation angle is determined by rotating the processing jig 20 together with the jig base 18 and the rotary polygonal mirror 11 by the angle indexing mechanism 16, and the jig base 18 is positioned at that position. Then, another light reflecting surface is processed in the same manner by the rotary tool 31. Since the rotation center axis of the angle indexing mechanism 16 and the center axis of the processing jig 20 and the rotation center member 12 coincide with each other, each mirror-finished light reflecting surface is positioned relative to the center axis of the rotation center member 12. The relationship is finished with high accuracy. In this manner, the light reflecting surfaces are sequentially processed, and when the processing of all the light reflecting surfaces is completed, the rotary polygon mirror 11 is removed from the processing jig 20.
[0029]
According to the embodiment described above, the cylindrical rotating center member 12 integral with the rotary polygon mirror 11 is held by rotating the rotary operation body 30 of the holding means 10 to enlarge the expansion / contraction part 34, Since the holding means 10 is rotated by a predetermined angle by the angle indexing mechanism 16 to process each mirror surface of the rotating polygonal mirror 11 while calculating the rotation angle, the expansion / contraction part 34 is uniformly enlarged, whereby the center of the rotating polygonal mirror 11 is obtained. The axis line coincides with the center line of the rotary polygon mirror processing jig 20, and each light reflecting surface of the rotary polygon mirror 11 is determined by rotating the processing jig 20 together with the rotary polygon mirror 11 by the angle indexing mechanism 16 to determine a predetermined rotation angle. Can be accurately mirror-finished while maintaining good positional accuracy and parallelism with respect to the rotation center axis.
[0030]
In addition, since the rotation center member 12 integrated with the rotary polygon mirror 11 is held by the expansion / contraction portion 34 and mirror-finished, the individual processing is different from the processing with the rotary polygon mirror alone as in the conventional processing apparatus and processing method. It is possible to easily obtain a rotating polygon mirror with good surface tilt accuracy without accumulating parts accuracy errors. In addition, there is little accumulation of accuracy errors due to parts assembly, and a rotating polygon mirror with high accuracy can be obtained from this point. Since mirror processing can be performed with high accuracy in this way, it is possible to increase the speed and quality of an optical scanning device using a rotating polygon mirror.
[0031]
If the holding force of the cylindrical rotary center member 12 integrated with the rotary polygon mirror 11 by the expansion / contraction part 34 is weak, the rotary polygon mirror 11 moves during processing, and the surface accuracy of the processed light reflecting surface deteriorates. The rotary polygonal mirror 11 moves and an excessive load is applied to the rotation center member 12, the processing jig 20, the rotary tool 31, and the like, which causes damage. On the contrary, if the holding force of the rotation center member 12 by the expansion / contraction part 34 is strong, the rotation center member 12 and the rotary polygon mirror 11 are held in a deformed state. Therefore, the expansion / contraction part 34 is reduced by processing in this state. If the rotary polygon mirror 11 is removed together with the rotation center member 12, the rotation center member 12 and the rotation polygon mirror 11 are deformed and the machining surface of the rotation polygon mirror 11 is deformed to deteriorate the surface accuracy. However, according to the above-described embodiment, the taper pin 26 is lowered by the rotation of the rotary operation body 30 and the expansion / contraction portion 34 is uniformly expanded to hold the rotation center member 12. Since the polygonal mirror 11 is less deformed and the holding force can be managed, for example, by managing the rotational torque of the rotary operation body 30, the above-described problems due to excessive or insufficient holding force can be prevented. .
[0032]
If the expansion / contraction part 34 comes into contact with the rotation center member 12 integral with the rotary polygon mirror 11 and the inner peripheral surface of the rotation center member 12 is damaged, the rotation accuracy and life of the rotation polygon mirror 11 may be adversely affected. Become. Therefore, the expansion / contraction portion 34 is made of a metal or non-metal having a lower hardness than the rotation center member 12 so that the inner peripheral surface of the rotation center member 12 is not damaged when the rotation center member 12 is held by the expansion / contraction portion 34. Is desirable.
As shown in FIG. 4, when a collar 38 made of a metal or non-metal having a lower hardness than the rotation center member 12 is attached to the outer periphery of the expansion / contraction part 34 and the expansion / contraction part 34 expands, the collar 38 becomes the rotation center member. The rotation center member 12 may be held in contact with the inner peripheral surface of the twelve. By doing so, it is possible to prevent the inner peripheral surface of the rotation center member 12 from being damaged when the rotation center member 12 is held by the expansion / contraction part 34. The embodiment shown in FIG. 4 is the same as the configuration shown in FIG.
[0033]
The technical idea of the present invention can be applied not only to a cylindrical member but also to a columnar shaft as a rotation center member integrated with a rotary polygon mirror. 5 to 8 show the embodiment. FIG. 5 shows an example of a motor rotor 40 including a rotary polygon mirror 41. The rotary polygon mirror 41 is formed integrally with a cylindrical rotor yoke 42 and is formed at a center hole formed at the rotation center position of the rotary polygon mirror 41. A cylindrical shaft 43 is press-fitted as a rotation center member, and the shaft 43 is provided integrally with the rotary polygon mirror 41. A cylindrical rotor magnet 44 is fixed to the inner peripheral surface of the rotor yoke 42. The shaft 43 is held by an appropriate radial bearing so as to be rotatable about its central axis. The inner peripheral surface of the rotor magnet 44 is opposed to an outer peripheral surface of a stator core (not shown) with a gap, and the rotor 40 is rotationally driven by controlling energization to the drive coils wound around the plurality of salient poles of the stator core.
[0034]
Embodiments of the processing apparatus and processing method of the rotary polygon mirror 41 are shown in FIGS. Most of the processing devices shown in FIGS. 6 and 7 are the same as the processing devices shown in FIGS. 2 and 3, the angle indexing mechanism 16, the jig base 18, the pin 28, the rotary operation body 30, the rotary tool 31, and the lock nut 32. Etc., and are similarly configured. The difference between this processing apparatus and the processing apparatus shown in FIGS. 2 and 3 is the configuration of the holding means 10. The processing jig 60 fixed in the center hole of the jig base 18 is very similar in appearance to the processing jig 20 of the example shown in FIGS. Although it has the collar part 62 which touches, and also the taper pin-shaped member is arrange | positioned on the inner peripheral side of the cylindrical upper end part 64 of the processing jig 60, it has a double structure. Unlike the example shown in FIG. 1, the inner tapered pin-shaped member is the expansion / contraction part 50. An example shown in FIGS. 2 and 3 is shown in FIGS. 2 and 3, in which the pin 28 is fitted in the horizontal direction through the long hole in the vertical direction formed in the cylindrical upper end portion 64 and the fitting hole formed in the lower end portion of the expansion / contraction portion 50. In the same manner as described above, the expansion / contraction part 50 moves in the vertical direction via the pin 28 in accordance with the rotation operation of the rotation operation member 30.
[0035]
The expansion / contraction part 50 has a configuration similar to that of the chuck described above, and a plurality of members formed by being divided at equal intervals in the circumferential direction are arranged so as to form a cylindrical shape as a whole, and have appropriate springs attached. It is urged by the force to reduce the diameter. The upper outer peripheral surface of the expanding / contracting portion 50 is a tapered surface 52 whose diameter continuously decreases from the top to the bottom, and the inner peripheral surface of the cylindrical upper end portion 64 facing the tapered surface 52 is also the tapered surface. The tapered surface is in contact with the surface 52. Accordingly, when the expansion / contraction portion 50 moves up and down, the tapered surface 52 is pushed inward along the tapered surface of the cylindrical upper end portion 64, and the tapered surface 52 extends along the tapered surface of the cylindrical upper end portion 64. The diameter of the center hole 54 of the expansion / contraction part 50 is expanded and contracted.
[0036]
The shaft 43 integral with the rotary polygon mirror 41 is fitted in the center hole 54 in a state where the expansion / contraction part 50 is enlarged, but the positioning member 70 is fitted on the shaft 43 before that. The positioning member 70 is a member having a flat cup, and the relative positional relationship between the center hole through which the shaft 43 passes and the inner peripheral wall surface is processed with high accuracy. When the shaft 43 is inserted into the center hole 54 of the expansion / contraction portion 50 with the shaft 43 passing through the center hole of the positioning member 70, the inner peripheral wall surface of the positioning member 70 is fitted along the outer peripheral surface of the cylindrical upper end portion 64. Maru. When the rotary operation body 30 is rotated in this state and the expansion / contraction part 50 is lowered via the pin 28, the expansion / contraction part 50 is reduced as described above. At this time, the expansion / contraction portion 50 is lowered while being reduced, and accordingly, the positioning member 70 is sandwiched between the cylindrical upper end portion 64 and the rotary polygon mirror 41 and the position thereof is restricted in the vertical direction. The positioning member 70 regulates the position of the shaft 43 relative to the holding means 10 so that the central axis of the holding means 10 and the central axis of the shaft 43 coincide.
[0037]
Here, the rotation center axis of the processing jig 60 by the angle indexing mechanism 16 and the rotation center axis of the shaft 43 coincide with each other, and the rotation tool 31 is driven while the rotation angle is indexed by the angle indexing mechanism 16. Mirror the reflective surface. In this manner, each light reflecting surface is processed with high positional accuracy and surface tilt accuracy with respect to the central axis of the shaft 43 serving as the rotation center of the rotary polygon mirror 41 as in the above-described embodiment. When the mirror processing of all the light reflecting surfaces is completed, the rotary operation body 30 is rotated in the reverse direction to enlarge the expansion / contraction part 50, and the rotor 40 integrally including the shaft 43, the rotary polygon mirror 41, and the like is removed.
[0038]
In the above-described embodiment, the expanding / contracting portion expands to hold the rotation center member integral with the rotating polygon mirror and mirror each light reflecting surface, whereas the embodiments shown in FIGS. However, both of them are technically different in that each of the light reflecting surfaces is mirror-finished by holding the shaft 43 that is a member integral with the rotary polygonal mirror 41 when the expansion / contraction part 50 is reduced. Are common and have common effects.
[0039]
Even when the expansion / contraction portion is reduced to hold the rotation center member integrated with the rotary polygon mirror, it is desirable not to damage the rotation center member. Therefore, it is desirable that the expansion / contraction part 50 be formed of a metal or non-metal having a lower hardness than the material of the shaft 43 that is a member integral with the rotary polygon mirror 41 held by the expansion / contraction part 50.
Further, as shown in FIG. 8, a sleeve-like interposition member 72 formed of a metal or non-metal having a lower hardness than the material of the shaft 43 is fitted on the inner peripheral side of the expansion / contraction portion 50, and the interposition member 72 is interposed therebetween. The shaft 43 may be clamped.
[0040]
In the embodiment shown in FIGS. 6 to 8, when the light reflecting surface of the rotary polygon mirror 41 is cut, a force is applied to each part. Each point to which this force is applied is shown in FIG. The rotary tool 33 moves from the top to the bottom as shown in FIG. 9 while making contact with the work surface 100 to cut the work surface 100. At this time, a cutting resistance is generated at a contact point between the work surface 100 and the tool 33, and this becomes a force point 101. In the example shown in the figure, a force pressing the rotary polygon mirror 41 from the top to the force point 101 is generated. At this time, the fulcrum 102 is at the upper end of the expansion / contraction part 50 holding the shaft 43. A connecting portion between the shaft 43 and the rotary polygon mirror 41 serves as an action point 103, and a force pressing the rotary polygon mirror 41 downward acts around the fulcrum 102 via the action point 103. If the distance from the force point 101 to the fulcrum 102 is long, the aforementioned so-called chatter that occurs during machining becomes large, which is undesirable from the viewpoint of machining accuracy and the like. In the example shown in FIG. 9, since the distance from the force point 101 to the fulcrum 102 is relatively long, it is desirable to make this distance as short as possible.
[0041]
In the embodiment shown in FIGS. 6 to 8, the position of the shaft 43 with respect to the holding means 10 is regulated by the positioning member 70 attached to the holding means 10, and the central axis of the holding means 10 and the central axis of the shaft 43 coincide with each other. I am letting. By devising the shape of the positioning member and using it effectively, the distance from the force point 101 to the fulcrum 102 can be shortened. The embodiment is shown in FIGS.
[0042]
In FIG. 10, the positioning member 105 has a shape in which two flat cups are back-to-back, in other words, by integrally forming the bottom at the center in the central axial direction of the cylinder, the cylindrical portions 106 and 107 are respectively formed above and below the bottom. The shape is formed. The inner peripheral wall surface of the lower cylindrical portion 106 of the positioning member 105 is fitted on the outer peripheral surface of the cylindrical upper end portion 64 of the processing jig 60 from above. By inserting the shaft 43 into the center hole of the expansion / contraction portion 50 with the shaft 43 passing through the center hole of the positioning member 105, the center axis of the holding means 10 and the center axis of the shaft 43 can be matched. On the other hand, the inner ceiling surface of the rotary polygon mirror 41 is brought into contact with the upper surface of the upper cylindrical portion 107 of the positioning member 105. In this state, the expansion / contraction part 50 is reduced, the shaft 43 is held, and each light reflecting surface of the rotary polygon mirror 41 is mirror-finished as described above.
[0043]
According to the example shown in FIG. 10, the cylindrical portion 107 on the upper side of the positioning member 105 and the ceiling surface of the rotary polygon mirror 41 are brought into contact with each other at a position close to the power point 101 at the time of processing, and this contact surface is used as a support surface for processing resistance. In other words, since the fulcrum 102 is used, the distance between the force point 101 and the fulcrum 102 is shortened, so that the so-called chattering of the rotary polygon mirror 41 during processing is suppressed, and the surface accuracy of the processed light reflecting surface can be improved. .
[0044]
In the embodiment shown in FIG. 11, the rotary polygon mirror 41 having the same configuration as the rotary polygon mirror in the embodiment shown in FIGS. 6 to 8 is processed, but the rotary polygon mirror 41 is turned upside down. It is to be processed with. In FIG. 11, the positioning member 110 includes a cylindrical surface 111 that is fitted on the outer peripheral surface of the cylindrical upper end portion 64 of the processing jig 60 on the lower side, and a peripheral wall 112 on which the end surface of the rotary polygon mirror 41 abuts on the upper side. It has. The rotary polygon mirror 41 is turned upside down, and the shaft 43 is inserted into the central hole of the expansion / contraction section 50 with the shaft 43 integral with the rotary polygon mirror 41 passing through the central hole of the positioning member 110. Thereby, the central axis of the holding means 10 and the central axis of the shaft 43 can be matched. On the other hand, the end face of the rotary polygon mirror 41 is brought into contact with the upper surface of the peripheral wall 112 of the positioning member 110. In this state, the expansion / contraction part 50 is reduced, the shaft 43 is held, and each light reflecting surface of the rotary polygon mirror 41 is mirror-finished as described above.
[0045]
Also in the embodiment shown in FIG. 11, the upper peripheral wall 112 of the positioning member 110 and the end face of the rotary polygon mirror 41 are brought into contact with each other at a position close to the power point 101 during processing, and this contact surface is used as a support surface for processing resistance. In other words, since the fulcrum 102 is used, the distance between the force point 101 and the fulcrum 102 is shortened, so that the so-called chattering of the rotary polygon mirror 41 during processing is suppressed, and the surface accuracy of the processed light reflecting surface can be improved. .
[0046]
The rotating polygon mirror 41 shown in FIGS. 5 to 11 also serves as a rotor case for the motor, and integrally includes a cylindrical rotor yoke 42. A rotor magnet 44 is fixed to the inner peripheral surface of the rotor yoke 42 by press-fitting. Although the rotor yoke 42 may be distorted by the press-fitting of the rotor magnet 44, the rotor yoke 42 is in a position shifted in the axial direction from the light reflecting surface, which is the mirror-finished surface 100, and the rotor yoke 42 is relatively thin. Therefore, the shape of the rotor yoke 42 is such that the distortion does not reach the mirror-finished surface 100 and the accuracy of the mirror-finished surface 100 is not impaired.
[0047]
  The rotary polygon mirror in the embodiment shown in FIG. 12 should be a modification of the rotary polygon mirror in the embodiment shown in FIGS. In FIG. 12, a rotating polygon mirror 141 includes a disk-shaped portion having a plurality of light reflecting surfaces consisting of a mirror surface 100 on the outer peripheral surface, and a cylindrical rotor yoke that is integrally formed so as to protrude from the lower surface side.142And a small-diameter bottomed cylindrical portion 145 that is integrally formed so as to protrude above the disk-shaped portion. Rotor yoke142A rotor magnet 144 is fixed to the inner peripheral surface of the rotor by press-fitting. A shaft 143 is press-fitted into the center of the bottomed cylindrical portion 145, the shaft 143 is integrated with the rotary polygon mirror 141, and the rotor yoke.142It is fixed in the form of extending to the side.
[0048]
Also in the case of the rotary polygon mirror 141 configured in this way, the rotor yoke 142 is located at a position shifted in the axial direction from the work surface 100, and the rotor yoke 142 is relatively thin, so that the distortion of the rotor yoke 142 is subject to distortion. The cut surface 100 is not reached. Further, since the press-fitting position of the shaft 143 is also at the bottom center of the bottomed cylindrical portion 145 that is shifted in the axial direction from the work surface 100, the distortion of the rotor yoke 142 caused by the press-fitting of the shaft 143 reaches the work surface 100. The shape is such that the accuracy of the work surface 100 is not impaired.
[0049]
By the way, in the embodiment shown in FIG. 12, the positioning member 70 has the same configuration as the positioning member 70 shown in FIG. 9, and the contact point between the work surface 100 as the power point 101 and the tool 33 and the shaft 43 are arranged. The relationship between the fulcrum 102 at the upper end of the sandwiching expansion / contraction part 50 and the action point 103 of the connecting part of the shaft 43 and the rotary polygon mirror 41 is substantially the same as the example shown in FIG. The distance is relatively long. This distance is desirably as short as possible as described above. An embodiment in which the distance from the force point 101 to the fulcrum 102 is shortened is shown in FIGS.
[0050]
In the embodiment shown in FIG. 13, the positioning member 115 is formed into a flat cup shape with a flange 117, and the inner peripheral surface of the cup is placed on the cylindrical upper end portion 64 of the processing jig 60 with the face down. The lower end surface of the rotor yoke 142 is brought into contact with the flange portion 117 from above. By inserting the shaft 143 into the center hole of the expansion / contraction part 50 with the shaft 143 passing through the center hole of the positioning member 115 and reducing the expansion / contraction part 50, the position of the shaft 43 relative to the holding means 10 is regulated and held. The central axis of the means 10 and the central axis of the shaft 43 coincide.
[0051]
According to the embodiment shown in FIG. 13, the contact surface between the flange 117 of the positioning member 115 and the lower end surface of the rotor yoke 142 integral with the rotary polygonal mirror 141 serves as the fulcrum 102, and the disc-shaped main body of the rotary polygonal mirror 141. The connecting portion between the rotor yoke 142 and the rotor yoke 142 is 103 points of action. When cutting the work surface 100, if a cutting resistance is generated and a pressing force acts on the force point 101 from the top to the bottom, the rotary polygon mirror 141 is moved downwardly through the action point 103 around the fulcrum 102. The force that presses against is working. However, since the support surface of the rotary polygon mirror 141 is provided on the flange 117 of the positioning member 115 and this support surface is close to the processing surface of the rotary polygon mirror 141, the distance from the force point 101 to the fulcrum 102 is shortened, so-called during processing. Chatter is suppressed, and the surface accuracy of the processed light reflecting surface can be increased.
[0052]
In the embodiment shown in FIG. 14, the rotary polygon mirror 141 is machined in a vertically inverted posture. The positioning member 120 attached to the holding means 10 has a cylindrical hole 123 that fits from above into the outer peripheral surface of the cylindrical upper end portion 64 of the processing jig 60 in the lower center portion, and in the upper center portion, A cylindrical hole 121 that receives the bottomed cylindrical portion 145 of the rotary polygon mirror 141 with a sufficient space, and a cylindrical peripheral wall 122 that serves as a support surface for processing resistance near the processing surface of the rotary polygon mirror 141 on the upper outer periphery. It has. The rotary polygonal mirror 141 is turned upside down, and the shaft 143 is passed through the central hole of the positioning member 115 and inserted into the central hole of the expanding / contracting part 50, the expanding / contracting part 50 is contracted, and the center of the holding means 10 is The shaft 143 is clamped in a state where the axis and the central axis of the shaft 143 coincide with each other, and the work surface of the rotary polygon mirror 141 is cut.
[0053]
According to the embodiment shown in FIG. 14, the fulcrum 102 can be placed in the immediate vicinity of the force point 101, so-called chatter during processing is suppressed, and the surface accuracy of the processed light reflecting surface can be increased.
[0054]
【The invention's effect】
  According to the present invention, the rotary operation body that is rotated, the enlargement / reduction section that holds the rotation center member that is integral with the rotary polygon mirror by enlarging and reducing the release, and the rotational movement of the rotation operation body are performed. A holding means having motion conversion means for transmitting to the expansion / contraction part and expanding and reducing the expansion / contraction part is attached to the angle indexing mechanism, and the angle indexing mechanism rotates the holding means by a predetermined angle to adjust the rotation angle. Since each mirror surface of the rotary polygon mirror is processed by indexing, the central axis of the rotary polygon mirror coincides with the center line of the holding means when the enlargement / reduction section is uniformly enlarged or reduced, and is held together with the rotary polygon mirror by the angle indexing mechanism While rotating the means to determine the predetermined rotation angle, each light reflecting surface of the rotating polygonal mirror maintains good positional accuracy and parallelism with respect to the rotation center axis, and is accurate. It is possible to surface processing. Moreover, in order to hold the rotation center member integral with the rotary polygon mirror at the expansion / contraction part and perform mirror surface processing,ConventionalUnlike the processing device and processing method of the rotary polygon mirror that processes in the state of a single part, there is no accumulation of accuracy errors of individual parts, and a rotary polygon mirror with good surface tilt accuracy can be easily made at low cost. Obtainable. Since mirror processing can be performed with high accuracy in this way, it is possible to increase the speed and quality of an optical scanning device using a rotating polygon mirror.
[0055]
  Claim 2, claim6, Claims8According to the described invention, the expansion / contraction part is made of a metal or non-metal having a lower hardness than the material of the rotation center member integrated with the rotary polygon mirror held by the expansion / contraction part, or the rotation center integrated with the rotation polygon mirror. When the rotating center member is held by the expansion / contraction part because the material of the interposing member that contacts the member is made of metal or non-metal having a lower hardness than the material of the rotating center member integrated with the rotary polygon mirror held by the interposing member. It is possible to prevent the rotation center member from being scratched and to prevent the scratches from adversely affecting the rotation accuracy, rotation performance, life and the like of the rotary polygon mirror.
[0056]
  Claim5According to the described invention, the positioning member is attached to the holding means, and this positioning member has a support surface for the processing resistance near the processing surface of the rotary polygon mirror. It is possible to shorten the distance from the fulcrum that supports the resistance, so-called chattering of the rotary polygon mirror during processing can be suppressed, and the surface accuracy of the processed light reflecting surface can be increased.
[Brief description of the drawings]
FIG. 1A is an exploded perspective view and FIG. 1B is a longitudinal sectional view showing an example of a rotating polygon mirror obtained by a processing apparatus and a processing method according to the present invention.
FIG. 2 is a longitudinal sectional view showing an embodiment of a rotating polygon mirror processing apparatus and processing method according to the present invention.
FIG. 3 is an enlarged longitudinal sectional view showing a main part of the embodiment.
FIG. 4 is a longitudinal sectional view showing a main part of another embodiment of the rotary polygon mirror processing apparatus and the processing method according to the present invention.
5A is an exploded perspective view and FIG. 5B is a longitudinal sectional view showing another example of a rotary polygon mirror obtained by the processing apparatus and the processing method according to the present invention.
FIG. 6 is a longitudinal sectional view showing still another embodiment of the rotary polygon mirror processing apparatus and the processing method according to the present invention.
FIG. 7 is an enlarged longitudinal sectional view showing the main part of the embodiment.
FIG. 8 is a longitudinal sectional view showing a main part of still another embodiment of the rotary polygon mirror processing apparatus and the processing method according to the present invention.
FIG. 9 is a longitudinal sectional view showing still another embodiment of the rotary polygon mirror processing apparatus and processing method according to the present invention.
FIG. 10 is a longitudinal sectional view showing still another embodiment of the rotary polygon mirror processing apparatus and the processing method according to the present invention.
FIG. 11 is a longitudinal sectional view showing still another embodiment of the rotary polygon mirror processing apparatus and processing method according to the present invention.
FIG. 12 is a longitudinal sectional view showing still another embodiment of the rotary polygon mirror processing apparatus and the processing method according to the present invention.
FIG. 13 is a longitudinal sectional view showing still another embodiment of the rotary polygon mirror processing apparatus and the processing method according to the present invention.
FIG. 14 is a longitudinal sectional view showing still another embodiment of the rotary polygon mirror processing apparatus and the processing method according to the present invention.
FIG. 15 is a perspective view showing a general example of a conventional rotary polygon mirror.
FIG. 16 is a longitudinal sectional view showing an example of a conventional rotary polygon mirror processing apparatus and processing method.
FIG. 17 is an exploded perspective view showing an example of a conventional rotary polygon mirror rotation drive device.
[Explanation of symbols]
10 Holding means
11 Rotating polygon mirror
12 Rotation center member
16 Angle indexing mechanism
25 Tapered surface
26 Tapered pins as motion conversion means
27 Positioning section
28 Pins as motion conversion means
30 Rotating operation body
34 Enlarging / contracting section
41 Rotating polygon mirror
42 Rotor yoke
43 Axis as center of rotation
50 Enlarging / contracting section
70 Positioning member
72 Interposition member
105 Positioning member
110 Positioning member
115 Positioning member
120 Positioning member
141 rotating polygon mirror
143 axes

Claims (10)

筒状の回転中心部材を有する回転多面鏡の加工装置であって、
回転操作される回転操作体と、拡大し縮小することによって回転多面鏡と一体の上記回転中心部材を保持しこの保持を解除する拡縮部と、上記回転操作体の回転運動を上記拡縮部に伝達して拡縮部を拡大させ縮小させる運動変換手段とを具備する保持手段が角度割り出し機構に取り付けられ
上記拡縮部は、軸線方向へ移動する移動体とともに内外に配置されており、
上記移動体は、軸線方向への移動によって拡縮部を拡大させ縮小させるテーパー面を有するとともに、上記回転中心部材の中心孔にはまって回転多面鏡の回転中心位置出しを行う位置出し部を有し、
上記角度割り出し機構は、回転多面鏡の各鏡面を加工するために上記保持手段を所定角度ずつ回転させ回転角度を割り出すものであることを特徴とする回転多面鏡加工装置。
A rotary polygon mirror processing apparatus having a cylindrical rotation center member,
Transmitting a rotary body that is rotationally operated, and a scaling unit for releasing the held this holds the rotating central member integral with the rotating polygon mirror by enlarging reduced, the rotational movement of the rotary body to the scaling unit Then, a holding means comprising a motion conversion means for enlarging and reducing the expansion / contraction part is attached to the angle indexing mechanism ,
The expansion / contraction part is arranged inside and outside together with a moving body that moves in the axial direction,
The movable body has a tapered surface that expands and contracts the expansion / contraction portion by movement in the axial direction, and has a positioning portion that locates the rotation center of the rotary polygon mirror by being inserted into the center hole of the rotation center member. ,
The angle indexing mechanism, the rotating polygon mirror machining apparatus according to claim der Rukoto what to leave dividing the rotation angle the holding means is rotated by a predetermined angle for machining the mirror surfaces of the rotating polygon mirror.
拡縮部は、この拡縮部によって保持される回転多面鏡と一体の回転中心部材よりも硬度の低い金属または非金属からなる請求項1記載の回転多面鏡加工装置。  2. The rotary polygon mirror processing apparatus according to claim 1, wherein the expansion / contraction part is made of a metal or a non-metal having a lower hardness than a rotation center member integrated with the rotary polygon mirror held by the expansion / contraction part. 保持手段の拡縮部は、拡大することによって回転多面鏡の筒状の回転中心部材を保持する請求項記載の回転多面鏡加工装置。 Scaling of the retaining means, the rotary polygon mirror processing apparatus according to claim 1, wherein for holding the tubular rotation center member of the rotary polygon mirror by expanding. モータのロータヨークと一体に設けられるとともに回転中心部材として軸を一体に有する回転多面鏡の加工装置であって、
回転操作される回転操作体と、拡大し縮小することによって回転多面鏡と一体の上記軸を保持しこの保持を解除する拡縮部と、上記回転操作体の回転運動を上記拡縮部に伝達して拡縮部を拡大させ縮小させる運動変換手段とを具備する保持手段が角度割り出し機構に取り付けられ、
上記拡縮部は、軸線方向への移動によって拡縮部を拡大し縮小するテーパー面を有していて縮小することにより上記軸の外周を保持し、
上記角度割り出し機構は、回転多面鏡の各鏡面を加工するために上記保持手段を所定角度ずつ回転させ回転角度を割り出すものであることを特徴とする回転多面鏡加工装置。
A processing apparatus for a rotary polygon mirror that is provided integrally with a rotor yoke of a motor and has a shaft as a rotation center member,
A rotary operation body to be rotated, an enlargement / reduction section for holding and releasing the shaft integrated with the rotary polygon mirror by enlarging and reducing, and transmitting the rotational motion of the rotary operation body to the expansion / contraction section A holding means having a motion converting means for expanding and reducing the expansion / contraction part is attached to the angle indexing mechanism,
The expanding / contracting portion has a tapered surface that expands and contracts the expanding / contracting portion by movement in the axial direction and holds the outer periphery of the shaft by contracting,
The rotary polygonal mirror processing apparatus is characterized in that the angle indexing mechanism is configured to determine the rotation angle by rotating the holding means by a predetermined angle in order to process each mirror surface of the rotary polygonal mirror.
回転多面鏡と一体の軸には位置決め部材が嵌められ、この位置決め部材は保持手段によって位置規制され、上記軸の中心が保持手段の中心に合わせられる請求項記載の回転多面鏡加工装置。 5. A rotary polygon mirror machining apparatus according to claim 4 , wherein a positioning member is fitted on a shaft integral with the rotary polygon mirror, the positioning member is regulated by a holding means, and the center of the shaft is aligned with the center of the holding means . 拡縮部は、この拡縮部によって保持される回転多面鏡と一体の軸の材質よりも硬度の低い金属または非金属からなる請求項記載の回転多面鏡加工装置。 5. The rotary polygon mirror processing apparatus according to claim 4 , wherein the expansion / contraction part is made of a metal or a non-metal having a lower hardness than a material of a shaft integral with the rotary polygon mirror held by the expansion / contraction part . 拡縮部は、回転多面鏡と一体の軸と当接する介在部材を有する請求項記載の回転多面鏡加工装置。The rotary polygon mirror processing apparatus according to claim 4 , wherein the expansion / contraction part has an interposition member that comes into contact with a shaft integral with the rotary polygon mirror. 介在部材は、この介在部材によって保持される回転多面鏡と一体の軸の材質よりも硬度の低い金属または非金属からなる請求項記載の回転多面鏡加工装置。 8. The rotary polygon mirror processing apparatus according to claim 7 , wherein the interposition member is made of a metal or a non-metal having a lower hardness than a material of a shaft integral with the rotary polygon mirror held by the interposition member . 回転操作体と、拡縮部と、運動変換手段とを具備する保持手段を用い、
上記回転操作体を回転操作することにより、この回転力を上記運動変換手段が上記拡縮部に伝達して拡縮部を拡大縮小させ、この拡縮部の拡大縮小によって回転多面鏡と一体の回転中心部材を上記保持手段の拡縮部で保持し、
角度割り出し機構により上記保持手段を所定角度ずつ回転させ回転角度を割り出して回転多面鏡の各鏡面を加工する回転多面鏡加工方法であって、
回転多面鏡と一体の回転中心部材が筒状の部材の場合、保持手段の拡縮部が拡大して上記筒状の部材の内周を保持することを特徴とする回転多面鏡加工方法
Using a holding means comprising a rotary operation body, an expansion / contraction part, and a motion conversion means,
By rotating the rotary operation body, the rotational force is transmitted to the expansion / contraction part by the motion conversion means, and the expansion / contraction part is enlarged / reduced. By the enlargement / reduction of the expansion / contraction part, the rotation center member integrated with the rotary polygon mirror Is held by the expansion / contraction part of the holding means,
A rotary polygon mirror processing method of processing each mirror surface of a rotary polygon mirror by rotating the holding means by a predetermined angle by an angle indexing mechanism to determine a rotation angle,
When the rotation center member integrated with the rotary polygon mirror is a cylindrical member, the expanding and contracting portion of the holding means expands to hold the inner periphery of the cylindrical member .
回転操作体と、拡縮部と、運動変換手段とを具備する保持手段を用い、
上記回転操作体を回転操作することにより、この回転力を上記運動変換手段が上記拡縮部に伝達して拡縮部を拡大縮小させ、この拡縮部の拡大縮小によって回転多面鏡と一体の回転中心部材を上記保持手段の拡縮部で保持し、
角度割り出し機構により上記保持手段を所定角度ずつ回転させ回転角度を割り出して回 転多面鏡の各鏡面を加工する回転多面鏡加工方法であって、
回転多面鏡と一体の回転中心部材が軸の場合、保持手段の拡縮部が縮小して上記軸の外周を保持することを特徴とする回転多面鏡加工方法
Using a holding means comprising a rotary operation body, an expansion / contraction part, and a motion conversion means,
By rotating the rotary operation body, the rotational force is transmitted to the expansion / contraction part by the motion conversion means, and the expansion / contraction part is enlarged / reduced. By the enlargement / reduction of the expansion / contraction part, the rotation center member integrated with the rotary polygon mirror Is held by the expansion / contraction part of the holding means,
The angle indexing mechanism a rotating polygon mirror machining method for machining a respective mirror of indexing the rotation angle by rotating the holding means by a predetermined angle rotation polygon mirror,
When the rotation center member integrated with the rotary polygon mirror is a shaft, the expanding / contracting portion of the holding means is contracted to hold the outer periphery of the shaft .
JP16474299A 1998-12-14 1999-06-11 Rotary polygon mirror processing apparatus and processing method Expired - Fee Related JP3798185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16474299A JP3798185B2 (en) 1998-12-14 1999-06-11 Rotary polygon mirror processing apparatus and processing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35423298 1998-12-14
JP10-354232 1998-12-14
JP16474299A JP3798185B2 (en) 1998-12-14 1999-06-11 Rotary polygon mirror processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2000233334A JP2000233334A (en) 2000-08-29
JP3798185B2 true JP3798185B2 (en) 2006-07-19

Family

ID=26489737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16474299A Expired - Fee Related JP3798185B2 (en) 1998-12-14 1999-06-11 Rotary polygon mirror processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP3798185B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357533B1 (en) * 2013-03-05 2014-01-29 주식회사 백산사 Contact lens lower mold position adjustment jig
KR101394310B1 (en) 2013-03-05 2014-05-13 주식회사 백산사 Color contact lens upper mold fixing device
CN104175378A (en) * 2014-08-21 2014-12-03 福建森源股份有限公司 Pumpkin shaped product machining tooling and process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063062B2 (en) 2006-09-14 2012-10-31 株式会社リコー Optical deflector, optical deflector manufacturing method, optical scanning device, and image forming apparatus
JP2008216512A (en) * 2007-03-02 2008-09-18 Ricoh Co Ltd Optical scan apparatus, image formation apparatus and optical deflector manufacturing method
CN103659469B (en) * 2013-12-18 2016-03-02 盘起工业(大连)有限公司 Ultra-fine bar product processing method and special fixture
CN110695730B (en) * 2019-10-25 2020-04-28 嵊州月明模具科技有限公司 Metal mold surface cutting device with polygonal cross section
CN110936206A (en) * 2019-12-06 2020-03-31 上海航天控制技术研究所 Indexable turning fixture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357533B1 (en) * 2013-03-05 2014-01-29 주식회사 백산사 Contact lens lower mold position adjustment jig
KR101394310B1 (en) 2013-03-05 2014-05-13 주식회사 백산사 Color contact lens upper mold fixing device
WO2014137089A1 (en) * 2013-03-05 2014-09-12 주식회사 백산사 Cosmetic contact lens upper mold fixing device
CN104175378A (en) * 2014-08-21 2014-12-03 福建森源股份有限公司 Pumpkin shaped product machining tooling and process

Also Published As

Publication number Publication date
JP2000233334A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
EP0433483B1 (en) A rotation device supporting a polygon mirror
KR100891602B1 (en) Motor
JP3798185B2 (en) Rotary polygon mirror processing apparatus and processing method
JP2008136261A (en) Polygonal mirror scanner motor and manufacturing method therefor
US6151151A (en) Scanner using a polygonal mirror
US6661550B2 (en) Method of fixing polygon mirror and polygon scanner motor
US8199393B2 (en) Scanner motor
JP4350205B2 (en) Polygon scanner rotor and rotor processing apparatus
JP2004184761A (en) Polygon mirror, optical deflector of polygon mirror, machining tool for polygon mirror, and method and device of manufacturing polygon mirror
US5945752A (en) Shaft-fixed-type motor
JP3402668B2 (en) Scanner motor
JP2008304628A (en) Optical deflector
JP2001166246A (en) Optical deflecting device and writing optical device
JP3702678B2 (en) Optical deflection device
JP3026683U (en) Mounting structure for polygon mirror
JP2009251503A (en) Rotary polygon mirror device
JP2017072777A (en) Scan optical device and image formation apparatus
JP2002365580A (en) Rotating polygon mirror, and working equipment and method
JP3730036B2 (en) Rotating body
JPH1096872A (en) Deflection scanner
JP4715519B2 (en) Optical deflector
JPH10243605A (en) Fixed shaft motor
JPH0956129A (en) Manufacture of polygon mirror motor and polygon mirror motor
JP5409288B2 (en) Scanning optical device
JP3702676B2 (en) Optical deflection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees