JP3795305B2 - Pharmaceutical composition - Google Patents

Pharmaceutical composition Download PDF

Info

Publication number
JP3795305B2
JP3795305B2 JP2000216898A JP2000216898A JP3795305B2 JP 3795305 B2 JP3795305 B2 JP 3795305B2 JP 2000216898 A JP2000216898 A JP 2000216898A JP 2000216898 A JP2000216898 A JP 2000216898A JP 3795305 B2 JP3795305 B2 JP 3795305B2
Authority
JP
Japan
Prior art keywords
group
lower alkyl
optionally substituted
phenylalanine
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000216898A
Other languages
Japanese (ja)
Other versions
JP2001089368A (en
Inventor
イラ・サーカー
クリスジャン・エス・グドマンドソン
リチャード・マーティン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Tanabe Pharma Corp
Original Assignee
Mitsubishi Tanabe Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Tanabe Pharma Corp filed Critical Mitsubishi Tanabe Pharma Corp
Priority to JP2000216898A priority Critical patent/JP3795305B2/en
Publication of JP2001089368A publication Critical patent/JP2001089368A/en
Application granted granted Critical
Publication of JP3795305B2 publication Critical patent/JP3795305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は喘息、糖尿病、リューマチ関節炎、炎症性腸疾患、およびこれら以外に胃腸管や他の上皮組織(例えば皮膚、尿道、気管、関節滑膜)における白血球浸潤が関与する疾患などの病態の治療に有効な、α4β7を含むα4介在接着阻害剤である分子を有効成分とする医薬組成物に関する。
本発明の組成物は、更に、肺、血管、心臓および神経系など、上皮組織以外の組織、および腎臓、肝臓、膵臓および心臓等の移植された器官における白血球浸潤が関与する病態の治療に有用である。
【0002】
【従来の技術】
白血球の内皮細胞または細胞外マトリックスプロティンへの接着は、免疫および炎症の主要なプロセスであり、多数の接着相互反応が関与している。このプロセスの最初の事象は、インテグリンアビジチー(親和性)の変化による白血球のローリングであり、これが次なる堅固な接着となる(バッチャー、Cell, 67:1033-1036(1991);ハーラン、Blood, 3:513-525(1985);ヘムラー、Annu.Rev.Immunol., 8:365-400(1990);オズボーン、Cell, 62:3-6(1990);シミズら、Immunol. Rev., 114:109-143(1990);スプリンガー、Nature, 346:425-434(1990);スプリンガー、Cell, 76:301-314(1994)を参照)。走化性因子(chemotactic factor)に呼応して、白血球は2つの隣接した内皮細胞を介して、部分的に細胞外マトリックスプロティンフィブロネクチン(FN)(ワイナーら、J. Cell Biol., 105:1873-1884(1987)参照)およびコラーゲン(CN)(ボーンステインら、Ann. Rev. Biochem., 49:957-1003(1980)およびミラー、K.A.ピエズおよびA.H.レジ編集、結合組織生化学(Connective Tissue Biochemistry)、“コラーゲンおよびその分布の化学”、エウセヴィエル出版、アムステルダム、41-78(1983)参照)から成る組織に移住する。これらの反応に関与する重要な認識分子はインテグリン遺伝子スーパーファミリーに属する(ヘムラー、Annu. Rev. Immunol., 8:365-400(1990);ハイネス、Cell, 48:549-554(1987);シミズら、Immunol. Rev., 114:109-143(1990);およびスプリンガー、Nature, 346:425-434(1990)参照)。
【0003】
インテグリンは、アルファ(α)およびベータ(β)サブユニットと称される非共有結合で集合したサブユニットから構成される(ヘルマー、Annu. Rev. Immunol., 8:365-400(1990);ハイネス、Cell, 48;549-554(1987);シミズら、Immunol. Rev., 114:109-143(1990);スプリンガー、Nature, 346:425-434(1990)参照)。現在のところ、16個の異なるαサブユニットと結合して22個の異なるインテグリンを形成する、8個のインテグリンβサブユニットが同定されている。最初にイールらによりクローン化(イールら、J. Biol. Chem., 266:11009-11016(1991))されたβ7インテグリンサブユニットは白血球上のみで発現され、2個の異なるαサブユニット、α4(リュウーグら、J. Cell. Biol., 117:179-189(1992))とαE(サーフ−ベンスッサンら、Eur. J. Immunol., 22:273-277(1992)およびキルシャウら、Eur. J. Immunol., 21:2591-2597(1991))と結合することが知られている。αEβ7ヘテロダイマーはその唯一のリガンドとしてE−カドヘリンを持つ。
【0004】
α4β7複合体は3個の既知のリガンドを持つ(VCAM、CS−1、MAdCAM)。α4β7に対し唯一特異性を示すリガンドは粘膜指向細胞接着分子(Mucosal Addressing Cell Adhesion Molecule (MAdCAM))である(アンドリューら、J. Immunol., 153:3847‐3861(1994);ブリスキンら、Nature, 363: 461-464 (1993);およびシャジャンら、J. Immunol., 156:2851-2857(1996)参照)。MAdCAMは腸間膜リンパ節内の集合リンパ小節高内皮小静脈、および消化管基底膜および乳腺小静脈に多く発現される(ベルグら、Immunol. Rev., 105:5(1989))。インテグリンα4β7およびMAdCAMは正常腸への白血球移動の制御に重要であることが証明されている(ホルツマンら、Cell 56: 37 (1989))。
α4β7の第2のリガンドはコネクチィングセグメント1(CS−1)、FN A鎖の別のスプライスされた領域である(グアンら、Cell, 60:53-61(1990)およびワイナーら、J. Cell Biol., 109:1321-1330(1989)参照)。この別のスプライスされた領域内の細胞結合サイトは25個のアミノ酸からなり、そのカルボキシ末端アミノ酸残基、EILDVPSTは認識モティーフ(MOTIF)を形成する(コモリヤら、J. Biol. Chem., 266:15075-15079(1991)およびワイナーら、J. Cell. Biol., 116:489-497(1992)参照)。
【0005】
α4β7の第3のリガンドは、内皮細胞上に発現されたサイトカイン誘導可プロティンである血管細胞接着分子−1(VCAM−1)である(エリセスら、Cell, 60:577‐584(1990)およびリューグら、J. Cell Biol., 117:179‐189(1992)参照)。VCAMおよびCS−1 (エリセスら、Cell, 60:577‐584(1990)参照)はα4β7およびα4β1で共通する2個のリガンドである。MAdCAM、VCAMおよびCS−1がα4β7上の同じサイトに結合しているのかどうかは、明確ではない。モノクロナル抗体のパネルを用いて、アンドリューらは、α4β7とその3個のリガンドとの相互反応には、異なるが重複したエピトープが関与していることを示した(アンドリューら、J. Immunol, 153:3847‐3861(1994))。
【0006】
インビトロおよびインビボでの多くの研究により、α4は多くの疾病の病因に重大な役割を担っていることが示されている。α4に対するモノクロナル抗体が様々な疾病モデルで試験されている。抗α4抗体の有効性は実験的自己免疫型脳脊髄炎のラットおよびマウスモデルで示された(バロンら、J. Exp. Med., 177:57‐68(1993)およびエドノックら、Nature, 356:63‐66(1992)参照)。かなりの数の研究により、アレルギー気管支炎におけるα4の役割評価がなされた(アブラハムら、J. Clin. Invest., 93:776‐787(1994);ボクナーら、J. Exp. Med., 173:1553‐1556(1991);ワルシュら、J. Immnol, 146:3419‐3423(1991);およびウェグら、J. Exp. Med., 177:561‐566(1993)参照)。例えば、α4のモノクロナル抗体はいくつかの肺抗原攻撃モデルにおいて有効であった(アブラハムら、J. Clin. Invest., 93:776‐787(1994)およびウェグら、J. Exp. Med., 177:561‐566(1993)参照)。興味深いことに、遅延型応答の排除が存在しているにもかかわらず、細胞レクルートメントの妨害が、ある種の肺モデルには見られない(アブラハムら、J. Clin. Invest., 93:776‐787(1994))。自然発生慢性大腸炎を発症するコットントップタマリン(Cotton-top tamarin)は抗α4抗体を投与すると、大腸炎の有意な軽減を示した(ベルら、J. Immunol., 151:4790‐4802(1993)およびポドルスキーら、J. Clin. Invest., 92:372‐380(1993)参照)。α4に対するモノクロナル抗体は膵島炎を阻害し、非肥満糖尿病マウスの糖尿病の発病を遅らせる(バロンら、J. Clin. Invest., 93:1700‐1708(1994);バークリーら、Diabetes, 43:529‐534(1994);およびヤンら、Proc. Natl. Acad. Sci. USA, 90:10494‐10498(1993)参照)。α4が関与する他の疾病として、リュウマチ関節炎 (ラホンら、J. Clin. Invest., 88:546‐552(1991)およびモラレス−デュクレら、J. Immunol., 149:1424‐1431(1992)参照)および動脈硬化症(チブルスキーら、Science, 251:788‐791(1991)参照)が挙げられる。遅延型過敏反応(イセクズ、J. Immunol., 147:4178‐4184(1991)参照)および接触過敏反応(キショルムら、Eur. J. Immunol., 23:682‐688(1993)およびファーグソンら、J. Immunol., 150:1172‐1182(1993)参照)も抗α4抗体により妨害される。疾病におけるα4のインビボでの研究の優れた考察としては、ロブらのJ. Clin. Invest., 94:1722-1728(1995)を参照。
【0007】
これらの研究は明白に様々な疾病においてα4を関係づけているが、見られる阻害がα4β1、α4β7、或いは両者を遮断することに依るものか否かは明白ではない。最近、α4β7複合体を認識する抗体(ヘスターベルグら、Gastroenterology (1997) 参照)、β7に対する抗体またはα4β1が結合しないMAdCAMに対する抗体(ピカレラら、J. Immunol., 158: 2099-2106 (1997))を用いて、いくつかの研究がこの論点に向けられている。炎症腸疾患の霊長類モデルにおいて、α4β7複合体に対する抗体が炎症を改善し、下痢を減少することが判明した(ヘスターベルグら、Gastroenterology, 111:1373‐1380(1996)参照)。別のモデルにおいて、β7またはMAdCAMに対するモノクロナル抗体が白血球の結腸へのレクルートメントを遮断し、CD45RBhighCD4+細胞で再構成された重症複合免疫不全症マウス(scid mice)の結腸における炎症の程度を減少させた(ピカレラら、J. Immunol., 158:2099‐2106(1997)参照)。これは、消化管集合リンパ組織がβ7欠損マウスにおいてひどく損傷をうけているという事実と共に、α4β7が炎症性腸疾患の重要な仲介役であろうことを示唆している。
【0008】
様々な白血球上でのα4β7の発現および発症組織におけるα4β7ポジティブ細胞の増加は、腸への移動に加えて炎症の他のサイトへの細胞レクルートメントにおいて受容体が重要な役割を担っていることを意味づける。CD4+、CD8+、T細胞、B細胞、NK細胞、およびヒト末梢血からの好酸球はα4β7を高いレベルで発現することを示した(ピカレラら、J. Immunol., 158:2099‐2106(1997)参照)。α4β7発現T細胞数の増加がリュウマチ関節炎患者の滑膜内に認められ、α4β7の発現の増加がこの疾病の悪化および永続化に寄与していることが予測された(ラザロビッツら、J. Immunol., 151:6482‐6489(1993))。非肥満糖尿病マウスにおいて、MAdCAMが膵臓内の炎症ランゲルハンス島の高内皮小静脈上に発現し、これはα4β7の糖尿病での役割を示唆している(ケルナーら、Science, 266:1395‐1399(1994)参照)。リンパ球および好酸球上のα4β7の分布(イールら、J. Immunol., 153:517‐528(1994)参照)と、α4β7がヒト好酸球のVCAM、CS−1およびMAdCAMへの接着を仲介する事を示すインビトロでの研究結果は、共に、このインテグリンが喘息での標的分子であることを示唆する。集合的に、これらのデータはインテグリンα4β7が様々な炎症疾患において重要な役割を担っていることを示唆する。
【0009】
MAdCAMのN−末端ドメイン(ドメイン1)はVCAMおよびICAM両者のN−末端インテグリン認識ドメインと相同性を示す(ブリスキンら、Nature, 363:461‐464(1993)参照)。MAdCAMの部位指向突然変異誘発性を用いて、C−Dループ内の3個の線状アミノ酸残基として、結合モチィーフが第一ドメイン内で同定された(ビネイら、J. Immunol., 157:2488‐2497(1996)参照)。L40、D41およびT42の突然変異はα4β7への結合能の完全損失を招き、これはMAdCAM上のLDTが結合ループに関与していることを示唆している(ビネイら、J. Immunol., 157:2488‐2497(1996)参照)。MAdCAM上のこの領域と、VCAMまたはCS−1などの他のインテグリンリガンドとの連帯により、G/Q、I/、E//SおよびP/S残基からなる保存結合モチーフまたは共通配列が存在することが証明される(ブリスキンら、J. Immunol., 156:719‐726(1996)参照)。このことはLDT含有の線状および環状ペプチドがインビトロでMAdCAMへの細胞接着を遮断することが示された事実からさらに支持される(シュロフら、Bioorganic & Mecicinal Chemistry Letters, 6:2495‐2500(1996)およびビネーら、J. Immunol., 157:2488‐2497(1996)参照)。
【0010】
【発明が解決しようとする課題】
インビボでのインテグリンに対するモノクロナル抗体の使用により、多くのインテグリンが炎症および心臓血管障害、および臓器移植の実際に有効な治療標的であることが示されている。本発明の目的は、経口で生体利用可能な、非ペプチド性の、小分子のα4拮抗薬を有効成分とする医薬組成物を提供することにある。MAdCAM、VCAMまたはCS−1いずれかへのα4介在接着の強力な阻害剤で、炎症疾患の治療に有用な小分子を含有する医薬組成物を提供するものである。
【0011】
【課題を解決するための手段】
課題を解決するために本発明者らは、鋭意研究の結果、α4(α4β7を含む)介在細胞接着阻害剤である化合物を含有する新規な医薬組成物を見出し、本発明を完成した。
【0012】
すなわち、本発明は式(I):
【化7】

Figure 0003795305
式中、環Aは芳香族炭化水素環あるいは複素環、
Qは結合手;カルボニル基;水酸基またはフェニル基で置換されていてもよい低級アルキレン基;低級アルケニレン基;または−O−(低級アルキレン)−基、
nは0、1または2の整数、
Wは酸素原子、硫黄原子、−CH=CH−基または−N=CH−基、
Zは酸素原子または硫黄原子、
1、R2およびR3は同一または異なって下記の群から選ばれる基、
a)水素原子、
b)ハロゲン原子、
c)置換または非置換低級アルキル基、
d)置換または非置換低級アルコキシ基、
e)ニトロ基、
f)置換または非置換アミノ基、
g)カルボキシル基、またはそのアミドまたはエステル、
h)シアノ基、
i)低級アルキルチオ基、
j)低級アルカンスルホニル基、
k)置換または非置換スルファモイル基、
l)置換または非置換アリール基、
m)置換または非置換複素環基、および
n)水酸基、
または、R1、R2およびR3のうち2つはその末端で互いに結合して低級アルキレンジオキシ基を形成してもよく、
4はテトラゾリル基、カルボキシル基またはそのアミドまたはエステル、
5は下記の群から選ばれる基、
a)水素原子、
b)ニトロ基、
c)置換または非置換アミノ基、
d)水酸基、
e)低級アルカノイル基、
f)置換または非置換低級アルキル基、
g)低級アルコキシ基、
h)ハロゲン原子、および
i)2−オキソピロリジニル基、
6は下記の群から選ばれる基、
a)置換または非置換フェニル基、および
b)置換または非置換ヘテロアリール基、
で示される化合物、またはその薬理学的に許容される塩を含有することを特徴とする医薬組成物に関する。
【0013】
本発明の組成物はα4(α4β7およびα4β1を含む)介在細胞接着による病態の治療および予防に有用である。
【0014】
本発明の有効成分はその不斉炭素に基づく光学活性異性体として存在することがあり、本発明はこれらの異性体およびその混合物も包含する。
【0015】
【発明の実施の形態】
本明細書を通じて用いられる下記の略語は、それぞれ下記の意味である。
略語:
BOP−C1:ビス(2−オキソ−3−オキサゾリジニル)ホスフィン酸クロリドBOP試薬:ベンゾトリアゾール−1−イルオキシ−トリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスフェート
DCC:1,3−ジシクロヘキシルカルボジイミド
EDC:1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド
THF:テトラヒドロフラン
DMF:N,N−ジメチルホルムアミド
DIEA:ジイソプロピルエチルアミン
DMAP:4−(N,N−ジメチルアミノ)ピリジン
DBU:1,8−ジアザビシクロ[5.4.0]ウンデ−7−エン
CDI:カルボニルジイミダゾ−ル
HOBT:1−ヒドロキシベンゾトリアゾール
BOC:tert−ブトキシカルボニル
Tf2O:無水トリフルオロメタンスルホン酸
Tf:トリフルオロメタンスルホニル基
TFA:トリフルオロ酢酸
DME:1,2−ジメトキシエタン
MsCl:メタンスルホニルクロリド
DIAD:ジイソプロピルアゾジカルボキシレート
Ac:アセチル基
Me:メチル基
Et:エチル基
Ph:フェニル基
Bn:ベンジル基
EtOAc:酢酸エチル(=AcOEt)
mCPBA:m−クロロ過安息香酸
TMS:トリメチルシリル基
h:時間
min:分
satd.:飽和
【0016】
さらに、以下の種々の用語が下記のような特定意味および解釈で用いられている。
アルキル、アルコキシ、アルキレンまたはアルカンに先だって用いられる「低級」とは、直鎖または分岐鎖の1〜6個の炭素数を含むことを意味し、アルカノイル、アルケニル、またはアルケニレンに先だって用いられる「低級」とは、直鎖または分岐鎖の2〜7個の炭素数を含むことを意味する。シクロアルキル、またはシクロアルコキシに先だって用いられる「低級」とは、3〜7個の炭素数を含むことを意味する。
【0017】
「モルホリノ低級アルキル」、「ヒドロキシ低級アルコキシ」などの用語は、「低級」の前の官能基が「低級」に続く官能基の置換基であることを意味する。例えば、「ヒドロキシ低級アルコキシ」は少なくとも一つのヒドロキシ置換基を含有する低級アルコキシ基を意味するものである。
【0018】
「ハロゲン原子で置換された低級アルキル基」、「低級アルコキシ基で置換されたフェニル基」等の用語は、少なくとも一つの置換基を含む官能基を意味する。例えば、「ハロゲン原子で置換された低級アルキル基」とは、少なくとも一つのハロゲン原子を含有する低級アルキル基を意味し、「低級アルコキシ基で置換されたフェニル基」とは、、少なくとも一つの低級アルコキシ基を含有するフェニルを意味する。このタイプの語法は本分野の技術者により解釈されているとおりであり、このタイプの命名法に若干異なる命名法およびこのタイプの命名法の組合せもまた当分野の技術者の通常の解釈の範囲内で解釈されるものである。依って、このタイプの命名法は、現実にあり得ないような分子または置換基になるような組み合わせには適用されるものではない。
【0019】
本発明の態様として、化合物の立体配置は限定されない。本発明の化合物は単一の配置またはいくつかの異なった配置の混合した化合物であってもよい。
【0020】
上記式(I)中、「芳香族炭化水素環」とは、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環等の、単環、2環または3環式の芳香族炭化水素環である。
【0021】
上記式(I)中、「複素環」とは、ヘテロ原子を含有する単環、2環または3環である。例えば、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、キノリン環、イソキノリン環、キナゾリン環、フタラジン環、イミダゾール環、イソキサゾール環、ピラゾール環、オキサゾール環、チアゾール環、インドール環、ベンズアゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾフラン環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピロール環、インドリン環、インダゾール環、イソインドール環、プリン環、モルホリン環、キノキサリン環、ベンゾチオフェン環、ピロリジン環、ベンゾフラザン環、ベンゾチアジアゾール環、チアゾリジン環、イミダゾチアゾール環、ジベンゾフラン環、およびイソチアゾール環がある。
【0022】
上記式(I)中、「アリール基」とは、単環、2環または3環式の芳香族基をいい、例えば、フェニル基、ナフチル基、アンソリル基およびフルオレニル基がある。
【0023】
上記式(I)中、「複素環基」とは、窒素原子、酸素原子および硫黄原子のヘテロ原子を含有する、単環、2環または3環式基を意味し、例えば、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、キノリル基、イソキノリル基、キナゾリニル基、フタラジニル基、イミダゾリル基、イソキサゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基、インドリル基、ベンズアゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基、ベンゾフラニル基、フリル基、チエニル基、ピロリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリニル基、インダゾリル基、イソインドリル基、プリニル基、モルホリニル基、キノキサリニル基、ベンゾチエニル基、ピロリジニル基、ベンゾフラザニル基、ベンゾチアジアゾリル基、チアゾリジニル基、イミダゾチアゾリル基、ジベンゾフラニル基、イソチアゾリル基、ピロリニル基、ピペリジニル基、ピペラジニル基およびテトラヒドロピラニル基である。
上記式(I)中、「ヘテロアリール基」は窒素原子、酸素原子および硫黄原子のヘテロ原子を含有する、単環、2環または3環式の芳香族基を意味し、例えば、ピロリジニル基、ピロリニル基、ピペリジニル基、ピペラジニル基、モルホリニル基、テトラヒドロピラニル基以外の上記「複素環基」である。好ましい「ヘテロアリール基」は、ピリジル基、チエニル基、ベンゾフラニル基、ピリミジル基、およびイソキサゾリル基である。
【0024】
本発明の化合物(I)中、新規化合物は下記のものである。
【化8】
Figure 0003795305
式中、環Aは芳香族炭化水素環あるいは複素環、
Qは結合手;カルボニル基;水酸基またはフェニル基で置換されていてもよい低級アルキレン基;低級アルケニレン基;または−O−(低級アルキレン)−基、
nは0、1または2の整数、
Wは酸素原子、硫黄原子、−CH=CH−基または−N=CH−基、
Zは酸素原子または硫黄原子、
1、R2およびR3は同一または異なって下記の群から選ばれる基、
a)水素原子、
b)ハロゲン原子、
c)置換または非置換低級アルキル基、
d)置換または非置換低級アルコキシ基、
e)ニトロ基、
f)置換または非置換アミノ基、
g)カルボキシル基、またはそのアミドまたはエステル、
h)シアノ基、
i)低級アルキルチオ基、
j)低級アルカンスルホニル基、
k)置換または非置換スルファモイル基、
l)置換または非置換アリール基、
m)置換または非置換複素環基、および
n)水酸基、
または、R1、R2およびR3のうち2つはその末端で互いに結合して低級アルキレンジオキシ基を形成してもよく、
4はテトラゾリル基、カルボキシル基またはそのアミドまたはエステル、
5は下記の群から選ばれる基、
a)水素原子、
b)ニトロ基、
c)置換または非置換アミノ基、
d)水酸基、
e)低級アルカノイル基、
f)置換または非置換低級アルキル基、
g)低級アルコキシ基、
h)ハロゲン原子、および
i)2−オキソピロリジニル基、
6は下記の群から選ばれる基、
a)置換または非置換フェニル基、および
b)置換または非置換ヘテロアリール基、
ただし、環Aがベンゼン環のときは、その3位および5位、または2位および4位はメチル基で置換されない、
またはその薬理学的に許容される塩。
【0025】
本発明の有効成分の好ましい立体配置は式(I−A)で表される。
【化9】
Figure 0003795305
(式中、記号は上記と同じである)
【0026】
本発明の好ましい態様は、環Aがベンゼン環のときは、その2位または6位のひとつは置換されている、式(I)の化合物である。
【0027】
本発明の他の好ましい態様は、R1、R2およびR3が下記の群から選ばれる基である式(I)の化合物である。
a)水素原子、
b)ハロゲン原子、
c)置換または非置換低級アルコキシ基、
d)ニトロ基、
e)置換または非置換アミノ基、
f)カルボキシル基、またはそのアミドまたはエステル、
g)シアノ基、
h)低級アルキルチオ基、
i)低級アルカンスルホニル基、
j)置換または非置換スルファモイル基、
k)置換または非置換アリール基、
l)置換または非置換複素環基、および
m)水酸基
または、R1、R2およびR3の2つは互いにその末端で結合して低級アルキレンジオキシ基を形成してもよい。
【0028】
本発明の有効成分のさらに好ましい態様は下記式(I−B)で表される化合物である。
【0029】
【化10】
Figure 0003795305
(式中、記号は上記と同じである)
【0030】
本発明の有効成分のさらに好ましい態様では、R1が水素原子、ハロゲン原子、カルボキシル基、カルバモイル基、ニトロ基、置換または非置換アミノ基、置換または非置換複素環基、R2が水素原子、低級アルキル基またはハロゲン原子、R3が水素原子、低級アルキル基またはハロゲン原子、およびR6がその2位、4位、および/または6位が下記の群から選ばれる基で置換されていてもよいフェニル基、
1)ハロゲン原子、
2)置換または非置換低級アルコキシ基、
3)置換または非置換低級アルキル基、
4)置換または非置換アミノ基、
5)置換または非置換カルバモイル基、および
6)置換または非置換スルファモイル基、
である。
【0031】
本発明のさらに好ましい態様では、R6が下記の群から選ばれる1〜3個の基で置換されていてもよいフェニル基である。
1)低級アルコキシ基、および
2)置換または非置換アミノ基、置換または非置換ピペリジニル基、置換または非置換モルホリノ基、置換または非置換ピペラジニル基、置換または非置換ピロリジニル基および置換または非置換イミダゾリジニル基から選ばれる基で置換されていてもよい低級アルキル基。
【0032】
本発明の他の態様では、
環Aがベンゼン環、ピリジン環、ピラジン環、フラン環、イソキサゾール環、ベンゾフラン環、チオフェン環、ピロール環、またはインドール環;
1、R2およびR3が下記の群から選ばれる基;
a)水素原子、
b)ハロゲン原子、
c)ハロゲン原子またはハロゲノベンゾイルアミノ基で置換されていてもよい低級アルキル基、
d)ハロゲン原子で置換されていてもよい低級アルコキシ基、
e)ニトロ基、
f)1)低級アルキル基、2)低級アルカノイル基、3)ハロゲノベンゾイル基、4)低級アルコキシカルボニル基、5)ハロゲン原子で置換されていてもよい低級アルカンスルホニル基、6)低級アルキル基、トリハロゲノ低級アルキル基、ハロゲン原子または低級アルコキシ基で置換されていてもよいベンゼンスルホニル基、7)チオフェンスルホニル基、8)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、9)低級アルキル基、フェニル基またはフェニル低級アルキル基で置換されていてもよいチオカルバモイル基、10)チアゾリニル基、および11)低級アルキル基で置換されていてもよいスルファモイル基から選ばれる1〜2個の基で置換されていてもよいアミノ基、
g)カルボキシル基、
h)低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
i)低級アルコキシカルボニル基、
j)シアノ基、
k)低級アルキルチオ基、
l)低級アルカンスルホニル基、
m)スルファモイル基、
n)フェニル基、
o)オキソ基で置換されていてもよいピロリジニル基、
p)1)ハロゲン原子で置換されていてもよい低級アルカノイル基、2)ハロゲン原子、3)ホルミル基、および4)水酸基で置換されていてもよい低級アルキル基から選ばれる基で置換されていてもよいピロリル基、
q)チエニル基、
r)低級アルキル基で置換されていてもよいイソキサゾリル基、
s)チアゾリル基、
t)ピラゾリル基、
u)ピラジニル基、
v)ピリジル基、および
w)水酸基、
4が下記の群から選ばれる基;
a)カルボキシル基、
b)1)ピリジル基、または2)低級アルキル基で置換されていてもよいアミノ基で置換されていてもよい低級アルコキシカルボニル基、
c)低級シクロアルコキシカルボニル基、
d)水酸基または低級アルカンスルホニル基で置換されていてもよいカルバモイル基、および
e)テトラゾリル基、
5が下記の群から選ばれる基;
a)水素原子、
b)ニトロ基、
c)低級アルカノイル基、低級アルコキシカルボニル基、または低級アルカンスルホニル基で置換されていてもよいアミノ基、
d)水酸基、
e)低級アルカノイル基、
f)1)水酸基、または2)水酸基または低級アルコキシ基で置換されたイミノ基で置換されていてもよい低級アルキル基、
g)低級アルコキシ基、
h)ハロゲン原子、および
i)2−オキソピロリジニル基、
6が下記の群から選ばれる基;
a)下記群から選ばれる1〜5個の基で置換されていてもよいフェニル基、
1)ハロゲン原子、
2)ニトロ基、
3)ホルミル基、
4)水酸基、
5)カルボキシル基、
6)i)カルボキシル基、またはそのアミドまたはエステル、ii)水酸基、iii) シアノ基、iv)ハロゲン原子、v)低級アルキル基で置換されていてもよいアミノ基、vi)ピリジル基、vii)低級アルキル基で置換されていてもよいチアゾリル基、viii)低級アルキル基で置換されていてもよいイソキサゾリル基、ix)低級アルキル基で置換されていてもよいピペリジル基、x)低級アルキル基で置換されていてもよいピロリジニル基、xi)ハロゲン原子で置換されていてもよいフェニル基、xii)フリル基、xiii)チエニル基、およびxiv)低級アルコキシ基から選ばれる基で置換されていてもよい低級アルコキシ基、
7)i)ハロゲン原子、ii)水酸基、iii)カルボキシル基、またはそのアミドまたはエステル、iv)低級アルコキシ基、v)低級アルキル基、ヒドロキシ低級アルキル基、低級アルキルアミノ低級アルキル基、フェニル低級アルキル基、フェニル基およびピリジル基から選ばれる1〜2個の基で置換されていてもよいアミノ基、vi)低級アルキレンジオキシ基、オキソ基または水酸基で置換されていてもよいピペリジニル基、vii)低級アルキル基で置換されていてもよいモルホリノ基、viii)酸化されていてもよいチオモルホリノ基、ix)低級アルキル基、ヒドロキシ低級アルキル基、低級アルカノイル基またはフェニル低級アルキル基で置換されていてもよいピペラジニル基、x)オキソ基で置換されていてもよいピロリジニル基、およびxi)低級アルキル基およびオキソ基から選ばれる1〜3個の基で置換されていてもよいイミダゾリジニル基から選ばれる基で置換されていてもよい低級アルキル基、
8)カルボキシル基、またはそのアミドまたはエステルで置換されていてもよい低級アルケニル基、
9)i)フェニル基、ii)低級アルコキシカルボニル基、iii)低級アルカンスルホニル基、iv)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、v)低級アルカノイル基、vi)低級アルキル基、vii)低級アルケニル基、およびviii)低級アルキル基で置換されていてもよいチオカルバモイル基から選ばれる基で置換されていてもよいアミノ基、10)低級アルキル基、ヒドロキシ低級アルキル基、モルホリノ低級アルキル基、フェニル低級アルキル基または低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
11)i)低級アルキル基、ii)ベンゾイル基、iii)低級アルコキシカルボニル基およびiv)低級アルカノイル基から選ばれる基で置換されていてもよいスルファモイル基、
12)低級アルケニルオキシ基、
13)低級アルキレンジオキシ基、
14)低級アルキル基で置換されていてもよいピペラジニルカルボニル基、
15)低級アルカノイル基、
16)シアノ基、
17)低級アルキルチオ基、
18)低級アルカンスルホニル基、
19)低級アルキルスルフィニル基、および
20)式:−(CH2)q−O−で示される基(式中qは2または3の整数)、
b)低級アルキル基で置換されていてもよいピリジル基、
c)下記群から選ばれる基で置換されていてもよいチエニル基、
1)ハロゲン原子、
2)水酸基で置換されていてもよい低級アルキル基、
3)シアノ基、
4)ホルミル基、
5)低級アルコキシ基、および
6)低級アルカノイル基、
d)ベンゾフラニル基、
e)低級アルコキシ基で置換されていてもよいピリミジニル基、
f)低級アルキル基で置換されていてもよいイソキサゾリル基、および
g)低級アルコキシカルボニル基で置換されていてもよいピロリル基、
である。
【0033】
本発明の好ましい態様では、
環Aがベンゼン環;
Qが結合手;
Wが−CH=CH−;
1が下記の群から選ばれる基;
a)水素原子、
b)ハロゲン原子、
c)低級アルキル基、
d)低級アルコキシ基、
e)ニトロ基、
f)1)低級アルキル基、2)低級アルカノイル基、3)低級アルコキシカルボニル基、4)ハロゲン原子で置換されていてもよい低級アルカンスルホニル基、5)低級アルキル基、トリハロゲノ低級アルキル基、ハロゲン原子または低級アルコキシ基で置換されていてもよいベンゼンスルホニル基、6)チオフェンスルホニル基、7)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、8)低級アルキル基で置換されていてもよいチオカルバモイル基、および9)低級アルキル基で置換されていてもよいスルファモイル基から選ばれる基で置換されていてもよいアミノ基、
g)カルボキシル基、
h)低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
i)低級アルカンスルホニル基、
j)スルファモイル基、
k)フェニル基、
l)オキソ基で置換されていてもよいピロリジニル基、
l)低級アルキル基で置換されていてもよいピロリル基、
m)チエニル基、
n)低級アルキル基で置換されていてもよいイソキサゾリル基、
o)チアゾリル基、
p)ピラゾリル基、
q)ピラジニル基、
r)ピリジル基、および
s)水酸基、
2が水素原子またはハロゲン原子;
3が水素原子またはハロゲン原子;
4がa)カルボキシル基、b)低級アルキルアミノ基で置換されていてもよい低級アルコキシカルボニル基、またはc)低級アルカンスルホニル基で置換されていてもよいカルバモイル基;
5が下記群から選ばれる基;
a)水素原子、
b)低級アルカノイル基、低級アルコキシカルボニル基または低級アルカンスルホニル基で置換されていてもよいアミノ基、
c)低級アルカノイル基、
d)1)水酸基、または2)水酸基または低級アルコキシ基で置換されたイミノ基で置換されていてもよい低級アルキル基、
e)低級アルコキシ基、および
f)ハロゲン原子、
6が下記群から選ばれる1〜5個の基で置換されていてもよいフェニル基;
a)ハロゲン原子、
b)ホルミル基、
c)水酸基、
d)1)カルボキシル基、2)水酸基、3)シアノ基、4)ハロゲン原子、5)低級アルキル基で置換されていてもよいアミノ基、6)ピリジル基、7)フェニル基、8)チエニル基、または9)低級アルコキシ基で置換されていてもよい低級アルコキシ基、
e)1)低級アルキル基、ヒドロキシ低級アルキル基、低級アルキルアミノ低級アルキル基またはフェニル基で置換されていてもよいアミノ基、2)低級アルキレンジオキシ基で置換されていてもよいピペリジニル基、3)低級アルキル基で置換されていてもよいモルホリノ基、4)硫黄原子が酸化されていてもよいチオモルホリノ基、5)低級アルキル基、ヒドロキシ低級アルキル基、低級アルカノイル基またはフェニル低級アルキル基で置換されていてもよいピペラジニル基、6)オキソ基で置換されていてもよいピロリジニル基、または7)低級アルキル基およびオキソ基から選ばれる1〜3個の基で置換されていてもよいイミダゾリジニル基で置換されていてもよい低級アルキル基、
f)1)低級アルコキシカルボニル基、2)低級アルカンスルホニル基、3)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、4)低級アルカノイル基、5)低級アルキル基、6)低級アルケニル基、または7)低級アルキル基で置換されていてもよいチオカルバモイル基で置換されていてもよいアミノ基、
g)1)低級アルキル基、2)ヒドロキシ低級アルキル基、3)モルホリノ低級アルキル基、4)フェニル低級アルキル基、または5)低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
h)低級アルキル基で置換されていてもよいスルファモイル基、
i)低級アルケニルオキシ基、
j)低級アルキレンジオキシ基、
k)シアノ基、
l)低級アルキルチオ基、および
m)低級アルカンスルホニル基、
である。
【0034】
本発明のさらに好ましい態様では、
1が1)水素原子、2)ハロゲン原子、3)低級アルカノイルアミノ基、4)低級アルコキシカルボニルアミノ基、5)ハロゲン原子で置換されていてもよい低級アルカンスルホニルアミノ基、6)低級アルキル基、トリハロゲノ低級アルキル基、ハロゲン原子または低級アルコキシ基で置換されていてもよいベンゼンスルホニルアミノ基、7)チオフェンスルホニルアミノ基、8)低級アルキル基または低級アルキルフェニル基で置換されていてもよいウレイド基、9)低級アルキルチオウレイド基、または10)低級アルキルスルファモイルアミノ基;
2がハロゲン原子;
3が水素原子またはハロゲン原子;
6が1)低級アルコキシ基、2)低級アルキルアミノ基、ヒドロキシ低級アルキルアミノ基、低級アルキルアミノ低級アルキルアミノ基、ピペリジニル基、低級アルキルピペリジニル基、モルホリノ基、低級アルキルモルホリノ基、チオモルホリノ基、ピペラジニル基、低級アルキルピペラジニル基、低級アルカノイルピペラジニル基、およびピロリジニル基から選ばれる1〜3個の基で置換されていてもよい低級アルキル基、3)低級アルキル基で置換されていてもよいスルファモイル基、および4)低級アルキル基で置換されていてもよいカルバモイル基から選ばれる1〜3個の基で置換されていてもよいフェニル基、
である。
【0035】
本発明のさらに好ましい態様では、R1が水素原子、R3がハロゲン原子、およびR6が2−低級アルコキシフェニル基、2,6−ジ低級アルコキシフェニル基、2,6−ジ低級アルコキシ−4−[[N,N−ジ低級アルキルアミノ]低級アルキル]フェニル基、2,6−ジ低級アルコキシ−4−[(4−低級アルキル−1−ピペラジニル)低級アルキル]フェニル基、2,6−ジ低級アルコキシ−4−[1−ピペリジニル低級アルキル]フェニル基、2,6−ジ低級アルコキシ−4−[N,N−ジ(低級アルキル)カルバモイル]フェニル基または2,6−ジ低級アルコキシ−4−[(モルホリノ)低級アルキル]フェニル基である。
【0036】
本発明のさらに好ましい態様では、低級アルコキシがメトキシである。
【0037】
本発明の有効成分として好ましい化合物は、
N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(1−ピペリジノメチル)フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(4−メチルピペラジニル)メチル]フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(モルホリノメチル)フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(N,N−ジメチルアミノ)メチル]フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(N,N−ジメチルカルバモイル)フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロ−4−ヒドロキシベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−(2−エトキシ−6−メトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジフルオロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−(2,3−メチレンジオキシ−6−メトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−3−(1−ヒドロキシエチル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−(2,4,6−トリメトキシフェニル)−L−フェニルアラニン;
N−[2,6−ジクロロ−4−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;または
N−[2,6−ジクロロ−4−[(2−チエニルスルホニル)アミノ]ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン、
またはエチルエステル等のその低級アルキルステル、
またはその製薬学的に許容される塩である。
【0038】
本発明の有効成分はそのエステル体またはアミド体として用いることができる。エステル体としては、a)1)ピリジル基、2)低級アルキル基で置換されていてもよいアミノ基、3)低級アルカノイルオキシ基、または4)アリール基で置換されていてもよい低級アルキルエステル;b)低級アルケニルエステル;c)低級アルキニルエステル;d)低級シクロアルキルエステル;およびe)アリールエステルが挙げられる。アミド体としては、低級アルキル基、低級シクロアルキル基、アリール基、アリール低級アルキル基、水酸基または低級アルカンスルホニル基で置換されていてもよいアミド(−CONH2)が挙げられる。
【0039】
また、式(I)のエステルには、例えば、対応するカルボン酸に体内で変換され得るエステルが含まれ、そのようなエステルとしては、例えば、メチルエステルなどの低級アルキルエステル、アセトキシメチルエステルなどの低級アルカノイルオキシ低級アルキルエステル等が挙げられる。式(I)のアミドには、例えば、N−非置換アミド、N−低級アルキルアミドなどのN−モノ置換アミド、N,N−(低級アルキル)(低級アルキル)アミドなどのN,N−ジ置換アミド等が含まれる。
【0040】
本発明の有効成分は遊離の形または製薬学的に許容される塩の形のいずれの形でもよい。
【0041】
式(I)の化合物の製薬学的に許容される塩とは、例えば、無機酸との塩(塩酸塩、硫酸塩)、有機酸との塩(p−トルエンスルホン酸塩、マレイン酸塩)、無機塩基との塩(ナトリウム塩またはカリウム塩等のアルカリ金属との塩)またはアミンとの塩(アンモニウム塩)が挙げられる。
【0042】
更に製薬学的に許容される塩としては、例えば無機酸または有機酸との酸付加塩(例えば、硝酸塩、臭化水素酸塩、メタンスルホン酸塩、酢酸塩)、無機塩基、有機塩基、またはアミノ酸との塩(例えば、トリエチルアミン塩、リジンとの塩、アルカリ土類金属との塩)が挙げられる。また、製薬学的に許容される塩には、分子内塩、付加物、溶媒和物または水和物が含まれる。
【0043】
有効成分は上記の化合物の治療上有効量および製薬学的に許容される担体からなる医薬組成物に製剤される。
【0044】
本発明の組成物は、ヒト等の哺乳動物におけるα4β1およびα4β7を含むα4接着仲介病態、特にα4β7接着仲介病態の治療または予防に使用できる。この方法は哺乳動物またはヒト患者に上記の化合物または組成物の治療上有効量を投与することを特徴とする。
【0045】
本発明医薬組成物はリュウマチ関節炎、喘息、乾癬、湿疹、接触皮膚炎、アトピー性皮膚炎などの皮膚炎症疾患、糖尿病、多発性硬化症、全身性エリトマトーデス(SLE)、潰瘍性大腸炎やクローン病を含む炎症性腸疾患、移植片対宿主疾患および胃腸管または皮膚、尿道、気管、関節滑膜、およびその他の上皮組織における、白血球浸潤が関与する上記以外の疾患等、炎症性疾患の治療または予防に使用できる。本組成物は好ましくは、潰瘍性大腸炎やクローン病などの炎症性腸疾患の治療または予防に使用できる。
【0046】
本発明はまたα4β7インテグリンを含むMAdCAM−1のリガンドを持つ細胞と、MAdCAM−1またはその一部(細胞外ドメイン)との相互反応を、細胞と本発明有効成分とを接触させることにより阻害する方法に関する。一態様として、本発明は、α4β7インテグリンを持つ第一の細胞と、MAdCAM(例えばMAdCAMを持つ第二の細胞)との、MAdCAM−1仲介相互反応を、本発明の有効成分を第一の細胞と接触させることにより阻害する方法に関する。他の態様では、本発明は、MAdCAM−1分子を発現する組織(例えば内皮細胞)への白血球レクルートメントを伴う疾病に苦しむ個人の治療用組成物に関する。
【0047】
本発明の他の態様は、MAdCAM−1分子を発現する組織における白血球浸潤を伴う疾病に苦しむ個人の治療用組成物に関する。
【0048】
本発明によれば、MAdCAM−1のリガンドを持つ細胞を構造式(I)で示される有効成分(1種または2種以上)の有効量と接触させる。有効成分はMAdCAM−1とα4β7インテグリンを含むリガンドとの結合を阻害(減少または阻止)し、および/またはリガンドが仲介する細胞応答の誘発を阻害する化合物である。治療上有効量とは阻害量(例えばMAdCAM−1リガンドを持つ細胞とMAdCAM−1との接着を阻害するための充分量)をいう。MAdCAM−1リガンドは、ヒトα4β7インテグリン等のα4β7インテグリンや、マウスなどの他の種からのその相同体(マウスのα4βpまたはLPAM−1と称される)を含む。
【0049】
例えば、自然にMAdCAM−1のリガンドを発現する、白血球(例えば、Bリンパ球、Tリンパ球)等の細胞、あるいはMAdCAM−1のリガンドを発現する他の細胞(組換細胞)の、MAdCAM−1への接着は、本発明の組成物により、インビトロおよび/またはインビボで阻害され得る。
【0050】
他の局面として、本発明は、MAdCAM−1分子を発現する組織における白血球(例えば、リンパ球、単球)浸潤(白血球の組織内へのレクルートメントおよび/または蓄積を含む)を伴う疾病に苦しむ、ヒトや他の霊長類などの哺乳動物の個々の治療用組成物に関する。本組成物は構造式(I)の有効成分(1種または2種以上)を治療上有効量を含有することを特徴とする。例えば、胃集合内皮細胞を含む胃腸管、他の粘膜組織、あるいは小腸大腸の固有層の細静脈、乳腺(泌乳乳腺)等のMAdCAM−1分子を発現する組織(例えば、胃集合組織)における白血球浸潤を伴う疾病を含む、炎症性疾病が本組成物により治療できる。同様に、白血球のMAdCAM−1分子を発現する細胞(例えば、内皮細胞)への結合の結果としての、組織における白血球浸潤を伴う疾病に罹患した個体が本発明組成物により治療できる。
【0051】
このように治療できる疾病としては、潰瘍性大腸炎、クローン病などの炎症性腸疾患(IBD)、直腸結腸切除後およびIBD後の回腸肛門吻合後の嚢炎(pouchitis)、および白血球浸潤を伴う他の胃腸疾患、例えば、セリアック病、非熱帯スプルー、血清反応陰性関節炎を伴う腸疾患、および移植片対宿主疾患などがある。
【0052】
膵臓炎およびインスリン依存性糖尿病は本発明組成物を用いて治療できる他の疾病である。MAdCAM−1は、BALB/cマウスおよびSJLマウスと同様、NOD(非肥満糖尿病)マウスの外分泌膵臓におけるいくつかの血管に発現されることが報告されている。MAdCAM−1の発現はNODマウスの膵臓の炎症膵島内の内皮上に誘導され、NOD膵島内皮に発現されたMAdCAM−1は、膵島炎の初期段階での優れた指標である(ハニネンA.ら、J. Clin. Invest., 92:2509‐2515(1993))。さらに、膵島内にα4β7を発現しているリンパ球の蓄積が観察され、MAdCAM−1はリンパ腫細胞の炎症膵島の血管へのα4β7を介した結合に関与している(ハニネンA.ら、J. Clin. Invest., 92:2509‐2515(1993))。
【0053】
本医薬組成物により治療できる粘膜組織を伴う炎症疾患の例として、乳腺炎(乳腺)、胆嚢炎、胆管炎、または胆管周囲炎(胆道および肝臓周囲組織)、慢性気管支炎、慢性静脈洞炎、喘息、および移植片対宿主疾患(例えば、胃腸管における)が挙げられる。また、過敏性肺炎、膠原病(SLE、リウマチ関節炎における)、サルコイドーシス、および他の特発性病態等の間質性繊維症を起こす肺の慢性炎症性疾患も治療可能である。
【0054】
α4β1インテグリン(VLA−4)を認識する血管細胞接着分子−1(VCAM−1)はインビボの白血球レクルートメントにおいて役割を果たすことが報告されている(シルバーら、J. Clin. Invest., 93:1554-1563(1994))。しかしながら、この治療標的は複数の器官の炎症過程に関与するようである。VCAM−1とは異なり、MAdCAM−1は優先的に胃腸管と粘膜組織に発現し、白血球上のα4β7インテグリンと結合し、これらの細胞が粘膜サイト、例えば胃腸壁の集合リンパ小節にホーミングするのに関与している(ハマンら、J. Immunol., 152: 3282-3293 (1994))。MAdCAM−1のα4β7インテグリンとの結合の阻害剤は、例えば、接着が他の受容体に仲介されている他の組織タイプに対しては影響が少ないので、副作用が少ない可能性を持っている。
【0055】
ここに挙げられた望ましくない症状は本医薬組成物を投与することにより緩和される。該症状は不適当な細胞接着および/または細胞活性化により、α4β7インテグリンにより仲介される前炎症媒体を放出することにより派生する。そのような不適当な細胞接着または信号伝達は典型的には、内皮細胞表面上のVCAMおよび/またはMAdCAMの発現が増加する結果発生すると予想される。VCAM、MAdCAMおよび/またはCS−1の発現増加は正常な炎症応答または異常な炎症状態によるものであろう。
【0056】
治療の為の使用に適当な化合物は、適当な動物モデルを用いて、インビボで評価できる。適当な炎症動物モデルは開示されている。例えば、NODマウスはインスリン依存性糖尿病の動物モデルである。CD45 RBHi SCIDモデルは、クローン病および潰瘍性大腸炎両者と類似性のあるマウスのモデルである(ポウリー、F.ら、Immunity, 1:553-562(1994))。捕らえられたコットントップタマリン、アメリカ大陸の非ヒト霊長類種は、自然発生的に、しばしば慢性的に大腸炎を起こし、それは臨床的にまた組織学にヒトにおける潰瘍性大腸炎に相似している(マダラ、J.L.ら、Gastroenterology, 88:13-19(1985))。タマリンモデルおよびBALB/cマウス(DSS(デキストラン硫酸ナトリウム)誘発炎症モデル)を用いた他の胃腸炎症の動物モデル、ヒト炎症腸疾患の病変と相似の胃腸病変を起こすIL−10ノックアウトマウスが開示されている(ストローバー、W.およびアーンハルト、R.O.、Cell, 75:203-205(1993))。
【0057】
本発明によれば、有効成分は単体でまたは他の薬理学的に活性な薬剤(スルファサラジン、抗炎症化合物、ステロイド剤、または他の非ステロイド性抗炎症化合物)と共に個体(人間等)に投与できる。化合物は他の薬剤の投与の前、同時に、または投与後に、ヒトα4β7等のMAdCAM−1のリガンドとのMAdCAM−仲介結合を減少または阻止するための充分量を投与する。
【0058】
有効成分の有効量は適当な経路で、単回投与または多回投与で投与できる。有効量は所望の治療効果および/または予防効果を達成するために充分な治療上有効量をいい、たとえばMAdCAM−1のリガンドとのMAdCAM仲介結合を減少または阻止するための充分量で、それにより白血球接着および浸潤、それに伴う細胞性応答を阻害する量である。本発明の有効成分の治療、診断または予防における適量は、本分野で既知の方法により決定でき、例えば、個人の年齢、感受性、耐性および全体的な状態により決定される。
【0059】
本発明の有効成分またはその薬理学的に許容できる塩は、経口的または非経口的に投与でき、適当な医薬組成物として、例えば、錠剤、顆粒剤、カプセル剤、粉剤、注射剤、および吸入剤に常法により使用できる。
【0060】
本発明の有効成分またはその製薬学的に許容できる塩の投与量は投与経路、患者の年齢、体重、病状により変わるが、しかし、一般的には、一日あたりの投与量は好ましくは約0.1から100mg/kg、特に好ましくは1から100mg/kgの範囲である。
【0061】
前記のとおり、式(I)の有効成分は医薬組成物に製剤化できる。与えられた疾病の治療に式(I)の化合物が必要な場合を決定する際には、その対象となる疾病そのもの、その重篤度、および治療対象の年齢、性別、体重、および症状も考慮して決定されるべきものである。
【0062】
医薬的使用に際して、治療効果を達成するために要する式(I)の化合物の投与量は、勿論、個々の化合物、投与経路、治療される患者、および治療される個々の病態または疾病により変動するであろう。上記のいずれかの疾病に罹患している、または罹患しているであろうと思われる哺乳動物のための、式(I)の化合物またはその製薬学的に許容される塩の1日当りの投与量は、式(I)の化合物に換算して、該哺乳動物の全身の体重1kg当り、0.1mg〜100mgの間であり、全身投与の場合、哺乳動物体重の0.5〜100mg/kgであり、最も好ましくは0.5〜50mg/kgの間であり、1日あたり2〜3回に分けて投与される。局所投与の場合は、例えば皮膚や眼への投与の場合は、適当な投与量は1kgあたり0.1μg〜100μg、典型的には約0.1μg/kgである。
【0063】
経口投与の場合は、式(I)の化合物またはその薬理学的に許容される塩の投与量は、好ましくは1kg当り1mg〜50mgの間であり、最も好ましくは、哺乳動物体重1kg当り5mg〜25mg、例えば、1〜10mgである。最も好ましくは、本発明範囲内の経口投与用医薬組成物の単位投与量は式(I)の化合物を約1.0g以下を含有する。
【0064】
本発明の医薬組成物はここで記載の病態に罹患した患者に、該病態の好ましくない症状を完全にまたは部分的に緩和するために効果がある量を投与することができる。症状は不適当な細胞接着や細胞活性化により、α4β7インテグリンにより仲介される前炎症媒体を放出することにより、発症すると思われる。そのような不適当な細胞接着またはシグナル伝達は、典型的には内皮細胞表面上のVCAM−1および/またはMAdCAMの発現増加の結果によるものと予想される。VCAM−1、MAdCAMおよび/またはCS−1の発現増加は正常な炎症応答または異常な炎症状態によるものであろう。いずれの場合にも、本発明の化合物の有効量は、内皮細胞によるVCAM−1および/またはMAdCAMの発現増加による細胞接着増加を減少させる。病態において観察される接着の50%削減は接着の効果的減少と考えられる。さらに好ましくは、ex vivoにおける接着が90%減少される。最も好ましくは、VCAM−1、MAdCAMおよび/またはCS−1相互反応に仲介される接着は有効投与量により完全に阻止される。臨床的には、いくつかのケースでは、化合物の効果は組織または病変サイトへの白血細胞浸潤の減少として観察される。ついで、治療効果を得るためには、本発明の組成物は望ましくない症状を緩和するために不適当な細胞接着または不適当な細胞活性化を減少または除去する為に効果的な量を投与する。
【0065】
有効成分を単体で投与することが可能ではあるが、式(I)の化合物および薬理学的に許容される担体を包含する医薬組成物として用いることが好ましい。そのような製剤は本発明のさらなる特色である。
【0066】
ヒトおよび獣医学的医薬用途用の本発明の製剤は、式(I)の化合物、および薬理学的に許容される担体および時には、対象とした疾病または病態の治療に有効であると一般的に知られている他の治療有効成分から成る。担体は製剤の他の成分と反応せず、受容者にとって有害ではないものでなければならない。
【0067】
製剤としては、経口、肺、眼、直腸、非経口(皮下、筋肉内、および静脈内を含む)、関節内、局所、経鼻吸入剤(エアゾールと共に)、またはバッカル投与に適した製剤が挙げられる。そのような製剤には本分野で既知の持続製剤が含まれる。経口および非経口投与は好ましい投与体系である。
【0068】
製剤は単位投与形が適当であり、製薬分野でよく知られたいずれの方法によっても調製できる。全ての方法は有効成分を、1つまたはそれ以上補足成分である担体と混合する工程を含む。一般的に、製剤は有効成分を液体担体または細密に粉砕された固体担体、または両者と均一かつ完全に混合し、ついで、要すれば、生成物を所望の形に成形することにより、調製される。
【0069】
経口投与に適した本発明の製剤は、カプセル剤、カシェ剤、錠剤、ロゼンジ剤等のそれぞれ分離した単位形で、各単位形は予め決定された量の有効成分を、粉末、顆粒、または水性液体溶液または懸濁液の形で含有する。他の用途の製剤は非水性液体を含み、水中油乳剤や、油中水乳剤、エアゾール剤、クリーム剤または軟膏または経皮的に有効成分を投与するための経皮パッチ剤への含浸剤の形で、要する患者に投与される。本発明組成物の有効成分はそれを必要とする患者にボーラス剤、舐剤、またはペースト剤の形でも投与できる。
【0070】
経口投与に適した医薬担体としては、例えば、結合剤(シロップ、アラビアゴム、ゼラチン、ソルビット、トラガント、ポリビニルピロリドン等)、賦形剤(乳糖、砂糖、コーンスターチ、リン酸カリウム、ソルビット、グリシン等)、滑沢剤(ステアリン酸マグネシウム、タルク、ポリエチレングリコール、シリカ等)、崩壊剤(バレイショデンプン等)および湿潤剤(ラウリル硫酸ナトリウム等)等を挙げることができる。一方、非経口投与する場合には、例えば、注射用蒸留水、生理的食塩水、ブドウ糖水溶液等を用いて注射剤や点滴剤として、あるいは坐剤等とすることができる。
【0071】
フィラデルフィア製薬化学大学による“レミントン:薬学の化学と実践”、19改訂版、c.1995が、医薬組成物の解説書として参照される。
本発明によれば、化合物(I)は下記の方法により調製できる。
【0072】
製法A
【化11】
Figure 0003795305
(式中、R4aはエステル基、および他の記号は前記と同じである)
【0073】
式(I)の化合物またはその製薬学的に許容される塩は以下の如く調製される。
(1)式(II)の化合物、その塩、またはその反応誘導体を式(III)の化合物またはその塩と縮合し、
(2)要すれば、式(Ia)の化合物のエステル基をカルボキシル基に変換し、
(3)さらに要すれば、得られた化合物のカルボキシル基をエステル基、アミド基、テトラゾリル基またはその製薬学的に許容される塩に変換する。
化合物(II)および/または(III)の塩は、例えばトリフルオロ酢酸塩、塩酸塩、硫酸塩等の無機酸との塩、ナトリウム塩やカリウム塩等のアルカリ金属塩、バリウム塩やカルシウム塩等のアルカリ土類金属塩等の無機塩基との塩が挙げられる。
【0074】
(1)縮合反応は通常のアミド結合合成のための一般的な方法により行うことができる。
化合物(II)またはその塩と化合物(III)またはその塩との縮合反応は塩基(例えば、DIEA、DMAP、DBU、Et3Nなどの有機塩基、水素化アルカリ金属、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩)の存在下または非存在下で、無溶媒下または適当な溶媒(例えば、塩化メチレン、THF、DMFまたはその混合溶媒)中で、縮合剤(例えば、BOP−Cl、BOP試薬、DCC、EDCまたはCDI)の存在下で行われる。
【0075】
反応は0℃から室温下(好ましくは室温下)で行われる。
【0076】
化合物(III)またはその塩と化合物(II)の反応性誘導体(例えば、酸ハライド、反応性エステル、他のカルボン酸との混合酸無水物)との縮合反応は塩基(例えば、DIEA、DMAP、DBU、Et3Nなどの有機塩基、水素化アルカリ金属、炭酸アルカリ金属、炭酸水素アルカリ金属)の存在下または非存在下で、無溶媒下または適当な溶媒(例えば、CH2Cl2、ジエチルエーテル、THF、DMF、トルエン、またはその混合溶媒)中で行われる。
【0077】
反応は−30℃から100℃の間で行われる。
【0078】
(2)エステル基からカルボキシル基への変換は常法で行われ、変換されるエステル基の種類により選択される。例えば、LiOH、NaOHなどの塩基、またはHClなどの酸を用いた加水分解、TFA等酸処理、パラジウム炭素などの触媒を用いた接触還元が挙げられる。エステル基は通常のエステルから選ばれ、例えば、低級アルキルエステル、低級アルケニルエステル、低級アルキニルエステル、アリール低級アルキルエステル(例えば、ベンジルエステル)、アリールエステル(例えば、フェニルエステル)等が挙げられる。
【0079】
(3)カルボキシル基からエステル基、アミド基またはテトラゾリル基への変換、または化合物をその薬理学的に許容される塩への変換は常法により行われる。特に、カルボキシル基からエステル基またはアミド基への変換は製法A−(1)の方法と同様に行われる。カルボキシル基からテトラゾリル基への変換は後記の工程Nで述べる。
【0080】
製法B:
【化12】
Figure 0003795305
(式中、X1は脱離基、および他の記号は前記と同じである)
【0081】
式(I)の化合物は以下の如く合成される。
(1)式(IV)の化合物を式(V)の化合物と反応させ;
(2)要すれば、式(Ia)の化合物のエステル基をカルボキシル基に変換し;
(3)さらに要すれば、得られた化合物のカルボキシル基をエステル基、アミド基、テトラゾリル基またはその製薬学的に許容される塩に変換する。
1の脱離基としてはハロゲン原子、トリフルオロメタンスルホニルオキシ基が挙げられる。
【0082】
(1)カップリング反応は通常のアリールカップリング方法により行われる。例えば、スズキカップリング方法(スズキカップリング方法の参考:(a)スズキら、Synth. Commun., 1981, 11, 513、(b) スズキ、Pure and Appl. Chem., 1985, 57, 1749-1758、(c) スズキら、Chem. Rev., 1995, 95, 2457-2483、(d)シエーら、J. Org. Chem., 1992, 57, 379-381、(e)マーチンら、Acta Chemica Scandinavica, 1993, 47, 221-230)。
【0083】
カップリング反応は、例えば室温から100℃の間で、好ましくは、80℃から100℃の間で、テトラキス(トリフェニルホスフィン)パラジウムおよび塩基(例えば炭酸カリウム等の無機塩基)の存在下、有機溶媒中で行われる。有機溶媒はカップリング反応を阻害しないものであればよく、例えば、トルエン、DME、DMF、水またはその混合溶媒が挙げられる。
【0084】
(2)エステル基からカルボキシル基への変換は製法A−(2)と同様に行われる。
(3)カルボキシル基からエステル基、アミド基またはテトラゾリル基への変換、または化合物をその薬理学的に許容される塩への変換は製法A−(3)と同様に行われる。
【0085】
製法C:
【化13】
Figure 0003795305
(式中、記号は前記と同じである)
【0086】
式(I)の化合物はまた以下の如く合成される。
(1)化合物(IV)を対応する有機スズ化合物(例えば式(VII)の化合物)に変換し;
(2)化合物(VII)を式(VIII):
6−X (VIII)
(式中、Xは脱離基、およびR6は前記と同じである)
の化合物と反応させ;
(3)要すれば、式(Ia)の化合物のエステル基をカルボキシル基に変換し;および
(4)さらに要すれば、得られた化合物のカルボキシル基をエステル基、アミド基、テトラゾリル基またはその製薬学的に許容される塩に変換する。
脱離基Xとしてはハロゲン原子、トリフルオロメタンスルホニルオキシ基が挙げられる。
【0087】
(1)化合物(IV)から有機スズ化合物(VII)への変換は、例えば、化合物(IV)をヘキサアルキル二スズ(例えばヘキサメチル二スズ)と、室温から150℃(好ましくは80℃から110℃)の間で、テトラキス(トリフェニルホスフィン)パラジウムおよび付加剤(例えばLiCl)の存在下、有機溶媒(例えば、ジオキサン、トルエン、DME、DMF、水またはその混合溶媒)中で行うことができる。
【0088】
(2)カップリング反応は通常のアリールカップリング方法、例えばスティルカップリング方法(スティルカップリング方法の参照:スティルら、Angew. Chem. Int. Ed. Engl., 25, 508 (1986))により行われる。
カップリング反応は、例えば室温から150℃の間(好ましくは、80℃から120℃の間)で、テトラキス(トリフェニルホスフィン)パラジウムの存在下、有機溶媒(例えば、トルエン、DME、DMF、水またはその混合溶媒)中で行われる。
【0089】
(3)エステル基からカルボキシル基への変換は製法A−(2)と同様に行われる。
【0090】
(4)カルボキシル基からエステル基、またはアミドまたはテトラゾリル基への変換、または化合物をその薬理学的に許容される塩への変換は製法A−(3)と同様に行われる。
【0091】
化合物(IV)は化合物(IIa):
【化14】
Figure 0003795305
(式中、Yはハロゲン原子、および他の記号は前記と同じである)
と化合物(IIIa):
【0092】
【化15】
Figure 0003795305
(式中記号は他の記号は前記と同じである)
またはその塩を通常のペプチド合成方法により、上記の化合物(III)またはその塩と化合物(II)の反応性誘導体(例えば酸ハライド)との縮合反応と同様にして合成することができる。
【0093】
化合物(IV)はまた下記の如く合成できる。
(1)化合物(IIa)を式(IIIb):
【化16】
Figure 0003795305
(式中、記号は前記と同じである)
の化合物、またはその塩と上記と同様に縮合させ;
(2)得られた化合物のヒドロキシ基を常法により脱離基に変換させる。
例えば、ヒドロキシ基からトリフルオロメタンスルホニルオキシ基への変換は、0℃で無水トリフルオロメタンスルホン酸を用いて、塩基(例えばピリジン、NEt3、DIEA)の存在下、有機溶媒(例えば、CH2Cl2、THFまたはその混合溶媒)中で行うことが出来る。
【0094】
化合物(II)は下記の如く合成できる。
(1)式(VIa):
【化17】
Figure 0003795305
(式中、Pはアミノ基の保護基、および他の記号は前記と同じ)
の化合物と化合物(V)を、スズキカップリング方法として知られている通常のアリールカップリング方法により縮合させ;
(2)得られた化合物のアミノ基の保護基を除く。
【0095】
アミノ基の保護基は通常のアミノ基の保護基から選択され、例えば、置換または非置換アリール低級アルコキシカルボニル基(例えばベンジルオキシカルボニル基、p−ニトロベンジルオキシカルボニル基)、低級アルコキシカルボニル基(例えば、t−ブトキシカルボニル基)等が挙げられる。
【0096】
アミノ基の保護基の除去は常法により行われ、その方法は除かれる保護基の種類によって選択されるべきであり、例えば、触媒(例えば、パラジウム炭素)を用いた接触還元、酸(例えばTFA)処理が挙げられる。
縮合反応は化合物(IV)と(V)のカップリング反応と同様に行われる。
【0097】
1がトリフルオロメタンスルホニルオキシ基である化合物(VIa)は式(VIb):
【化18】
Figure 0003795305
(式中、記号は前記と同じである)
の化合物と無水トリフルオロメタンスルホン酸を化合物(IV)の合成と同様にして合成することができる。
【0098】
化合物(V)は常法により合成できる(参照:(a)クイヴィラら、J. Am. Chem. Soc., 1961, 83, 2159;(b)ゲラルド、The Chemistry of Boron; Academic Press: New York, 1961;(c)ムタティース、The Chemistry of Boron and its Compounds; Wiley: New York, 1967;(d)アラマンサら、J. Am. Chem. Soc., 1994, 116, 11723-11736):
【0099】
(1)置換または非置換アリールリチウムまたは置換または非置換ヘテロアリールリチウムをトリメチルボレートと、−100℃から室温の間で、有機溶媒(例えば、ジエチルエーテル、THFまたはその混合溶媒)中反応させ;
(2)得られた化合物を常法により加水分解する。
加水分解は室温下有機溶媒(例えば、ジエチルエーテル、THFまたはその混合溶媒)中、温和酸(例えば、AcOHまたはクエン酸)の存在下行われる。
本発明の目的化合物(I)は互いに変換できる。本発明の化合物(I)から他の本発明の化合物(I)への変換は、有機溶媒中、置換基の種類により下記の工程(工程A−W)の一つを選択することにより行われる。有機溶媒は該工程を阻害しないものを選択する。
【0100】
工程A:カルボニル基の還元
1、R2、R3、R5、またはR6の置換基がヒドロキシメチルなどのヒドロキシ低級アルキル基または低級アルキル−CH(OH)−基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がカルボキシル基、ホルミル基、または低級アルキル−CO−である化合物(I)を還元することにより得られる。還元反応はボラン、水素化ホウ素アルカリ金属(例えば、水素化ホウ素ナトリウム)などの還元剤を用い、0℃〜室温下、有機溶媒(メタノール、エタノール、THFまたはその混合溶媒)中、常法により行われる。
【0101】
工程B:ホルミル基の酸化
1、R2、R3、R5、またはR6の置換基がカルボキシル基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がホルミル基である化合物(I)を酸化することにより得られる。酸化反応はKMnO4などの酸化剤を用い、0℃〜50℃(好ましくは30℃〜50℃)で、アセトンなどの有機溶媒、水またはその混合溶媒中、常法により行われる
【0102】
工程C:ニトロ基の還元
1、R2、R3、R5、またはR6の置換基がアミノ基であるかまたはアミノ基を有する化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がニトロ基であるかまたはニトロ基を有する化合物(I)を還元することにより得られる。還元反応は1)ラネーニッケルやパラジウム炭素などの還元剤を用い、水素雰囲気下、室温で、メタノールなどの有機溶媒、水、またはその混合溶媒中での接触還元、2)金属および無機酸(例えばFe/HCl、Sn/HCl等)を用いた化学還元、または3)Na224などの還元剤を用いた、メタノール、エタノール、水、またはその混合溶媒などの適当な溶媒中、または無溶媒で、0℃から80℃の温度での還元等、常法により行われる。
【0103】
工程D:保護基の除法
(D−1)
1、R2、R3、R5、またはR6の置換基がアミノ基であるかまたはアミノ基を有する化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がN−保護アミノ基であるかまたはN−保護アミノ基を有し、保護基がアミノ基の通常の保護基(例えば、ベンジルオキシカルボニル基、tert−ブトキシカルボニル基、9−フルオレニルメトキシカルボニル基等)である化合物(I)のアミノ基を脱保護することにより得られる。脱保護反応は、除かれる保護基の種類により選択された常法により行われ、例えば、1)パラジウム炭素を水素雰囲気下で用いた接触還元、2)塩化水素またはTFAなどの酸処理、3)ピペリジンなどのアミン処理、4)ウィルキンソン触媒などの触媒処理によって、室温下、または加熱下、CH2Cl2、THF、メタノール、エタノール、アセトニトリルなどの有機溶媒中、または無溶媒で行うことができる。
【0104】
(D−2)
1、R2、R3、R5、またはR6の置換基がスルファモイル基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がN−保護スルファモイル基であり、保護基がスルファモイル基の通常の保護基、例えば、tert−ブチル基等である化合物(I)を脱保護することにより得られる。脱保護反応は、除かれる保護基の種類により選択された常法により行われ、例えば、TFAなどの酸で、室温下、CH2Cl2などの有機溶媒中、または無溶媒で行うことができる。
【0105】
(D−3)
1、R2、R3、R4、R5、またはR6の置換基がカルボキシル基であるか、またはカルボキシル基を有する化合物(I)は、対応するR1、R2、R3、R4、R5、またはR6の置換基が保護されたカルボキシル基であるか、または保護されたカルボキシル基を有し、保護基がカルボキシル基の通常の保護基(例えば、低級アルキル基、アリール低級アルキル基等)である化合物(I)を脱保護することにより得られる。脱保護反応は、除かれる保護基の種類により選択された常法により行われ、例えば、NaOH、LiOH、KOHなどの塩基または塩酸などの酸を用いた加水分解、TFA等の酸による処理、パラジウム炭素などの触媒を用いた接触還元で、室温下、メタノール、エタノール、THFなどの有機溶媒中、または無溶媒下で行うことができる。
【0106】
(D−4)
1、R2、R3、R5、またはR6の置換基が水酸基であるか、または水酸基を有する化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基が保護された水酸基であるか、または保護された水酸基を有し、保護基が水酸基の通常の保護基(例えば、メチル基、メトキシメチル基、テトラヒドロピラニル基等)である化合物(I)を脱保護することにより得られる。脱保護反応は、除かれる保護基の種類により選択された常法により行われ、例えば、メトキシ基の脱メチル化はBBr3による処理、メトキシメチル基の除去は−78℃から室温下、CH2Cl2やメタノールなどの有機溶媒中、塩酸処理により行うことができる。
【0107】
工程E:アミノ基のアシル化
(E−1)
1、R2、R3、R5、またはR6の置換基がN−アシルアミノ基、例えば、低級アルカノイルアミノ基、低級アルコキシカルボニルアミノ基、アリールカルボニルアミノ基、3−クロロスルホニルウレイド基などのクロロスルホニルカルバモイルアミノ基、3−低級アルキルウレイド基などの低級アルキルカルバモイルアミノ基、3−(置換または非置換アリール)ウレイド基などの置換または非置換アリールカルバモイルアミノ基、3−低級アルキルチオウレイド基、3−フェニル低級アルキルチオウレイド基などの置換または非置換低級アルキルチオカルバモイルアミノ基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がアミノ基である化合物(I)をN−アシル化することにより得られる。N−アシル化反応は、1)低級アルカノイルハライド、無水低級アルカン酸、低級アルキルハロゲノホルメート、アリールカルボニルハライド、クロロスルホニルイソシアネート、低級アルキルイソシアネート、置換または非置換アリールイソシアネートまたは低級アルキルイソシアネートなどのアシル化剤、または2)低級アルコキシカルボニルアミノ基、低級アルキルカルバモイルアミノ基、置換または非置換アリールカルバモイルアミノ基、置換または非置換低級アルキルチオカルバモイルアミノ基を合成する場合は、CDI、チオCDIなどの縮合剤、および必要なアミンまたはアルコールを用いて、0℃〜100℃(好ましくは室温から90℃)の間で、DIEA、ピリジン、炭酸水素ナトリウム、炭酸カリウムなどの塩基の存在下、または非存在下、THF、アセトニトリル、CH2Cl2、DMF、トルエン、またはその混合溶媒などの有機溶媒中、常法により行われる。
【0108】
(E−2)
1、R2、R3、R5、またはR6の置換基がメタンスルホニルアミノ基などのN−低級アルキルスルホニルアミノ基、p−トルエンスルホニルアミノ基、ベンゼンスルホニルアミノ基などのN−置換または非置換アリールスルホニルアミノ基、またはキノリノスルホニルアミノ基などのN−置換または非置換ヘテロアリールスルホニルアミノ基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がアミノ基である化合物(I)をN−スルホニル化することにより得られる。N−スルホニル化反応は、低級アルキルスルホニルハライド、置換または非置換アリールスルホニルハライドまたは置換または非置換ヘテロアリールスルホニルハライドを、ピリジン、Et3N、DIEA、炭酸水素ナトリウム、炭酸カリウムなどの塩基の存在下、0℃から室温の間で(好ましくは室温下)、CH2Cl2、THF、DMF、アセトニトリル、トルエン、またはその混合溶媒などの有機溶媒中、常法により行われる。
【0109】
(E−3)
1、R2、R3、R5、またはR6の置換基がウレイド基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基が3−クロロスルホニルウレイド基である化合物(I)を加水分解することにより得られる。加水分解はLiOH、NaOH等の塩基またはHClなどの酸を用いて、室温下、THF、CH3CN、DMF、水またはその混合溶媒などの適当な溶媒中で行うことができる。
【0110】
工程F:水酸基のアルキル化
1、R2、R3、R5、またはR6の置換基が置換または非置換ヘテロシクロアルキル低級アルコキシ基(例えば、置換または非置換ピペリジル低級アルコキシ基、置換または非置換ピロリジニル低級アルコキシ基)、アリール低級アルコキシ基、ヘテロアリール低級アルコキシ基(例えば、ピリジル低級アルコキシ基、置換または非置換チアゾリル置換アルコキシ基、置換または非置換イソキサゾリル低級アルコキシ基、置換または非置換チエニル低級アルコキシ基)、低級アルコキシカルボニル低級アルコキシ基、カルボキシ低級アルコキシ基、ヒドロキシ低級アルコキシ基、シアノ低級アルコキシ基、または低級アルコキシ基などの置換または非置換低級アルコキシ基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がヒドロキシ基である化合物(I)をアルキル化し、ついで要すれば、カルボキシル基または水酸基の保護基を常法により脱保護することにより得られる。アルキル化反応は、置換基を有しないハロゲン化低級アルカン(例えば、沃化メチル)、または置換または非置換アリール基(例えば、ベンジルブロミドなどの非置換アリール低級アルキルハライド)、置換または非置換ヘテロアリール基(例えば、ピリジルメチルブロミド、イソキサゾリルメチルブロミド、チアゾリルメチルブロミドなどの置換または非置換ヘテロアリール低級アルキルハライド)、ヘテロシクロアルキル基(例えば、N−低級アルキルピロリジニル低級アルキルブロミド、N−低級アルキルピペリジル低級アルキルブロミドなどの置換へテロシクロアルキル低級アルキルハライド)、低級アルコキシカルボニル基(例えば、ブロモ酢酸メチルなどのハロゲノアルカン酸低級アルキルエステル)、またはシアノ基(例えば、ブロモアセトニトリル)などの置換基を有したハロゲン化低級アルカンを用いて、Et3N、DIEA、炭酸水素ナトリウム、炭酸カリウム等の塩基の存在下、室温から50℃の間で、CH2Cl2、THF、DMF、アセトニトリル、トルエンなどの有機溶媒中、常法により行われる。
【0111】
アルキル化反応はミツノブ反応などの通常のアルキル化法を用いて行われる(ミツノブ反応の参照:(a)ミツノブ、Synthesis, 1-28, (1981);(b)ヒュウ、Organic Reactions, 42, 335 (1992);ミツハシら、J. Am. Chem. Soc., 94,26 (1972))。
【0112】
工程G:水酸基のハロゲン化反応
1、R2、R3、R5、またはR6の置換基がハロゲン化低級アルキル基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がヒドロキシ低級アルキル基である化合物(I)をハロゲン化することにより得られる。ハロゲン化反応は、例えば、CBr4などのテトラハロメタンとトリフェニルホスフィンを組み合わせて用い、室温下CH2Cl2などの有機溶媒中で、常法により行うことができる。
【0113】
工程H:ハロゲン化アルキル基のアルコキシアルキル基への変換
1、R2、R3、R5、またはR6の置換基が低級アルコキシ低級アルキル基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がハロゲン化低級アルキル基である化合物(I)を、ナトリウムメトキシドなどのアルカリ金属低級アルコキシドと、室温下、DMF、THF、アセトニトリルなどの有機溶媒中反応させることにより得られる。
【0114】
工程I:カルボキシル基のカルバモイル基への変換
1、R2、R3、R4、R5、またはR6の置換基がN−低級アルキルカルバモイル基、N,N−(低級アルキル)(低級アルキル)カルバモイル基、N−(ヒドロキシ低級アルキル)カルバモイル基、N−(モルホリノ低級アルキル)カルバモイル基、N−(アリール低級アルキル)カルバモイル基、N−低級アルカンスルホニルカルバモイル基、ヒドロキシカルバモイル基、カルバモイル基などの置換または非置換カルバモイル基である化合物(I)は、対応するR1、R2、R3、R4、R5、またはR6の置換基がカルボキシル基である化合物(I)を、置換または非置換アミン(例えば低級アルキルアミン、N,N−(低級アルキル)(低級アルキル)アミン、(ヒドロキシ低級アルキル)アミン、(モルホリノ低級アルキル)アミン、(アリール低級アルキル)アミン、ヒドロキシアミン、アンモニア)又は低級アルカンスルホンアミドと縮合することにより得られる。
縮合反応は上記の化合物(II)および(III)の縮合反応と同様に、通常のペプチド合成反応により行うことができる。
【0115】
工程J:還元アルキル化
(J−1)
1、R2、R3、R5、またはR6の置換基がアミノ低級アルキル基、低級アルキルアミノ低級アルキル基またはアリールアミノ低級アルキル基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がホルミル基である化合物(I)を、対応するアンモニア、低級アルキルアミンまたはアリールアミンを還元的アルキル化することにより得られる。
還元的アルキル化反応は、水素化シアノホウ素ナトリウムなどの還元剤と、塩酸などの酸を、室温下、メタノール、THF、ジオキサン、またはその混合溶媒などの有機溶媒中で用いて、常法により行うことができる。
【0116】
(J−2)
1、R2、R3、R5、またはR6の置換基がN,N−ジメチルアミノ基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がアミノ基である化合物(I)を、還元的アルキル化することにより得られる。還元的アルキル化反応は、ホルムアルデヒド、水素化シアノホウ素ナトリウムなどの還元剤および塩酸などの酸を、室温下、メタノール、エタノール、THF、ジオキサンなどの有機溶媒中、または水、またはその混合溶媒中で用いて、常法により行うことができる。
【0117】
工程K:ウィティッヒ反応
1、R2、R3、R5、またはR6の置換基が低級アルコキシカルボニルエテニル基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がホルミル基である化合物(I)から、ウィティッヒ反応により得られる。ウィティッヒ反応は、例えば、トリフェニルホスホラニリデン酢酸低級アルキルエステルを用いて、50℃から100℃の温度下、トルエン、THFなどの有機溶媒中で、常法により行うことができる。
【0118】
工程L:ハロゲン化アルキル基のアミノアルキル基への変換
1、R2、R3、R5、またはR6の置換基が、置換または非置換アミノ基、置換または非置換ピペリジニル基、置換または非置換モルホリノ基、酸化されていてもよいチオモルホリノ基、置換または非置換ピペラジニル基、または置換または非置換ピロリジニル基で置換された低級アルキル基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がハロゲン化低級アルキル基である化合物(I)を、室温下または冷却下、DMF、THF、CH2Cl2などの有機溶媒中、または無溶媒下、Et3N、DIEAなどの塩基の存在下または非存在下で、必要なアミンと反応させることにより行うことができる。
特に、R1およびR5が水素原子で、R2およびR3がハロゲン原子、およびR6が低級アルコキシ基と、置換または非置換アミノ基、置換または非置換ピペリジニル基、置換または非置換モルホリノ基、置換または非置換ピペラジニル基および置換または非置換ピロリジニル基から選ばれる基で置換された低級アルキル基で置換されたフェニル基である化合物(I)は、対応するR1およびR5が水素原子で、R2およびR3がハロゲン原子、およびR6が低級アルコキシ基、およびハロゲノ低級アルキル基で置換されたフェニル基である化合物(I)を、置換または非置換アンモニア、置換または非置換ピペリジン、置換または非置換モルホリン、置換または非置換ピペラジン、および置換または非置換ピロリジンなどの必要なアミンと反応させることにより得られる。反応は上記のとおり行うことができる。
【0119】
工程M:カルボニル基のチオカルボニル基への変換
Zが硫黄原子である化合物(I)はZが酸素原子である化合物(I)をローソン試薬と、トルエン、キシレンなどの適当な有機溶媒中、50℃から150℃の間で反応させることにより得られる。
【0120】
工程N:カルボキシル基のテトラゾリル基への変換
4がテトラゾリル基である化合物(I)は、R4がカルボキシル基である化合物(I)から、J. Med. Chem., 41, 1513-1518, 1998に記載の方法により得られる。この工程の概略は下記の反応式に示す。
【化19】
Figure 0003795305
【0121】
工程O:カルボキシル基からアルコキシカルボニル基への変換
1、R2、R3、R4、R5、またはR6の置換基が、置換または非置換低級アルコキシカルボニル基である化合物(I)は、対応するR1、R2、R3、R4、R5、またはR6の置換基がカルボキシル基である化合物(I)を、ハロゲノ低級アルコール、ピリジル低級アルコール、低級アルキルアミノ低級アルコール、低級アルコキシ低級アルコールなどの置換または非置換低級アルコールと縮合することにより得られる。
縮合反応は上記の製法A−(3)と同様の通常のエステル合成の常法により行うことができる。
【0122】
工程P:水酸基の還元
1、R2、R3、R5、またはR6の置換基が低級アルキル基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基がヒドロキシ−低級アルキル基である化合物(I)を還元することにより得られる。還元反応はシラン化合物(例えばEt3SiH)などの還元剤をBF3、TiCl4などのルイス酸の存在下、アセトニトリル、CH2Cl2、THFなどの適当な有機溶媒中、0℃から−78℃の間の温度下用いることにより行われる。
【0123】
工程Q:フェニル基のハロゲン化反応
6が置換または非置換ハロゲノフェニル基である化合物(I)は、対応するR6が置換または非置換フェニル基である化合物(I)を、Bu4NBr3、3,5−ジクロロ−1−フルオロピリジニウムトリフレートなどのハロゲン化剤と、アセトニトリル、CH2Cl2、THFなどの適当な溶媒中、室温下、または加熱下反応させることにより得られる。
【0124】
工程R:フェニル基のニトロ化反応
6が置換または非置換ニトロフェニル基である化合物(I)は、対応するR6が置換または非置換フェニル基である化合物(I)を、THF、アセトニトリル、メタノール、エタノールなどの適当な溶媒中、室温から100℃の温度で、硝酸と反応させることにより行うことができる。
【0125】
工程S:フェニル基のカルバモイルフェニル基への変換
6が置換または非置換カルバモイルフェニル基である化合物(I)は、1)対応するR6が置換または非置換フェニル基である化合物(I)を、クロロスルホニルイソシアネートと反応させ、2)得られた化合物を加水分解することにより得られる。化合物(I)とイソシアネート化合物の反応は、アセトニトリル、CH2Cl2、THFなどの適当な溶媒中、0℃から室温の間で行うことができる。加水分解はアセトニトリル、水などの適当な溶媒中、室温から100℃の間で、塩酸、硝酸、硫酸などの酸と反応させて行うことができる。
【0126】
工程T:アルカノイル基のイミノアルキル基への変換
1、R2、R3、R5、またはR6の置換基がヒドロキシイミノ低級アルキル基または低級アルコキシイミノ低級アルキル基である化合物(I)は、対応するR1、R2、R3、R5、またはR6の置換基が低級アルカノイル基である化合物(I)を、ヒドロキシアミンまたは低級アルコキシアミンと、メタノール、エタノール、PrOH、BuOHなどの低級アルコールやアセトニトリルなどの適当な溶媒中、NaOAcなどの酢酸アルカリ金属などの塩基と、室温下または加熱下で反応させて得ることができる。
【0127】
工程U:ハロゲン原子の複素環基への変換
1、R2またはR3が置換または非置換複素環基である化合物(I)は、対応するR1、R2またはR3がハロゲン原子である化合物(I)を、置換または非置換ヘテロサイクリックボロン酸と、スズキカップリング法などの通常のアリールカップリング方法を用いて反応させることにより得られる。カップリング反応は製法Aに記載の工程に従って行うことができる。
【0128】
工程V:硫黄原子の酸化
6の置換基が低級アルキルスルフィニル基、低級アルキルスルホニル基、チオモルホリノ低級アルキルS−オキシド基、またはチオモルホリノ−低級アルキルS,S−ジオキシド基である化合物(I)は、対応するR6の置換基が低級アルキルチオ基またはチオモルホリノ低級アルキル基である化合物(I)を、mCPBA、過酸化水素、AcOOHなどの過酸などの酸化剤と、CH2Cl2などの適当な溶媒中、室温下または冷却下で酸化することにより得られる。
【0129】
工程W:ヒドロキシ低級アルキル基のイミド化
1、R2、R3またはR6の置換基が、スクシンイミド基か低級アルキル基で置換されていてもよい2,5−ジオキソ−1−イミダゾリジニル基で置換された低級アルキル基である化合物(I)は、対応するR1、R2、R3またはR6の置換基がヒドロキシ低級アルキル基である化合物(I)をイミド化することにより得られる。イミド化反応は、その参照文献を工程Fで述べた、ミツノブ反応などの常法により行うことができる。反応は化合物(I)をジ低級アルキルアゾジカルボキシレート(例えばジエチルアゾジカルボキシレート)、トリ低級アルキル−またはトリアリールホスフィン(例えばトリフェニルホスフィン)およびスクシンイミド、低級アルキル基で置換されていてもよいヒダントインなどの必要なイミドと、ジエチルエーテルおよびTHFなどの適当な有機溶媒中、−20℃から50℃の間で、反応させることにより行われる。
【0130】
本発明の有効成分は下記の製造例で例示されるが、これらに限定されるものではない。
製造例
製造例1:N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(1A)およびN−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニン(1B)
1)ピリジン(3.58mL)をN−(t−ブトキシカルボニル)−L−チロシンメチルエステル(4.36g)/無水塩化メチレン(100mL)溶液に窒素下で加えた。溶液を0℃まで冷却し、無水トリフルオロメタンスルホン酸(3mL)を撹拌しながら滴下した。添加を終えた後、氷浴を除き、混合物を室温で3時間撹拌した。混合物を水、1N塩酸および水で順次洗浄した。生じた塩化メチレン溶液を炭酸水素ナトリウム水溶液続いて水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、トルエン/酢酸エチル(9:1))で精製してN−(t−ブトキシカルボニル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステル(6.2g)を得た。ESMS:m/z 500(MH+)。
2)2−メトキシベンゼンボロン酸(0.446g)および無水炭酸カリウム(0.84g)のトルエン/DMF(25mL/2.5mL)混合物に窒素下で、上記で得た生成物(1.0g)のトルエン(5mL)溶液を加えた。Pd(PPh3)4(0.48g)を加え、混合物を80℃で24時間加熱した。混合物を冷却、セライト濾過し、蒸発させた。残渣を酢酸エチルに溶かし、水洗した。有機層を硫酸マグネシウムで乾燥、蒸発させ、粗物質をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1/3))精製を行なって、N−(t−ブトキシカルボニル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(0.64g)を得た。ESMS:m/z 386(MH+)。
3)上記で得た生成物(2.97g)の塩化メチレン(20mL)溶液に、TFA(20mL)を加え、混合物を1.5時間撹拌した。溶液を蒸発させた。残渣を塩化メチレン(20mL)に溶解させ、溶液を蒸発させた。本工程をさらにもう1回繰り返し、最終的に残渣を高真空下で乾燥して4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル・TFA塩(2.93g)を得た。ESMS:m/z286(MH+)。
4)上記で得た生成物(2.3g)のDIEA(2.24g)を含有した塩化メチレン(30mL)溶液に0℃で、塩化2,6−ジクロロベンゾイル(0.99mL)溶液を撹拌しながら加えた。混合物を室温まで昇温させ、24時間撹拌した。混合物を水、1N 塩酸、飽和炭酸水素ナトリウムおよび食塩水で順次洗浄した。生じた塩化メチレン溶液を硫酸マグネシウムで乾燥、蒸発させて、粗物質をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1/4))精製を行って、N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(1.64g)(1A)を得た。ESMS:m/z 458(MH+)。
5)上記で得た生成物(0.1g)をTHF/メタノール(5mL/2mL)混合液に溶解した。LiOH(モノ水和物、14mg)の水(2mL)溶液を加え、混合物を室温で3時間撹拌した。混合物を蒸発させ、残渣を水で処理した。生じた混合物を1N 塩酸でpH2に調節し、混合物を酢酸エチルで抽出した。有機層を食塩水で洗浄し、乾燥、蒸発させてN−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニン(0.08g)(1B)を得た。ESMS:m/z 444(MH+)。融点211℃。
【0131】
製造例2:N−[(S)−2−フェニルプロピオニル]−4−(2−メトキシフェニル)−L−フェニルアラニン
1)4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル・塩酸塩(0.03g)、(S)−2−フェニルプロピオン酸(0.014g)、EDC(0.02g)、HOBT(0.021g)およびDIEA(0.034mL)のDMF(5mL)混合物を室温で18時間撹拌した。DMFを除去し、残渣を酢酸エチルおよび水で分配した。有機層を蒸発させ、10%クエン酸、飽和炭酸水素ナトリウムおよび食塩水で順次洗浄した。生じた有機層を硫酸マグネシウムで乾燥、蒸発させ、残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、塩化メチレン/酢酸エチル(9:1))精製を行って、N−[(S)−2−フェニルプロピオニル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(0.031g)を得た。ESMS:m/z 417(MH+)。
2)上記で得た生成物(0.031g)をTHF/メタノール(3mL/0.3mL)混合液に溶解した。2N LiOH(0.07mL)を加え、混合物を室温で3時間撹拌した。混合物を蒸発させ、残渣を水で処理した。生じた混合物を1N 塩酸でpH2に調節し、混合物を酢酸エチルで抽出した。有機層を食塩水で洗浄し、乾燥、蒸発させて標記化合物(0.02g)を得た。ESMS:m/z 403(MH+)。
【0132】
製造例3:N−(2,6−ジフルオロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
1)2,6−ジメトキシベンゼンボロン酸(0.5g)をDME(10mL)に溶解した。該溶液に炭酸カリウム(0.7g)、N−(t−ブトキシカルボニル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステル(0.4g)、Pd(PPH3)4(0.6g)および水(0.2mL)を加えた。生じた混合物を80℃まで終夜加熱した。酢酸エチルおよび水を該混合物に連続して加えた。酢酸エチル層を硫酸マグネシウムで乾燥し、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:2))精製を行って、N−(t−ブトキシカルボニル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(380mg)を得た。
2)上記で得た生成物にCF3COOH(5mL)を加え、混合物を室温で4時間撹拌した。過剰のCF3COOHを減圧下で除去した。残渣を塩化メチレンに溶解し、飽和炭酸水素ナトリウムで洗浄した。有機層を硫酸マグネシウムで乾燥、蒸発させて、4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(260mg)を得た。
3)上記で得た生成物(140mg)を乾燥塩化メチレン(10mL)に溶解した。該混合物にEt3N(0.15mL)および塩化2,6−ジフルオロベンゾイル(72μL)を加え、混合物を室温で6時間撹拌した。塩化メチレンを加え、有機層を水洗し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:2))精製を行って、N−(2,6−ジフルオロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(160mg)を得た。ESMS:m/z 455(MH+)。
4)LiOH(モノ水和物、12mg)の水(0.4mL)溶液を、上記で得た生成物(90mg)のTHF(5mL)溶液に加えた。数滴のメタノールを加え、混合物を室温で終夜撹拌した。過剰の有機溶媒を減圧下で除去し、残渣に水を加え、生じた溶液を10%クエン酸で酸性化した。生じた固体を濾過して集め、水洗、乾燥して標記化合物(70mg)を得た。ESMS:m/z 441(MH+)。
【0133】
製造例4:N−(2,6−ジクロロベンゾイル)−4−(2−チエニル)−L−フェニルアラニンメチルエステル(4A)および:N−(2,6−ジクロロベンゾイル)−4−(2−チエニル)−L−フェニルアラニン(4B)
1)2−チエニルボロン酸(1.135g)および無水炭酸カリウム(2.23g)のトルエン/DMF(75mL/7.5mL)混合物に窒素下で、N−(t−ブトキシカルボニル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステル(3.42g)のトルエン(5mL)溶液を加えた。Pd(PPh3)4(1.4g)を加え、混合物を80℃で24時間加熱した。製造例1に示すとおりに通常のワークアップ後、粗物質をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:3))精製を行って、N−(t−ブトキシカルボニル)−4−(2−チエニル)−L−フェニルアラニンメチルエステル(1.81g)を得た。ESMS:m/z 362(MH+)。
2)上記で得た生成物(1.53g)の塩化メチレン(25mL)溶液にTFA(25mL)を加え、混合物を室温で1.5時間撹拌した。混合物を蒸発させた。残渣を塩化メチレン(20mL)および飽和炭酸水素ナトリウムで分配した。有機層を分離し、食塩水で洗浄、硫酸マグネシウムで乾燥し、蒸発させて4−(2−チエニル)−L−フェニルアラニンメチルエステルを得た。該遊離塩基を10%塩酸のジエチルエーテル溶液で処理し、塩酸塩(1.036g)を得た。ESMS:m/z262(MH+)。
3)上記で得た塩酸塩(0.2g)のDIEA(0.42mL)を含有した塩化メチレン(5mL)混合物に0℃で、塩化2,6−ジクロロベンゾイル(0.12mL)の塩化メチレン(1mL)溶液を加えた。混合物を室温まで昇温させ、24時間撹拌し、水、1N 塩酸、飽和炭酸水素ナトリウムおよび食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥し、蒸発、残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、塩化メチレン/酢酸エチル/ヘキサン(1:1:6))精製を行って、N−(2,6−ジクロロベンゾイル)−4−(2−チエニル)−L−フェニルアラニンメチルエステル(0.15g)(4A)を得た。ESMS:m/z 434(MH+)。
4)上記で得た生成物(0.1g)をTHF/メタノール(5mL/2mL)混合液に溶解させた。LiOH(モノ水和物、14mg)の水(2mL)溶液を加え、混合物を室温で3時間撹拌した。混合物を蒸発させ、残渣を水で処理した。混合物を1N 塩酸でpH2に調節し、酢酸エチルで抽出した。抽出液を食塩水で洗浄し、硫酸マグネシウムで乾燥、蒸発させて、N−(2,6−ジクロロベンゾイル)−4−(2−チエニル)−L−フェニルアラニン(0.08g)(4B)を得た。ESMS:m/z 420(MH+)。
【0134】
製造例5:N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−D−フェニルアラニン
1)塩化2,6−ジクロロベンゾイル(0.68mL)の塩化メチレン(5mL)溶液を、D−チロシンメチルエステル・塩酸塩(1.0g)溶液およびDIEA(2.26mL)の塩化メチレン(15mL)の氷冷溶液に加えた。混合物を室温で24時間撹拌した。混合物を塩化メチレン(50mL)で希釈し、水、1N塩酸および食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥し、蒸発させ、残渣を再結晶(酢酸エチル/ヘキサンから)して、N−(2,6−ジクロロベンゾイル)−D−チロシンメチルエステル(1.46g)を得た。ESMS:m/z 369(MH+)。
2)ピリジン(0.33mL)を含有した、上記で得た生成物(0.5g)の塩化メチレン(0.33mL)の氷冷溶液に、無水トリフルオロメタンスルホン酸(0.27mL)をゆっくりと加えた。混合物を2.5時間撹拌し、水、1N塩酸、飽和炭酸水素ナトリウムおよび水で順次洗浄した。有機層を硫酸マグネシウムで乾燥、蒸発し、残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、トルエン/酢酸エチル(9:1))精製を行って、N−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−D−チロシンメチルエステル(0.65g)を得た。ESMS:m/z 501(MH+)。
3)Pd(PPh3)4(0.09g)を、2−メトキシベンゼンボロン酸(0.082g)、炭酸カリウム(0.16g)および上記で得た生成物(0.214g)のトルエン/DMF(4mL/0.4mL)懸濁液に窒素下で加えた。混合物を80℃で24時間加熱し、冷却、濾過して、溶媒を蒸発させた。残渣を酢酸エチルに溶かし、水洗、硫酸マグネシウムで乾燥して蒸発させた。粗生成物をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、トルエン/酢酸エチル(10:1))精製を行って、N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−D−フェニルアラニンメチルエステル(45mg)を得た。ESMS:m/z 458(MH+)。
4)上記で得た生成物(90mg)を、製造例1の製法の記載と同様な様式でLiOHを用いて加水分解して、標記化合物(25mg)を得た。ESMS:m/z 444(MH+)。融点195℃。
【0135】
製造例6:N−(2,6−ジクロロベンゾイル)−3−(2−メトキシフェニル)−D,L−フェニルアラニン
製造例5と同一の製法に従い標記化合物を得た。ESMS:m/z 444(MH+)。融点104℃。
【0136】
製造例7:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(7A)およびN−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン(7B)1)1,3−ジメトキシベンゼン(4g)を新たに蒸留したTHF(10mL)に溶解した。本溶液を−78℃まで冷却し、該冷溶液にn−BuLi(24mL、1.6Mヘキサン溶液)を滴下した。混合物を−78℃で1時間撹拌し、次いで室温まで昇温させ、1時間撹拌した。生じた混合物を再度−78℃まで冷却し、(MeO)3B(6.7mL)を加えた。混合物を室温まで昇温させ、終夜撹拌した。水(10mL)を加え、混合物を0.5時間撹拌し、酢酸でpH4に酸性とし、酢酸エチルで抽出した。該抽出液を硫酸マグネシウムで乾燥し、蒸発させて、2,6−ジメトキシベンゼンボロン酸を得、このものをさらに精製することなく用いた。2)上記で得た生成物(0.3g)および炭酸カリウム(0.5g)をDME(10mL)に懸濁した。該混合物にN−(2,6−ジクロロベンゾイル)−4−ブロモ−L−フェニルアラニンメチルエステル(0.3g)、Pd(PPh3)4(0.3g)および水(0.4mL)を加え、混合物を80℃で6時間加熱した。冷却後、酢酸エチルおよび水を該混合物に加えた。酢酸エチル層を硫酸マグネシウムで乾燥し、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:2))精製を行って、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.2g)(7A)を得た。
3)上記で得た生成物(0.1g)を乾燥THF(5mL)に溶解した。該溶液に、LiOH(モノ水和物、12mg)の水(0.5mL)溶液および数滴のメタノールを加えた。混合物を室温で2時間撹拌し、蒸発させた。残渣を水に溶解し、10%クエン酸で酸性化した。分離した固体を濾過して集め、乾燥してN−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニアラニン(80mg)を得た。1H−NMR(300MHz、DMSO−d6):δ 2.9(dd,1H)、3.2(dd,1H)、3.7(s,6H)、4.72(m,1H)、6.7(d,2H)、7.1−7.5(m,8H)、9.1(d,1H)。ESMS:m/z 474(MH+)、472([M−H]-)。
【0137】
製造例8:N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニン
1)塩化水素ガスをN−(t−ブトキシカルボニル)−4−ブロモ−L−フェニルアラニン(5g)のエタノール(35mL)溶液に吹込み、混合物を室温で終夜放置した。分離した固体を濾過して集め、エーテルで洗浄、風乾して4−ブロモ−L−フェニルアラニンエチルエステル・塩酸塩(3.46g)を得た。ESMS:m/z 274(MH+)。
2)DIEA(6.1mL)を上記で得た塩酸塩(3.2g)の塩化メチレン(40mL)懸濁液に0℃で加えた。該混合物に、塩化2,6−ジクロロベンゾイル(2.0mL)の塩化メチレン(5mL)溶液を加え、混合物を室温で終夜撹拌した。溶媒を除去し、残渣を1N塩酸および酢酸エチルで分配した。有機層を分離し、食塩水で洗浄して蒸発させた。生成物をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(4:1))精製を行って、N−(2,6−ジクロロベンゾイル)−4−ブロモ−L−フェニルアラニンエチルエステル(3.9g)を得た。ESMS:m/z 446 (MH+)。
3)Pd(PPh3)4(1.61g)を、2−メトキシベンゼンボロン酸(1.5g)、炭酸カリウム(2.83g)および上記で得た生成物(3.65g)のDME(50mL)懸濁液にアルゴン下で加えた。混合物を80℃で24時間加熱し、冷却、濾過して溶媒を蒸発させた。残渣を酢酸エチルに溶かし、該酢酸エチル溶液を水洗し、乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(4:1))精製を行って、N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(2.1g)を得た。ESMS:m/z 472(MH+)。
4)LiOH(モノ水和物、82mg)の水(1mL)溶液を上記で得た生成物(0.4g)のTHF/メタノール(5mL/1mL)溶液に加え、混合物を1.5時間撹拌した。溶媒を除去し、残渣を水に溶解した。溶液を1N塩酸でpH2に酸性化し、分離した固体を濾過して集め、水洗、風乾して標記化合物を得た。
以下の化合物(製造例9〜14)を製造例7と同様の製法により製造した。
【0138】
製造例9:N−(2,6−ジクロロベンゾイル)−4−(2,4−ジメトキシフェニル)−L−フェニルアラニン
ESMS:m/z 474 (MH+)、472([M−H]-)。
【0139】
製造例10:N−(2,6−ジクロロベンゾイル)−4−(2,3,6−トリメトキシフェニル)−L−フェニルアラニン
ESMS:m/z 504 (MH+)、502([M−H]-)。
【0140】
製造例11:N−(2,6−ジクロロベンゾイル)−4−(2,4,6−トリメトキシフェニル)−L−フェニルアラニン
ESMS:m/z 504 (MH+)、502([M−H]-)。
【0141】
製造例12:N−(2,6−ジクロロベンゾイル)−4−(4−クロロ−2,6−ジメトキシフェニル)−L−フェニルアラニン
ESMS:m/z 509 (MH+)、507([M−H]-)。
【0142】
製造例13:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジエトキシフェニル)−L−フェニルアラニン
ESMS:m/z 502 (MH+)、500([M−H]-)。
【0143】
製造例14:N−(2,6−ジクロロベンゾイル)−4−(2−エトキシ−6−メトキシフェニル)−L−フェニルアラニン
ESMS:m/z 488 (MH+)、486([M−H]-)。
【0144】
製造例15:N−(2,6−ジクロロベンゾイル)−4−[2−[N−(t−ブチル)スルファモイル]フェニル]−L−フェニルアラニンメチルエステル
2−[N−(t−ブチル)スルファモイル]ベンゼンボロン酸(0.4g)をDME(10mL)に溶解した。本溶液に、炭酸カリウム(0.1g)、N−(2,6−ジクロロンベンゾイル)−4−ブロモ−L−フェニルアラニンメチルエステル(0.1g)、Pd(PPh3)4(0.1g)および水(0.2mL)を加えた。混合物を80℃で終夜加熱した。冷却後、酢酸エチルおよび水を混合物に加えた。酢酸エチル層を硫酸マグネシウムで乾燥し、濾過、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:2))精製を行って、標記化合物(100mg)を得た。ESMS:m/z 585 ([M+Na]+)。
【0145】
製造例16:N−(2,6−ジクロロベンゾイル)−4−[2−[N−(t−ブチル)スルファモイル]フェニル]−L−フェニルアラニン
N−(2,6−ジクロロベンゾイル)−4−[2−[N−(t−ブチル)スルファモイル]フェニル]−L−フェニルアラニンメチルエステル(75mg)をTHF(5mL)に溶解し、本溶液にLiOH(モノ水和物、10mg)の水(0.4mL)溶液を加えた。数滴のメタノールを加え、混合物を室温で終夜撹拌した。混合物を蒸発させ、該残渣に水を加え、混合物を10%クエン酸で酸性化した。分離した固体を濾過して集め、水洗、乾燥して標記化合物(60mg)を得た。ESMS:m/z 549 (MH+)、547([M−H]-)。
【0146】
製造例17:N−(2,6−ジクロロベンゾイル)−4−(2−スルファモイルフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−[2−[N−(t−ブチル)スルファモイル]フェニル]−L−フェニルアラニンメチルエステル(130mg)をTFA(2mL)に溶解し、本溶液にアニソール(20μM)を加え、混合物を室温で6時間撹拌した。TFAを減圧下で除去してN−(2,6−ジクロロベンゾイル)−4−(2−スルファモイルフェニル)−L−フェニルアラニンメチルエステル(100mg)を得た。ESMS:m/z 507 (MH+)。
2)上記で得た生成物(100mg)を製造例16の記載と同様の様式で加水分解して標記化合物(80mg)を得た。ESMS:m/z 493 (MH+)、491([M−H]-)。
【0147】
製造例18:N−(2,6−ジクロロベンゾイル)−4−[2−(N−ベンゾイルスルファモイル)フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−スルファモイルフェニル)−L−フェニルアラニンメチルエステル(100mg)を無水ピリジン(5mL)に溶解した。本溶液に塩化ベンゾイル(50μL)を加え、混合物を窒素下室温で12時間撹拌した。酢酸エチルおよび飽和炭酸水素ナトリウムを該混合物に加え、酢酸エチル層を1N 塩酸で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:2))精製を行なってN−(2,6−ジクロロベンゾイル)−4−[2−(N−ベンゾイルスルファモイル)フェニル]−L−フェニルアラニンメチルエステルを得た。
2)上記で得た生成物を製造例16の記載と同様の様式で加水分解して標記化合物(80mg)を得た。ESMS:m/z 595([M−H]-)。
【0148】
製造例19:N−(2,6−ジクロロベンゾイル)−4−[2−(N−アセチルスルファモイル)フェニル]−L−フェニルアラニン
標記化合物を、塩化ベンゾイルをAcClで置き換える以外は、製造例18と同様の製法により製造した。ESMS:m/z 533([M−H]-)。
以下の化合物(製造例20および21)を、各々製造例15および16に略述した方法と同様の工程および脱保護により製造した。
【0149】
製造例20:N−(2,6−ジクロロベンゾイル)−4−[2−(N−メチルスルファモイル)フェニル]−L−フェニルアラニン
ESMS:m/z 505([M−H]-)。
【0150】
製造例21:N−(2,6−ジクロロベンゾイル)−4−[2−(N,N−ジメチルスルファモイル)フェニル]−L−フェニルアラニン
ESMS:m/z 519([M−H]-)。
【0151】
製造例22:N−(2,6−ジクロロベンゾイル)−4−[2−(t−ブトキシカルボニルアミノ)フェニル]−L−フェニルアラニン
1)2−(t−ブトキシカルボニルアミノ)ベンゼンボロン酸(0.3g)を、N−(2,6−ジクロロベンゾイル)−4−ブロモ−L−フェニルアラニンメチルエステル(270mg)と製造例15の記載と同様の製法によりカップリング反応させて、N−(2,6−ジクロロベンゾイル)−4−[2−(t−ブトキシカルボニルアミノ)フェニル]−L−フェニルアラニンメチルエステル(250mg)を得た。ESMS:m/z 543(MH+)。
2)上記で得た生成物(40mg)を製造例16の記載と同様の様式で加水分解して標記化合物(35mg)を得た。ESMS:m/z 529(MH+)、527([M−H]-)。
【0152】
製造例23:N−(2,6−ジクロロベンゾイル)−4−(2−アミノフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−[2−(t−ブトキシカルボニルアミノ)フェニル]−L−フェニルアラニンメチルエステル(90mg)をTFA(1mL)を用いて室温で2時間処理した。過剰のTFAを真空除去してN−(2,6−ジクロロベンゾイル)−4−(2−アミノフェニル)−L−フェニルアラニンメチルエステル・TFA塩を得た。
2)生じたTFA塩を製造例16の記載と同様の様式で加水分解を行なって標記化合物(57mg)を得た。ESMS:m/z 429(MH+)。
【0153】
製造例24:N−(2,6−ジクロロベンゾイル)−4−[2−(メタンスルホニルアミノ)フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−アミノフェニル)−L−フェニルアラニンメチルエステル・TFA塩(90mg)を乾燥塩化メチレン(5ml)に溶解した。本溶液に、Et3N(85μL)およびMsCl(30μL)を加えた。混合物を室温で3時間撹拌し、水で希釈した。有機層を硫酸マグネシウムで乾燥し、蒸発させてN−(2,6−ジクロロベンゾイル)−4−[2−(メタンスルホニルアミノ)フェニル]−L−フェニルアラニンメチルエステルを得た。
2)上記で得た生成物を製造例16の記載と同様の様式で加水分解を行なって、標記化合物(70mg)を得た。ESMS:m/z 507(MH+)。
【0154】
製造例25:N−(2,6−ジクロロベンゾイル)−4−[2−(アセチルアミノ)フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−アミノフェニル)−L−フェニルアラニンメチルエステル・TFA塩(90mg)を乾燥THF(5mL)に溶解した。無水酢酸(60μL)およびDIEA(160μL)を加え、混合物を室温で12時間撹拌した。酢酸エチルを加え、生じた混合物を水で抽出した。有機層を硫酸マグネシウムで乾燥し、蒸発させて、N−(2,6−ジクロロベンゾイル)−4−[2−(アセチルアミノ)フェニル]−L−フェニルアラニンメチルエステルを得た。
2)上記で得た生成物を製造例16の記載と同様の様式で加水分解を行なって標記化合物(60mg)を得た。ESMS:m/z 471(MH+)。
【0155】
製造例26:N−(2,6−ジクロロベンゾイル)−4−[2−(メトキシカルボニルアミノ)フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−アミノフェニル)−L−フェニルアラニンメチルエステル・TFA塩(90mg)をTHF(5mL)に溶解し、本溶液にDIEA(160μL)およびClCOOMe(20μL)を加えた。混合物を室温で12時間撹拌した。製造例25に示した通常のワークアップ後、N−(2,6−ジクロロベンゾイル)−4−[2−(メトキシカルボニルアミノ)フェニル]−L−フェニルアラニンメチルエステルを得た。
2)上記で得た生成物を製造例16の記載と同様の様式で加水分解を行なって標記化合物(70mg)を得た。ESMS:m/z 487(MH+)。
【0156】
製造例27:N−(2,6−ジクロロベンゾイル)−4−[2−(N,N−ジメチルアミノ)フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−アミノフェニル)−L−フェニルアラニンメチルエステル・TFA塩(90mg)をエタノール(5mL)に溶解した。本溶液に、ホルマリン(96μL)、1N 塩酸(234μL)およびNaCNBH3(36mg)を加えた。混合物を室温で0.5時間撹拌し、次いでエタノール(0.5mL)および1N 塩酸(0.5mL)の混合物(1:1)を加え、混合物を終夜撹拌した。さらに1N 塩酸を加え、混合物を0.5時間撹拌した。混合物を炭酸水素ナトリウムで中和し、酢酸エチルで抽出した。抽出液を併せて硫酸マグネシウムで乾燥し、蒸発させてN−(2,6−ジクロロベンゾイル)−4−[2−(N,N−ジメチルアミノ)フェニル]−L−フェニルアラニンメチルエステルを得た。
2)上記で得た生成物を製造例16の記載と同様の様式で加水分解をして標記化合物(70mg)を得た。ESMS:m/z 457(MH+)。
【0157】
製造例28:N−(2,6−ジクロロベンゾイル)−4−(2−ウレイドフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−アミノフェニル)−L−フェニルアラニンメチルエステル・TFA塩(90mg)を乾燥THF(5mL)に溶解した。本溶液にクロロスルホニルイソシアネート(22μL)を加え、混合物を室温で2時間撹拌した。混合物を炭酸水素ナトリウムで中和し、酢酸エチルで抽出した。抽出液を併せて硫酸マグネシウムで乾燥し蒸発させた。
2)残渣を製造例16の記載と同様の様式で加水分解し、HPLC(溶出液、60%アセトニトリル、0.1%CF3COOH、40%水)精製を行なって標記化合物(30mg)を得た。ESMS:m/z 472(MH+)。
【0158】
製造例29:N−(2,6−ジクロロベンゾイル)−4−[2−(N,N−ジメチルアミノ)−6−メトキシフェニル]−L−フェニルアラニン
1)2−メトキシ−6−(N,N−ジメチルアミノ)ベンゼンボロン酸をN−(2,6−ジクロロベンゾイル)−4−ブロモ−L−フェニルアラニンメチルエステルとカップリング反応させて、N−(2,6−ジクロロベンゾイル)−4−[2−(N,N−ジメチルアミノ)−6−メトキシフェニル]−L−フェニルアラニンメチルエステルを得た。該ボロン酸の合成および該カップリング反応を製造例7の記載と同様の様式で行なった。
2)上記で得た生成物を製造例7の記載と同様の様式で加水分解して標記化合物を得た。ESMS:m/z 487(MH+)。
【0159】
製造例30:N−(2,6−ジクロロベンゾイル)−4−(2−ヒドロキシフェニル)−L−フェニルアラニン
1)BBr3(1mL、1M塩化メチレン溶液)を、N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(0.215g)の塩化メチレン(10mL)溶液に0℃で撹拌しながら加え、溶液を室温までゆっくりと昇温した。混合物を3時間撹拌し、エタノールで反応を停止させた。溶媒を除去し、残渣を酢酸エチルに溶かした。溶液を飽和炭酸水素ナトリウム、続いて食塩水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(2:1))精製を行なってN−(2,6−ジクロロベンゾイル)−4−(2−ヒドロキシフェニル)−L−フェニルアラニンメチルエステル(0.105g)を得た。ESMS:m/z 444(MH+)。
2)上記で得た生成物(0.03g)のTHF/メタノール(2mL/0.2mL)溶液に、LiOH(モノ水和物、4mg)の水(0.2mL)溶液を加え、混合物を室温で3時間撹拌した。溶媒を除去し、残渣を水に溶解した。混合物を1N 塩酸でpH2に酸性化し、沈殿した固体を濾過して集め、水洗、風乾して標記化合物(0.025g)を得た。ESMS:m/z 430(MH+)。
【0160】
製造例31:N−(2,6−ジクロロベンゾイル)−4−(2−ヒドロキシ−6−メトキシフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンエチルエステル(0.16g、製造例8に記載のメチルエステル体と同様の方法で製造した)を無水塩化メチレン(8mL)に溶解した。溶液を−78℃まで冷却し、BBr3(0.56mL、1M 塩化メチレン溶液)を加えた。混合物を0℃まで昇温させ、該温度で2時間撹拌した。引き続いて、混合物を室温まで昇温させ、飽和炭酸水素ナトリウム(5mL)で反応を停止させた。混合物を1時間撹拌し、塩化メチレンで希釈した。有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:2))精製を行なってN−(2,6−ジクロロベンゾイル)−4−(2−ヒドロキシ−6−メトキシフェニル)−L−フェニルアラニンエチルエステル(40mg)を得た。ESMS:m/z 488(MH+)。
2)上記で得た生成物(0.04g)を製造例1の記載と同様の様式で加水分解を行なって標記化合物(35mg)を得た。ESMS:m/z 460(MH+)。
【0161】
製造例32:N−(2,6−ジクロロベンゾイル)−4−[2−(カルボキシメトキシ)フェニル]−L−フェニルアラニン
1)製造例30−1)で得た生成物(0.1g)のDMF(2mL)溶液に窒素下で、Cs2CO3(0.11g)を加え、混合物を30分間撹拌した。BrCH2CO2Me(61mL)のDMF(1mL)溶液を加え、混合物を50℃で6時間撹拌した。DMFを除去し、残渣を酢酸エチルおよび水で分配した。酢酸エチル層を食塩水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(1:1))精製を行なってN−(2,6−ジクロロベンゾイル)−4−[2−(メトキシカルボニルメトキシ)フェニル]−L−フェニルアラニンメチルエステル(0.86mg)を得た。ESMS:m/z 516(MH+)。
2)上記で得た生成物(0.86g)を製造例1の記載と同様の様式で加水分解して、標記化合物(0.6g)を得た。ESMS:m/z 488(MH+)。
【0162】
製造例33:N−(2,6−ジクロロベンゾイル)−4−[2−(シアノメトキシ)フェニル]−L−フェニルアラニンメチルエステル
標記化合物を、N−(2,6−ジクロロベンゾイル)−4−(2−ヒドロキシフェニル)−L−フェニルアラニンメチルエステルおよびブロモアセトニトリルから出発して、製造例32の記載と同様の様式で製造した。ESMS:m/z 483(MH+)。
以下の化合物を、N−(2,6−ジクロロベンゾイル)−4−(2−ヒドロキシフェニル)−L−フェニルアラニンメチルエステルから出発し、必要なハライド化合物と反応させ、製造例32と類似の方法で得た。
【0163】
【表1】
Figure 0003795305
【0164】
製造例45:N−(2,6−ジクロロベンゾイル)−4−(2−ホルミルフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−ホルミルフェニル)−L−フェニルアラニンメチルエステルを、2−メトキシベンゼンボロン酸を2−ホルミルベンゼンボロン酸で置き換える以外は、製造例1と同様の順序に従って製造した。ESMS:m/z 456(MH+)。
2)上記で得た生成物(50.4mg)を、THF(1.33mL)およびメタノール(220μL)混合液に溶解した。1M LiOH(220μL)を加え、生じた混合物を窒素下室温で2時間撹拌した。次いで水を加え、混合物を1N塩酸で酸性化 (およそpH2)し、酢酸エチルで抽出、硫酸マグネシウムで乾燥して蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、クロロホルム次いでクロロホルム/メタノール(10:1))精製を行なって標記化合物(46.8mg)を得た。ESMS:m/z 442(MH+)。
【0165】
製造例46:N−(2,6−ジクロロベンゾイル)−4−[2−[(フェニルアミノ)メチル]フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−ホルミルフェニル)−L−フェニルアラニンメチルエステル(49.1mg)を、無水メタノール(1mL)および無水THF(0.5mL)混合液に溶解した。次いで、アニリン(58.8μL)、塩酸(53.8μL、4Mジオキサン溶液)および3Åモレキュラーシーブを加え、混合物を窒素下室温で1時間撹拌した。水素化シアノホウ素ナトリウム(4.06mg)を加え、混合物をさらに72時間撹拌した。反応を停止させるため、1N塩酸を用いて混合物のpHをおよそ2とした。混合物を水で希釈し、1M水酸化カリウムで中和した。次いで、このものを塩化メチレンで抽出し、有機抽出液を併せて乾燥(炭酸カリウム)し、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、塩化メチレン)精製を行なってN−(2,6−ジクロロベンゾイル)−4−[2−(フェニルアミノ)メチル]フェニル]−L−フェニルアラニンメチルエステル(21.2mg)を得た。ESMS:m/z 533(MH+)。
2)上記で得た生成物(21.2mg)を、製造例1の記載と同様の様式で加水分解した。混合物をAcOHでpH4〜5に酸性化し、酢酸エチル(5×20mL)で抽出し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、クロロホルム/メタノール(10:1))精製を行なって標記化合物を得た。ESMS:m/z 519(MH+)。
以下の化合物(製造例47および48)を製造例46の記載と同様の様式で製造した。
【0166】
製造例47:N−(2,6−ジクロロベンゾイル)−4−[2−(アミノメチル)フェニル]−L−フェニルアラニン。ESMS:m/z 443(MH+)。
【0167】
製造例48:N−(2,6−ジクロロベンゾイル)−4−[2−[(ベンジルアミノ)メチル]フェニル]−L−フェニルアラニン。ESMS:m/z 533(MH+)。
【0168】
製造例49:N−(2,6−ジクロロベンゾイル)−4−[2−(2−カルボキシエテニル)フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−ホルミルフェニル)−L−フェニルアラニンメチルエステル(51.7mg)および(トリフェニルホスホラニリデン)酢酸メチルエステル(75.8mg)を無水トルエン(1mL)に溶解し、窒素下80℃で18時間撹拌した。混合物を冷却し、シリカゲルプレパラティブTLC(溶出液、ヘキサン/酢酸エチル(2:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2−[2−(メトキシカルボニル)エテニル]フェニル]−L−フェニルアラニンメチルエステル(48.0mg)を得た。ESMS:m/z 512(MH+)。
2)上記で得た生成物(26.4mg)を、製造例1の記載と同様の様式でLiOH水和物(5当量)を用いて加水分解して、トランスおよびシス異性体の混合物(4:1)として標記化合物(22.0mg)を得た。ESMS:m/z 484(MH+)。
【0169】
製造例50:N−(2,6−ジクロロベンゾイル)−4−[2−(ヒドロキシメチル)フェニル]−L−フェニルアラニン
1)NaBH4(21mg)をN−(2,6−ジクロロベンゾイル)−4−(2−ホルミルフェニル)−L−フェニルアラニンメチルエステル(0.23g)のメタノール(5mL)溶液に加え、混合物を室温で3時間撹拌した。アセトンを用いて反応を停止させ、混合物を蒸発させた。残渣を酢酸エチルおよび水で分配した。酢酸エチル層を硫酸マグネシウムで乾燥し、蒸発させてN−(2,6−ジクロロベンゾイル)−4−[2−(ヒドロキシメチル)フェニル]−L−フェニルアラニンメチルエステル(0.24g)を得た。ESMS:m/z 480([M+Na]+)。
2)上記で得た生成物を製造例1の記載と同様の様式で加水分解して標記化合物(0.2g)を得た。ESMS:m/z 450([M+Li]+)。
【0170】
製造例51:N−(2,6−ジクロロベンゾイル)−4−[2−(メトキシメチル)フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−[2−(ヒドロキシメチル)フェニル]−L−フェニルアラニンメチルエステル(0.15g)、CBr4(0.22g)およびPPh3(0.173g)の塩化メチレン(5mL)混合物を、室温で18時間撹拌した。溶媒を蒸発させ、残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、塩化メチレン/酢酸エチル(9:1)〜(8:1))精製を行なってN−(2,6−ジクロロベンゾイル)−4−[2−(ブロモメチル)フェニル]−L−フェニルアラニンメチルエステル(0.12g)を得た。ESMS:m/z 522(MH+)。
2)上記で得た生成物(0.04g)およびNaOMe(0.04g)のDMF(3mL)混合物を室温で18時間撹拌した。DMFを除去し、残渣を酢酸エチルおよび水で分配した。水層を分離し、1N塩酸でpH4に調節、酢酸エチルで抽出した。該酢酸エチル層を食塩水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をHPLC(溶出液、60%アセトニトリル、0.1%CF3COOH、40%水)精製を行なって、標記化合物(9.4mg)を得た。ESMS:m/z 480([M+Na]+)。
【0171】
製造例52:N−(2,6−ジクロロベンゾイル)−4−(2−カルボキシフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−ホルミルフェニル)−L−フェニルアラニンメチルエステル(104mg)を、約40℃にまで加温することによりアセトン(700μL)に溶解した。次いで、40℃に温めたKMnO4(61.2mg)のアセトン(900μL)および水(130μL)混合溶液を1時間かけて加え、生じた混合物を同温度でさらに2時間撹拌した。混合物をセライト濾過し、アセトンで洗浄した。濾液を水に溶かし、1N塩酸でおよそpH2に酸性化し、酢酸エチルで抽出した。抽出液を併せて、硫酸マグネシウムで乾燥し、蒸発させた。残渣をシリカゲルカラム(溶出液、トルエン次いでトルエン/酢酸エチル(20:1〜3:1に勾配))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2−カルボキシフェニル)−L−フェニルアラニンメチルエステル(85.0mg)を得た。ESMS:m/z 472(MH+)。
2)上記で得た生成物を製造例1の記載と同様の様式で加水分解して、標記化合物(34.1mg)を得た。ESMS:m/z 458(MH+)。
【0172】
製造例53:N−(2,6−ジクロロベンゾイル)−4−[2−(N−ベンジルカルバモイル)フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−カルボキシフェニル)−L−フェニルアラニンメチルエステル(51.9mg)を無水DMF(1mL)に溶解し、EDC(25.3mg)、HOBT(20.2mg)、DIEA(28.7μL)およびベンジルアミン(14.4μL)を加えた。生じた混合物を窒素下室温で20時間撹拌し、酢酸エチルを用いて希釈、1N 塩酸、飽和炭酸水素ナトリウム、水および食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥し、蒸発させた。残渣をシリカゲルカラム(溶出液、ヘキサン/酢酸エチル(1:1〜1:2))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2−(N−ベンジルカルバモイル)フェニル]−L−フェニルアラニンメチルエステル(48.9mg)を得た。ESMS:m/z 561(MH+)。
2)上記で得た生成物を製造例1の記載と同様の様式で加水分解して、標記化合物(34.2mg)を得た。ESMS:m/z 547(MH+)。
以下の化合物(製造例54〜59)を、製造例53に記載と類似の様式で製造した。
【0173】
製造例54:N−(2,6−ジクロロベンゾイル)−4−[2−(N−メチルカルバモイル)フェニル]−L−フェニルアラニン。ESMS:m/z 471(MH+)。
【0174】
製造例55:N−(2,6−ジクロロベンゾイル)−4−[2−(N−n−ブチルカルバモイル)フェニル]−L−フェニルアラニン。ESMS:m/z 513(MH+)。
【0175】
製造例56:N−(2,6−ジクロロベンゾイル)−4−[2−[N−(2−ヒドロキシエチル)カルバモイル]フェニル]−L−フェニルアラニン。ESMS:m/z 501(MH+)。
【0176】
製造例57:N−(2,6−ジクロロベンゾイル)−4−[2−[N−(3−ヒドロキシプロピル)カルバモイル]フェニル]−L−フェニルアラニン。ESMS:m/z 515(MH+)。
【0177】
製造例58:N−(2,6−ジクロロベンゾイル)−4−[2−(N,N−ジメチルカルバモイル)フェニル]−L−フェニルアラニン。ESMS:m/z 485(MH+)。
【0178】
製造例59:N−(2,6−ジクロロベンゾイル)−4−[2−[N−(2−モルホリノエチル)カルバモイル]フェニル]−L−フェニルアラニン。ESMS:m/z 570(MH+)。
【0179】
製造例60:N−(2,6−ジクロロベンゾイル)−4−[2−(カルバモイル)フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−カルボキシフェニル)−L−フェニルアラニンメチルエステル(52.6mg)を無水THF(1mL)に溶解し、カルボニルジイミダゾール(36.1mg)を加え、混合物を窒素下室温で2時間撹拌した。水酸化アンモニウム(29%水溶液、135μL)を加え、混合物をさらに22時間撹拌した。次いで、混合物を酢酸エチルで抽出した。該抽出液を1N 塩酸、飽和炭酸水素ナトリウムおよび食塩水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルカラム(溶出液、トルエン/酢酸エチル(1:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2−カルバモイルフェニル)−L−フェニルアラニンメチルエステル(48.1mg)を得た。ESMS:m/z 471(MH+)。
2)上記で得た生成物を製造例1の記載と同様の様式でLiOH(3当量)を用いて加水分解して、標記化合物(41.6mg)を得た。ESMS:m/z 457(MH+)。
【0180】
製造例61:N−(2,6−ジクロロベンゾイル)−4−[2−[(N−メタンスルホニル)カルバモイル]フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2−カルボキシフェニル)−L−フェニルアラニンメチルエステル(57.0mg)を無水THF(1mL)に溶解し、カルボニルジイミダゾール(23.5mg)を加え、混合物を窒素下室温で2時間撹拌した。メタンスルホンアミド(17.2mg)およびDBU(27μL)を加え、混合物をさらに18時間撹拌した。次いで、混合物を40℃まで加熱し、該温度で7時間撹拌し、室温まで冷却、酢酸エチルで希釈し、1N塩酸次いで食塩水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、塩化メチレン:メタノール(100:1〜10:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2−[N−(メタンスルホニル)カルバモイル]フェニル]−L−フェニルアラニンメチルエステル(37.0mg)を得た。ESMS:m/z 549(MH+)。
2)上記で得た生成物を製造例1の記載と同様の様式でLiOH(3当量)を用いて加水分解して、標記化合物(36mg)を得た。ESMS:m/z 535(MH+)。
【0181】
製造例62:N−(2−クロロ−4−ニトロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニン
1)N−(2−クロロ−4−ニトロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステルを、塩化2,6−ジクロロベンゾイルを2−クロロ−4−ニトロベンゾイルクロリドに置き換える以外は、製造例1−1)、2)、3)および4)に記載の方法と同様の様式で製造した。
2)次いで、上記で得た該メチルエステル体を製造例1−5)の記載と同様の様式で加水分解して、標記化合物を得た。ESMS:m/z 455(MH+)。
【0182】
製造例63:N−(4−アミノ−2−クロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニン
1)ラネーニッケル(0.4mL、水に50%分散)を、N−(2−クロロ−4−ニトロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(1.04g)の無水メタノール(50mL)溶液に加え、混合物をH2雰囲気下室温で3.5時間撹拌した。次いで、混合物をセライト濾過し、メタノールで洗浄した。濾液を蒸発させ、残渣をシリカゲリフラッシュカラムクロマトグラフィー(溶出液、塩化メチレン/メタノール(100:1〜20:1))精製を行なって、N−(4−アミノ−2−クロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(887mg)を製造した。ESMS:m/z 439(MH+)。上記化合物は4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル・塩酸塩をEDCおよびHOBTを用いて、製造例2に記載と類似の様式で4−アミノ−2−クロロ安息香酸とカップリング反応させることでも製造される。
2)上記で得た生成物(57.0mg)を、製造例1−5)の記載と同様の様式でTHF/メタノール混合液中、LiOHを用いて加水分解した。溶媒を除去し、残渣を水に溶解した。混合物を10%クエン酸を用いておよそpH5に酸性化し、酢酸エチルで抽出、硫酸マグネシウムで乾燥し、蒸発させた。残渣をシリカゲルカラム(溶出液、クロロホルム/メタノール(10:1))精製を行なって、標記化合物(53.9mg)を得た。ESMS:m/z 425(MH+)。
【0183】
製造例64:N−[2−クロロ−4−(メタンスルホニルアミノ)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
1)N−(4−アミノ−2−クロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(56.0mg)のDIEA(66.6μL)を含有した無水塩化メチレン(1mL)溶液に、MeSO2Cl(24μL)を加えた。生じた混合物を窒素下室温で3時間撹拌し、塩化メチレンで希釈、1N塩酸、水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルカラム(溶出液、塩化メチレン)精製を行なって、N−[2−クロロ−4−(N,N−ジメタンスルホニルアミノ)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(59.4mg)を得た。ESMS:m/z 595(MH+)。
2)上記で得た生成物を製造例1−5)の記載と同様の様式でLiOH(3当量)を用いて加水分解して、標記化合物(43.4mg)を得た。ESMS:m/z 503(MH+)。
以下の化合物(製造例65〜68)を製造例64に記載と類似の様式で製造した。
【0184】
製造例65:N−[2−クロロ−4−(トリフルオロメタンスルホニルアミノ)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン。ESMS:m/z 557(MH+)。MeSO2ClをCF3SO2Clに置き換えた。
【0185】
製造例66:N−[2−クロロ−4−(エトキシカルボニルアミノ)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン。ESMS:m/z 497(MH+)。MeSO2ClをEtOCOClに置き換えた。
【0186】
製造例67:N−[2−クロロ−4−(アセチルアミノ)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン。ESMS:m/z 467(MH+)。MeSO2ClをAcClに置き換えた。
【0187】
製造例68:N−[2−クロロ−4−(ベンゼンスルホニルアミノ)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン。ESMS:m/z 565(MH+)。MeSO2ClをPhSO2Clに置き換えた。
【0188】
製造例69:N−(2−クロロ−4−ウレイドベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニン。
1)クロロスルホニルイソシアネート(16.4μL)をN−(4−アミノ−2−クロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(55.2mg)の無水アセトニトリル(1mL)溶液に加え、混合物を窒素下室温で1時間撹拌した。飽和炭酸水素ナトリウム(40mL)をゆっくりと加え、混合物を酢酸エチルで抽出した。抽出液を併せて、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、クロロホルム/メタノール)精製を行なった。
2)上記で得た生成物を製造例64の記載と同様の様式でLiOHを用いて加水分解して標記化合物(24mg)を得た。ESMS:m/z 468(MH+)。
【0189】
製造例70:N−[2−クロロ−4−(3−メチルチオウレイド)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
1)N−(4−アミノ−2−クロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(55.1mg)のDIEA(22μL)およびDMAP(触媒量)を含有した無水DMF(1mL)溶液に、メチルイソチオシアネート(43μL)を加えた。次いで、生じた混合物を窒素下90℃で1日加熱した。冷却後、混合物を酢酸エチルで希釈し、1N塩酸、飽和炭酸水素ナトリウムおよび水で順次洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、塩化メチレン/メタノール(15:1))精製を行なって、N−[2−クロロ−4−(3−メチルチオウレイド)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(22.7mg)を得た。ESMS:m/z 512(MH+)。
2)上記で得た生成物を、製造例64の記載と同様の様式で加水分解して、標記化合物(22.0mg)を得た。ESMS:m/z 498(MH+)。
【0190】
製造例71:3−アセチル−N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニン
1)3−アセチル−L−チロシンエチルエステルを、3−アセチル−L−チロシン(5g)のエタノール(30mL)溶液に塩化水素ガスを吹込むことで製造した。ジ−t−ブチルジカルボネート(5g)を、3−アセチル−L−チロシンエチルエステル(5g)のTHF(50mL)およびDIEA(10mL)溶液に加え、混合物を室温で終夜撹拌した。THFを除去し、残渣を水および塩化メチレンで分配した。有機層を分離し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(4:1))精製を行なって、N−(t−ブトキシカルボニル)−3−アセチル−L−チロシンエチルエステル(4.3g)を得た。ESMS:m/z 352(MH+)。
2)無水ピリジン(1.1mL、12.82mmol)を、上記で得た生成物(1.5g)の塩化メチレン(15mL)溶液に0℃で攪拌下加えた。無水トリフルオロメタンスルホン酸(1.1mL)を滴下し、混合物を室温までゆっくりと昇温し、24時間撹拌した。混合物を塩化メチレンで希釈し、1N 塩酸、食塩水、飽和炭酸水素ナトリウムおよび食塩水で順次洗浄し、硫酸マグネシウムで乾燥、蒸発させて、N−(t−ブトキシカルボニル)−3−アセチル−O−(トリフルオロメタンスルホニル)−L−チロシンエチルエステル(2.5g)を得た。ESMS:m/z 506([M+Na]+)。
3)上記で得た生成物(0.3g)のトルエン(3mL)溶液を、2−メトキシベンゼンボロン酸(0.13g)、炭酸カリウム(0.25g)のトルエン/DMF(4/1mL)溶液に、窒素下で撹拌しながら加えた。Pd(PPh3)4(0.14g)を加え、混合物を85℃で48時間加熱した。混合物を冷却し、濾過、溶媒を蒸発させた。残渣を酢酸エチルに溶解し、水洗、硫酸マグネシウムで乾燥し、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(2.5:1))精製を行なって、3−アセチル−N−(t−ブトキシカルボニル)−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(0.18g)を得た。ESMS:m/z 442(MH+)。
4)上記で得た生成物(0.18g)のTFA/塩化メチレン(8mL、50%v/v)溶液を室温で1時間撹拌した。溶液を蒸発させ、高真空下で乾燥して3−アセチル−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル・TFA塩を得た。
5)上記で得た該TFA塩の塩化メチレン(2mL)の氷冷溶液に、DIEA(213μL)、続いて塩化2,6−ジクロロベンゾイル(65mL)/塩化メチレン(7mL)溶液を加えた。混合物を室温まで昇温させ、24時間撹拌した。製造例1−4)に記載の通り通常のワークアップ後、粗物質をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(3:1))精製を行なって、3−アセチル−N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(0.142g)を得た。ESMS:m/z 514(MH+)。
6)上記で得た生成物(0.05g)を、製造例1−5)の記載と同様の製法でLiOHを用いて加水分解して、標記化合物(46.5mg)を得た。融点87〜89℃。ESMS:m/z 486 (MH+)。
【0191】
製造例72:3−アセチル−N−(2,6−ジクロロベンゾイル)−4−フェニル−L−フェニルアラニン
2−メトキシベンゼンボロン酸をベンゼンボロン酸に置き換える以外は、製造例71の記載と同様の様式で、固体の標記化合物を得た。融点109〜111℃。ESMS:m/z 456(MH+)。
【0192】
製造例73:N−(2,6−ジクロロベンゾイル)−3−(1−ヒドロキシエチル)−4−(2−メトキシフェニル)−L−フェニルアラニン
1)NaBH4(12mg)を、3−アセチル−N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(0.1g)/メタノール(3mL)溶液に加え、混合物を室温で2時間撹拌した。混合物を1N 塩酸で反応を停止させ、塩化メチレンで抽出した。抽出液を1N 塩酸および食塩水で順次洗浄し、乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(3:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−3−(1−ヒドロキシエチル)−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(45mg)を得た。ESMS:m/z 516(MH+)。
2)上記で得た生成物(0.040g)を、製造例1−5)の記載と同様の様式でLiOHを用いて加水分解して、標記化合物(28mg)を得た。ESMS:m/z488(MH+)。
【0193】
製造例74:N−(2,6−ジクロロベンゾイル)−3−(1−ヒドロキシエチル)−4−フェニル−L−フェニルアラニン
標記化合物を、製造例73の記載と同様の方法で3−アセチル−N−(2,6−ジクロロベンゾイル)−4−フェニル−L−フェニルアラニンエチルエステルから製造した。融点115〜117℃。MS:m/z 458(MH+)。
【0194】
製造例75:N−(2,6−ジクロロベンゾイル)−3−メトキシ−4−(2−メトキシフェニル)−L−フェニルアラニン
1)3,4−ジヒドロキシ−L−フェニルアラニンメチルエステルを、3,4−ジヒドロキシ−L−フェニルアラニン(10g)のメタノール(100mL)溶液に塩化水素を吹込むことで製造した。ジ−t−ブチルジカルボネート(12.1g)を、該エステルのTHF(250mL)およびDIEA(35.4mL)溶液に加え、混合物を5分間加温し、室温で1時間撹拌した。THFを除去し、残渣を水および酢酸エチルで分配した。有機層を1N 塩酸、食塩水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(1:1))精製を行なって、目的のN−(t−ブトキシカルボニル)−3,4−ジヒドロキシ−L−フェニルアラニンメチルエステル(13.4g)を得た。ESMS:m/z 312(MH+)。
2)塩化2,6−ジクロロベンジル(17.3g)を、N−(t−ブトキシカルボニル)−3,4−ジヒドロキシ−L−フェニルアラニンメチルエステル(2.5g)、炭酸カリウム(2.22g)およびn−Bu4NI(0.297g)のDMF(15mL)懸濁液に室温で加えた。混合物を室温で終夜撹拌し、水で希釈、エーテルで抽出した。抽出液を硫酸マグネシウムで乾燥し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/塩化メチレン/酢酸エチル(5:5:1))精製を行なって、各々N−(t−ブトキシカルボニル)−3,4−ビス(2,6−ジクロロベンジルオキシ)−L−フェニルアラニンメチルエステル(2.0g、ESMS:m/z 630(MH+))、N−(t−ブトキシカルボニル)−3−(2,6−ジクロロベンジルオキシ)−4−ヒドロキシ−L−フェニルアラニンメチルエステル(0.39g、ESMS:m/z 470(MH+))および、N−(t−ブトキシカルボニル)−4−(2,6−ジクロロベンジルオキシ)−3−ヒドロキシ−L−フェニルアラニンメチルエステル(0.45g、ESMS:m/z 470(MH+))を得た。
3)N−(t−ブトキシカルボニル)−4−(2,6−ジクロロベンジルオキシ)−3−ヒドロキシ−L−フェニルアラニンメチルエステル(0.45g)、炭酸カリウム(0.199g)およびn−Bu4NI(0.035g)のDMF(4.0mL)懸濁液に沃化メチル(0.072mL)を加え、混合物を室温で終夜撹拌した。DMFを除去し、残渣を水および酢酸エチルで分配した。有機層を分離し、水溶液を酢酸エチルで抽出した。抽出液を併せて硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、ヘキサン/塩化メチレン/酢酸エチル(3:3:1))精製を行なって、N−(t−ブトキシカルボニル)−4−(2,6−ジクロロベンジルオキシ)−3−メトキシ−L−フェニルアラニンメチルエステル(0.396g)を得た。ESMS:m/z 484(MH+)。
4)上記で得た生成物(0.39g)および10%Pd−炭素のメタノール(10mL)懸濁液に、水素ガスを室温で終夜吹込んだ。触媒をセライト濾過し、濾液を蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、塩化メチレン/メタノール(10:1))精製を行なって、N−(t−ブトキシカルボニル)−4−ヒドロキシ−3−メトキシ−L−フェニルアラニンメチルエステル(0.21g)を得た。ESMS:m/z 348([M+Na]+)。
5)無水ピリジン(0.15mL)を、上記で得た生成物(0.2g)の塩化メチレン(3.0mL)溶液に0℃で撹拌しながら加えた。無水トリフルオロメタンスルホン酸(0.16mL)を滴下し、混合物を室温までゆっくりと昇温させ、室温で3時間撹拌した。混合物を塩化メチレンで希釈し、1N 塩酸、食塩水、飽和炭酸水素ナトリウムおよび食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥し、蒸発してN−(t−ブトキシカルボニル)−3−メトキシ−4−トリフルオロメタンスルホニルオキシ−L−フェニルアラニンメチルエステル(0.28g)を得た。ESMS:m/z 457[(M+Na]+)。
6)上記で得た生成物(0.28g)のDME(2.0mL)溶液を、2−メトキシベンゼンボロン酸(0.112g)、炭酸カリウム(0.21g)のDME(2.0mL)溶液に窒素下で加えた。Pd(PPh3)4(0.12g)を加え、混合物を65℃で48時間加熱し、冷却、濾過して溶媒を蒸発させた。残渣を酢酸エチルで抽出し、抽出液を水洗し、乾燥、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、ヘキサン/酢酸エチル(3:1))精製を行なって、N−(t−ブトキシカルボニル)−3−メトキシ−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(0.02g)を製造した。ESMS:m/z 438([M+Na]+)。
7)上記で得た生成物(0.055g)のTFA/塩化メチレン(1mL、50%v/v)混合物を室温で1時間撹拌し、蒸発させ、高真空下で乾燥した。残渣の塩化メチレン(2mL)の氷冷溶液に、DIEA(0.069mL)、続いて塩化2,6−ジクロロベンゾイル(0.02mL)/塩化メチレン(1mL)溶液を加えた。混合物を室温まで昇温させ、終夜撹拌した。製造例1と同様の様式で通常のワークアップ後、粗物質をシリカゲルプレパラティブTLC(溶出液、ヘキサン/酢酸エチル(2:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−3−メトキシ−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(0.04g)を得た。ESMS:m/z 488(MH+)。
8)上記で得た生成物(0.04g)を製造例1−5)の記載と同様の様式でLiOHを用いて加水分解して標記化合物(17.8mg)を得た。融点100〜102℃。ESMS:m/z 474(MH+)。
上記製造例に記載された方法と同様にして以下の化合物を対応する物質から製造した。
【0195】
【表2】
Figure 0003795305
【0196】
【表3】
Figure 0003795305
【0197】
【表4】
Figure 0003795305
【0198】
【表5】
Figure 0003795305
【0199】
【表6】
Figure 0003795305
【0200】
【表7】
Figure 0003795305
【0201】
【表8】
Figure 0003795305
【0202】
【表9】
Figure 0003795305
【0203】
【表10】
Figure 0003795305
【0204】
製造例135:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジフルオロフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステルを、製造例5−1)および2)の記載と同様の方法で製造した。
2)上記で得た生成物(3.00g)、ヘキサメチル二スズ(1.96g)および無水LiCl(0.76g)のジオキサン(30mL)混合物に窒素下で、Pd(PPh3)4(0.34g)を加え、混合物を98℃で3時間加熱した。混合物を冷却し、酢酸エチルで希釈、セライト濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:3))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−トリメチルスタニオ−L−フェニルアラニンメチルエステル(2.46g)を得た。ESMS:m/z 516(MH+)および514(M−H)-
3)上記で得た生成物(0.17g)および1−ブロモ−2,6−ジフルオロベンゼン(95mg)/トルエン(2mL)混合物に窒素下で、Pd(PPh3)4(0.02g)を加え、混合物を110℃で2時間加熱した。混合物を蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:3))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジフルオロフェニル)−L−フェニルアラニンメチルエステル(58mg)を得た。ESMS:m/z 464(MH+)、486(M++Na)および562(M−H)-
4)上記で得た生成物(0.058g)を製造例1−5)に記載の通りLiOHを用いて加水分解して、標記化合物(0.04g)を得た。ESMS:m/z 450(MH+)、472(M++Na)および448(M−H)-
以下の化合物(製造例136〜140)を、1−ブロモ−2,6−ジフルオロベンゼンを必要なブロモベンゼンで置き換える以外は、製造例135の記載と同様の製法で製造した。
【0205】
【表11】
Figure 0003795305
【0206】
以下の化合物(製造例141〜146)を、2−メトキシベンゼンボロン酸を必要なベンゼンボロン酸と置き換える以外は、製造例5の記載と同様の製法で製造した。
【0207】
【表12】
Figure 0003795305
【0208】
以下の化合物(製造例147〜149)を、1,3−ジメトキシベンゼンを必要なベンゼンに置き換える以外は、製造例7の記載と同様の方法で製造した。
【0209】
【表13】
Figure 0003795305
【0210】
製造例150:N−(2,6−ジクロロベンゾイル)−4−(2−シアノ−6−カルバモイルフェニル)−L−フェニルアラニン
1)2,6−ジシアノベンゼンボロン酸(0.516g)および無水炭酸カリウム(0.52g)のDME/水(10mL/0.5mL)混合物に窒素下で、N−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステル(0.5g)を加えた。Pd(PPh3)4触媒(0.1g)を加え、混合物を80℃で5時間加熱した。混合物を冷却し、酢酸エチルで希釈、水および食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥し、蒸発させ、残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(3:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2−シアノ−6−カルバモイルフェニル)−L−フェニルアラニンメチルエステル(325mg)を得た。ESMS:m/z 496(MH+)、494(M−H)-
2)上記で得た生成物(150mg)を、製造例1−5)に記載の通りLiOHを用いて加水分解して、標記化合物(0.06g)を得た。MS:m/z 465(MH+)。
【0211】
製造例151:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジシアノフェニル)−L−フェニルアラニン
1)2,6−ジシアノベンゼンボロン酸(0.516g)および無水炭酸カリウム(0.2g)のトルエン(10mL)混合物に窒素下で、N−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステル(0.5g)を加えた。Pd(PPh3)4(0.1g)を加え、混合物を90℃で8時間加熱した。混合物を冷却し、酢酸エチルで希釈、水および食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥し、蒸発させ、残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジシアノフェニル)−L−フェニルアラニンメチルエステル(58mg)を得た。
2)上記で得た生成物を製造例1−5)の記載と同様の製法で加水分解して標記化合物を得た。MS:m/z 482(MH+)。
【0212】
製造例152:N−(2,6−ジクロロベンゾイル)−4−[2−(メチルスルホニル)フェニル]−L−フェニルアラニン(152B)およびN−(2,6−ジクロロベンゾイル)−4−[2−(メチルスルフィニル)フェニル]−L−フェニルアラニン(152Aおよび152C)。
1)N−(2,6−ジクロロベンゾイル)−4−[2−(メチルチオ)フェニル]−L−フェニルアラニンメチルエステル(0.35g)を塩化メチレン(5mL)に溶解した。mCPBA(50〜60%、0.255g)を0℃で加え、混合物を0℃で2時間撹拌した。混合物を炭酸水素ナトリウム水溶液、水および食塩水で順次洗浄し、硫酸マグネシウムで乾燥し、濾過、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:3))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2−(メチルスルホニル)フェニル]−L−フェニルアラニンメチルエステル(0.125g、ESMS:m/z 506(MH+)、528(M++Na)、504(M+−1))、およびN−(2,6−ジクロロベンゾイル)−4−[2−(メチルスルフィニル)フェニル]−L−フェニルアラニンメチルエステル(2個のジアステレオマー混合物、0.227mg、ESMS:m/z 490(MH+)、512(M++Na)、488(M−1)-を得た。
2)N−(2,6−ジクロロベンゾイル)−4−[2−(メチルスルホニル)フェニル]−L−フェニルアラニンメチルエステルを、製造例1−5)に記載の通りLiOHを用いて加水分解して、N−(2,6−ジクロロベンゾイル)−4−[2−(メチルスルホニル)フェニル]−L−フェニルアラニン(152B)を得た。ESMS:m/z 492(MH+)、514(M++Na)、491(M−H)-
3)N−(2,6−ジクロロベンゾイル)−4−[2−(メチルスルフィニル)フェニル]−L−フェニルアラニンメチルエステル(2個のジアステレオマー混合物)を、製造例1−5)に記載の通りLiOHを用いて加水分解して、N−(2,6−ジクロロベンゾイル)−4−[2−(メチルスルフィニル)フェニル]−L−フェニルアラニン(2個のジアステレオマー混合物)を得た。混合物を塩化メチレンに溶かし、固体を濾過して集め、塩化メチレンで洗浄、乾燥してN−(2,6−ジクロロロベンゾイル)−4−[2−(メチルスルフィニル)フェニル]−L−フェニルアラニンの一方のジアステレオマー(152A)(80mg)を得た。ESMS:m/z476(MH+)、498(M++Na)、474(M−H)-
1H−NMR(DMSO−d6):δ 2.41(s,3H)、2.97(m,1H)、3.2(dd,1H)、4.72(m,1H)、7.32(m,3H)、7.4(m,5H)、7.6−7.7(m,2H)、8.0(d,1H)、9.15(d,1H)。
濾液を蒸発させ、残渣を結晶化(酢酸エチル/ヘキサンから)させてN−(2,6−ジクロロベンゾイル)−4−[2−(メチルスルフィニル)フェニル]−L−フェニルアラニンの他方のジアステレオマー(152C)(44mg)を得た。ESMS:m/z 476(MH+)、498(M++Na)、474(M−H)-
1H−NMR(DMSO−d6):δ 2.43(s,3H)、2.98(m,1H)、3.22(m,1H)、4.74(m,1H)、7.32(m,3H)、7.4(m,5H)、7.6−7.7(m,2H)、8.0(d,1H)、9.15(d,1H)。
【0213】
製造例153:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−フルオロフェニル)−L−フェニルアラニン(153A)およびN−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3,5−ジフルオロフェニル)−L−フェニルアラニン(153B)
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(232mg)を窒素下で無水アセトニトリル(10mL)に溶解し、3,5−ジクロロ−1−フルオロピリジニウムトリフルオロメタンスルホン酸塩(85%、353mg)を加え、混合物を1日還流した。さらに3,5−ジクロロ−1−フルオロピリジニウムトリフルオロメタンスルホン酸塩(175mg)を加え、混合物をさらに1日還流した。次いで混合物を濃縮し、残渣を水に溶かし、塩化メチレンで抽出した。抽出液を飽和炭酸水素ナトリウム、水で洗浄し、硫酸マグネシウムで乾燥、濾過して蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、ヘキサン/酢酸エチル(5:1〜2:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−フルオロフェニル)−L−フェニルアラニンメチルエステル(109mg)およびN−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3,5−ジフルオロフェニル)−L−フェニルアラニンメチルエステル(37mg)を得た。2)上記で得た2個の生成物を製造例1−5)の記載と同様の方法で別々に加水分解して、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−フルオロフェニル)−L−フェニルアラニン(153A)(融点228〜229℃;MS:m/z 492(MH+))およびN−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3,5−ジフルオロフェニル)−L−フェニルアラニン(153B)(融点201〜202℃;MS:m/z 510(MH+))を得た。
【0214】
製造例154:N−(2,6−ジクロロベンゾイル)−4−(2,3−メチレンジオキシ−5−フルオロ−6−メトキシフェニル)−L−フェニルアラニン
標記化合物を製造例153の記載と同様の様式で製造した。融点198〜199℃。
【0215】
製造例155:N−(2,6−ジクロロベンゾイル)−4−[4−(N−アリル−N−t−ブトキシカルボニルアミノ)−2,6−ジメトキシフェニル]−L−フェニルアラニン
1)4−(N−アリル−N−t−ブトキシカルボニルアミノ)−2,6−ジメトキシベンゼンボロン酸およびN−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステルを製造例7−2)の記載と同様の方法でカップリング反応させて、N−(2,6−ジクロロベンゾイル)−4−[4−(N−アリル−N−t−ブトキシカルボニルアミノ)−2,6−ジメトキシフェニル]−L−フェニルアラニンメチルエステルを得た。
2)上記で得た生成物を製造例1−5)の記載と同様の方法で加水分解して、標記化合物を得た。融点138〜139℃;MS:m/z 629(MH+)。
【0216】
製造例156:N−(2,6−ジクロロベンゾイル)−4−(4−アリルアミノ−2,6−ジメトキシフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−[4−[(N−アリル−N−t−ブトキシカルボニルアミノ)−2,6−ジメトキシフェニル]−L−フェニルアラニンメチルエステル(1.25g)を塩化メチレン(10mL)に溶解し、TFA(10mL)を加え、混合物を窒素下室温で1.5時間撹拌した。混合物を蒸発させ、残渣を塩化メチレンに溶かし、飽和炭酸水素ナトリウムで洗浄し、硫酸マグネシウムで乾燥、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(5:1〜1:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(4−アリルアミノ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(938mg)を得た。
2)上記で得た生成物を製造例1−5)の記載と同様の方法で加水分解して、標記化合物を得た。融点262〜263℃(分解);MS:m/z 529(MH+)。
【0217】
製造例157:N−(2,6−ジクロロベンゾイル)−4−(4−アミノ−2,6−ジメトキシフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(4−アリルアミノ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.93g)を、窒素下でアセトニトリル/水(40mL、84:16)に溶解した。ウィルキンソン触媒(79mg)を加え、混合物を沸騰させた。2時間後、さらに触媒(170mg)を加え、反応をさらに6時間続けた。溶媒を蒸発させ、残留の水をアセトニトリルと共蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、ヘキサン/酢酸エチル(2:1〜1:2))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(4−アミノ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(708mg)を得た。
2)上記で得た生成物を製造例1−5)の記載と同様の方法で加水分解して、標記化合物を得た。融点221〜222℃;MS:m/z 489(MH+)。
【0218】
製造例158:N−(2,6−ジクロロベンゾイル)−4−(4−メトキシカルボニルアミノ−2,6−ジメトキシフェニル)−L−フェニルアラニン
製造例64の記載と同様の製法で、N−(2,6−ジクロロベンゾイル)−4−(4−アミノ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルと、MeSO2Clの代わりにMeOCOClを反応させることにより、標記化合物を得た。融点235〜236℃;MS:m/z 548(MH+)。
【0219】
製造例159:N−(2,6−ジクロロベンゾイル)−4−(4−アセチルアミノ−2,6−ジメトキフェニル)−L−フェニルアラニン
製造例64の記載と同様の製法で、N−(2,6−ジクロロベンゾイル)−4−(4−アミノ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルと、MeSO2Clの代わりにMeCOClを反応させることにより、標記化合物を得た。融点243〜244℃;MS:m/z 531(MH+)。
【0220】
製造例160:N−(2,6−ジクロロベンゾイル)−4−[4−(3−メチルウレイド)−2,6−ジメトキシフェニル]−L−フェニルアラニン
製造例70の記載と同様の製法で、N−(2,6−ジクロロベンゾイル)−4−(4−アミノ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルと、MeNCSの代わりにMeNCOを反応させることにより、標記化合物を得た。融点206〜207℃;MS:m/z 547(MH+)。
【0221】
製造例161:N−(2,6−ジクロロベンゾイル)−4−[4−[3−(2−メチルフェニル)ウレイド]−2,6−ジメトキシフェニル]−L−フェニルアラニン
製造例70の記載と同様の製法で、N−(2,6−ジクロロベンゾイル)−4−(4−アミノ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルと、MeNCSの代わりに2−メチルフェニルイソシアネートを反応させることにより、標記化合物を得た。融点194〜195℃;MS:m/z 622(MH+)。
【0222】
製造例162:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(3−メチルチオウレイド)フェニル]−L−フェニルアラニン
製造例70の記載と同様の製法で、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−4−アミノフェニル)−L−フェニルアラニンメチルエステルから出発して標記化合物を製造した。MS:m/z 562(MH+);融点197〜198℃。
【0223】
製造例163:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(メチルスルホニル)アミノ]フェニル]−L−フェニルアラニン
製造例64の記載と同様の様式で、N−(2,6−ジクロロベンゾイル)−4− (2,6−ジメトキシ−4−アミノフェニル)−L−フェニルアラニンメチルエステルから出発して標記化合物を得た。MS:m/z 567(MH+);融点154〜155℃。
【0224】
製造例164:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(ジメチルアミノ)フェニル]−L−フェニルアラニン
製造例27の記載と同様の様式で、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−4−アミノフェニル)−L−フェニルアラニンメチルエステルから出発して標記化合物を得た。MS:m/z 517(MH+)。
【0225】
製造例165:N−(2,6−ジクロロベンゾイル)−4−(4−メチルカルバモイル−2,6−ジメトキシフェニル)−L−フェニルアラニン
1)4−(1,3−ジオキソラン−2−イル)−2,6−ジメトキシベンゼンボロン酸をN−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステルと、製造例7−2)の記載と同様の様式で反応させて、N−(2,6−ジクロロベンゾイル)−4−[4−(1,3−ジオキソラン−2−イル)−2,6−ジメトキシフェニル]−L−フェニルアラニンメチルエステルを得た。
2)上記で得た生成物をTHF(60mL)に溶解し、5%塩酸(30mL)を該溶液に加えた。混合物を窒素下室温で3時間撹拌した。混合物を蒸発させ、水(50mL)を該残渣に加えた。混合物を塩化メチレンで抽出し、硫酸マグネシウムで乾燥、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(2:1〜1:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(4−ホルミル−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(2.06g)を得た。
3)上記で得た生成物を、製造例52−1)の記載と同様の製法で酸化して、N−(2,6−ジクロロベンゾイル)−4−(4−カルボキシ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルを得た。
4)上記で得た生成物を製造例53の記載と同様の製法でメチルアミンと反応させて、標記化合物を得た。MS:m/z 531(MH+);融点251−252℃。
【0226】
以下の化合物(製造例166〜171)を、製造例53の記載と同様の方法で、N−(2,6−ジクロロベンゾイル)−4−(4−カルボキシ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルおよび適当なアミンを用いて製造した。
【0227】
【表14】
Figure 0003795305
【0228】
製造例172:N−(2,6−ジクロロベンゾイル)−4−(4−カルボキシ−2,6−ジメトキシフェニル)−L−フェニルアラニン
N−(2,6−ジクロロベンゾイル)−4−(4−カルボキシ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルを製造例1−5)の記載と同様の製法で加水分解して、標記化合物を得た。MS:m/z 517(MH+);融点277〜278℃。
【0229】
製造例173:N−(2,6−ジクロロベンゾイル)−4−[4−(メタンスルホニルアミノ)カルボニル−2,6−ジメトキフェニル]−L−フェニルアラニン
製造例61の記載と同様の製法で、N−(2,6−ジクロロベンゾイル)−4−(4−カルボキシ−2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルを用いて、標記化合物を得た。MS:m/z 595(MH+);融点277〜278℃。
【0230】
製造例174:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−メトキシメトキシフェニル)−L−フェニルアラニン
1)2,6−ジメトキシ−3−メトキシメトキシベンゼンボロン酸およびN−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステルを、製造例7−2)の記載と同様の方法でカップリング反応させて、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−メトキシメトキシフェニル)−L−フェニルアラニンメチルエステルを得た。
2)上記で得た生成物を製造例7−3)の記載と同様の製法に従って加水分解して、標記化合物を得た。MS:m/z 534(MH+);融点156〜157℃。
【0231】
製造例175:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−ヒドロキシフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−メトキシメトキシフェニル)−L−フェニルアラニンメチルエステル(165mg)をメタノール(5mL)に溶解し、塩酸の4Mジオキサン溶液(1mL)を該混合物に加えた。混合物を室温で3時間撹拌した。混合物を蒸発させ、残渣を水(40mL)に溶かし、塩化メチレンで抽出した。抽出液を硫酸マグネシウムで乾燥し、濾過、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、ヘキサン/酢酸エチル(3:1〜1:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−ヒドロキシフェニル)−L−フェニルアラニンメチルエステル(145mg)を得た。
2)上記で得た生成物を製造例1−5)の記載と同様の製法で加水分解して、標記化合物を得た。融点164〜165℃;MS:m/z 490(MH+)。
【0232】
製造例176:N−[2−クロロ−4−(t−ブトキシカルボニル)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
1)2−クロロ−4−(t−ブトキシカルボニル)安息香酸を4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(製造例1−3)由来の遊離アミン)と、製造例2−1)の記載と同様の製法を用いてカップリング反応させて、N−[2−クロロ−4−(t−ブトキシカルボニル)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(0.332g)を得た。
3)上記で得た生成物(19.8mg)を製造例1−5)の記載と同様の方法で加水分解して、標記化合物(17.5mg)を得た。MS:(m/z) 508(M−H)-
【0233】
製造例177:N−[2−クロロ−4−カルボキシベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
1)N−[2−クロロ−4−(t−ブトキシカルボニル)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(305mg)を窒素下無水塩化メチレン(2mL)に溶解し、TFA(2mL)を加えた。混合物を室温で2時間撹拌して、N−[2−クロロ−4−カルボキシベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(315mg)を得た。
2)次いで、上記で得た生成物(48.6mg)を製造例1−5)の記載と同様の製法で加水分解して、N−[2−クロロ−4−カルボキシベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン(42.9mg)を得た。MS:(m/z) 452(M−H)-
【0234】
製造例178:N−[2−クロロ−4−カルバモイルベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
標記化合物を、N−[2−クロロ−4−カルボキシベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステルから、製造例60の記載と同様の製法を用いて製造した。MS:(m/z) 451(M−H)-
【0235】
製造例179:N−[2−クロロ−4−[N−(メタンスルホニル)カルバモイル]−ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
標記化合物を、N−[2−クロロ−4−カルボキシベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステルから、製造例61の記載と同様の製法を用いて製造した。MS:(m/z) 529(M−H)-
【0236】
製造例180:N−[2−クロロ−5−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
製造例62のカップリング工程の際の2−クロロ−4−ニトロベンゾイルクロリドを2−クロロ−5−ニトロベンゾイルクロリドで置き換える以外は、製造例62、63、64および65の記載と同様の製法で、標記化合物を製造した。MS:(m/z) 555(M−H)-
【0237】
製造例181:N−[2−クロロ−3−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
製造例62のカップリング工程の際の2−クロロ−4−ニトロベンゾイルクロリドを2−クロロ−3−ニトロベンゾイルクロリドで置き換える以外は、製造例62、63、64および65の記載と同様の製法で、標記化合物を製造した。MS:(m/z) 555(M−H)-
【0238】
製造例182:N−[2,6−ジクロロ−4−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
製造例62のカップリング工程の際に2,6−ジクロロ−4−ニトロ安息香酸(米国特許第3,423,475号)を使用する点を除いては、製造例62、63、64および65の記載と同様の製法を連続して行なうことで、標記化合物を得た。MS:(m/z) 589(M−H)-
【0239】
製造例183:N−[2−クロロ−4−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステルを4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルで置き換える以外は、製造例62、63、64および65の記載と同様の製法を連続して行なうことで、標記化合物を製造した。MS:(m/z) 585(M−H)-
【0240】
製造例184:N−[2,6−ジクロロ−4−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
塩化2,6−ジクロロベンゾイルを2,6−ジクロロ−4−ニトロベンゾイルクロリドに、および4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステルを4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルに置き換える以外は、製造例62、63、64および65の記載と同様の製法を連続して行なうことで標記化合物を製造した。MS:(m/z) 619(M−H)-
【0241】
製造例185:N−[2−クロロ−6−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
製造例62のカップリング工程の際に2−アミノ−6−クロロ安息香酸を使用する以外は、製造例62、63、64および65の記載と同様の製法で、標記化合物を得た。MS:(m/z) 555(M−H)-
【0242】
製造例186:N−[2−クロロ−3−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2−メトキシフェニル)−D−フェニルアラニン
4−(2−メトキシフェニル)−D−フェニルアラニンメチルエステルから出発して、製造例62、63、64および65の記載と同様の製法で、標記化合物を得た。MS:(m/z) 555(M−H)-
【0243】
以下の化合物(製造例187〜193)を、MeSO2Clを必要な塩化アリールスルホニルに置き換える以外は、製造例62、63、64および65の記載と同様の製法で製造した。
【0244】
製造例187:N−[2−クロロ−4−[[(4−トリフルオロメチルフェニル)スルホニル]アミノ]ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン;ESMS:m/z 655(M++Na)、633(MH+)、631(M−H)-
【0245】
製造例188:N−[2−クロロ−4−(トシルアミノ)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン;ESMS:m/z 601(M++Na)、579(MH+)、577(M−H)-
【0246】
製造例189:N−[2−クロロ−4−[[(4−フルオロフェニル)スルホニル]アミノ]ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン;ESMS:m/z 605(M++Na)、583(MH+)、581(M−H)-
【0247】
製造例190:N−[2−クロロ−4−[[(4−メトキシフェニル)スルホニル]アミノ]ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン;ESMS:m/z 617(M++Na)、595(MH+)、593(M−H)-
【0248】
製造例191:N−[2−クロロ−4−[(2−チエニルスルホニル)アミノ]ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン;ESMS:m/z593(M++Na)、571(MH+)、569(M−H)-
【0249】
製造例192:N−[2−クロロ−4−[[(2−メチルフェニル)スルホニル]アミノ]ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン;ESMS:m/z 601(M++Na)、579(MH+)、577(M−H)-
【0250】
製造例193:N−[2,6−ジクロロ−4−[(2−チエニルスルホニル)アミノ]ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;融点141〜142℃。ESMS:m/z 635(MH+)。
【0251】
製造例194:N−[4−(3−ベンジルチオウレイド)−2−クロロベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
1)N−(4−アミノ−2−クロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニン(57mg)のDMF(1.5mL)溶液を、1,1'−チオカルボニルジイミダゾール(28mg)のDMF(1mL)溶液に窒素下0℃で2.5時間かけて加えた。次いで、混合物を室温までゆっくりと昇温させ、さらに2時間撹拌した。ベンジルアミン(21μL)を加え、生じた混合物を80℃で2時間撹拌した。混合物を濃縮し、残渣を塩化メチレンに溶かし、1N 塩酸および水で洗浄した。有機層を硫酸マグネシウムで乾燥し、濾過、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、塩化メチレン/メタノール/Et3N(100:1:1))精製を行なって、固体を得た。該固体を塩化メチレンに溶かし、1N 塩酸で洗浄、乾燥および蒸発させて、N−[4−(3−ベンジルチオウレイド)−2−クロロベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル(42mg)を得た。
2)上記で得た生成物を、製造例1−5)の記載と同様の製法で加水分解して標記化合物(26.9mg)を得た。ESMS:m/z 572(M+−1)。
【0252】
メチルイソチオシアネートを適当なイソチオシアネート化合物に置き換える以外は、製造例70の記載と同様な様式で、以下の化合物(製造例195〜198)を製造した。
【0253】
【表15】
Figure 0003795305
【0254】
以下の化合物(製造例199〜204)を、製造例64、69または70の記載と同様の様式で製造した。
【0255】
【表16】
Figure 0003795305
【0256】
製造例205:N−(4−ウレイド−2,6−ジクロロベンゾイル−4−(3−カルバモイル−2,6−ジメトキシフェニル)−L−フェニルアラニン
標記化合物を、製造例69の記載と同様の製法を用いて製造した。ESMS:m/z 575(MH+)。融点217〜219℃。
【0257】
製造例206:N−(4−アミノ−2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
標記化合物を、製造例63の記載と同様の様式で製造した。ESMS:m/z 489(MH+)。融点221〜222℃(分解)。
以下の化合物(製造例207〜208)を、製造例2の記載と同様の方法で製造した。
【0258】
【表17】
Figure 0003795305
【0259】
塩化2,6−ジクロロベンゾイルおよび(S)−2−フェニルプロピオン酸を必要な塩化ベンゾイルおよび安息香酸に置き換える以外は、製造例1および2の記載と同様の様式で以下の化合物(製造例209〜212)を製造した。
【0260】
【表18】
Figure 0003795305
【0261】
製造例213:N−[2−(2,6−ジクロロフェニル)プロピオニル]−4−(2−メトキシフェニル)−L−フェニルアラニン
1)(2,6−ジクロロフェニル)酢酸(2.55g)を無水メタノール(60mL)に溶解し、HCl(ガス)を該混合物に通気し、生じた溶液を室温で18時間撹拌した。次いで溶媒を蒸発させて、(2,6−ジクロロフェニル)酢酸メチルエステル(2.7g)を得た。
2)LDA(2M ヘプタン/THF/エチルベンゼン溶液)を無水THF(10mL)に加え、混合物を窒素下−78℃にまで冷却した。上記で得た生成物(1.1g)を滴下し、混合物を−78℃で30分間撹拌した。MeI(0.467mL)を加え、混合物を室温まで昇温させ、終夜撹拌した。混合物を濃縮した。残渣を酢酸エチル(75mL)で溶かし、1N 塩酸、水および食塩水で順次洗浄した。混合物を硫酸マグネシウムで乾燥し、濾過、蒸発して2−(2,6−ジクロロフェニル)プロピオン酸メチルエステル(1.11g)を得た。
3)上記で得た生成物をTHF/メタノール/トルエン(65mL、11:1:1)に溶解し、1M KOH(9.18mL)を加えた。混合物を室温で6時間撹拌し、50℃まで加熱し、終夜撹拌した。エタノール(5mL)を加え、混合物を60℃で6時間撹拌し、終夜還流した。混合物を濃縮し、水(60mL)で溶かし、1N 塩酸でpH<2に酸性化した。生成物を濾過して集め、2−(2,6−ジクロロフェニル)プロピオン酸(0.84g)を得た。
4)上記で得た生成物を4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステルと製造例2の記載と同様の製法でカップリング反応させ、LiOHを用いて加水分解して、標記化合物を得た。ESMS:m/z 472(MH+)。融点109〜110℃。
以下の化合物(製造例214〜217)を製造例4の記載と同様の製法で製造した。
【0262】
製造例214:N−(2,6−ジクロロベンゾイル)−4−(2−ホルミル−3−チエニル)−L−フェニルアラニン;ESMS:m/z 470(M++Na)、448(MH+)、446(M−H)-
【0263】
製造例215:N−(2,6−ジクロロベンゾイル)−4−(5−アセチル−2−チエニル)−L−フェニルアラニン;ESMS:m/z 484(M++Na)、462(MH+)、460(M−H)-、融点194〜195℃。
【0264】
製造例216:N−(2,6−ジクロロベンゾイル)−4−[(3,5−ジメチル−4−イソキサゾリル)−2,6−ジメトキフェニル]−L−フェニルアラニン;ESMS:m/z 433(MH+)、融点118.7℃。
【0265】
製造例217:N−(2,6−ジクロロベンゾイル)−4−(4−ピリジル)−L−フェニルアラニン;ESMS:m/z 415(MH+)。
【0266】
製造例218:N−(2,6−ジクロロベンゾイル)−4−(2−ヒドロキシメチル−3−チエニル)−L−フェニルアラニン
標記化合物を、N−(2,6−ジクロロベンゾイル)−4−(2−ホルミル−3−チエニル)−L−フェニルアラニンメチルエステルをNaBH4還元し、続いて製造例50に記載の通り加水分解することにより製造した。ESMS:m/z 472(M++Na)、448(M−H)-
【0267】
製造例219:N−(2,6−ジクロロベンゾイル)−4−(2−シアノ−3−チエニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−L−チロシンメチルエステル(361mg)、トリメチル(2−シアノ−3−チエニル)スズ(393mg)、Pd(PPh3)4(42mg)およびLiCl(93mg)のジオキサン(8mL)混合物を窒素下100℃で38時間撹拌した。混合物を酢酸エチルで希釈し、10%NH4Cl水溶液(6mL)で処理した。室温で1時間撹拌後、混合物をセライト濾過し、酢酸エチルで洗浄した。有機層を併せて、水および食塩水で順次洗浄し、硫酸マグネシウムで乾燥、減圧下で蒸発させた。残渣をシリカゲルクロマトグラフィー精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2−シアノ−3−チエニル)−L−フェニルアラニンメチルエステル(126mg)を得た。ESMS:m/z 481(M++Na)、459(MH+)、457(M−H)-
2)上記で得た生成物を製造例1−5)に記載の通りLiOHで加水分解して、N−(2,6−ジクロロベンゾイル)−4−(2−シアノ−3−チエニル)−L−フェニルアラニン(110mg)を得た。ESMS:m/z 467(M++Na)、445(MH+)、443(M−H)-
以下の化合物(製造例220〜226)を、製造例32の記載と同様の様式で製造した。
【0268】
製造例220:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(3−チエニルメトキシ)フェニル]−L−フェニルアラニン;ESMS:m/z584(M−H)-
【0269】
製造例221:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(2,6−ジクロロフェニル)メトキシ]フェニル]−L−フェニルアラニン;ESMS:m/z 672(M++Na)、648(M−H)-
【0270】
製造例222:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(2−ヒドロキシエトキシ)フェニル]−L−フェニルアラニン;ESMS:m/z 556(M++Na)、534(MH+)、532(M−H)-
【0271】
製造例223:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[2−(N,N−ジメチルアミノ)エトキシ]フェニル]−L−フェニルアラニン;ESMS:m/z 561(MH)+
【0272】
製造例224:N−(2,6−ジクロロベンゾイル)−4−(3−イソプロポキシフェニル)−L−フェニルアラニン;ESMS:m/z 494(M++Na)、472(MH+)、470(M−H)-
【0273】
製造例225:N−(2,6−ジクロロベンゾイル)−4−(2−イソプロポキシフェニル)−L−フェニルアラニン;ESMS:m/z 494(M++Na)、472(MH+)、470(M−H)-
【0274】
製造例226:N−(2,6−ジクロロベンゾイル)−4−(2−イソプロピルオキシ−6−メトキシフェニル)−L−フェニルアラニン;ESMS:m/z 524(M++Na)、500(M−H)-
【0275】
製造例227:N−(2,6−ジクロロベンゾイル)−4−[6−メトキシ−2−(2−ヒドロキシエトキシ)フェニル]−L−フェニルアラニン
1)6−メトキシ−2−メトキシメトキシベンゼンボロン酸(1.92g)をN−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−L−チロシンエチルエステルと製造例5−3)と同様の製法でカップリング反応させて、N−(2,6−ジクロロベンゾイル)−4−(6−メトキシ−2−メトキシメトキシフェニル)−L−フェニルアラニンエチルエステル(0.942mg)を得た。ESMS:m/z 532(MH+)、530(M−H)-
2)N−(2,6−ジクロロベンゾイル)−4−(6−メトキシ−2−メトキシメトキシフェニル)−L−フェニルアラニンエチルエステル(938mg)のエタノール(25mL)溶液に、塩酸(4Nジオキサン溶液、5mL)を加え、次いで混合物を窒素下室温で4時間撹拌した。混合物を酢酸エチルで希釈し、水および食塩水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:2))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(6−メトキシ−2−ヒドロキシフェニル)−L−フェニルアラニンエチルエステル(795mg)を得た。ESMS:m/z 488(MH+)、486(M−H)-
3)上記で得た生成物(256mg)、2−ブロモエチルアセテート(271mg)および炭酸カリウム(217mg)のDMF(5mL)混合物を窒素下60℃で15時間撹拌した。混合物を酢酸エチルで希釈し、水および食塩水で洗浄し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:5〜1:3))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[6−メトキシ−2−(2−アセトキシエトキシ)フェニル]−L−フェニルアラニンエチルエステル(203mg)を得た。ESMS:m/z 574(MH+)、572(M−H)-
4)上記で得た生成物(196mg)を製造例1−5)に記載の通り、LiOH(29mg)を用いて加水分解した。粗物質を塩化メチレン/酢酸エチル/ヘキサンから結晶化して標記化合物(145mg)を得た。融点158〜159℃;ESMS:m/z 526(M++Na)、504(MH+)、502(M−H)-
【0276】
製造例228:N−(2,6−ジクロロベンゾイル)−4−[6−メトキシ−2−(2−フルオロエトキシ)フェニル]−L−フェニルアラニン
標記化合物を、2−ブロモエチルアセテートを2−フルオロエチルブロミドに置き換える以外は製造例227と同様の方法で製造した。融点206〜207℃;ESMS:m/z 506(MH+)。
以下の化合物(製造例229−232)を、製造例227の記載と同様の製法で、必要なベンゼンボロン酸を用いて製造した。
【0277】
【表19】
Figure 0003795305
【0278】
以下の化合物(製造例233−241)を、製造例228の記載と同様の製法で、必要なベンゼンボロン酸を用いて製造した。
【0279】
製造例233:N−(2,6−ジクロロベンゾイル)−4−[2,3−メチレンジオキシ−6−(2−メトキシエトキシ)フェニル]−L−フェニルアラニン;融点167〜168℃;ESMS:m/z 532(MH+)。
【0280】
製造例234:N−(2,6−ジクロロベンゾイル)−4−[2,3−メチレンジオキシ−6−[2−(N,N−ジメチルアミノ)エトキシ]フェニル]−L−フェニルアラニン;ESMS:m/z 545(MH+)、543(M−H)-
【0281】
製造例235:N−(2,6−ジクロロベンゾイル)−4−[2,3−メチレンジオキシ−6−(メトキシメトキシ)フェニル]−L−フェニルアラニン;ESMS:m/z 518(MH+)、516(M−H)-
【0282】
製造例236:N−(2,6−ジクロロベンゾイル)−4−(2,3−メチレンジオキシ−6−ヒドロキシフェニル)−L−フェニルアラニン;ESMS:m/z 474(MH+)。
【0283】
製造例237:N−(2,6−ジクロロベンゾイル)−4−(2,3−メチレンジオキシ−6−エトキシフェニル)−L−フェニルアラニン;ESMS:m/z 502(MH+)。
【0284】
製造例238:N−(2,6−ジクロロベンゾイル)−4−[2,3−メチレンジオキシ−6−(2−ヒドロキシエトキシ)フェニル]−L−フェニルアラニン;ESMS:m/z 518(MH+)、516(M−H)-
【0285】
製造例239:N−(2,6−ジクロロベンゾイル)−4−[2,3−メチレンジオキシ−6−(シアノメトキシ)フェニル]−L−フェニルアラニン;ESMS:m/z513(MH+)。
【0286】
製造例240:N−(2,6−ジクロロベンゾイル)−4−(2,3−メチレンジオキシ−6−メトキシフェニル)−L−フェニルアラニン;ESMS:m/z 488(MH+)。
【0287】
製造例241:N−(2,6−ジクロロベンゾイル)−4−(2,3−エチレンジオキシ−6−メトキシフェニル)−L−フェニルアラニン;ESMS:m/z 502(MH+);融点218℃。
【0288】
製造例242:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(メチルアミノ)メチル]フェニル]−L−フェニルアラニン
1)2,6−ジメトキシ−4−[(t−ブチルジフェニルシリルオキシ)メチル]ベンゼンボロン酸(5.2g)、N−(2,6−ジクロロベンゾイル)−4−ブロモ−L−フェニルアラニンエチルエステル(1.71g)、Pd(PPh3)4(0.44g)および炭酸カリウム(1.59g)のDME/水(20mL/0.5mL)混合物を窒素下80℃で24時間加熱した。混合物をワークアップし、製造例8−3)と同様の製法で精製して、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(t−ブチルジフェニルシリルオキシ)メチル]フェニル]−L−フェニルアラニンエチルエステル(2.9g)を得た。ESMS:m/z 770(MH+)。
2)上記で得た生成物(2.9g)のTHF(10mL)の氷冷溶液に、窒素下でフッ化テトラブチルアンモニウム(4.45mL、1M THF溶液)を加え、混合物を2時間撹拌した。THFを蒸発させ、残渣をプレパラティブTLC(溶出液、ヘキサン〜50%ヘキサン/酢酸エチル)精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(ヒドロキシメチル)フェニル]−L−フェニルアラニンエチルエステル(1.86g)を得た。ESMS:m/z 532(MH+)。
3)上記で得た生成物(1.8g)、CBr4(2.25g)、Ph3P(1.78g)の塩化メチレン(20mL)混合物を0℃で終夜撹拌した。溶媒を蒸発させ、残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜10%ヘキサン/酢酸エチル)精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(ブロモメチル)フェニル]−L−フェニルアラニンエチルエステル(0.9g)を得た。ESMS:m/z 596(MH+)。
4)上記で得た生成物(0.15g)およびMeNH2(2M THF溶液、0.8mL)の塩化メチレン(3mL)混合物を室温で4時間撹拌した。粗混合物をシリカゲルプレパラティブTLC(溶出液、塩化メチレン/エタノール (9.5:5)、数滴のNH4OHと併せて)精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(メチルアミノ)メチル]フェニル]−L−フェニルアラニンエチルエステル(45mg)を得た。ESMS:m/z 545(MH+)。
5)上記で得た生成物(0.093g)を製造例1−5)に記載の通りLiOH(2N溶液、0.175mL)を用いて加水分解して、標記化合物(75mg)を得た。融点274℃;ESMS:m/z 517(MH+)。
MeNH2を必要なアミンに置き換える以外は、製造例242に記載と類似の様式で以下の化合物(製造例243〜252)を製造した。
【0289】
【表20】
Figure 0003795305
【0290】
製造例253:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(チオモルホリノメチル)フェニル]−L−フェニルアラニン
1)2,6−ジメトキシ−4−(チオモルホリノメチル)ベンゼンボロン酸(1.1g)、N−(2,6−ジクロロベンゾイル)−4−ブロモ−L−フェニルアラニンエチルエステル(0.71g)、Pd(PPh3)4(1.0g)および炭酸カリウム(1.00g)のDME/水(10mL/0.5mL)混合物を、窒素下80℃で6時間加熱した。混合物をワークアップし、製造例8−3)に記載の製法に従って精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(チオモルホリノメチル)フェニル]−L−フェニルアラニンエチルエステル(0.15g)を得た。融点86〜89℃;ESMS:m/z 616(MH+)、塩酸塩:融点204〜205℃。
2)上記で得た生成物(0.15g)を製造例1−5)に記載の通りLiOHを用いて加水分解して、標記化合物(120mg)を得た。ESMS:m/z 588(MH+)。
以下の化合物(製造例254〜261)を、製造例242または253の記載と同様の様式で、必要な出発物質から製造した。
【0291】
製造例254:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(ジエチルアミノ)メチル]フェニル]−L−フェニルアラニン;ESMS:m/z 559(MH+)。
【0292】
製造例255:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(N,N−ジメチルアミノ)メチル]フェニル]−L−フェニルアラニン;ESMS:m/z 531(MH+)。
【0293】
製造例256:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(ピペリジノメチル)フェニル]−L−フェニルアラニン;ESMS:m/z 571(MH+)。
【0294】
製造例257:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(モルホリノメチル)フェニル]−L−フェニルアラニン;ESMS:m/z 573(MH+)。
製造例258:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(4−ベンジル−1−ピペラジニル)メチル]フェニル]−L−フェニルアラニン;ESMS:m/z 662(MH+)。
【0295】
製造例259:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(N,N−ジメチルアミノ)メチル]フェニル]−L−フェニルアラニンエチルエステル・塩酸塩;ESMS:m/z 560(MH+);融点146.5℃。
【0296】
製造例260:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(ピペリジノメチル)フェニル]−L−フェニルアラニンエチルエステル・塩酸塩;ESMS:m/z 600(MH+);融点205.5℃。
【0297】
製造例261:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(モルホリノメチル)フェニル]−L−フェニルアラニンエチルエステル・塩酸塩;ESMS:m/z 601(MH+);融点177.5℃。
【0298】
製造例262:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(1−ピペラジニル)メチル]フェニル]−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(4−t−ブトキシカルボニル−1−ピペラジニル)メチル]フェニル]−L−フェニルアラニンエチルエステルを、2,6−ジメトキシ−4−(チオモルホリノメチル)ベンゼンボロン酸を2,6−ジメトキシ−4−[(4−t−ブトキシカルボニル−1−ピペラジニル)メチル]ベンゼンボロン酸に置き換える以外は製造例253の記載と同様の方法で得た。
2)上記で得た生成物(0.09g)の塩化メチレン/TFA(5mL/3mL)溶液を室温で3時間撹拌した。混合物を蒸発させ、残渣を酢酸エチルおよび飽和炭酸水素ナトリウムで分配した。酢酸エチル層を水洗し、乾燥、蒸発させてN−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(1−ピペラジニル)メチル]フェニル]−L−フェニルアラニンエチルエステル(70mg)を得た。ESMS:m/z 600(MH+)。
3)上記で得た生成物を製造例1−5)の記載と同様の方法で加水分解して、標記化合物(50mg)を得た。ESMS:m/z 572(MH+)。
【0299】
製造例263:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(チオモルホリノメチル)フェニル]−L−フェニルアラニンS−オキシド(263B)およびN−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(チオモルホリノメチル)フェニル]−L−フェニルアラニンS,S−ジオキシド(263B)
1)N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(チオモルホリノメチル)フェニル]−L−フェニルアラニンエチルエステル(0.1g)の塩化メチレン(3mL)溶液に窒素下−10℃で、mCPBA(40mg)を加え、混合物を2時間撹拌した。混合物を塩化メチレンで希釈し、飽和炭酸水素ナトリウムおよび食塩水で洗浄し、乾燥、蒸発させ、プレパラティブTLC精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(チオモルホリノメチル)フェニル]−L−フェニルアラニンエチルエステルS−オキシド(49mg;ESMS:m/z 633(MH+))およびN−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(チオモルホリノメチル)フェニル]−L−フェニルアラニンエチルエステルS,S−ジオキシド(10mg;ESMS:m/z 649(MH+))を得た。
2)上記で得た2生成物を製造例1−5)の記載と同様の方法で別々に加水分解して、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(チオモルホリノメチル)フェニル]−L−フェニルアラニンS−オキシド(17mg、融点162.8℃、ESMS:m/z 605(MH+))およびN−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(チオモルホリノメチル)フェニル]−L−フェニルアラニンS,S−ジオキシド(7mg;融点230℃(分解)、ESMS:m/z 649(MH+))を得た。
【0300】
製造例264:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[2−(4−メチル−1−ピペラジニル)エチル]フェニル]−L−フェニルアラニン
1)2,6−ジメトキシ−4−(2−ヒドロキシエチル)ベンゼンボロン酸をN−(2,6−ジクロロベンゾイル)−4−ブロモ−L−フェニルアラニンエチルエステルと製造例8−3)に記載の製法に従ってカップリング反応させて、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(2−ヒドロキシエチル)フェニル]−L−フェニルアラニンエチルエステル(1.3g)を得た。ESMS:m/z 546(MH+)。
2)上記で得た生成物(1.25g)を塩化メチレンに溶解し、Ph3P(907mg)を加え、次いで溶液を0℃にまで冷却した。CBr4(1.14g)を該混合物に加え、混合物を0℃で2時間撹拌した。混合物を水/酢酸エチル(各20mL)で分配した。有機層を分離し、水層を酢酸エチル(3×20mL)で抽出した。有機層を併せて硫酸マグネシウムで乾燥し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(3:7))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(2−ブロモエチル)フェニル]−L−フェニルアラニンエチルエステル(1.1g)を得た。ESMS:m/z 610(MH+)。
3)上記で得た生成物(200mg)を塩化メチレン(3mL)に溶解し、N−メチルピペラジン(0.11mL)を加えた。混合物を室温で40時間撹拌し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、塩化メチレン/エタノール(96:4))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[2−(4−メチル−1−ピペラジニル)エチル]フェニル]−L−フェニルアラニンエチルエステル(113mg)を得た。ESMS:m/z 628(MH+)。
4)上記で得た生成物を製造例1−5)に記載の通りLiOHを用いて加水分解して、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[2−(4−メチル−1−ピペラジニル)エチル)フェニル]−L−フェニルアラニンを得た。融点178.9℃。ESMS:m/z 600(MH+)。
【0301】
製造例265:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(2−ピペリジノエチル)フェニル]−L−フェニルアラニン
N−メチルピペラジンをピペリジンに置き換える以外は、製造例264の記載と同様の様式で標記化合物を合成した。融点194.9℃。 ESMS:m/z 585(MH+)。
【0302】
製造例266:N−(2,6−ジクロロチオベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.25g)およびローエッセン試薬(2,4−ビス(4−メトキシフェニル)−1,3−ジチア−2,4−ジホスフェタン−2,4−ジスルフィド;0.21g)のキシレン(10mL)混合物を終夜還流した。混合物を約50℃まで冷却し、水(15mL)を加え、2時間還流した。混合物を室温で終夜撹拌し、蒸発させた。残渣を酢酸エチルと水で分配した。酢酸エチル層を水洗し、乾燥、蒸発させて、N−(2,6−ジクロロチオベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.25g)を得た。ESMS:m/z 504 (MH+)。
2)上記で得た生成物を製造例1−5)に記載の通りLiOHを用いて加水分解した。粗生成物をシリカゲルカラムクロマトグラフィー(溶出液、塩化メチレン/メタノール(95:5)〜塩化メチレン/メタノール/AcOH(95:5:0.1))精製を行なって、標記化合物(25mg)を得た。融点180.4℃、ESMS:m/z 490(MH+)。
【0303】
製造例267:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンN−(メチルスルホニル)アミド
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン(0.1g)のTHF(5mL)溶液に窒素下0℃で、塩化オキサリル(0.055mL)、続いてDMF1滴を加えた。溶液を0℃で2時間、続いて室温で2時間撹拌した。THFを蒸発させ、新しいTHF(5mL)を加え、溶液を再度蒸発させた。本工程をさらにもう1回繰り返し、残渣を真空乾燥してN−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニルクロリドを得た。
2)上記で得た生成物のTHF(10mL)溶液にMeSO2NH2(0.0292g)、続いてDBU(0.035mL)を加えた。混合物を室温で4時間撹拌し、2時間加熱還流した。混合物を蒸発させ、残渣をシリカゲルカラムクロマトグラフィー(溶出液、塩化メチレン〜3%塩化メチレン/メタノール))精製、および塩化メチレン/ジエチルエーテルから再結晶を行なって、標記化合物(25mg)を得た。ESMS:m/z 551(MH+)。
【0304】
製造例268:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンN−ヒドロキシアミド
炭酸水素ナトリウム(0.21g)をNH2OH・塩酸塩(0.14g)のTHF/水(各5mL)溶液に0℃で加え、混合物を1/2時間撹拌した。N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニルクロリド(0.1g)のTHF(5mL)溶液を該混合物に0℃で加え、混合物を室温で終夜撹拌した。混合物を酢酸エチルおよび水で分配した。酢酸エチル層を1N塩酸および食塩水で順次洗浄し、乾燥、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、8%塩化メチレン/メタノール)精製を行なって、標記化合物(27mg)を得た。ESMS:m/z 489(MH+)。
【0305】
製造例269:N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンN−ヒドロキシアミド
1)N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニン(0.098g)およびt−ブチルヒドロキシルアミン(0.047g)の塩化メチレン(5mL)溶液に、BOP試薬(0.17g)、続いてDIEA(0.1mL)を加え、混合物を室温で終夜撹拌した。混合物を蒸発させ、残渣を酢酸エチル(30mL)に溶解した。酢酸エチル溶液を1N 塩酸、飽和炭酸水素ナトリウム、飽和LiClで順次洗浄し、硫酸マグネシウムで乾燥、濃縮した。残渣をシリカゲルプレパラティブTLC(溶出液、ヘキサン/酢酸エチル/塩化メチレン(6:1:1))精製および塩化メチレン/ヘキサンから再結晶を行なって、N−(2,6−ジクロロベンゾイル)−4−(2−メトキシフェニル)−L−フェニルアラニンN−(t−ブチル)−N−ヒドロキシアミド(74mg)を得た。ESMS:m/z 515(MH+)。
2)上記で得た生成物(0.030g)の塩化メチレン/TFA(各3mL)溶液を室温で72時間撹拌した。混合物を蒸発させ、残渣をシリカゲルカラムクロマトグラフィー(溶出液、塩化メチレン〜5%塩化メチレン/メタノール)精製を行なって、標記化合物(10mg)を得た。ESMS:m/z 459(MH+)。
【0306】
製造例270:(1S)−N−(2,6−ジクロロベンゾイル)−2−[4−(2,6−ジメトキシフェニル)フェニル]−1−(1H−テトラゾール−5−イル)エチルアミン
標記化合物をJ. Med. Chem., 41, 1513-1518, 1998に記載の製法に従って製造した。
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン(0.17g)、HOBT(0.08g)、DIEA(0.19mL)および2−シアノエチルアミン(0.03mL)のDMF(5mL)溶液を窒素下室温で撹拌した。10分後、EDC(0.14g)を加え、混合物を窒素下室温で撹拌した。混合物を水で希釈し、酢酸エチルで抽出した。抽出液を水、1N 塩酸、飽和炭酸水素ナトリウムおよび食塩水で順次洗浄し、乾燥、蒸発させて、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンN−(2−シアノエチル)アミド(0.17g)を得た。ESMS:m/z526(MH+)。
2)Ph3P(0.21g)を上記で得た生成物(0.17g)のアセトニトリル(10mL)溶液に加えた。混合物を0℃まで冷却し、DIAD(0.16mL)およびTMSN3(0.11mL)を加えた。混合物を室温まで昇温させ、40℃で1時間加熱し、室温まで冷却、終夜撹拌した。混合物を酢酸エチルおよび水で分配した。有機層を飽和炭酸水素ナトリウム、続いて食塩水で洗浄し、硫酸マグネシウムで乾燥、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:1))精製を行なって、(1S)−N−(2,6−ジクロロベンゾイル)−2−[4−(2,6−ジメトキシフェニル)フェニル]−1−[1−(2−シアノエチル)−1H−テトラゾール−5−イル]エチルアミン(0.076mg)を得た。ESMS:m/z 551(MH+)。
3)上記で得た生成物(0.073g)のクロロホルム(5mL)溶液に、DBU(0.059mL)を加え、混合物を窒素下室温で48時間撹拌した。混合物を酢酸エチルで希釈し、1N 塩酸および食塩水で洗浄、乾燥し、蒸発させて標記化合物(0.067g)を得た。ESMS:m/z 498(MH+)。
以下の化合物(製造例271〜274)を、製造例270−1)の記載と同様の製法で製造した。
【0307】
製造例271:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン2−(ジメチルアミノ)エチルエステル;ESMS:m/z 582(MH+)。
【0308】
製造例272:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン2−ピリジルメチルエステル;ESMS:m/z 582(MH+)。
【0309】
製造例273:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン3−ピリジルメチルエステル;ESMS:m/z 582(MH+)。
【0310】
製造例274:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン4−ピリジルメチルエステル;ESMS:m/z 582(MH+)。
【0311】
製造例275:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンイソプロピルエステル
塩化水素ガスをN−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン(0.15g)のTHF/2−プロパノール(2/5mL)溶液に15分間吹込み、溶液を室温で終夜撹拌した。混合物を塩化水素ガスで飽和にし、室温で終夜放置し、蒸発させた。残渣を酢酸エチルおよび水で分配した。酢酸エチル層を水洗し、乾燥、蒸発させ、残渣をカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:1))精製およびヘキサン/ジエチルエーテル(5:0.5)でトリチュレートして標記化合物(0.1g)を得た。ESMS:m/z 516(MH+)。
【0312】
製造例276:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンシクロヘキシルエステル
標記化合物を製造例275に類似の様式で、2−プロパノールをシクロヘキサノールに置き換えて製造した。ESMS:m/z 556(MH+)。
2,6−ジクロロ安息香酸または塩化2,6−ベンゾイルを適当な置換安息香酸またはその酸クロリドで置き換える以外は、製造例1または2の記載と同様の方法で以下の化合物(製造例277〜286)を製造した。
【0313】
【表21】
Figure 0003795305
【0314】
以下の化合物(製造例287〜290)を、製造例2に記載と類似の様式で、(S)−2−フェニルプロピオン酸を適当な置換2−クロロ安息香酸に置き換えて製造した。
【0315】
【表22】
Figure 0003795305
【0316】
製造例291:N−[2−クロロ−4−(2−ヒドロキシメチル−1−ピロリル)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニン
N−[2−クロロ−4−(2−ホルミル−1−ピロリル)ベンゾイル]−4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステルから、NaBH4を用いた還元、続いて製造例50に記載の通りLiOHを用いてけん化して標記化合物を得た。ESMS:m/z 503(M−H)-
以下の化合物(製造例292〜293)を、製造例2の記載と同様の方法で製造した。
【0317】
【表23】
Figure 0003795305
【0318】
製造例294:N−(2,6−ジクロロベンゾイル)−3−[5−(2,6−ジメトキシフェニル)−2−チエニル]−L−アラニン
1)N−(9−フルオレニルメトキシカルボニル)−3−(5−ブロモ−2−チエニル)−L−アラニン(813mg)をエタノール(15mL)に溶解し、塩化水素(ガス)を該溶液に0℃で5分間吹込んだ。混合物を50℃まで加温し、1時間撹拌した。室温まで冷却後、溶媒を蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜ヘキサン/酢酸エチル(1:1))精製を行なって、N−(9−フルオレニルメトキシカルボニル)−3−(5−ブロモ−2−チエニル)−L−アラニンエチルエステル(767mg)を得た。ESMS:m/z 500(MH+)。
2)ピペリジン(1mL)を上記で得た生成物(758mg)の塩化メチレン(10mL)溶液に加えた。混合物を45℃まで加温し、2時間撹拌、蒸発させた。残渣を塩化メチレン(10mL)およびEt3N(1.1mL)に溶解した。本溶液に、塩化2,6−ジクロロベンゾイル(240μL)を加え、混合物を室温で終夜撹拌した。1N 塩酸(20mL)を加え、混合物を酢酸エチルで抽出した。抽出液を乾燥(Na2SO4)し、濾過、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜ヘキサン/酢酸エチル(1:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−3−(5−ブロモ−2−チエニル)−L−アラニンエチルエステル(650mg)を得た。ESMS:m/z 450(MH+)。
3)標記化合物を製造例7−2)および3)に記載の製法に従って、上記で得た生成物から製造した。ESMS:m/z 480(MH+)、融点134℃(分解)。
【0319】
製造例295:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−ホモフェニルアラニン
標記化合物を製造例5の記載と同様の様式で製造した。ESMS:m/z 488(MH+)、融点105〜107℃。
【0320】
製造例296:N−(2,6−ジクロロベンゾイル)−3−エチル−4−(2−メトキシフェニル)−L−フェニルアラニン
N−(2,6−ジクロロベンゾイル)−3−(1−ヒドロキシエチル)−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(0.08g)のアセトニトリル(3mL)溶液に0℃で、Et3SiH(0.075mL)、続いてBF3・エーテレート(0.0197mL)を加えた。混合物を室温まで昇温し、1時間撹拌した。CH3OH/水を用いて反応を停止させ、混合物を塩化メチレンで抽出した。有機層を硫酸マグネシウムで乾燥し、濾過、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、酢酸エチル/ヘキサン(1:2))精製を行なって、N−(2,6−ジクロロベンゾイル)−3−エチル−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(39mg)を得た。ESMS:m/z 500(MH+)。
2)上記で得た生成物を製造例1−5)に記載の通りLiOHを用いて加水分解して、標記化合物(30mg)を得た。融点105〜107℃、ESMS:m/z 472(MH+)。
【0321】
製造例297:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−3−アセチルアミノ−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−3−ニトロ−L−フェニルアラニンエチルエステルを、製造例1の記載と同様の様式で、N−(t−ブトキシカルボニル)−L−チロシンエチルエステルをN−t−ブトキシカルボニル−3−ニトロ−L−チロシンエチルエステルで置き換えて製造した。
2)上記で得た生成物(1.07g)を窒素下メタノール(15mL)に溶解した。ラネーニッケル(100mg)を加え、H2ガスを該混合物中に15分間吹込んだ。H2下撹拌を6時間続けた。混合物をセライト濾過し、メタノールで洗浄し、濾液を蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜ヘキサン/酢酸エチル(1:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−3−アミノ−L−フェニルアラニンエチルエステル(845mg)を得た。ESMS:m/z 503(MH+)。
3)上記で得た生成物(119mg)を塩化メチレン(1mL)およびピリジン(57μL)に溶解した。本溶液に、無水酢酸(45μL)を加え、混合物を室温で18時間撹拌した。混合物を蒸発させ、残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜酢酸エチル)精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−3−アセチルアミノ−L−フェニルアラニンエチルエステル(127mg)を得た。ESMS:m/z 545(MH+)。
4)上記で得た生成物(126mg)を製造例1−5)に記載の通りLiOHを用いて加水分解して、標記化合物(98mg)を得た。融点142〜144℃;ESMS:m/z 531(MH+)。
以下の化合物(製造例298〜299)を製造例297の記載と同様の製法で製造した。
【0322】
【表24】
Figure 0003795305
【0323】
製造例300:N−(2,6−ジクロロベンゾイル)−3−(2−オキソ−1−ピロリジニル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
1)N−(2,6−ジメトキシベンゾイル)−3−ニトロ−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(1.07g)のメタノール(15mL)溶液に、ラネーニッケル(100mg)を加え、H2ガスを該混合物中に15分間吹込んだ。混合物をセライト濾過し、濾液を減圧下で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜ヘキサン/酢酸エチル(1:1))精製を行なって、N−(2,6−ジクロロベンゾイル)−3−アミノ−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(845mg)を得た。ESMS:m/z 503(MH+)。
2)上記で得た生成物(122mg)の塩化メチレン(1mL)およびピリジン(78μL)溶液に、塩化4−クロロブチリル(54μL)を加えた。混合物を室温で12時間撹拌し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜酢酸エチル)精製を行なって、N−(2,6−ジクロロベンゾイル)−3−(4−クロロブチリルアミノ)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(56mg)を得た。ESMS:m/z 607(MH+)。
3)上記で得た生成物(56mg)のDMF(1mL)溶液に、NaH(11mg、60%油中)を加え、混合物を室温で30分間撹拌した。1N 塩酸を該混合物に加え、混合物を酢酸エチルで抽出した。抽出液を乾燥(Na2SO4)し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、塩化メチレン〜10%メタノール/塩化メチレン)精製を行なって、標記化合物(23mg)を得た。ESMS:m/z 557(MH+)。
【0324】
以下の化合物(製造例301〜302)を、製造例2の記載と同様の様式で、2−フェニルピロピオン酸を必要な安息香酸に、および4−(2−メトキシフェニル)−L−フェニルアラニンメチルエステル・塩酸塩を4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル・塩酸塩に置き換えて製造した。
【0325】
製造例301:N−(2,6−ジクロロ−4−フェニルベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
ESMS:m/z 550(MH+);融点215℃。
【0326】
製造例302:N−[2,6−ジクロロ−4−(1−メチル−2−ピロリル)ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
ESMS:m/z 553(MH+)、融点199℃。
【0327】
製造例303:N−[4−(2−ピロリル)−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
1)N−(4−ブロモ−2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.410g)を1−t−ブトキシカルボニル−2−ピロールボロン酸(0.930g)/THF(10mL)と製造例7−2)に記載の通りカップリング反応させて、N−[4−(1−t−ブトキシカルボニル−2−ピロリル)−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.435g)を得た。ESMS:m/z 653(MH+)。
2)上記で得た化合物を製造例1−3)に記載の通りTFAで処理して、N−[4−(2−ピロリル)−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.198g)を得た。ESMS:m/z 553(MH+)。
3)上記で得た生成物(0.170g)を、製造例1−5)に記載の通りLiOHを用いて加水分解して、標記化合物(0.127g)を得た。ESMS:m/z 539(MH+)、融点250℃。
【0328】
製造例304:N−[4−(5−ピラゾリル)−2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
1)N−(4−ブロモ−2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.240g)を、1−[[2−(トリメチルシリル)エトキシ]メチル]−5−ピラゾールボロン酸(0.343g)のTHF(10mL)溶液と製造例7−2)に記載の通りカップリング反応させて、N−[4−[1−[[2−(トリメチルシリル)エトキシ]メチル]−5−ピラゾリル]−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.277g)を得た。ESMS:m/z 684(MH+)および682(M−H)-
2)上記で得た生成物(0.277g)のメタノール(10mL)溶液に、濃塩酸(0.20mL)を加え、3時間後に2回目の濃塩酸(0.20mL)を加えた。室温で終夜撹拌後、混合物を濃縮した。残渣を酢酸エチルに溶解し、炭酸水素ナトリウムおよび食塩水で洗浄し、硫酸ナトリウムで乾燥、濾過し、濃縮した。残渣をシリカゲルプレパラティブTLC(溶出液、ヘキサン〜ヘキサン/酢酸エチル(1:1))精製を行なって、N−[4−(5−ピラゾリル)−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.148g)を得た。ESMS:m/z 554(MH+)。
3)上記で得た生成物を製造例1−5)に記載の通り加水分解して、標記化合物(0.133g)を得た。ESMS:m/z 540(MH+)および652(M-+TFA)、融点156℃。
【0329】
製造例305:N−[3−(3,5−ジメチル−4−イソキサゾリル)−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン標記化合物を、製造例303の記載と同様の様式で、N−(3−ブロモ−2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステルから出発して製造した。MS:m/z 569(MH+)、融点144.8℃。
【0330】
製造例306:N−[4−(1,3−チアゾ−ル−2−イル)−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
1)N−(4−ブロモ−2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(0.240g)のトルエン(10mL)溶液に、2−トリブチルスタニオ−1,3−チアゾール(0.52g)およびPd(PPh3)4(0.11g)を加え、溶液を窒素下80℃まで24時間加熱した。ワークアップし、製造例135−3)の記載と同様の様式で精製してN−[4−(1,3−チアゾール−2−イル)−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(30mg)を得た。ESMS:m/z 571(MH+)。
2)上記で得た生成物を製造例1−5)の記載と同様の方法で加水分解して、標記化合物(22.7mg)を得た。ESMS:m/z 557(MH+)、融点141.9℃。
【0331】
製造例307:N−[4−(1,3−チアゾール−4−イル)−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
標記化合物を、製造例306と類似の様式で、2−トリブチルスタニオ−1,3−チアゾールを4−トリブチルスタニオ−1,3−チアゾ−ルに置き換えて製造した。ESMS:m/z 557(MH+)および555(M-−H)、融点186.5℃。
【0332】
製造例308:N−[4−(2−ピラジニル)−2,6−ジクロロベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
標記化合物を、製造例306に記載と類似の様式で、2−トリブチルスタニオ−1,3−チアゾールを2−トリブチルスタニオピラジンに置き換えて製造した。ESMS:m/z 552(MH+)、融点145.7℃。
以下の化合物(製造例309〜318)を製造例303の記載と同様の方法で製造した。
【0333】
【表25】
Figure 0003795305
【0334】
製造例319:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−3−(モルホリノメチル)フェニル]−L−フェニルアラニン
1)2,6−ジメトキシ−3−(ヒドロキシメチル)ベンゼンボロン酸をN−(2,6−ジクロロベンゾイル)−4−ブロモ−L−フェニルアラニンエチルエステルと、製造例7−2)の記載と同様の方法でカップリング反応させて、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−3−(ヒドロキシメチル)フェニル]−L−フェニルアラニンエチルエステルを得た。
2)塩化チオニル(100mL)を上記で得た生成物(0.212mg)の塩化メチレン(5mL)の氷冷溶液に窒素下で加えた。混合物を室温で1時間撹拌し、蒸発させた。残渣を塩化メチレンに溶解し、蒸発させ、真空下で乾燥して粗生成物のN−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−3−(クロロメチル)フェニル]−L−フェニルアラニンエチルエステル(0.22g)を得た。
3)上記で得た生成物(0.22g)のDMF(5mL)溶液を、モルホリン(41mg)のEt3N(0.111mL)を含有したDMF(1mL)の氷冷溶液に窒素下で加えた。混合物を室温で14時間撹拌し、次いで酢酸エチルおよび水で分配した。酢酸エチル層を分離し、飽和炭酸水素ナトリウム、水および食塩水で順次洗浄し、乾燥、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル)精製を行なって、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−3−(モルホリノメチル)フェニル]−L−フェニルアラニンエチルエステル(0.186g)を得た。ESMS:m/z 601(MH+)。
4)上記で得た生成物を製造例1−5)の記載と同様の方法で加水分解して、標記化合物を得た。ESMS:m/z 573(MH+)、融点241〜242℃。
【0335】
製造例320:N−(2,6−ジクロロ−4−フルオロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
標記化合物を製造例2の記載と同様の方法で製造した。MS:m/z 492(MH+)、融点206〜207℃。
【0336】
製造例321:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(トリフルオロメチル)フェニル]−L−フェニルアラニン
標記化合物を製造例2の記載と同様の方法で製造した。
MS:m/z 542(MH+)、融点231〜232℃。
【0337】
製造例322:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−ブロモフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(1.01g)を窒素下塩化メチレン(40mL)に溶解し、三臭化テトラブチルアンモニウム(1.21g)を加え、混合物を室温で終夜撹拌した。さらに三臭化テトラブチルアンモニウム(0.55g)を加え、混合物を1日撹拌した。次いで、混合物を水洗(25mL)し、有機層を硫酸マグネシウムで乾燥、濾過、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサンおよび酢酸エチル)精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−ブロモフェニル)−L−フェニルアラニンメチルエステル(1.17g)を得た。
2)上記で得た生成物を製造例1−5)の記載と同様の様式で加水分解して、標記化合物を得た。MS:m/z 555(MH+)、融点205〜206℃。
【0338】
製造例323:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−アミノフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(1.59g)を窒素下THF(4mL)に溶解し、次いで70%HNO3(4mL)を加え、混合物を50℃で終夜撹拌した。混合物を酢酸エチル(150mL)で希釈し、水洗(100mL)した。有機層を硫酸マグネシウムで乾燥し、濾過、蒸発させた。残渣を無水メタノール(100mL)に溶解し、乾燥塩化水素ガスを該混合物中に0℃で数分間吹込んだ。混合物を室温で終夜撹拌し、濃縮、酢酸エチルに溶かし、1N 塩酸、飽和炭酸水素ナトリウムおよび食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥し、濾過、蒸発させた。粗生成物をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、ヘキサンおよび酢酸エチル)精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−ニトロフェニル)−L−フェニルアラニンメチルエステル(1.1g)を得た。
2)上記で得た生成物をエタノール(40mL)に溶解し、Na224(2.6g)/水(5mL)を加えた。混合物を2時間還流し、濃縮した。残渣を酢酸エチルを用いて溶かし、食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥し、濾過、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、ヘキサンおよび酢酸エチル)精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−アミノフェニル)−L−フェニルアラニンメチルエステル(0.31g)を得た。
3)上記で得た生成物を製造例1−5)の記載と同様の方法で加水分解して、標記化合物を得た。MS:m/z 542(MH+)、融点231〜232℃。
【0339】
製造例324:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−3−(メチルウレイド)フェニル]−L−フェニルアラニン
製造例70の記載と同様の製法で、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−アミノフェニル)−L−フェニルアラニンメチルエステルを、MeNCSの代わりにMeNCOと反応させて、標記化合物を得た。MS:m/z 546(MH+)、融点236〜237℃。
【0340】
製造例325:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−3−(アセチルアミノ)フェニル]−L−フェニルアラニン
製造例67の記載と同様の製法で、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−アミノフェニル)−L−フェニルアラニンメチルエステルと塩化アセチルを反応させて、標記化合物を得た。MS:m/z 531(MH+)、融点244〜245℃。
【0341】
製造例326:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−カルバモイルフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニンメチルエステル(150mg)を窒素下アセトニトリル(6mL)に溶解し、クロロスルホニルイソシアネート(45μL)を加え、混合物を室温で2.5時間撹拌した。混合物を濃縮し、1N 塩酸(8mL)を加えた。混合物を室温で終夜撹拌し、酢酸エチルで抽出、硫酸マグネシウムで乾燥、濾過して蒸発させた。粗生成物をシリカゲルプレパラティブTLC(溶出液、酢酸エチル)精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−3−カルバモイルフェニル)−L−フェニルアラニンメチルエステル(156mg)を得た。
2)上記で得た生成物を製造例1−5)の記載と同様の方法で加水分解して、標記化合物を得た。MS:m/z 517(MH+)、融点227〜228℃。
以下の化合物(製造例327〜328)を、製造例7の記載と同様の製法で各々7−ブロモ−2,3−ジヒドロベンゾ[b]フランおよび8−ブロモ−3,4−ジヒドロ−2H−ベンゾピラン(ケリガン,F.、マーチン,C.、トーマス,G.H.によるTet. Lett., 1998, 39, 2219-2222)から製造した。
【0342】
【表26】
Figure 0003795305
【0343】
製造例329:N−(2,6−ジクロロベンゾイル)−4−(1−t−ブトキシカルボニル−2−ピロリル)−L−フェニルアラニン
標記化合物を、製造例7の記載と同様の方法で、1−(t−ブトキシカルボニル)ピロール−2−ボロン酸(フロンティア サイエンティフィック(Frontier Scientific))を用いて製造した。MS:m/z 503(MH+)、融点98〜99℃。
【0344】
製造例330:N−(2,6−ジクロロベンゾイル)−4−(3,5−ジメチル−4−イソキサゾリル)−L−フェニルアラニン
標記化合物およびそのメチルエステル体を、製造例7の記載と同様の方法で製造した。MS:m/z 433(MH+)、融点119℃。
標記化合物のメチルエステル体:MS:m/z 447(MH+)、融点152℃。
【0345】
製造例331:N−(2,6−ジクロロ−3−ブロモベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン
標記化合物を、製造例322の記載と同様の方法で製造した。MS:m/z 553(MH-)、融点234.8℃。
以下の化合物(製造例332〜335)を製造例2の記載と同様の方法で製造した。
【0346】
【表27】
Figure 0003795305
【0347】
製造例335:N−[2−クロロ−4−(メタンスルホニルアミノ)ベンゾイル]−4−[2−(トリフルオロメチル)フェニル]−L−フェニルアラニン
標記化合物を製造例3の記載と同様の様式で製造した。MS:m/z 541(MH+)、融点114℃。
【0348】
製造例336:N−(2,6−ジクロロベンゾイル)−3−クロロ−4−(2−メトキシフェニル)−L−フェニルアラニン
標記化合物を製造例1の記載と同様の方法で、N−(t−ブトキシカルボニル)−3−クロロ−L−チロシンメチルエステルを用いて製造した。ESMS:m/z479(MH+)、融点131℃。
以下の化合物(製造例337〜339)を製造例71の記載と同様の方法で製造した。
【0349】
【表28】
Figure 0003795305
【0350】
以下の化合物(製造例340〜342)を製造例73の記載と同様の製法で製造した。
【0351】
【表29】
Figure 0003795305
【0352】
製造例343:N−(2,6−ジクロロベンゾイル)−3−アセチルアミノ−4−フェニル−L−フェニルアラニン
標記化合物を製造例80の記載と同様の製法で製造した。ESMS:m/z 471(MH+)。
以下の化合物(製造例344〜345)を製造例64の記載と同様の製法で、クロロギ酸エチルを用いて製造した。
【0353】
【表30】
Figure 0003795305
【0354】
製造例346:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−4−ヒドロキシエチル)−L−フェニルアラニン
1)2,6−ジメトキシ−4−(t−ブチルジフェニルシリルオキシ)ベンゼンボロン酸(3g)、N−(2,6−ジクロロベンゾイル)−4−ブロモ−L−フェニルアラニンエチルエステル(0.8g)、Pd(PPh3)4(1g)および炭酸カリウム(2.1g)のDME/水(20mL/0.5mL)混合物を窒素下80℃で6時間加熱した。混合物を酢酸エチルで希釈し、水洗、乾燥し、蒸発させた。残渣を酢酸エチル中に溶解し、溶液をシリカゲルカラムで濾過し、蒸発させた。残渣をTHF中に溶解し、TBAF(1.6M THF溶液、4mL)を加えた。混合物を室温で1時間撹拌し、水で希釈、酢酸エチルで抽出した。抽出液を水洗し、乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:2))精製を行なって、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−4−ヒドロキシフェニル)−L−フェニルアラニンエチルエステル(0.5g)を得た。ESMS:m/z 490(MH+)。
2)上記で得た生成物(0.05g)を製造例1−5)の記載と同様の方法でLiOHを用いて加水分解して、標記化合物(0.4g)を得た。ESMS:m/z 490(MH+)。
以下の化合物(製造例347〜350)を、製造例32の記載と同様の製法で製造した。
【0355】
【表31】
Figure 0003795305
【0356】
製造例351:N−(2,6−ジクロロベンゾイル)−3−[1−(ヒドロキシイミノ)エチル]−4−(2−メトキシフェニル)−l−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−3−アセチル−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(0.15g)のn−ブタノール(5mL)溶液にヒドロキシアミン塩酸塩(23mg)および酢酸ナトリウム(40mg)を加えた。混合物を6時間還流し、蒸発させた。得られた残渣を塩化メチレンで希釈し、1N塩酸で洗浄し、乾燥、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、酢酸エチル/ヘキサン(1:1))で精製して、N−(2,6−ジクロロベンゾイル)−3−[1−(ヒドロキシイミノ)エチル]−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステルを得た。ESMS:m/z 490(MH+)。
2)上記で得た生成物をLiOHで製造例1−5)と同様に加水分解して標記化合物を得た。ESMS:m/z 501(MH+)。
【0357】
製造例352:N−(2,6−ジクロロベンゾイル)−3−[1−(メトキシイミノ)エチル]−4−(2−メトキシフェニル)−L−フェニルアラニン
1)N−(2,6−ジクロロベンゾイル)−3−アセチル−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(0.12g)のエタノール(5mL)溶液にメトキシアミン塩酸塩(24mg)およびDIEA(60mg)を加えた。混合物を2時間還流し、蒸発させた。得られた残渣を酢酸エチルで希釈し、1N塩酸で洗浄し、乾燥、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、酢酸エチル/ヘキサン(2:1))で精製して、N−(2,6−ジクロロベンゾイル)−3−[1−(メトキシイミノ)エチル]−4−(2−メトキシフェニル)−L−フェニルアラニンエチルエステル(0.058g)を得た。ESMS:m/z 534(M−H)-
2)上記で得た生成物をLiOHで製造例1−5)と同様に加水分解して標記化合物(0.04g)を得た。ESMS:m/z 513(M−H)-、融点:106.8℃。
【0358】
下記の化合物(製造例353−356)を上記製造例の1例と同様にして合成した。
【表32】
Figure 0003795305
【0359】
製造例357:N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(スクシンイミドメチル)フェニル]−L−フェニルアラニン
1)DEAD(0.13mL)をN−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(ヒドロキシメチル)フェニル]−L−フェニルアラニンt−ブチルエステル(250mg)、トリフェニルホスフィン(175mg)およびスクシンイミド(90mg)のTHF(3mL)氷冷溶液に窒素下加えた。混合液を0℃で30分間攪拌し、室温まで昇温し、2時間攪拌した。混合液を水と酢酸エチルに分液し、水層を酢酸エチルで抽出した。集めた有機層を硫酸マグネシウムで乾燥し、真空濃縮した。残渣をシリカゲル分取用TLC(溶出液、酢酸エチル/ヘキサン(1:1))で精製して、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(スクシンイミドメチル)フェニル]−L−フェニルアラニンt−ブチルエステル(138mg)を得た。
2)TFA(2mL)を上記で得た生成物(120mg)の塩化メチレン(4mL)溶液に加えた。混合液を室温で3日間攪拌し、真空濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶出液、塩化メチレン/メタノール(95:5))で精製してエタノール/水で再結晶して標記化合物(61mg)を得た。融点:137℃、ESMS:m/z 608[M+Na]+
【0360】
製造例358:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシ−4−[(3−メチル−2,5−ジオキソ−1−イミダゾリジニル)メチル]フェニル]−L−フェニルアラニン
スクシンイミドを1−メチルヒダントインに代えた以外は、製造例357と同様にして標記化合物を得た。融点:248℃、ESMS:m/z 624[M+Na]+
【0361】
製造例359:N−(2,6−ジクロロベンゾイル)−4−(6−メトキシ−2−ヒドロキシフェニル)−L−フェニルアラニン
N−(2,6−ジクロロベンゾイル)−4−(6−メトキシ−2−ヒドロキシフェニル)−L−フェニルアラニンエチルエステルを、製造例1−5)と同様にしてLiOHと加水分解して、標記化合物を得た。融点:224.4℃、ESMS:m/z460(MH+)、458(M−H)-
【0362】
製造例360:N−(2,6−ジクロロベンゾイル)−4−(2,6−ジヒドロキシフェニル)−L−フェニルアラニン
1)2,6−ジ(メトキシメトキシ)ベンゼンボロン酸(0.25g)を製造例5−3)と同様にして、N−(2,6−ジクロロベンゾイル)−O−(トリフルオロメタンスルホニル)−L−チロシンエチルエステルとカップリングして、N−(2,6−ジクロロベンゾイル)−4−[2,6−ジ(メトキシメトキシ)フェニル]−L−フェニルアラニンエチルエステルを得た。ESMS:m/z 562(MH+)。
2)上記で得た生成物(0.076g)のエタノール(5mL)溶液に塩酸(4Nジオキサン溶液、1.2mL)を加え、混合物を窒素下4時間室温で攪拌した。混合液を蒸発させてN−(2,6−ジクロロベンゾイル)−4−(2,6−ジヒドロキシフェニル)−L−フェニルアラニンエチルエステル(61.6mg)を得た。ESMS:m/z 474(MH+)。
3)上記で得た生成物(61.6mg)を製造例1−5)と同様にしてLiOH(33.8mg)と加水分解し、N−(2,6−ジクロロベンゾイル)−4−(2,6−ジヒドロキシフェニル)−L−フェニルアラニン(58.3mg)を得た。ESMS:m/z 446(MH+)、444(M−H)-、融点238℃。
【0363】
参考例
参考例1:2,6−ジクロロベンゼンボロン酸
1−ブロモ−2,6−ジクロロベンゼン(2.00g)を蒸留したばかりのTHF(7mL)に溶解した。この溶液を−78℃まで冷却し、n−BuLiの1.6Mヘキサン溶液(8.3mL)を窒素下冷却溶液に滴下した。混合物を−78℃で5分間攪拌し、(MeO)3B(2.2mL)を加えた。得られた混合液を室温まで放置して昇温し、一晩攪拌した。水を加え、得られた混合物を0.5時間攪拌し、ついで酢酸で酸性とし、酢酸エチルで抽出した。有機層をさらに水と食塩水で洗浄し、硫酸マグネシウムで乾燥、濾過し、留去して2,6−ジクロロベンゼンボロン酸(1.6g)を得た。
【0364】
参考例2:2,6−ジシアノベンゼンボロン酸
1,3−ジシアノベンゼン(1.00g)を蒸留したばかりのTHF(70mL)に溶解した。この溶液を−96℃に冷却し、窒素下LDAの2M溶液(4.2mL)を滴下した。混合物を−96℃で30分間攪拌し、(MeO)3B(1.3mL)を加えた。得られた混合物を室温まで放置して昇温し、一晩攪拌した。水を加え、得られた混合物を0.5時間攪拌し、ついで酢酸で酸性とし、酢酸エチルで抽出した。有機層を水と食塩水で洗浄し、硫酸マグネシウムで乾燥、濾過して蒸発させた。残渣を塩化メチレンに溶解し、濾過して、蒸発させて2,6−ジシアノベンゼンボロン酸(0.56g)を得た。
【0365】
参考例3:2,6−ジメトキシ−4−プロピルベンゼンボロン酸
1)エチルトリフェニルホスホニウムブロミド(4.69g)を無水THF(70mL)に溶解し、混合物を0−5℃まで冷却した。n−BuLiの2.5Mヘキサン溶液(5.05mL)を滴下し、得られた混合物を室温で3時間攪拌した。混合物を−78℃に冷却し、3,5−ジメトキシベンズアルデヒド(2g)の無水THF(14mL)溶液を加えた。混合物を室温まで放置して昇温し、一晩攪拌した。混合物を濃縮し、残渣を酢酸エチルに溶解し、水と食塩水で洗浄し、硫酸マグネシウムで乾燥、濾過して蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(10:1))で精製して、3,5−ジメトキシ−1−(1−プロペニル)ベンゼンをシス体とトランス体の混合物(2.15g)として得た。
2)上記で得た生成物をエタノール(60mL)に溶解し、10%Pd/C(215mg)を加えた。混合物を水素雰囲気下19時間攪拌した。混合物をシリカパッドに溶媒として塩化メチレンを用いて通し、留去して3,5−ジメトキシ−1−プロピルベンゼン(1.76g)を得た。
3)上記で得た生成物を、1,3−ジメトキシベンゼンを3,5−ジメトキシ−1−プロピルベンゼンに代える以外は、製造例7−(1)と同様にして処理して標記化合物を得た。
【0366】
参考例4:2,6−ジメトキシ−4−トリフルオロメチルベンゼンボロン酸
1)3−メトキシ−5−(トリフルオロメチル)アニリン(5g)を20%塩酸(200mL)に懸濁し、30分間攪拌し、0−5℃まで冷却し、NaNO2(2.17g)を少量ずつ加えてジアゾ化した。混合物を同温度で30分間攪拌し、沸騰水(200mL)中に滴下した。混合物を15分間還流し、室温まで放冷し、酢酸エチルで抽出し、硫酸マグネシウムで乾燥、濾過して蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサンおよび酢酸エチル)で精製して、3−メトキシ−5−(トリフルオロメチル)フェノール(3.6g)を得た。
2)上記で得た生成物をアセトン(20mL)に溶解し、炭酸カリウム(5.18g)と沃化メチル(1.75mL)を加えた。混合物を窒素下室温で2日間攪拌し、留去し、水(50mL)に溶解し、塩化メチレンで抽出、硫酸マグネシウムで乾燥、濾過し、留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(10:1〜1:1))で精製して、所望の3,5−ジメトキシ−α,α,α−トリフルオロトルエン(2.97g)を得た。
3)上記で得た生成物を、1,3−ジメトキシベンゼンを3,5−ジメトキシ−α,α,α−トリフルオロトルエンに代える以外は、製造例7−(1)と同様に処理して標記化合物を得た。
【0367】
参考例5:4−(1,3−ジオキソラン−2−イル)−2,6−ジメトキシベンゼンボロン酸
1)4−ブロモ−3,5−ジメトキシベンズアルデヒド(3g)をトルエン(50mL)とエチレングリコール(6.8mL)に溶解し、p−TSAの触媒量を加えた。混合物をディーンスターク蒸留装置を用い一晩還流し、蒸留した。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(5:1〜2:1))で精製して、4−ブロモ−3,5−ジメトキシベンズアルデヒドエチレンアセタール(2.63g)を得た。
2)上記で得た生成物を製造例7−(1)と同様にして処理して標記化合物を得た。
【0368】
参考例6:2,6−ジメトキシ−3−メトキシメトキシベンゼンボロン酸
1)窒素下無水炭酸カリウム(3.55g)のアセトン(10mL)溶液に2,4−ジメトキシフェノール(3.3g、J.O.C. 1984, 49, 4740)のアセトン(20mL)溶液を加えた。クロロメチルメチルエーテル(1.79mL)を滴下し、混合物を室温で18時間攪拌し、ついで50℃まで24時間加熱した。追加のクロロメチルメチルエーテル(1.79mL)を加え、混合物をさらに1日50℃で攪拌し、蒸発させた。残渣を水に溶解し、酢酸エチルで抽出した。抽出液を硫酸マグネシウムで乾燥、濾過して蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(20:1〜10:1))で精製して、1,3−ジメトキシ−4−メトキシメトキシベンゼン(1.18g)を得た。
2)上記で得た生成物を1,3−ジメトキシベンゼンを1,3−ジメトキシ−4−メトキシメチルオキシベンゼンに代える以外は、製造例7−(1)と同様にして処理して標記化合物を得た。
【0369】
参考例7:6−メトキシ−1,4−ベンゾジオキサン−5−イルボロン酸
1)1,4−ベンゾジオキサン−6−カルボキシアルデヒド(5.20g)を濃硫酸(0.6mL)含有メタノール(60mL)に溶解した。0℃で30%過酸化水素水溶液(4.7mL)を5分間かけて加えた。混合物を室温まで昇温し、さらに18時間攪拌後、蒸発させた。残渣を水に溶解し、塩化メチレンで抽出した。抽出物を硫酸ナトリウムで乾燥し、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜ヘキサン/酢酸エチル(3:1))で精製して、6−ヒドキシ−1,4−ベンゾジオキサン(3.85g)を得た。ESMS:m/z 153 MH+
2)上記で得た生成物(3.83g)、炭酸カリウム(7.0g)およびn−Bu4NI(186mg)のDMF(10mL)混合液にヨードメタン(2.3mL)を加え、混合物を室温で窒素下24時間攪拌し、濾過し、酢酸エチル(15mL)で3回洗浄した。濾液を食塩水で洗浄し、硫酸ナトリウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜ヘキサン/酢酸エチル(4:1))で精製して、6−メトキシ−1,4−ベンゾジオキサン(3.25g)を得た。ESMS:m/z 167(MH+)。
3)上記で得た生成物を製造例7−(1)と同様にして処理して標記化合物を得た。
【0370】
参考例8:6−メトキシ−2−メトキシメトキシベンゼンボロン酸
標記化合物を3−メトキシフェノールから参考例6と同様にして得た。
【0371】
参考例9:2,6−ジメトキシ−4−[(t−ブチルジフェニルシリルオキシ)メチル]ベンゼンボロン酸
1)3,5−ジメトキシベンジルアルコール(4.0g)、t−ブチル−ジフェニルシリルクロリド(6.54g)およびイミダゾール(3.28g)のDMF(60mL)混合物を室温で24時間攪拌した。DMFを留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜ヘキサンの20%酢酸エチル溶液)で精製して、3,5−ジメトキシ−1−[(t−ブチルジフェニルシリルオキシ)メチル]ベンゼン(8.5g)を得た。ESMS:m/z 407(MH+)。
2)上記で得た生成物を製造例7−(1)と同様にして処理して標記化合物を得た。ESMS:m/z 451(MH+)。
【0372】
参考例10:2,6−ジメトキシ−4−(チオモルホリノメチル)ベンゼンボロン酸
1)チオモルホリン(3.4g)を3,5−ジメトキシベンジルクロリド(2g)のTHF(25mL)溶液に加え、混合物を室温で一晩攪拌した。固体物を濾過して除き、濾液を蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:2))で精製して、3,5−ジメトキシ−1−(チオモルホリノメチル)ベンゼン(2g)を得た。ESMS:m/z 253(M)。
2)上記で得た生成物を製造例7−(1)と同様にして処理して標記化合物を得た。
【0373】
参考例11:2,6−ジメトキシ−4−[(4−t−ブトキシカルボニルピペラジニル)メチル]ベンゼンボロン酸
標記化合物を、チオモルホリンをN−(t−ブトキシカルボニル)ピペラジンに代える以外は参考例10と同様にして得た。
【0374】
以下の化合物(参考例12−17)を、チオモルホリンを必要なアミンに代える以外は参考例10と同様にして得た。
参考例12:2,6−ジメトキシ−4−[(ジエチルアミノ)メチル]ベンゼンボロン酸
参考例13:2,6−ジメトキシ−4−(ピペリジノメチル)ベンゼンボロン酸
参考例14:2,6−ジメトキシ−4−(モルホリノメチル)ベンゼンボロン酸
参考例15:2,6−ジメトキシ−4−[(4−ベンジル−1−ピペラジニル)メチル]ベンゼンボロン酸
参考例16:2,6−ジメトキシ−4−[(ジメチルアミノ)メチル]ベンゼンボロン酸
参考例17:2,6−ジメトキシ−4−[(4−t−ブトキシカルボニルピペラジニル)メチル]ベンゼンボロン酸
【0375】
参考例18:2,6−ジメトキシ−4−(2−ヒドロキシエチル)ベンゼンボロン酸
1)(3,5−ジメトキシ)フェニル酢酸(3g)のジエチルエーテル(100mL)溶液を0℃に冷却し、LiAlH4の1Mジエチルエーテル溶液(16.8mL)を加えた。混合物を室温まで昇温し、5時間攪拌し、pHを1M塩酸を用いてpH5に調整した。混合物を水/酢酸エチルで洗浄し、有機層を分離した。水層を酢酸エチルで抽出し、集めた有機層を硫酸マグネシウムで乾燥、真空濃縮して3,5−ジメトキシ−4−(2−ヒドロキシエチル)ベンゼン(2.8g)を粗生成物として得た。
2)上記で得た生成物を製造例7−(1)と同様にして処理して標記化合物を得た。
【0376】
参考例19:2,6−ジメトキシ−4−(t−ブチルジフェニルシリルオキシ)ベンゼンボロン酸
1)3,5−ジメトキシフェノール(4.0g)、t−ブチル−ジフェニルシリルクロリド(6.54g)およびイミダゾール(3.28g)のDMF(60mL)混合物を室温で24時間攪拌した。DMFを留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜ヘキサンの20%酢酸エチル溶液)で精製して、3,5−ジメトキシフェニル−t−ブチルジフェニルシリルエーテル(8.5g)を得た。ESMS:m/z 407(MH+)。
2)上記で得た生成物を製造例7と同様にして処理して標記化合物を得た。ESMS:m/z 451(MH+)。
【0377】
参考例20:2,6−ジメトキシ−4−ヒドロキシメチルベンゼンボロン酸
3,5−ジメトキシベンジルアルコールを製造例7と同様に処理して、標記化合物を得た。
【0378】
参考例21:2,6−ジメトキシ−3−ヒドロキシメチルベンゼンボロン酸
2,4−ジメトキシベンジルアルコールを製造例7と同様に処理して、標記化合物を得た。
【0379】
参考例22:1−ブロモ−2,4−ジメトキシ−6−シアノベンゼン
3,5−ジメトキシベンゾニトリル(2g)の塩化メチレン(100mL)溶液にピリジニウムトリブロミド(4g)を加えた。混合物を室温で24時間攪拌し、炭酸水素ナトリウム水溶液、水および食塩水で順次洗浄し、硫酸マグネシウムで乾燥、濾過し、蒸発させた。残渣を塩化メチレンとヘキサンから結晶化して標記化合物(1.8g)を得た。
【0380】
参考例23:N−アリル−N−t−ブトキシカルボニル−4−ブロモ−3,5−ジメトキシアニリン
1)3,5−ジメトキシアニリン(7.55g)を窒素下塩化メチレン(100mL)に溶解し、溶液を−78℃まで冷却した。テトラブチルアンモニウムトリブロミド(25g)の塩化メチレン(100mL)溶液を加え、混合物を同温度で45分間攪拌した。混合物を室温まで放置して昇温し、1.5時間攪拌し、1N塩酸で抽出した。抽出液を3N水酸化ナトリウムで中和し、酢酸エチルで抽出した。抽出液を硫酸マグネシウムで乾燥、濾過して、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(4:1〜2:3))で精製して、4−ブロモ−3,5−ジメトキシアニリン(3.76g)を得た。
2)上記で得た生成物(3g)を窒素下無水THF(25mL)に溶解し、DIEA(5.4mL)を加えた。ジ−t−ブチルジカーボネート(3.39g)の無水THF(20mL)溶液を加え、混合物を45℃で3.5日間攪拌した。溶媒を留去し、残渣を酢酸エチルに溶解し、1N塩酸、飽和炭酸水素ナトリウム溶液および食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥し、濾過し蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(4:1))で精製して、固体を得た。得られた固体物をヘキサンとトリチュレートして、残りのジ−t−ブチルジカーボネートを除き、N−t−ブトキシカルボニル−4−ブロモ−3,5−ジメトキシアニリン(3.67g)を濾過して単離した。
3)60%水素化ナトリウム(0.585g)を上記で得た生成物の無水THF/DMF(100/6mL)溶液に加え、混合物を数分攪拌した。アリルブロミド(1.13mL)を加え、混合物を室温で一晩攪拌し、濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(4:1))で精製して、標記化合物(3.96g)を得た。
【0381】
安息香酸類の合成:
参考例24:4−アミノ−2,6−ジクロロ安息香酸メチルエステル
1)2,6−ジクロロ−4−ニトロ安息香酸(12.8g、米国特許第3423475号)に無水塩化メチレン(60mL)とチオニルクロリド(40mL)を加え、ついで得られた混合物を19時間還流した。混合物を室温まで放冷し、蒸発させた。追加の塩化メチレン(10mL)を加え、ついで溶液を蒸発させた。メタノール(100mL)を残渣に加え、混合物を17時間還流した。混合物を室温まで放冷し、氷浴に入れた。沈澱した固体物を濾取し2,6−ジクロロ−4−ニトロ安息香酸メチル(10.8g、80%)を得た。
2)上記で得た生成物のエタノール(250mL)溶液にNa224(45g)の水(100mL)溶液を加えた。混合物を2時間還流し、室温で一晩攪拌し、濾過して、濃縮した。残渣を1N塩酸(250mL)に溶解し、2時間攪拌し、10%水酸化ナトリウムで中和して、酢酸エチルで抽出した。抽出液を硫酸マグネシウムで乾燥、濾過して、蒸発させた。残渣を酢酸エチル/ヘキサンで再結晶して標記化合物(7.48g)を得た。
【0382】
参考例25:4−ブロモ−2,6−ジクロロ安息香酸および4−ブロモ−2,6−ジクロロベンゾイルクロリド
1)4−アミノ−2,6−ジクロロ安息香酸メチルエステル(1.00g)を40%臭化水素酸水溶液に懸濁し、混合物を0−5℃に冷却した。亜硝酸ナトリウム(376mg)を少量づつ添加後、混合物を約5分間攪拌した。銅(100mg)を加え、混合物を100℃まで昇温した。混合物を100℃で30分間攪拌し、水で希釈し、酢酸エチルで抽出した。抽出液を硫酸マグネシウムで乾燥、濾過して蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(50:1))で精製して、4−ブロモ−2,6−ジクロロ安息香酸メチルエステル(1.07g)を得た。
2)上記で得た生成物(1.06g)をTHF/メタノール(6:1、50mL)に溶解し、1M水酸化リチウム(7.47mL)を加えた。混合物を1日還流し、蒸発させ、残渣を水(50mL)に溶解し、1N塩酸でpHを2以下に調整した。混合物を酢酸エチルで抽出し、硫酸マグネシウムで乾燥、濾過し、蒸発させて4−ブロモ−2,6−ジクロロ安息香酸(0.94g)を得た。
3)上記で得た生成物の塩化メチレン(20mL)溶液にチオニルクロリド(2.51mL)を加えた。混合物を5時間還流し、蒸発させて、塩化メチレンと共沸して4−ブロモ−2,6−ジクロロベンゾイルクロリドを得た。
【0383】
参考例26:2,6−ジクロロ−4−ヒドロキシ安息香酸
1)4−アミノ−2,6−ジクロロ安息香酸メチルエステル(0.5g)を20%塩酸(25mL)に懸濁し、混合物を30分間攪拌後、0−5℃に冷却した。亜硝酸ナトリウム(188mg)をゆっくりと添加後、混合物を同温度で30分間攪拌し、ついで沸騰水(50mL)に加えた。混合物を2時間還流し、室温まで放冷し、酢酸エチルで抽出、硫酸マグネシウムで乾燥、濾過し、蒸発させた。残渣をシリカゲルプレパラティブTLC(溶出液、塩化メチレン)で精製して、2,6−ジクロロ−4−ヒドロキシ安息香酸メチルエステル(275mg)を得た。
2)上記で得た生成物(265mg)のTHF/メタノール(6:1、25mL)溶液に、1M水酸化ナトリウム(3.6mL)を加え、混合物を1日還流した。1N水酸化ナトリウム(3.6mL)を加え、混合物をさらに1日還流した。混合物を蒸発させ、残渣を水に溶解し、1N塩酸でpH2以下とし、少量のメタノールを含有した酢酸エチルで抽出した。抽出液を硫酸マグネシウムで乾燥、濾過し、蒸発させて標記化合物(248mg)を得た。
【0384】
参考例27:2,6−ジクロロ−4−フルオロ安息香酸
1)4−アミノ−2,6−ジクロロ安息香酸メチルエステル(0.5g)を15%塩酸(10mL)に懸濁し、混合物を30分間攪拌後、0−5℃に冷却した。亜硝酸ナトリウム(188mg)を少量づつ添加後、混合物を同温度で30分間攪拌した。予め冷却したHBF4(0.46mL)を加え、混合物を30分間攪拌した。得られた沈澱物を集め、冷水、メタノールおよびエーテルで順次洗浄した。固体物をついで真空デシケーター内で濃硫酸を用いて数日乾燥した。固体をブンセンバーナーで、すべての固体が溶融するまで加熱した。得られたガス状物を水上で集めた(蒸留装置を用いて)。生成物をジエチルエーテルで回収した。溶媒を留去し、粗生成物をシリカゲルプレパラティブTLC(溶出液、ヘキサン/酢酸エチル(50:1〜20:1))で精製して2,6−ジクロロ−4−フルオロ安息香酸メチルエステル(241mg)を得た。
2)上記で得た生成物(233mg)の四塩化炭素溶液にTMSI(164mL)を加えた。混合物を窒素下50℃で2日間攪拌した。水を加え、混合物を1時間攪拌した。1N塩酸(25mL)を加え、混合物を酢酸エチルで抽出した。抽出液を硫酸マグネシウムで乾燥し、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、クロロホルム/メタノールの勾配溶出)で精製して標記化合物38mgを得た。
【0385】
参考例28:2−クロロ−4−(2−チアゾリニルアミノ)安息香酸
1)4−アミノ−2−クロロ安息香酸メチルエステル(0.5g)と2−クロロエチルイソチオシアネート(0.26mL)のTHF(20mL)混合物を24時間還流した。THFを留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(3:1〜1:1))で精製して、2−クロロ−4−(2−チアゾリニルアミノ)安息香酸メチルエステル(74mg)を得た。ESMS:m/z271(MH+)。
2)上記で得た生成物をLiOHと加水分解して標記化合物(43mg)を得た。ESMS:m/z 257(MH+)。
【0386】
参考例29:2−クロロ−4−(2−オキサゾリニルアミノ)安息香酸
1)4−アミノ−2−クロロ安息香酸メチルエステル(0.5g)と2−クロロエチルイソシアネート(0.23mL)のTHF(20mL)混合物を24時間加熱還流した。THFを留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(3:1〜1:1))で精製して、4−[3−(2−クロロエチル)ウレイド]−2−クロロ安息香酸メチルエステル(0.63mg)を得た。ESMS:m/z 291(MH+)。
2)ナトリウムメトキシド(0.21g)を上記で得た生成物(0.58g)のTHF(20mL)溶液に加え、一晩還流した。THFを留去し、残渣を酢酸エチルで抽出した。抽出液を水洗し、硫酸マグネシウムで乾燥、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル)で精製して、2−クロロ−4−(2−オキサゾリジニルアミノ)安息香酸メチルエステル(0.46g)を得た。ESMS:m/z 254(MH+)。
3)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 240(MH+)。
【0387】
参考例30:2−クロロ−4−(2−オキソ−1−ピロリジニル)安息香酸
1)4−アミノ−2−クロロ安息香酸メチルエステル塩酸塩(0.52g)とDIEA(0.27mL)の塩化メチレン(20mL)溶液に、窒素下0℃で、4−クロロブチリルクロリド(0.3mL)を加え、混合物を同温度で4時間攪拌した。DMAP(0.23ミリモル)を加え、混合物を室温で一晩攪拌した。4−クロロブチリルクロリド(0.3mL)とDIEA(0.09mL)を加え、混合物を24時間攪拌した。混合物を塩化メチレン(100mL)で希釈し、溶液を1N塩酸、飽和炭酸水素ナトリウム溶液、食塩水で順次洗浄し、乾燥、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(3:1))で精製して、4−(4−クロロブチリル)アミノ−2−クロロ安息香酸メチルエステル(0.64g)を得た。ESMS:m/z 290(MH+)。
2)ナトリウムメトキシド(0.33g)を上記で得た生成物(0.64g)のTHF(20mL)溶液に加え、3時間還流した。THFを留去し、残渣を酢酸エチルと水で分配した。酢酸エチル層を分取し、水層を酢酸エチルで抽出した。集めた抽出液を硫酸マグネシウムで乾燥し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(1:1))で精製して、2−クロロ−4−(2−オキソ−1−ピロリジニル)安息香酸メチルエステルを得た。ESMS:m/z 254(MH+)。
3)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 240(MH+)。
【0388】
参考例31:2−クロロ−4−(1−ピロリル)安息香酸
1)4−アミノ−2−クロロ安息香酸メチルエステル(0.46g)と2,5−ジメトキシテトラヒドロフラン(0.33mL)の酢酸(16mL)溶液の混合物を2時間加熱還流した。混合物を室温まで冷却し、水で希釈し、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウムと食塩水で洗浄し、硫酸マグネシウムで乾燥、濾過して蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(5:1))で精製して、2−クロロ−4−(1−ピロリル)安息香酸メチルエステル(0.48g)を得た。ESMS:m/z 236(MH+)。
2)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 220(M−H)-
【0389】
参考例32:2−クロロ−4−(2−トリフルオロアセチル−1−ピロリル)安息香酸
1)無水トリフルオロ酢酸(0.55mL)を2−クロロ−4−(1−ピロリル)安息香酸メチルエステル(0.3g)の塩化メチレン(5mL)溶液に加え、室温で4時間攪拌した。混合物を塩化メチレンで希釈し、混合物を飽和炭酸水素ナトリウム溶液と30分間攪拌した。有機層を分離し、食塩水で洗浄、硫酸マグネシウムで乾燥、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(5:1))で精製して、2−クロロ−4−(2−トリフルオロアセチル−1−ピロリル)安息香酸メチルエステル(0.4g)を得た。ESMS:m/z 330(M−1)。
2)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 318(MH+)。
【0390】
参考例33:2−クロロ−4−(2,5−ジクロロ−1−ピロリル)安息香酸
1)N−クロロスクシンイミド(0.56g)を窒素下2−クロロ−4−(1−ピロリル)安息香酸メチルエステル(0.5g)の氷冷したTHF(7mL)溶液に加えた。混合物を室温まで昇温し、一晩攪拌した。THFを除き、残渣をジエチルエーテルで処理し、濾過した。濾液を留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(10:1))で精製して、2−クロロ−4−(2,5−ジクロロ−1−ピロリル)安息香酸メチルエステル(0.61g)を得た。ESMS:m/z 306(MH+)。
2)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 290(MH+)。
【0391】
参考例34:2−クロロ−4−(2−ホルミル−1−ピロリル)安息香酸
1)DMF(0.1mL)の塩化メチレン(2mL)溶液を攪拌下オキサリルクロリド(0.2mL)の塩化メチレン(16mL)溶液に、窒素下−30℃で滴下した。混合物を15分間攪拌し、2−クロロ−4−(1−ピロリル)安息香酸メチルエステル(0.5g)のDMF(4mL)溶液を加えた。混合物を同温度で3時間攪拌し、室温まで放置して昇温した。混合物を一晩攪拌し、蒸発させた。残渣を酢酸エチルと0.2M酢酸ナトリウムで分液した。酢酸エチル層を分離し、水層を酢酸エチルで抽出した。集めた酢酸エチル層を食塩水で洗浄、硫酸マグネシウムで乾燥、濾過して、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(3:1))で精製して、2−クロロ−4−(2−ホルミル−1−ピロリル)安息香酸メチルエステル(0.41g)を得た。ESMS:m/z264(MH+)。
2)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 248(M−H)-
【0392】
参考例35:2−クロロ−4−[N−メチル−N−(メチルスルホニル)アミノ]安息香酸
1)ジ−t−ブチルジカーボネート(1.39g)のジオキサン(15mL)の溶液を4−アミノ−2−クロロ安息香酸(1.0g)の氷冷した1N水酸化ナトリウム(12.8mL)溶液に滴下した。混合物を室温まで放置して昇温し、一晩攪拌した。ジオキサンを除き、水溶液をジエチルエーテルで抽出した。水溶液を1N塩酸でpH2以下の酸性とした。沈澱した固体物を濾取し、1N塩酸と水で洗浄、真空乾燥して4−(t−ブトキシカルボニルアミノ)−2−クロロ安息香酸(1.13g)を得た。ESMS:m/z 294(MH+)。
2)ナトリウムメトキシド(0.16g)を上記で得た生成物(0.36g)のDMF(10mL)溶液に窒素下加えた。混合物を0℃まで冷却し、沃化メチル(0.5mL)を加えた。混合物を室温で一晩攪拌した。ナトリウムメトキシド(0.14g)と沃化メチル(0.55mL)を加え、さらに6時間攪拌した。THFを除き、残渣を酢酸エチルと水に分配した。酢酸エチル層を分離し、水層を酢酸エチルで抽出した。集めた酢酸エチル層を食塩水で洗浄し、硫酸マグネシウムで乾燥、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(1:1))で精製して、2−クロロ−4−[N−メチル−N−(t−ブトキシカルボニル)アミノ]安息香酸メチルエステル(0.38g)を得た。ESMS:m/z 322(M+Na)+
3)上記で得た生成物の塩化メチレン(10mL)溶液をTFA(5mL)で2時間処理した。混合物を蒸発させ、残渣を酢酸エチルに溶解した。酢酸エチル溶液を10%炭酸ナトリウムと食塩水で順次洗浄し、硫酸マグネシウムで乾燥、濾過して2−クロロ−4−(メチルアミノ)安息香酸メチルエステル(0.25g)を得た。ESMS:m/z 200(MH+)。
4)メタンスルホニルクロリド(0.2mL)を窒素下上記で得た生成物(0.25g)とピリジン(0.2mL)の塩化メチレン(20mL)溶液に加え、4時間40℃で加熱した。ピリジン(0.2mL)とメタンスルホニルクロリド(0.2mL)を加え、混合液を2時間加熱した。混合液を塩化メチレンで希釈し、1N塩酸と水で洗浄、硫酸マグネシウムで乾燥、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン/酢酸エチル(3:1〜1:1))で精製して、2−クロロ−4−[N−メチル−N−(メタンスルホニル)アミノ]安息香酸メチルエステル(0.26g)を得た。ESMS:m/z 278(MH+)。
5)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 264(MH+)。
【0393】
参考例36:2−クロロ−4−チオウレイド安息香酸
1)ベンゾイルチオシアネートをベンゾイルクロリド(0.31mL)とアンモニウムチオシアネート(0.20g)のアセトン(15mL)溶液を30分間還流して発生させた。本溶液に4−アミノ−2−クロロ安息香酸メチルエステル(0.5g)のアセトニトリル(10mL)溶液を加え、5時間還流した。溶媒を除き、残渣を塩化メチレンと水に分配した。有機層を分取し、食塩水で洗浄、乾燥し、蒸発させた。残渣をカラムクロマトグラフィーで精製して、2−クロロ−4−(3−ベンゾイルチオウレイド)安息香酸メチルエステル(0.71g)を得た。ESMS:m/z 349(MH+)。
2)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 231(MH+)。
【0394】
参考例37:2,6−ジクロロ−4−フェニル安息香酸
1)2,6−ジクロロ−4−ブロモ安息香酸メチルエステル(0.55g)のTHF(10mL)溶液にベンゼンボロン酸(1.30g)、Pd(PPh3)4(0.16g)および2M炭酸ナトリウム(5mL)を加えた。混合物を4時間窒素下還流した。冷却後、混合物を酢酸エチルで希釈し、水と食塩水で洗浄した。有機層を硫酸ナトリウムで乾燥、濾過し、濃縮した。残渣をシリカゲルプレパラティブTLC(溶出液、ヘキサン〜酢酸エチル/ヘキサン(1:1))で精製して、2,6−ジクロロ−4−フェニル安息香酸メチルエステル(0.57g)を得た。ESMS:m/z 281(MH+)。
2)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 267(MH+)、265(M−H)-
【0395】
参考例38:2,6−ジクロロ−4−[2−(N−メチル)ピロリル]安息香酸(J. Med. Chem., 41, 2019 (1998))
1)2,6−ジクロロ−4−[2−(N−t−ブトキシカルボニル)ピロリル]安息香酸メチルエステルを、ベンゼンボロン酸を2−(N−t−ブトキシカルボニル)ピロールボロン酸に代える以外は、参考例37−1)と同様にして得た。
2)上記で得た生成物の塩化メチレン(5mL)溶液にTFA(5mL)を加えた。窒素下で2時間後、混合物を塩化メチレンで希釈し、水と食塩水で洗浄し、硫酸ナトリウムで乾燥、濾過し、濃縮して2,6−ジクロロ−4−(2−ピロリル)安息香酸メチルエステルを得た。
3)上記で得た生成物(0.20g)のTHF(5mL)溶液に水素化ナトリウム(0.07g)と沃化メチル(0.14mL)を加えた。室温で2時間攪拌後、混合物を酢酸エチルで希釈し、水と食塩水で洗浄した。有機層を硫酸ナトリウムで乾燥、濾過し、濃縮した。残渣をシリカゲル分取用TLC(溶出液、酢酸エチル/ヘキサン(1:10))で精製して、2,6−ジクロロ−4−[2−(N−メチル)ピロリル]安息香酸メチルエステル(0.088g)を得た。
4)上記で得た生成物をLiOHで加水分解して標記化合物を得た。
【0396】
参考例39:3−ブロモ−2,6−ジクロロ安息香酸
1)2,6−ジクロロ−4−アミノ安息香酸メチルエステル(2.80g)の塩化メチレン(20mL)溶液に−10℃でテトラブチルアンモニウムトリブロミド(6.94g)の塩化メチレン(30mL)溶液を−10℃で滴下した。2時間後、混合物を室温まで昇温し、飽和炭酸水素ナトリウム液と食塩水で洗浄し、硫酸ナトリウムで乾燥し、濾過し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:4))で精製して、2,6−ジクロロ−3−ブロモ−4−アミノ安息香酸メチルエステル(2.99g)を得た。ESMS:m/z 298(MH+)。
2)上記で得た生成物(2.99g)の0℃の硫酸(10mL)と水(20mL)溶液に亜硝酸ナトリウム(0.73g)を加えた。15分後、混合物をH3PO2で処理した。60分後、混合物を酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウムと食塩水で洗浄し、硫酸ナトリウムで乾燥、濾過し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶出液、ヘキサン〜酢酸エチル/ヘキサン(1:10))で精製して、2,6−ジクロロ−3−ブロモ安息香酸メチルエステル(2.11g)を得た。ESMS:m/z 282(MH+)。
3)上記で得た生成物をLiOHで加水分解して標記化合物を得た。ESMS:m/z 268(MH+)および266(M-―1)。
【0397】
参考例40:2−クロロ−4−(t−ブトキシカルボニル)安息香酸
1)3−クロロ−4−メトキシカルボニル安息香酸(0.24g)をDMF(2.5mL)に窒素下溶解し、ついでCDI(0.36g)を加え、得られた混合物を40℃で2時間攪拌した。t−ブタノール(0.54mL)とDBU(0.33mL)を加え、40℃で2日間攪拌した。混合物を蒸発させ、残渣を酢酸エチルに溶解し、1N塩酸と飽和炭酸水素ナトリウム液で洗浄、硫酸マグネシウムで乾燥、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(溶出液、トルエン)で精製して、2−クロロ−4−(t−ブトキシカルボニル)安息香酸メチルエステル(216mg)を得た。
2)上記で得た生成物をLiOHで加水分解して標記化合物を得た。
【0398】
参考例41:4−(N,N−ジメチルスルファモイル)アミノ−2−クロロ安息香酸
1)ピリジン(0.4mL)を4−アミノ−2−クロロ安息香酸メチル(0.3g)の塩化メチレン(10mL)溶液に0℃で窒素下加えた。N,N−ジメチルスルファモイルクロリド(0.21mL)を加え、混合物を室温で16時間攪拌し、5時間還流した。DMAP(0.4g)を加え、混合物を3時間攪拌した。混合物を塩化メチレン100mLで希釈し、1N塩酸、食塩水、飽和炭酸水素ナトリウム溶液および食塩水で順次洗浄し、乾燥、蒸発させた。残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:3))で精製して、4−(N,N−ジメチルスルファモイル)アミノ−2−クロロ安息香酸メチル(0.31g)を得た。ESMS:m/z 293(MH+)。
2)上記で得た生成物を製造例1−5)と同様にLiOHで加水分解して標記化合物を得た。ESMS:m/z 279(MH+)。
【0399】
参考例42:トリメチル−(2−シアノ−3−チエニル)スズ
3−ブロモチオフェン−2−カルボニトリル(385mg)、ヘキサメチル2スズ(615mg)およびPd(PPh3)4(116mg)のトルエン(8mL)混合物を窒素下130℃で16時間攪拌した。有機層を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出液、酢酸エチル/ヘキサン(1:20))で精製して標記化合物(406mg)を得た。
【0400】
参考例43:2,6−ジ(メトキシメトキシ)ベンゼンボロン酸
1)DIEA(26mL)とメトキシメトキシクロリド(8.20mL)をレゾルシン(3.65g)の塩化メチレン(40mL)懸濁液に窒素下0℃で加えた。混合物を同温度で10分間攪拌し、室温で16時間攪拌した。DIEA(13mL)とメトキシメトキシクロリド(4mL)を混合物に加え、1時間攪拌した。混合物を水に加え、クロロホルムで抽出した。抽出液を硫酸マグネシウムで乾燥、蒸発させ、残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶出液、酢酸エチルの15%ヘキサン溶液)で精製して、1,3−ジ(メトキシメトキシ)ベンゼン(2.44g)を得た。
2)上記で得た生成物を製造例7−1)と同様に処理して標記化合物を得た。
【0401】
RPMI−CS−1細胞接着試験:
下記の試験は、代表的なインビトロ系でのα4介在細胞接着阻害における本発明化合物の作用を立証した。この試験はα4β7を発現すると知られているB細胞系RPMIの、CS−1と呼ばれているフィブロネクチンのもう一つのスプライスされた領域への本発明化合物存在下での接着相互作用を測定する(イールら、J. Immunol., 153: 517-528 (1994))。試験化合物をRPMI細胞に濃度を増加しながら添加し、ついで細胞−化合物混合物をCS−1被膜マイクロウェルに加えた。プレートをインキュベートし、洗浄し、結合した細胞の割合を定量した。本試験は本発明化合物の細胞接着阻害活性と接着調節活性を直接的に証明する。
【0402】
RPMI−CS−1試験:
CS−1由来ペプチド、CLHPGEILDVPST、および配列を変えた対照ペプチド、CLHGPIELVSDPT、をt−Boc方式を用いたベックマン990シンセサイザーで合成した。ペプチドは、3−(2−ピリジルジチオ)プロピオン酸N−ヒドロキシスクシンイミドエステル(SPDP)を異種二価性架橋剤として用いる、マイクロプレート上に固定化した(ピエールシュバッハーら、Proc. Natl. Acad. Sci. USA, 80: 1224-1227 (1983))。マイクロプレートは20μg/mLのヒト血清アルブミン(HSA)で室温下2時間被膜し、PBSで一回洗浄し、10μg/mLのSPDPで1時間誘導化した。洗浄後、溶解したばかりの100μg/mLシステイン含有ペプチド液100μlを各ウェルに加え、4℃で一晩プレートに架橋させた。非結合ペプチドをPBSで洗浄してプレートから除いた。未反応サイトをブロックするために、プレートをBSAの2.5mg/mLPBS溶液100μlで、37℃1時間被膜させた。RPMI細胞の0.25%の卵巣アルブミン付加ダルベッコ変法イーグル培地(DMEM)溶液(2.5x106細胞/mL)100μlをペプチド被膜プレートに加え、37℃で1時間インキュベートした。このインキュベート後、プレートをPBSで、EL404プレートウォッシャーを用いて3回洗浄し、接着細胞数を内因性N−アセチル−ヘキソサミニダーゼの酵素活性を測定することにより定量した(ランデグレン、J. Immunol. Methods., 67: 379-388 (1984))。このため、酵素基質p−ニトロフェニル−N−アセチル−β−D−グルコースアミニドを0.1Mクエン酸緩衝液pH5に7.5mMの濃度で溶解し、等量の0.5%のトリトンX100と混合した。基質溶液50μlをプレートに加え、プレートを37℃で60分間インキュベートした。100μlの50mMグリシン、5mM EDTA緩衝液pH10.4を添加して反応を止めた。遊離したp−ニトロフェノール量を測定用附属器のついた垂直経路分光光度計で405nmでの光学密度を読むことにより計測した(VMAX カイネティック マイクロプレート リーダー、MOLECULAR DEVICES、メンロパーク、カルフォルニア)。この方法は以前に発表された方法の変法である(カルダレリら、J. Biol. Chem., 269: 18668-18673 (1994))。
この試験では、IC50値範囲(μM)はA、B、CおよびDにより示される。これらの範囲は以下のとおりである。
D>5≧C>1≧B>0.3≧A
下記の表33−48は本発明の選ばれた化合物の、RPMI−CS−1試験でのIC50値を示す。範囲は上記で説明したとおりである。
【0403】
【表33】
Figure 0003795305
【0404】
【表34】
Figure 0003795305
【0405】
【表35】
Figure 0003795305
【0406】
【表36】
Figure 0003795305
【0407】
【表37】
Figure 0003795305
【0408】
【表38】
Figure 0003795305
【0409】
【表39】
Figure 0003795305
【0410】
【表40】
Figure 0003795305
【0411】
【表41】
Figure 0003795305
【0412】
【表42】
Figure 0003795305
【0413】
【表43】
Figure 0003795305
【0414】
【表44】
Figure 0003795305
【0415】
【表45】
Figure 0003795305
【0416】
【表46】
Figure 0003795305
【0417】
【表47】
Figure 0003795305
【0418】
【表48】
Figure 0003795305
【0419】
【発明の効果】
本発明の医薬組成物はα4介在細胞接着を伴う疾病、例えば喘息、糖尿病、リューマチ関節炎、炎症性腸疾患、および胃腸管や他の上皮組織(例えば皮膚、尿道、気管支、関節滑膜)の白血球浸潤が関与する他の疾患などの治療に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention treats pathological conditions such as asthma, diabetes, rheumatoid arthritis, inflammatory bowel disease, and other diseases involving leukocyte infiltration in the gastrointestinal tract and other epithelial tissues (eg, skin, urethra, trachea, joint synovium). Effective for αFourβ7It is related with the pharmaceutical composition which uses as a active ingredient the molecule | numerator which is an alpha4-mediated adhesion inhibitor.
The compositions of the present invention are further useful for the treatment of conditions involving leukocyte infiltration in tissues other than epithelial tissues such as lung, blood vessels, heart and nervous system, and transplanted organs such as kidney, liver, pancreas and heart. It is.
[0002]
[Prior art]
Adhesion of leukocytes to endothelial cells or extracellular matrix proteins is a major process of immunity and inflammation and involves numerous adhesion interactions. The first event in this process is the rolling of leukocytes due to changes in integrin avidity (affinity), which is the next firm adhesion (Butcher, Cell, 67: 1033-1036 (1991); Harlan, Blood). 3: 513-525 (1985); Hemler, Annu Rev. Immunol., 8: 365-400 (1990); Osborne, Cell 62: 3-6 (1990); Shimizu et al., Immunol. Rev., 114 : 109-143 (1990); Springer, Nature, 346: 425-434 (1990); Springer, Cell, 76: 301-314 (1994)). In response to chemotactic factors, leukocytes are partly extracellular matrix protein fibronectin (FN) (Wiener et al., J. Cell Biol., 105: 1873-) via two adjacent endothelial cells. 1884 (1987)) and collagen (CN) (Bonestein et al., Ann. Rev. Biochem., 49: 957-1003 (1980) and Miller, KA Piez and AH. Regis, edited by connective tissue production. Migrate to tissues consisting of Connective Tissue Biochemistry, “Chemistry of Collagen and Its Distribution”, Euseviel Publishing, Amsterdam, 41-78 (1983)). Important recognition molecules involved in these reactions belong to the integrin gene superfamily (Hemler, Annu. Rev. Immunol., 8: 365-400 (1990); Highness, Cell, 48: 549-554 (1987); Shimizu Et al., Immunol. Rev., 114: 109-143 (1990); and Springer, Nature, 346: 425-434 (1990)).
[0003]
Integrins are composed of non-covalently assembled subunits called alpha (α) and beta (β) subunits (Hellmer, Annu. Rev. Immunol., 8: 365-400 (1990); highness Cell, 48; 549-554 (1987); Shimizu et al., Immunol. Rev., 114: 109-143 (1990); Springer, Nature, 346: 425-434 (1990)). Currently, 8 integrin β subunits have been identified that bind to 16 different α subunits to form 22 different integrins. The β7 integrin subunit, first cloned by Eel et al. (Eil et al., J. Biol. Chem., 266: 11009-11016 (1991)), is expressed only on leukocytes and is expressed in two different α subunits, α4. (Ryugu et al., J. Cell. Biol., 117: 179-189 (1992)) and αE (Surf-Bensussan et al., Eur. J. Immunol., 22: 273-277 (1992)) and Kirschau et al., Eur. J Immunol., 21: 2591-2597 (1991)). αEβ7 heterodimer has E-cadherin as its only ligand.
[0004]
The α4β7 complex has three known ligands (VCAM, CS-1, MAdCAM). The only ligand that exhibits specificity for α4β7 is the Mucosal Addressing Cell Adhesion Molecule (MAdCAM) (Andrew et al., J. Immunol., 153: 3847-3861 (1994); Briskin et al., Nature, 363: 461-464 (1993); and Shajan et al., J. Immunol., 156: 2851-2857 (1996)). MAdCAM is abundantly expressed in the collecting lymph node high endothelial venules in the mesenteric lymph nodes and in the gastrointestinal basement membrane and mammary venules (Berg et al., Immunol. Rev., 105: 5 (1989)). Integrins α4β7 and MAdCAM have been shown to be important in the control of leukocyte migration into the normal intestine (Holtzmann et al., Cell 56: 37 (1989)).
The second ligand for α4β7 is connecting segment 1 (CS-1), another spliced region of the FNA chain (Guan et al., Cell, 60: 53-61 (1990) and Weiner et al., J. Biol. Cell Biol., 109: 1321-1330 (1989)). The cell binding site within this alternative spliced region consists of 25 amino acids and its carboxy terminal amino acid residue, EILDVPST, forms a recognition motif (MOTIF) (Comoriya et al., J. Biol. Chem., 266: 15075-15079 (1991) and Weiner et al., J. Cell. Biol., 116: 489-497 (1992)).
[0005]
The third ligand for α4β7 is vascular cell adhesion molecule-1 (VCAM-1), a cytokine-inducible protein expressed on endothelial cells (Elises et al., Cell, 60: 577-584 (1990) and Lüg Et al., J. Cell Biol., 117: 179-189 (1992)). VCAM and CS-1 (see Elises et al., Cell, 60: 577-584 (1990)) are two ligands common to α4β7 and α4β1. It is not clear whether MAdCAM, VCAM and CS-1 are bound to the same site on α4β7. Using a panel of monoclonal antibodies, Andrew et al. Showed that a different but overlapping epitope was involved in the interaction between α4β7 and its three ligands (Andrew et al., J. Immunol, 153 : 3847-3861 (1994)).
[0006]
Many studies in vitro and in vivo have shown that α4 plays a critical role in the pathogenesis of many diseases. Monoclonal antibodies against α4 have been tested in various disease models. The efficacy of anti-α4 antibodies has been demonstrated in rat and mouse models of experimental autoimmune encephalomyelitis (Baron et al., J. Exp. Med., 177: 57-68 (1993) and Ednock et al., Nature, 356. : 63-66 (1992)). A significant number of studies have evaluated the role of α4 in allergic bronchitis (Abraham et al., J. Clin. Invest., 93: 776-787 (1994); Bokuner et al., J. Exp. Med., 173: 1553-1556 (1991); Warsh et al., J. Immnol, 146: 3419-3423 (1991); and Weg et al., J. Exp. Med., 177: 561-566 (1993)). For example, α4 monoclonal antibodies were effective in several lung antigen challenge models (Abraham et al., J. Clin. Invest., 93: 776-787 (1994) and Weg et al., J. Exp. Med., 177: 561-566 (1993)). Interestingly, despite the existence of the elimination of delayed responses, cell recruitment interference is not seen in certain lung models (Abraham et al., J. Clin. Invest., 93: 776-787 (1994)). Cotton-top tamarin, which develops spontaneous chronic colitis, showed a significant reduction in colitis upon administration of anti-α4 antibody (Bell et al., J. Immunol., 151: 4790-4802 (1993). ) And Podolsky et al., J. Clin. Invest., 92: 372-380 (1993)). Monoclonal antibodies against α4 inhibit isletitis and delay the onset of diabetes in non-obese diabetic mice (Baron et al., J. Clin. Invest., 93: 1700-1708 (1994); Berkeley et al., Diabetes, 43: 529 -534 (1994); and Yang et al., Proc. Natl. Acad. Sci. USA, 90: 10494-10498 (1993)). Other diseases involving α4 include rheumatoid arthritis (see Rahon et al., J. Clin. Invest., 88: 546-552 (1991) and Morales-Ducle et al., J. Immunol., 149: 1424-1431 (1992)). ) And arteriosclerosis (see Chibrusky et al., Science, 251: 788-791 (1991)). Delayed type hypersensitivity reaction (see ISSEK, J. Immunol., 147: 4178-4184 (1991)) and contact hypersensitivity reaction (Kishorum et al., Eur. J. Immunol., 23: 682-688 (1993) and Ferguson et al., J. Immunol., 150: 1172-1182 (1993)) is also interfered with by anti-α4 antibodies. For a good discussion of in vivo studies of α4 in disease, see Rob et al., J. Clin. Invest., 94: 1722-1728 (1995).
[0007]
These studies clearly link α4 in various diseases, but it is not clear whether the inhibition seen is due to blocking α4β1, α4β7, or both. Recently, an antibody that recognizes the α4β7 complex (see Hesterberg et al., Gastroenterology (1997)), an antibody against β7 or an antibody against MAdCAM to which α4β1 does not bind (Picarella et al., J. Immunol., 158: 2099-2106 (1997)) Several studies have been directed to this issue. In a primate model of inflammatory bowel disease, antibodies to the α4β7 complex were found to improve inflammation and reduce diarrhea (see Hesterberg et al., Gastroenterology, 111: 1373-1380 (1996)). In another model, monoclonal antibodies against β7 or MAdCAM block leukocyte recruitment to the colon and CD45RBhighCD4+Reduced the degree of inflammation in the colon of severely complex immunodeficient mice reconstituted with cells (see Picarella et al., J. Immunol., 158: 2099-2106 (1997)). This suggests that α4β7 may be an important mediator of inflammatory bowel disease, along with the fact that gastrointestinal collecting lymphoid tissue is severely damaged in β7-deficient mice.
[0008]
The expression of α4β7 on various leukocytes and the increase of α4β7 positive cells in the affected tissues plays an important role in receptors in cell recruitment to other sites of inflammation in addition to intestinal migration Meaning. CD4+, CD8+, Eosinophils from T cells, B cells, NK cells, and human peripheral blood have been shown to express α4β7 at high levels (see Picarella et al., J. Immunol., 158: 2099-2106 (1997)). . An increase in the number of α4β7-expressing T cells was observed in the synovium of patients with rheumatoid arthritis, and increased expression of α4β7 was predicted to contribute to the exacerbation and perpetuation of the disease (Lazarovitz et al., J. Immunol. 151: 6482-6489 (1993)). In non-obese diabetic mice, MAdCAM is expressed on the high endothelial venules of inflamed islets of Langerhans in the pancreas, suggesting a role for α4β7 in diabetes (Kelner et al., Science, 266: 1395-1399 (1994). )reference). The distribution of α4β7 on lymphocytes and eosinophils (see Eale et al., J. Immunol., 153: 517-528 (1994)) and α4β7 adheres human eosinophils to VCAM, CS-1 and MAdCAM. Both in vitro studies showing mediation suggest that this integrin is a target molecule in asthma. Collectively, these data suggest that integrin α4β7 plays an important role in various inflammatory diseases.
[0009]
The N-terminal domain of MAdCAM (domain 1) shows homology with the N-terminal integrin recognition domain of both VCAM and ICAM (see Briskin et al., Nature, 363: 461-464 (1993)). Using site-directed mutagenesis of MAdCAM, a binding motif was identified in the first domain as three linear amino acid residues in the CD loop (Binei et al., J. Immunol., 157: 2488-2497 (1996)). Mutations of L40, D41 and T42 resulted in a complete loss of binding ability to α4β7, suggesting that LDT on MAdCAM is involved in the binding loop (Binei et al., J. Immunol., 157 : 2488-2497 (1996)). The solidarity of this region on MAdCAM with other integrin ligands such as VCAM or CS-1 allows G / Q, I /L, E /D,TIt is demonstrated that a conserved binding motif or consensus sequence consisting of / S and P / S residues exists (see Briskin et al., J. Immunol., 156: 719-726 (1996)). This is further supported by the fact that LDT-containing linear and cyclic peptides have been shown to block cell adhesion to MAdCAM in vitro (Schloff et al., Bioorganic & Mecicinal Chemistry Letters, 6: 2495-2500 (1996). ) And Binai et al., J. Immunol., 157: 2488-2497 (1996)).
[0010]
[Problems to be solved by the invention]
The use of monoclonal antibodies against integrins in vivo has shown that many integrins are indeed effective therapeutic targets for inflammation and cardiovascular disorders and organ transplantation. An object of the present invention is to provide a pharmaceutical composition comprising a non-peptide, small molecule α4 antagonist which is orally bioavailable and which is an active ingredient. It is a potent inhibitor of α4 mediated adhesion to either MAdCAM, VCAM or CS-1 and provides a pharmaceutical composition containing small molecules useful for the treatment of inflammatory diseases.
[0011]
[Means for Solving the Problems]
In order to solve the problem, the present inventors have studied α4 (αFourβ7And a novel pharmaceutical composition containing a compound that is an intervening cell adhesion inhibitor (s).
[0012]
That is, the present invention relates to the formula (I):
[Chemical 7]
Figure 0003795305
In the formula, ring A is an aromatic hydrocarbon ring or a heterocyclic ring,
Q is a bond; a carbonyl group; a lower alkylene group which may be substituted with a hydroxyl group or a phenyl group; a lower alkenylene group; or an —O— (lower alkylene) -group,
n is an integer of 0, 1 or 2;
W represents an oxygen atom, a sulfur atom, a —CH═CH— group or a —N═CH— group,
Z is an oxygen atom or a sulfur atom,
R1, R2And RThreeAre the same or different and are selected from the following group,
a) a hydrogen atom,
b) a halogen atom,
c) a substituted or unsubstituted lower alkyl group,
d) a substituted or unsubstituted lower alkoxy group,
e) Nitro group,
f) substituted or unsubstituted amino group,
g) a carboxyl group, or an amide or ester thereof,
h) a cyano group,
i) a lower alkylthio group,
j) a lower alkanesulfonyl group,
k) a substituted or unsubstituted sulfamoyl group,
l) a substituted or unsubstituted aryl group,
m) a substituted or unsubstituted heterocyclic group, and
n) a hydroxyl group,
Or R1, R2And RThreeTwo of them may be bonded to each other at their terminals to form a lower alkylenedioxy group,
RFourIs a tetrazolyl group, a carboxyl group or an amide or ester thereof,
RFiveIs a group selected from the following group,
a) a hydrogen atom,
b) a nitro group,
c) a substituted or unsubstituted amino group,
d) a hydroxyl group,
e) a lower alkanoyl group,
f) a substituted or unsubstituted lower alkyl group,
g) a lower alkoxy group,
h) a halogen atom, and
i) a 2-oxopyrrolidinyl group,
R6Is a group selected from the following group,
a) a substituted or unsubstituted phenyl group, and
b) a substituted or unsubstituted heteroaryl group,
And a pharmacologically acceptable salt thereof.
[0013]
The composition of the present invention is useful for the treatment and prevention of disease states caused by α4 (including α4β7 and α4β1) -mediated cell adhesion.
[0014]
The active ingredient of the present invention may exist as an optically active isomer based on the asymmetric carbon, and the present invention also includes these isomers and mixtures thereof.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The following abbreviations used throughout this specification have the following meanings, respectively.
Abbreviations:
BOP-C1: bis (2-oxo-3-oxazolidinyl) phosphinic chloride BOP reagent: benzotriazol-1-yloxy-tris (dimethylamino) phosphonium hexafluorophosphate
DCC: 1,3-dicyclohexylcarbodiimide
EDC: 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide
THF: tetrahydrofuran
DMF: N, N-dimethylformamide
DIEA: Diisopropylethylamine
DMAP: 4- (N, N-dimethylamino) pyridine
DBU: 1,8-diazabicyclo [5.4.0] unde-7-ene
CDI: Carbonyldiimidazole
HOBT: 1-hydroxybenzotriazole
BOC: tert-butoxycarbonyl
Tf2O: trifluoromethanesulfonic anhydride
Tf: trifluoromethanesulfonyl group
TFA: trifluoroacetic acid
DME: 1,2-dimethoxyethane
MsCl: Methanesulfonyl chloride
DIAD: Diisopropyl azodicarboxylate
Ac: Acetyl group
Me: methyl group
Et: ethyl group
Ph: phenyl group
Bn: benzyl group
EtOAc: ethyl acetate (= AcOEt)
mCPBA: m-chloroperbenzoic acid
TMS: Trimethylsilyl group
h: Time
min: minutes
satd .: Saturation
[0016]
In addition, the following various terms are used with the following specific meanings and interpretations.
“Lower” used prior to alkyl, alkoxy, alkylene or alkane means containing 1 to 6 carbon atoms, straight or branched, and “lower” used prior to alkanoyl, alkenyl or alkenylene. Means that it contains 2 to 7 carbon atoms in a straight chain or branched chain. “Lower” used prior to cycloalkyl or cycloalkoxy means containing 3 to 7 carbon atoms.
[0017]
Terms such as “morpholino lower alkyl”, “hydroxy lower alkoxy” and the like mean that the functional group preceding “lower” is a substituent of the functional group following “lower”. For example, “hydroxy lower alkoxy” is intended to mean a lower alkoxy group containing at least one hydroxy substituent.
[0018]
Terms such as “lower alkyl group substituted with a halogen atom” and “phenyl group substituted with a lower alkoxy group” mean a functional group containing at least one substituent. For example, “a lower alkyl group substituted with a halogen atom” means a lower alkyl group containing at least one halogen atom, and “a phenyl group substituted with a lower alkoxy group” means at least one lower alkyl group. It means phenyl containing an alkoxy group. This type of nomenclature is as interpreted by those skilled in the art, and this type of nomenclature is slightly different from this type of nomenclature and this type of nomenclature is also within the scope of ordinary interpretation of those skilled in the art. Is to be interpreted within. Therefore, this type of nomenclature does not apply to combinations that result in molecules or substituents that are not possible in reality.
[0019]
As an aspect of the present invention, the configuration of the compound is not limited. The compounds of the present invention may be single configurations or mixed compounds of several different configurations.
[0020]
In the above formula (I), the “aromatic hydrocarbon ring” is a monocyclic, bicyclic or tricyclic aromatic hydrocarbon ring such as a benzene ring, a naphthalene ring, an anthracene ring or a fluorene ring.
[0021]
In the above formula (I), the “heterocycle” is a monocyclic, bicyclic or tricyclic ring containing a hetero atom. For example, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, quinoline ring, isoquinoline ring, quinazoline ring, phthalazine ring, imidazole ring, isoxazole ring, pyrazole ring, oxazole ring, thiazole ring, indole ring, benzazole ring, benzothiazole Ring, benzimidazole ring, benzofuran ring, furan ring, thiophene ring, oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrrole ring, indoline ring, indazole ring, isoindole ring, purine ring, morpholine ring, quinoxaline ring Benzothiophene ring, pyrrolidine ring, benzofurazan ring, benzothiadiazole ring, thiazolidine ring, imidazothiazole ring, dibenzofuran ring, and isothiazole ring.
[0022]
In the above formula (I), the “aryl group” refers to a monocyclic, bicyclic or tricyclic aromatic group, and examples thereof include a phenyl group, a naphthyl group, an anthryl group and a fluorenyl group.
[0023]
In the above formula (I), the “heterocyclic group” means a monocyclic, bicyclic or tricyclic group containing a nitrogen atom, an oxygen atom and a sulfur atom, and includes, for example, a pyridyl group, pyrimidinyl Group, pyridazinyl group, pyrazinyl group, quinolyl group, isoquinolyl group, quinazolinyl group, phthalazinyl group, imidazolyl group, isoxazolyl group, pyrazolyl group, oxazolyl group, thiazolyl group, indolyl group, benzazolyl group, benzothiazolyl group, benzoimidazolyl group, benzofuranyl group, Furyl, thienyl, pyrrolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, indolinyl, indazolyl, isoindolyl, purinyl, morpholinyl, quinoxalinyl, benzothienyl, pyrrolidinyl, benzofurazani Group, benzothiadiazolyl group, a thiazolidinyl group, imidazothiazolyl group, dibenzofuranyl group, isothiazolyl group, pyrrolinyl group, piperidinyl group, piperazinyl group and tetrahydropyranyl group.
In the above formula (I), the “heteroaryl group” means a monocyclic, bicyclic or tricyclic aromatic group containing a heteroatom of a nitrogen atom, an oxygen atom and a sulfur atom, such as a pyrrolidinyl group, These are “heterocyclic groups” other than pyrrolinyl group, piperidinyl group, piperazinyl group, morpholinyl group and tetrahydropyranyl group. Preferred “heteroaryl groups” are pyridyl, thienyl, benzofuranyl, pyrimidyl, and isoxazolyl groups.
[0024]
Among the compounds (I) of the present invention, novel compounds are as follows.
[Chemical 8]
Figure 0003795305
In the formula, ring A is an aromatic hydrocarbon ring or a heterocyclic ring,
Q is a bond; a carbonyl group; a lower alkylene group which may be substituted with a hydroxyl group or a phenyl group; a lower alkenylene group; or an —O— (lower alkylene) -group,
n is an integer of 0, 1 or 2;
W represents an oxygen atom, a sulfur atom, a —CH═CH— group or a —N═CH— group,
Z is an oxygen atom or a sulfur atom,
R1, R2And RThreeAre the same or different and are selected from the following group,
a) a hydrogen atom,
b) a halogen atom,
c) a substituted or unsubstituted lower alkyl group,
d) a substituted or unsubstituted lower alkoxy group,
e) Nitro group,
f) substituted or unsubstituted amino group,
g) a carboxyl group, or an amide or ester thereof,
h) a cyano group,
i) a lower alkylthio group,
j) a lower alkanesulfonyl group,
k) a substituted or unsubstituted sulfamoyl group,
l) a substituted or unsubstituted aryl group,
m) a substituted or unsubstituted heterocyclic group, and
n) a hydroxyl group,
Or R1, R2And RThreeTwo of them may be bonded to each other at their terminals to form a lower alkylenedioxy group,
RFourIs a tetrazolyl group, a carboxyl group or an amide or ester thereof,
RFiveIs a group selected from the following group,
a) a hydrogen atom,
b) a nitro group,
c) a substituted or unsubstituted amino group,
d) a hydroxyl group,
e) a lower alkanoyl group,
f) a substituted or unsubstituted lower alkyl group,
g) a lower alkoxy group,
h) a halogen atom, and
i) a 2-oxopyrrolidinyl group,
R6Is a group selected from the following group,
a) a substituted or unsubstituted phenyl group, and
b) a substituted or unsubstituted heteroaryl group,
However, when ring A is a benzene ring, its 3-position and 5-position, or 2-position and 4-position are not substituted with a methyl group.
Or a pharmacologically acceptable salt thereof.
[0025]
A preferred configuration of the active ingredient of the present invention is represented by the formula (IA).
[Chemical 9]
Figure 0003795305
(In the formula, the symbols are the same as above)
[0026]
A preferred embodiment of the present invention is a compound of formula (I) wherein when ring A is a benzene ring, one of its 2 or 6 positions is substituted.
[0027]
Another preferred embodiment of the present invention is R1, R2And RThreeIs a compound of the formula (I) in which is a group selected from the following group:
a) a hydrogen atom,
b) a halogen atom,
c) a substituted or unsubstituted lower alkoxy group,
d) a nitro group,
e) a substituted or unsubstituted amino group,
f) a carboxyl group, or an amide or ester thereof,
g) a cyano group,
h) a lower alkylthio group,
i) a lower alkanesulfonyl group,
j) a substituted or unsubstituted sulfamoyl group,
k) a substituted or unsubstituted aryl group,
l) a substituted or unsubstituted heterocyclic group, and
m) Hydroxyl group
Or R1, R2And RThreeMay be bonded to each other at the terminal to form a lower alkylenedioxy group.
[0028]
A more preferred embodiment of the active ingredient of the present invention is a compound represented by the following formula (IB).
[0029]
[Chemical Formula 10]
Figure 0003795305
(In the formula, the symbols are the same as above)
[0030]
In a further preferred embodiment of the active ingredient of the present invention, R1Is a hydrogen atom, halogen atom, carboxyl group, carbamoyl group, nitro group, substituted or unsubstituted amino group, substituted or unsubstituted heterocyclic group, R2Is a hydrogen atom, a lower alkyl group or a halogen atom, RThreeIs a hydrogen atom, a lower alkyl group or a halogen atom, and R6A phenyl group optionally substituted on the 2-position, 4-position, and / or 6-position thereof with a group selected from the following group,
1) halogen atom,
2) a substituted or unsubstituted lower alkoxy group,
3) a substituted or unsubstituted lower alkyl group,
4) substituted or unsubstituted amino group,
5) a substituted or unsubstituted carbamoyl group, and
6) substituted or unsubstituted sulfamoyl group,
It is.
[0031]
In a further preferred embodiment of the invention, R6Is a phenyl group optionally substituted by 1 to 3 groups selected from the following group.
1) a lower alkoxy group, and
2) substituted with a group selected from a substituted or unsubstituted amino group, a substituted or unsubstituted piperidinyl group, a substituted or unsubstituted morpholino group, a substituted or unsubstituted piperazinyl group, a substituted or unsubstituted pyrrolidinyl group and a substituted or unsubstituted imidazolidinyl group Optionally lower alkyl group.
[0032]
In another aspect of the invention,
Ring A is a benzene ring, pyridine ring, pyrazine ring, furan ring, isoxazole ring, benzofuran ring, thiophene ring, pyrrole ring, or indole ring;
R1, R2And RThreeIs a group selected from the following group;
a) a hydrogen atom,
b) a halogen atom,
c) a lower alkyl group which may be substituted with a halogen atom or a halogenobenzoylamino group,
d) a lower alkoxy group which may be substituted with a halogen atom,
e) Nitro group,
f) 1) a lower alkyl group, 2) a lower alkanoyl group, 3) a halogenobenzoyl group, 4) a lower alkoxycarbonyl group, 5) a lower alkanesulfonyl group optionally substituted with a halogen atom, 6) a lower alkyl group, a trihalogeno A lower alkyl group, a benzenesulfonyl group optionally substituted with a halogen atom or a lower alkoxy group, 7) a thiophenesulfonyl group, 8) a carbamoyl group optionally substituted with a lower alkyl group or a lower alkylphenyl group, 9) lower 1-2 groups selected from an alkyl group, a thiocarbamoyl group optionally substituted with a phenyl group or a phenyl lower alkyl group, 10) a thiazolinyl group, and 11) a sulfamoyl group optionally substituted with a lower alkyl group An amino group optionally substituted by
g) a carboxyl group,
h) a carbamoyl group optionally substituted by a lower alkanesulfonyl group,
i) a lower alkoxycarbonyl group,
j) a cyano group,
k) a lower alkylthio group,
l) a lower alkanesulfonyl group,
m) a sulfamoyl group,
n) a phenyl group,
o) a pyrrolidinyl group optionally substituted by an oxo group,
p) 1) a lower alkanoyl group optionally substituted with a halogen atom, 2) a halogen atom, 3) a formyl group, and 4) a group selected from a lower alkyl group optionally substituted with a hydroxyl group. A good pyrrolyl group,
q) a thienyl group,
r) an isoxazolyl group optionally substituted by a lower alkyl group,
s) a thiazolyl group,
t) a pyrazolyl group,
u) a pyrazinyl group,
v) a pyridyl group, and
w) hydroxyl group,
RFourIs a group selected from the following group;
a) a carboxyl group,
b) 1) a pyridyl group, or 2) a lower alkoxycarbonyl group optionally substituted with an amino group optionally substituted with a lower alkyl group,
c) a lower cycloalkoxycarbonyl group,
d) a carbamoyl group optionally substituted with a hydroxyl group or a lower alkanesulfonyl group, and
e) a tetrazolyl group,
RFiveIs a group selected from the following group;
a) a hydrogen atom,
b) a nitro group,
c) an amino group optionally substituted with a lower alkanoyl group, a lower alkoxycarbonyl group, or a lower alkanesulfonyl group,
d) a hydroxyl group,
e) a lower alkanoyl group,
f) 1) a hydroxyl group, or 2) a lower alkyl group which may be substituted with an imino group substituted with a hydroxyl group or a lower alkoxy group,
g) a lower alkoxy group,
h) a halogen atom, and
i) a 2-oxopyrrolidinyl group,
R6Is a group selected from the following group;
a) a phenyl group optionally substituted with 1 to 5 groups selected from the following group;
1) halogen atom,
2) Nitro group,
3) formyl group,
4) hydroxyl group,
5) carboxyl group,
6) i) carboxyl group, or amide or ester thereof, ii) hydroxyl group, iii) cyano group, iv) halogen atom, v) amino group optionally substituted with lower alkyl group, vi) pyridyl group, vii) lower A thiazolyl group optionally substituted with an alkyl group, viii) an isoxazolyl group optionally substituted with a lower alkyl group, ix) a piperidyl group optionally substituted with a lower alkyl group, and x) substituted with a lower alkyl group. An optionally substituted pyrrolidinyl group, xi) a phenyl group optionally substituted with a halogen atom, xii) a furyl group, xiii) a thienyl group, and xiv) a lower alkoxy optionally substituted with a group selected from lower alkoxy groups Group,
7) i) halogen atom, ii) hydroxyl group, iii) carboxyl group or amide or ester thereof, iv) lower alkoxy group, v) lower alkyl group, hydroxy lower alkyl group, lower alkylamino lower alkyl group, phenyl lower alkyl group , An amino group optionally substituted with one or two groups selected from a phenyl group and a pyridyl group, vi) a piperidinyl group optionally substituted with a lower alkylenedioxy group, an oxo group or a hydroxyl group, vii) a lower group A morpholino group optionally substituted with an alkyl group, viii) an optionally oxidized thiomorpholino group, ix) an optionally substituted lower alkyl group, a hydroxy lower alkyl group, a lower alkanoyl group or a phenyl lower alkyl group. A piperazinyl group, x) a pyrrolidinyl group optionally substituted by an oxo group, And xi) a lower alkyl group and 1 to 3 substituents which may be substituted with a group which may be selected from a good imidazolidinyl group optionally lower alkyl group with a group selected from oxo group,
8) a lower alkenyl group optionally substituted with a carboxyl group, or an amide or ester thereof,
9) i) phenyl group, ii) lower alkoxycarbonyl group, iii) lower alkanesulfonyl group, iv) carbamoyl group optionally substituted with lower alkyl group or lower alkylphenyl group, v) lower alkanoyl group, vi) lower An alkyl group, vii) a lower alkenyl group, and viii) an amino group optionally substituted with a group selected from a thiocarbamoyl group optionally substituted with a lower alkyl group, 10) a lower alkyl group, a hydroxy lower alkyl group, A morpholino lower alkyl group, a phenyl lower alkyl group or a carbamoyl group optionally substituted by a lower alkanesulfonyl group,
11) i) a lower alkyl group, ii) a benzoyl group, iii) a lower alkoxycarbonyl group, and iv) a sulfamoyl group optionally substituted with a group selected from a lower alkanoyl group,
12) a lower alkenyloxy group,
13) a lower alkylenedioxy group,
14) a piperazinylcarbonyl group optionally substituted by a lower alkyl group,
15) a lower alkanoyl group,
16) a cyano group,
17) a lower alkylthio group,
18) a lower alkanesulfonyl group,
19) a lower alkylsulfinyl group, and
20) Formula:-(CH2)qA group represented by -O- (wherein q is an integer of 2 or 3),
b) a pyridyl group optionally substituted by a lower alkyl group,
c) a thienyl group optionally substituted by a group selected from the group below,
1) halogen atom,
2) a lower alkyl group optionally substituted with a hydroxyl group,
3) a cyano group,
4) formyl group,
5) a lower alkoxy group, and
6) a lower alkanoyl group,
d) a benzofuranyl group,
e) a pyrimidinyl group optionally substituted by a lower alkoxy group,
f) an isoxazolyl group optionally substituted by a lower alkyl group, and
g) a pyrrolyl group optionally substituted by a lower alkoxycarbonyl group,
It is.
[0033]
In a preferred embodiment of the present invention,
Ring A is a benzene ring;
Q is a bond;
W is -CH = CH-;
R1Is a group selected from the following group;
a) a hydrogen atom,
b) a halogen atom,
c) a lower alkyl group,
d) a lower alkoxy group,
e) Nitro group,
f) 1) a lower alkyl group, 2) a lower alkanoyl group, 3) a lower alkoxycarbonyl group, 4) a lower alkanesulfonyl group optionally substituted with a halogen atom, 5) a lower alkyl group, a trihalogeno lower alkyl group, a halogen atom Or a benzenesulfonyl group optionally substituted with a lower alkoxy group, 6) a thiophenesulfonyl group, 7) a carbamoyl group optionally substituted with a lower alkyl group or a lower alkylphenyl group, and 8) substituted with a lower alkyl group. An optionally substituted thiocarbamoyl group, and 9) an amino group optionally substituted with a group selected from sulfamoyl groups optionally substituted with a lower alkyl group,
g) a carboxyl group,
h) a carbamoyl group optionally substituted by a lower alkanesulfonyl group,
i) a lower alkanesulfonyl group,
j) a sulfamoyl group,
k) a phenyl group,
l) a pyrrolidinyl group optionally substituted by an oxo group,
l) a pyrrolyl group optionally substituted by a lower alkyl group,
m) a thienyl group,
n) an isoxazolyl group optionally substituted by a lower alkyl group,
o) a thiazolyl group,
p) a pyrazolyl group,
q) a pyrazinyl group,
r) a pyridyl group, and
s) a hydroxyl group,
R2Is a hydrogen atom or a halogen atom;
RThreeIs a hydrogen atom or a halogen atom;
RFourA) a carboxyl group, b) a lower alkoxycarbonyl group which may be substituted with a lower alkylamino group, or c) a carbamoyl group which may be substituted with a lower alkanesulfonyl group;
RFiveIs a group selected from the following group;
a) a hydrogen atom,
b) an amino group optionally substituted with a lower alkanoyl group, a lower alkoxycarbonyl group or a lower alkanesulfonyl group,
c) a lower alkanoyl group,
d) 1) a hydroxyl group, or 2) a lower alkyl group optionally substituted with an imino group substituted with a hydroxyl group or a lower alkoxy group,
e) a lower alkoxy group, and
f) a halogen atom,
R6Is a phenyl group optionally substituted with 1 to 5 groups selected from the following group;
a) a halogen atom,
b) a formyl group,
c) a hydroxyl group,
d) 1) carboxyl group, 2) hydroxyl group, 3) cyano group, 4) halogen atom, 5) amino group optionally substituted by lower alkyl group, 6) pyridyl group, 7) phenyl group, 8) thienyl group Or 9) a lower alkoxy group which may be substituted with a lower alkoxy group,
e) 1) a lower alkyl group, a hydroxy lower alkyl group, a lower alkylamino lower alkyl group or an amino group optionally substituted with a phenyl group, 2) a piperidinyl group optionally substituted with a lower alkylenedioxy group, 3 ) A morpholino group optionally substituted with a lower alkyl group, 4) a thiomorpholino group optionally substituted with a sulfur atom, 5) a substituent with a lower alkyl group, a hydroxy lower alkyl group, a lower alkanoyl group or a phenyl lower alkyl group An optionally substituted piperazinyl group, 6) an pyrrolidinyl group optionally substituted with an oxo group, or 7) an imidazolidinyl group optionally substituted with 1 to 3 groups selected from a lower alkyl group and an oxo group An optionally substituted lower alkyl group,
f) 1) a lower alkoxycarbonyl group, 2) a lower alkanesulfonyl group, 3) a carbamoyl group optionally substituted by a lower alkyl group or a lower alkylphenyl group, 4) a lower alkanoyl group, 5) a lower alkyl group, 6) A lower alkenyl group, or 7) an amino group optionally substituted with a thiocarbamoyl group optionally substituted with a lower alkyl group,
g) 1) a lower alkyl group, 2) a hydroxy lower alkyl group, 3) a morpholino lower alkyl group, 4) a phenyl lower alkyl group, or 5) a carbamoyl group optionally substituted by a lower alkanesulfonyl group,
h) a sulfamoyl group optionally substituted by a lower alkyl group,
i) a lower alkenyloxy group,
j) a lower alkylenedioxy group,
k) a cyano group,
l) a lower alkylthio group, and
m) a lower alkanesulfonyl group,
It is.
[0034]
In a further preferred embodiment of the present invention,
R11) hydrogen atom, 2) halogen atom, 3) lower alkanoylamino group, 4) lower alkoxycarbonylamino group, 5) lower alkanesulfonylamino group optionally substituted with halogen atom, 6) lower alkyl group, trihalogeno A lower alkyl group, a benzenesulfonylamino group optionally substituted with a halogen atom or a lower alkoxy group, 7) a thiophenesulfonylamino group, 8) a ureido group optionally substituted with a lower alkyl group or a lower alkylphenyl group, 9 ) A lower alkylthioureido group, or 10) a lower alkylsulfamoylamino group;
R2Is a halogen atom;
RThreeIs a hydrogen atom or a halogen atom;
R61) lower alkoxy group, 2) lower alkylamino group, hydroxy lower alkylamino group, lower alkylamino lower alkylamino group, piperidinyl group, lower alkyl piperidinyl group, morpholino group, lower alkylmorpholino group, thiomorpholino group, A lower alkyl group which may be substituted with 1 to 3 groups selected from a piperazinyl group, a lower alkyl piperazinyl group, a lower alkanoyl piperazinyl group and a pyrrolidinyl group, 3) substituted with a lower alkyl group A sulfamoyl group that may be substituted, and 4) a phenyl group that may be substituted with 1 to 3 groups selected from a carbamoyl group that may be substituted with a lower alkyl group,
It is.
[0035]
In a further preferred embodiment of the invention, R1Is a hydrogen atom, RThreeIs a halogen atom, and R6Is a 2-lower alkoxyphenyl group, 2,6-dilower alkoxyphenyl group, 2,6-dilower alkoxy-4-[[N, N-dilower alkylamino] lower alkyl] phenyl group, 2,6-di Lower alkoxy-4-[(4-lower alkyl-1-piperazinyl) lower alkyl] phenyl group, 2,6-dilower alkoxy-4- [1-piperidinyl lower alkyl] phenyl group, 2,6-dilower alkoxy- 4- [N, N-di (lower alkyl) carbamoyl] phenyl group or 2,6-dilower alkoxy-4-[(morpholino) lower alkyl] phenyl group.
[0036]
In a further preferred embodiment of the invention, lower alkoxy is methoxy.
[0037]
Preferred compounds as active ingredients of the present invention are:
N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (1-piperidinomethyl) phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(4-methylpiperazinyl) methyl] phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (morpholinomethyl) phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(N, N-dimethylamino) methyl] phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (N, N-dimethylcarbamoyl) phenyl] -L-phenylalanine;
N- (2,6-dichloro-4-hydroxybenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- (2-ethoxy-6-methoxyphenyl) -L-phenylalanine;
N- (2,6-difluorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- (2,3-methylenedioxy-6-methoxyphenyl) -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -3- (1-hydroxyethyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- (2,4,6-trimethoxyphenyl) -L-phenylalanine;
N- [2,6-dichloro-4-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine; or
N- [2,6-dichloro-4-[(2-thienylsulfonyl) amino] benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine,
Or its lower alkylster such as ethyl ester,
Or a pharmaceutically acceptable salt thereof.
[0038]
The active ingredient of the present invention can be used as its ester or amide. As the ester, a) 1) a pyridyl group, 2) an amino group optionally substituted with a lower alkyl group, 3) a lower alkanoyloxy group, or 4) a lower alkyl ester optionally substituted with an aryl group; c) lower alkynyl esters; d) lower cycloalkyl esters; and e) aryl esters. As the amide form, a lower alkyl group, a lower cycloalkyl group, an aryl group, an aryl lower alkyl group, a hydroxyl group or a lower alkanesulfonyl group which may be substituted with an amide (—CONH2).
[0039]
The esters of formula (I) include, for example, esters that can be converted into the corresponding carboxylic acids in the body, such as lower alkyl esters such as methyl esters, acetoxymethyl esters and the like. And lower alkanoyloxy lower alkyl esters. Amides of formula (I) include, for example, N-unsubstituted amides, N-monosubstituted amides such as N-lower alkyl amides, N, N-dialkyls such as N, N- (lower alkyl) (lower alkyl) amides Substituted amides and the like are included.
[0040]
The active ingredient of the present invention may be in a free form or a pharmaceutically acceptable salt form.
[0041]
Pharmaceutically acceptable salts of the compound of formula (I) include, for example, salts with inorganic acids (hydrochlorides, sulfates), salts with organic acids (p-toluenesulfonates, maleates) And a salt with an inorganic base (a salt with an alkali metal such as sodium salt or potassium salt) or a salt with an amine (ammonium salt).
[0042]
Further, pharmaceutically acceptable salts include, for example, acid addition salts with inorganic or organic acids (e.g., nitrates, hydrobromides, methanesulfonates, acetates), inorganic bases, organic bases, or And salts with amino acids (for example, triethylamine salts, salts with lysine, salts with alkaline earth metals). Also, pharmaceutically acceptable salts include internal salts, adducts, solvates or hydrates.
[0043]
The active ingredient is formulated into a pharmaceutical composition comprising a therapeutically effective amount of the above-described compound and a pharmaceutically acceptable carrier.
[0044]
The composition of the present invention can be used for treatment or prevention of α4 adhesion-mediated pathologies including α4β1 and α4β7, particularly α4β7 adhesion-mediated pathologies in mammals such as humans. This method is characterized in that a therapeutically effective amount of a compound or composition as described above is administered to a mammal or human patient.
[0045]
The pharmaceutical composition of the present invention comprises rheumatoid arthritis, asthma, psoriasis, eczema, contact dermatitis, atopic dermatitis and other skin inflammatory diseases, diabetes, multiple sclerosis, systemic lupus erythematosus (SLE), ulcerative colitis and Crohn's disease Treatment of inflammatory diseases such as inflammatory bowel disease, graft-versus-host disease and other diseases involving leukocyte infiltration in the gastrointestinal tract or skin, urethra, trachea, joint synovium, and other epithelial tissues or Can be used for prevention. The composition can preferably be used for the treatment or prevention of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease.
[0046]
The present invention also inhibits the interaction between a cell having a MAdCAM-1 ligand containing α4β7 integrin and MAdCAM-1 or a part thereof (extracellular domain) by contacting the cell with the active ingredient of the present invention. Regarding the method. In one aspect, the present invention relates to MAdCAM-1-mediated interaction between a first cell having α4β7 integrin and MAdCAM (for example, a second cell having MAdCAM), and the active ingredient of the present invention is used as the first cell. It is related with the method of inhibiting by making it contact. In another aspect, the invention relates to a therapeutic composition for individuals suffering from diseases involving leukocyte recruitment to tissues (eg, endothelial cells) that express MAdCAM-1 molecules.
[0047]
Another aspect of the present invention relates to a composition for the treatment of an individual suffering from a disease associated with leukocyte infiltration in a tissue expressing a MAdCAM-1 molecule.
[0048]
According to the present invention, a cell having a ligand of MAdCAM-1 is brought into contact with an effective amount of an active ingredient (one or more) represented by the structural formula (I). The active ingredient is a compound that inhibits (reduces or prevents) binding of MAdCAM-1 to a ligand comprising α4β7 integrin and / or inhibits the induction of a ligand-mediated cellular response. A therapeutically effective amount refers to an inhibitory amount (eg, an amount sufficient to inhibit adhesion between a cell having MAdCAM-1 ligand and MAdCAM-1). MAdCAM-1 ligands include α4β7 integrins such as human α4β7 integrin and homologs thereof from other species such as mice (referred to as mouse α4βp or LPAM-1).
[0049]
For example, cells such as leukocytes (eg, B lymphocytes, T lymphocytes) that naturally express a ligand of MAdCAM-1, or other cells (recombinant cells) that express a ligand of MAdCAM-1 Adhesion to 1 can be inhibited in vitro and / or in vivo by the compositions of the present invention.
[0050]
As another aspect, the present invention is directed to diseases involving leukocyte (eg, lymphocyte, monocyte) infiltration (including leukocyte recruitment and / or accumulation in tissues) that express MAdCAM-1 molecules. It relates to individual therapeutic compositions for mammals such as humans and other primates who suffer. The composition is characterized by containing a therapeutically effective amount of an active ingredient (one or more) of structural formula (I). For example, leukocytes in gastrointestinal tracts containing gastric aggregated endothelial cells, other mucosal tissues, venules in the lamina propria of the small intestine and large intestine, and tissues that express MAdCAM-1 molecules such as mammary glands (lactating mammary glands) Inflammatory diseases, including diseases involving infiltration, can be treated with the composition. Similarly, individuals suffering from diseases associated with leukocyte infiltration in tissues as a result of binding of leukocytes to cells expressing MAdCAM-1 molecules (eg, endothelial cells) can be treated with the compositions of the present invention.
[0051]
Diseases that can be treated in this way include ulcerative colitis, inflammatory bowel diseases such as Crohn's disease (IBD), pouchitis after ileo-anal anastomosis after colorectal resection and IBD, and other cases involving leukocyte infiltration Gastrointestinal diseases such as celiac disease, non-tropical sprue, bowel disease with seronegative arthritis, and graft-versus-host disease.
[0052]
Pancreatitis and insulin-dependent diabetes are other diseases that can be treated using the compositions of the present invention. MAdCAM-1 has been reported to be expressed in several blood vessels in the exocrine pancreas of NOD (non-obese diabetic) mice, as well as BALB / c and SJL mice. MAdCAM-1 expression is induced on the endothelium within the inflamed islets of the pancreas of NOD mice, and MAdCAM-1 expressed on the NOD islet endothelium is an excellent indicator in the early stages of isletitis (Hannen A. et al. J. Clin. Invest., 92: 2509-2515 (1993)). In addition, accumulation of lymphocytes expressing α4β7 within the islets was observed, and MAdCAM-1 is involved in α4β7-mediated binding of lymphoma cells to the blood vessels of inflamed islets (Hannen A. et al., J. Biol. Clin. Invest., 92: 2509-2515 (1993)).
[0053]
Examples of inflammatory diseases with mucosal tissues that can be treated with the present pharmaceutical composition include mastitis (mammary gland), cholecystitis, cholangitis, or periductitis (biliary and perihepatic tissue), chronic bronchitis, chronic sinusitis, Asthma, and graft-versus-host disease (eg, in the gastrointestinal tract). It can also treat chronic inflammatory diseases of the lung that cause interstitial fibrosis such as hypersensitivity pneumonia, collagen disease (in SLE, rheumatoid arthritis), sarcoidosis, and other idiopathic conditions.
[0054]
Vascular cell adhesion molecule-1 (VCAM-1), which recognizes α4β1 integrin (VLA-4), has been reported to play a role in leukocyte recruitment in vivo (Silver et al., J. Clin. Invest., 93 : 1554-1563 (1994)). However, this therapeutic target appears to be involved in the inflammatory process of multiple organs. Unlike VCAM-1, MAdCAM-1 is preferentially expressed in the gastrointestinal tract and mucosal tissue, binds to α4β7 integrin on leukocytes, and these cells home to mucosal sites, such as collecting lymph nodes in the gastrointestinal wall. (Haman et al., J. Immunol., 152: 3282-3293 (1994)). Inhibitors of binding of MAdCAM-1 to α4β7 integrin have, for example, little effect on other tissue types whose adhesion is mediated by other receptors, and therefore have the potential for fewer side effects.
[0055]
The undesirable symptoms listed here are alleviated by administering the pharmaceutical composition. The condition is derived from the release of pro-inflammatory media mediated by α4β7 integrin due to inappropriate cell adhesion and / or cell activation. Such inappropriate cell adhesion or signaling is typically expected to occur as a result of increased expression of VCAM and / or MAdCAM on the endothelial cell surface. Increased expression of VCAM, MAdCAM and / or CS-1 may be due to a normal inflammatory response or an abnormal inflammatory condition.
[0056]
Compounds suitable for therapeutic use can be evaluated in vivo using suitable animal models. Suitable animal models for inflammation have been disclosed. For example, NOD mice are an animal model for insulin-dependent diabetes. CD45 RBHi The SCID model is a mouse model similar to both Crohn's disease and ulcerative colitis (Powley, F. et al., Immunity, 1: 553-562 (1994)). Captured Cotton Top Tamarin, a non-human primate species from the Americas, spontaneously and often chronically develops colitis, which is clinically and histologically similar to ulcerative colitis in humans (Madara, JL et al., Gastroenterology, 88: 13-19 (1985)). Disclosed are animal models of other gastrointestinal inflammation using tamarin model and BALB / c mice (DSS (sodium dextran sulfate sodium) -induced inflammation model), IL-10 knockout mice that cause gastrointestinal lesions similar to those of human inflammatory bowel disease (Strawbar, W. and Arnhart, R.O., Cell, 75: 203-205 (1993)).
[0057]
According to the present invention, the active ingredient can be administered to an individual (such as a human) alone or together with other pharmacologically active agents (sulfasalazine, anti-inflammatory compounds, steroids, or other non-steroidal anti-inflammatory compounds). . The compound is administered in an amount sufficient to reduce or prevent MAdCAM-mediated binding to a ligand of MAdCAM-1 such as human α4β7, prior to, simultaneously with, or after administration of the other agent.
[0058]
An effective amount of the active ingredient can be administered by an appropriate route, in a single dose or multiple doses. An effective amount refers to a therapeutically effective amount sufficient to achieve the desired therapeutic and / or prophylactic effect, eg, an amount sufficient to reduce or prevent MAdCAM-mediated binding to a ligand of MAdCAM-1 thereby An amount that inhibits leukocyte adhesion and invasion and the associated cellular response. An appropriate amount for treating, diagnosing or preventing the active ingredient of the present invention can be determined by methods known in the art, for example, the age, sensitivity, tolerance and overall condition of the individual.
[0059]
The active ingredient of the present invention or a pharmacologically acceptable salt thereof can be administered orally or parenterally, and suitable pharmaceutical compositions such as tablets, granules, capsules, powders, injections, and inhalations. It can be used in a conventional manner.
[0060]
The dose of the active ingredient of the present invention or a pharmaceutically acceptable salt thereof varies depending on the route of administration, patient age, weight, and medical condition, but in general, the dose per day is preferably about 0. The range is from 0.1 to 100 mg / kg, particularly preferably from 1 to 100 mg / kg.
[0061]
As mentioned above, the active ingredient of formula (I) can be formulated into a pharmaceutical composition. When determining when a compound of formula (I) is needed to treat a given disease, consider the disease itself, its severity, and the age, gender, weight, and symptoms of the subject being treated. To be determined.
[0062]
For pharmaceutical use, the dosage of the compound of formula (I) required to achieve a therapeutic effect will, of course, vary depending on the particular compound, the route of administration, the patient being treated, and the particular condition or disease being treated. Will. Daily dosage of a compound of formula (I) or a pharmaceutically acceptable salt thereof for a mammal suffering from or suspected of suffering from any of the above diseases Is between 0.1 mg and 100 mg per kg of the body weight of the mammal in terms of the compound of formula (I), and in the case of systemic administration, it is 0.5 to 100 mg / kg of the body weight of the mammal. Yes, most preferably between 0.5 and 50 mg / kg, administered in 2 to 3 divided doses per day. In the case of topical administration, for example, for administration to the skin or eye, a suitable dose is 0.1 μg to 100 μg per kg, typically about 0.1 μg / kg.
[0063]
For oral administration, the dosage of the compound of formula (I) or a pharmaceutically acceptable salt thereof is preferably between 1 mg and 50 mg per kg, most preferably between 5 mg and 1 kg of mammal body weight. 25 mg, for example 1-10 mg. Most preferably, the unit dosage of the pharmaceutical composition for oral administration within the scope of the present invention contains about 1.0 g or less of the compound of formula (I).
[0064]
The pharmaceutical composition of the present invention can be administered to a patient suffering from the pathology described herein in an amount that is effective to completely or partially alleviate the undesirable symptoms of the pathology. Symptoms appear to develop by releasing pro-inflammatory mediators mediated by α4β7 integrin due to inappropriate cell adhesion and cell activation. Such inappropriate cell adhesion or signal transduction is typically expected to result from increased expression of VCAM-1 and / or MAdCAM on the endothelial cell surface. Increased expression of VCAM-1, MAdCAM and / or CS-1 may be due to a normal inflammatory response or an abnormal inflammatory condition. In any case, an effective amount of a compound of the invention reduces the increase in cell adhesion due to increased expression of VCAM-1 and / or MAdCAM by endothelial cells. A 50% reduction in adhesion observed in the pathology is considered an effective reduction in adhesion. More preferably, ex vivo adhesion is reduced by 90%. Most preferably, adhesion mediated by VCAM-1, MAdCAM and / or CS-1 interactions is completely blocked by an effective dose. Clinically, in some cases, the effect of the compound is observed as a reduction in leukocyte infiltration into the tissue or lesion site. Then, to obtain a therapeutic effect, the composition of the present invention is administered in an amount effective to reduce or eliminate inappropriate cell adhesion or inappropriate cell activation to alleviate undesirable symptoms. .
[0065]
While it is possible for the active ingredient to be administered alone, it is preferable to use it as a pharmaceutical composition comprising a compound of formula (I) and a pharmaceutically acceptable carrier. Such a formulation is a further feature of the invention.
[0066]
The formulations of the present invention for human and veterinary pharmaceutical use are generally considered to be effective in the treatment of a compound of formula (I), and a pharmacologically acceptable carrier and sometimes a targeted disease or condition. Consists of other known therapeutic active ingredients. The carrier must not react with the other ingredients of the formulation and should not be harmful to the recipient.
[0067]
Formulations include formulations suitable for oral, pulmonary, ocular, rectal, parenteral (including subcutaneous, intramuscular, and intravenous), intra-articular, topical, nasal inhalation (with aerosol), or buccal administration. It is done. Such formulations include sustained formulations known in the art. Oral and parenteral administration are preferred administration systems.
[0068]
The unit dosage form is suitable and can be prepared by any method well known in the pharmaceutical field. All methods include the step of bringing the active ingredient into association with the carrier which is one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired shape. The
[0069]
The formulations of the present invention suitable for oral administration are in separate unit forms such as capsules, cachets, tablets, lozenges, etc., each unit form containing a predetermined amount of active ingredient, powder, granule or aqueous Contains in the form of a liquid solution or suspension. Formulations for other uses include non-aqueous liquids, including oil-in-water emulsions, water-in-oil emulsions, aerosols, creams or ointments, or impregnating agents for transdermal patches for administering the active ingredient transdermally. It is administered to patients in need. The active ingredient of the composition of the present invention can be administered to a patient in need thereof in the form of a bolus, electuary or paste.
[0070]
Pharmaceutical carriers suitable for oral administration include, for example, binders (syrup, gum arabic, gelatin, sorbit, tragacanth, polyvinylpyrrolidone, etc.), excipients (lactose, sugar, corn starch, potassium phosphate, sorbit, glycine, etc.) , Lubricants (magnesium stearate, talc, polyethylene glycol, silica, etc.), disintegrants (potato starch, etc.) and wetting agents (sodium lauryl sulfate, etc.). On the other hand, in the case of parenteral administration, for example, injection water, physiological saline, glucose aqueous solution or the like can be used as an injection, a drip infusion, or a suppository.
[0071]
“Remington: Pharmacy Chemistry and Practice” by Philadelphia University of Pharmaceutical Chemistry, 19th revision, c. 1995 is referred to as a description of the pharmaceutical composition.
According to the present invention, compound (I) can be prepared by the following method.
[0072]
Manufacturing method A
Embedded image
Figure 0003795305
(Where R4aIs an ester group, and other symbols are the same as above)
[0073]
A compound of formula (I) or a pharmaceutically acceptable salt thereof is prepared as follows.
(1) condensing a compound of formula (II), a salt thereof, or a reaction derivative thereof with a compound of formula (III) or a salt thereof;
(2) If necessary, the ester group of the compound of formula (Ia) is converted to a carboxyl group,
(3) If necessary, the carboxyl group of the obtained compound is converted into an ester group, an amide group, a tetrazolyl group or a pharmaceutically acceptable salt thereof.
Examples of the salt of compound (II) and / or (III) include salts with inorganic acids such as trifluoroacetate, hydrochloride, sulfate, alkali metal salts such as sodium salt and potassium salt, barium salt and calcium salt, etc. And salts with inorganic bases such as alkaline earth metal salts.
[0074]
(1) The condensation reaction can be carried out by a general method for usual amide bond synthesis.
The condensation reaction between compound (II) or a salt thereof and compound (III) or a salt thereof is performed using a base (for example, DIEA, DMAP, DBU, EtThreeIn the presence or absence of organic bases such as N, alkali metal hydrides, alkali metal carbonates, alkali metal bicarbonates), in the absence of solvents or in suitable solvents (eg methylene chloride, THF, DMF or mixtures thereof) Solvent) in the presence of a condensing agent (eg BOP-Cl, BOP reagent, DCC, EDC or CDI).
[0075]
The reaction is carried out at 0 ° C. to room temperature (preferably at room temperature).
[0076]
The condensation reaction of compound (III) or a salt thereof and a reactive derivative of compound (II) (for example, acid halide, reactive ester, mixed acid anhydride with other carboxylic acid) is performed by a base (for example, DIEA, DMAP, DBU, EtThreeIn the presence or absence of organic bases such as N, alkali metal hydrides, alkali metal carbonates, alkali metal hydrogen carbonates), in the absence of solvents or in suitable solvents (e.g. CH2Cl2, Diethyl ether, THF, DMF, toluene, or a mixed solvent thereof).
[0077]
The reaction is carried out between -30 ° C and 100 ° C.
[0078]
(2) Conversion from an ester group to a carboxyl group is carried out in a conventional manner, and is selected according to the type of ester group to be converted. Examples thereof include hydrolysis using a base such as LiOH and NaOH, or an acid such as HCl, acid treatment such as TFA, and catalytic reduction using a catalyst such as palladium carbon. The ester group is selected from ordinary esters, and examples thereof include lower alkyl esters, lower alkenyl esters, lower alkynyl esters, aryl lower alkyl esters (for example, benzyl esters), aryl esters (for example, phenyl esters), and the like.
[0079]
(3) Conversion from a carboxyl group to an ester group, an amide group or a tetrazolyl group, or conversion of a compound into a pharmacologically acceptable salt thereof is carried out by conventional methods. In particular, the conversion from a carboxyl group to an ester group or an amide group is carried out in the same manner as in production method A- (1). The conversion from a carboxyl group to a tetrazolyl group will be described in Step N below.
[0080]
Manufacturing method B:
Embedded image
Figure 0003795305
(Where X1Is a leaving group, and other symbols are the same as above)
[0081]
The compound of formula (I) is synthesized as follows.
(1) reacting a compound of formula (IV) with a compound of formula (V);
(2) if necessary, converting the ester group of the compound of formula (Ia) to a carboxyl group;
(3) If necessary, the carboxyl group of the obtained compound is converted into an ester group, an amide group, a tetrazolyl group or a pharmaceutically acceptable salt thereof.
X1Examples of the leaving group include a halogen atom and a trifluoromethanesulfonyloxy group.
[0082]
(1) The coupling reaction is carried out by an ordinary aryl coupling method. For example, Suzuki coupling method (reference of Suzuki coupling method: (a) Suzuki et al., Synth. Commun., 1981, 11, 513, (b) Suzuki, Pure and Appl. Chem., 1985, 57, 1749-1758 (C) Suzuki et al., Chem. Rev., 1995, 95, 2457-2483, (d) Cie et al., J. Org. Chem., 1992, 57, 379-381, (e) Martin et al., Acta Chemica Scandinavica , 1993, 47, 221-230).
[0083]
The coupling reaction is carried out in the presence of tetrakis (triphenylphosphine) palladium and a base (for example, an inorganic base such as potassium carbonate), for example, between room temperature and 100 ° C., preferably between 80 ° C. and 100 ° C. Done in. Any organic solvent may be used as long as it does not inhibit the coupling reaction. Examples thereof include toluene, DME, DMF, water, and mixed solvents thereof.
[0084]
(2) Conversion from the ester group to the carboxyl group is carried out in the same manner as in production method A- (2).
(3) Conversion from a carboxyl group to an ester group, amide group or tetrazolyl group, or conversion of a compound to a pharmaceutically acceptable salt thereof is carried out in the same manner as in Production Method A- (3).
[0085]
Manufacturing method C:
Embedded image
Figure 0003795305
(Wherein the symbols are the same as above)
[0086]
The compound of formula (I) is also synthesized as follows.
(1) converting compound (IV) to the corresponding organotin compound (eg, compound of formula (VII));
(2) Compound (VII) is converted to formula (VIII):
R6-X (VIII)
Wherein X is a leaving group and R6Is the same as above)
React with a compound of
(3) if necessary, converting the ester group of the compound of formula (Ia) to a carboxyl group; and
(4) If necessary, the carboxyl group of the obtained compound is converted into an ester group, an amide group, a tetrazolyl group or a pharmaceutically acceptable salt thereof.
Examples of the leaving group X include a halogen atom and a trifluoromethanesulfonyloxy group.
[0087]
(1) Conversion of compound (IV) to organotin compound (VII) is carried out, for example, by converting compound (IV) to hexaalkyl distin (eg, hexamethyl distin) from room temperature to 150 ° C. (preferably from 80 ° C. to 110 ° C. ) In the presence of tetrakis (triphenylphosphine) palladium and an additive (eg, LiCl) in an organic solvent (eg, dioxane, toluene, DME, DMF, water or a mixed solvent thereof).
[0088]
(2) The coupling reaction is carried out by a conventional aryl coupling method, such as the Still coupling method (see Still coupling method: Still et al., Angew. Chem. Int. Ed. Engl., 25, 508 (1986)). Is called.
The coupling reaction is, for example, between room temperature and 150 ° C. (preferably between 80 ° C. and 120 ° C.) and in the presence of tetrakis (triphenylphosphine) palladium in an organic solvent (eg toluene, DME, DMF, water or In the mixed solvent).
[0089]
(3) Conversion from the ester group to the carboxyl group is carried out in the same manner as in production method A- (2).
[0090]
(4) Conversion from a carboxyl group to an ester group, amide or tetrazolyl group, or conversion of a compound to a pharmaceutically acceptable salt thereof is carried out in the same manner as in Production Method A- (3).
[0091]
Compound (IV) is compound (IIa):
Embedded image
Figure 0003795305
(Wherein Y is a halogen atom, and other symbols are the same as above)
And compound (IIIa):
[0092]
Embedded image
Figure 0003795305
(In the formula, other symbols are the same as above)
Alternatively, a salt thereof can be synthesized by an ordinary peptide synthesis method in the same manner as in the condensation reaction of the above compound (III) or a salt thereof and a reactive derivative of compound (II) (for example, acid halide).
[0093]
Compound (IV) can also be synthesized as follows.
(1) Compound (IIa) is converted to formula (IIIb):
Embedded image
Figure 0003795305
(Wherein the symbols are the same as above)
Or a salt thereof in the same manner as described above;
(2) The hydroxy group of the obtained compound is converted into a leaving group by a conventional method.
For example, conversion of a hydroxy group to a trifluoromethanesulfonyloxy group can be accomplished using trifluoromethanesulfonic anhydride at 0 ° C. with a base (eg, pyridine, NEtThree, DIEA) in the presence of an organic solvent (eg, CH2Cl2, THF or a mixed solvent thereof).
[0094]
Compound (II) can be synthesized as follows.
(1) Formula (VIa):
Embedded image
Figure 0003795305
(Wherein P is an amino-protecting group, and other symbols are the same as above)
And a compound (V) are condensed by a usual aryl coupling method known as a Suzuki coupling method;
(2) The amino-protecting group of the obtained compound is removed.
[0095]
The amino-protecting group is selected from ordinary amino-protecting groups, such as a substituted or unsubstituted aryl lower alkoxycarbonyl group (for example, benzyloxycarbonyl group, p-nitrobenzyloxycarbonyl group), a lower alkoxycarbonyl group (for example, , T-butoxycarbonyl group) and the like.
[0096]
The removal of the protecting group of the amino group is carried out by a conventional method, and the method should be selected depending on the type of the protecting group to be removed. For example, catalytic reduction using a catalyst (for example, palladium carbon), acid (for example, TFA) ) Treatment.
The condensation reaction is carried out in the same manner as the coupling reaction of compounds (IV) and (V).
[0097]
X1Compound (VIa) in which is a trifluoromethanesulfonyloxy group has the formula (VIb):
Embedded image
Figure 0003795305
(Wherein the symbols are the same as above)
And trifluoromethanesulfonic anhydride can be synthesized in the same manner as the synthesis of compound (IV).
[0098]
Compound (V) can be synthesized by a conventional method (see: (a) Quivilla et al., J. Am. Chem. Soc., 1961, 83, 2159; (b) Gerald, The Chemistry of Boron; Academic Press: New York, 1961; (c) Mutatis, The Chemistry of Boron and its Compounds; Wiley: New York, 1967; (d) Alamansa et al., J. Am. Chem. Soc., 1994, 116, 11723-11736):
[0099]
(1) reacting a substituted or unsubstituted aryllithium or a substituted or unsubstituted heteroaryllithium with trimethylborate between −100 ° C. and room temperature in an organic solvent (eg, diethyl ether, THF, or a mixed solvent thereof);
(2) The obtained compound is hydrolyzed by a conventional method.
Hydrolysis is performed at room temperature in an organic solvent (eg, diethyl ether, THF or a mixed solvent thereof) in the presence of a mild acid (eg, AcOH or citric acid).
The object compounds (I) of the present invention can be converted into each other. Conversion of the compound (I) of the present invention to another compound (I) of the present invention is carried out by selecting one of the following steps (steps A to W) in an organic solvent depending on the type of substituent. . An organic solvent that does not inhibit the process is selected.
[0100]
Step A: Reduction of carbonyl group
R1, R2, RThree, RFiveOr R6Compound (I) in which the substituent is a hydroxy lower alkyl group such as hydroxymethyl or a lower alkyl-CH (OH)-group has the corresponding R1, R2, RThree, RFiveOr R6Is obtained by reducing compound (I) in which the substituent is a carboxyl group, a formyl group, or lower alkyl-CO-. The reduction reaction is carried out in a conventional manner in an organic solvent (methanol, ethanol, THF or a mixed solvent thereof) at 0 ° C. to room temperature using a reducing agent such as borane or alkali metal borohydride (for example, sodium borohydride). Is called.
[0101]
Process B: Formyl group oxidation
R1, R2, RThree, RFiveOr R6The compound (I) in which the substituent is a carboxyl group has the corresponding R1, R2, RThree, RFiveOr R6It is obtained by oxidizing compound (I) in which the substituent is a formyl group. The oxidation reaction is KMnOFourUsing an oxidant such as 0 to 50 ° C. (preferably 30 to 50 ° C.) in an organic solvent such as acetone, water or a mixed solvent thereof by a conventional method.
[0102]
Process C: Reduction of nitro group
R1, R2, RThree, RFiveOr R6Or a compound (I) having an amino group as the substituent is a corresponding R1, R2, RThree, RFiveOr R6Is obtained by reducing compound (I) having a nitro group or a nitro group. In the reduction reaction, 1) catalytic reduction using a reducing agent such as Raney nickel or palladium carbon in a hydrogen atmosphere at room temperature in an organic solvent such as methanol, water, or a mixed solvent thereof, 2) metal and inorganic acid (eg Fe / HCl, Sn / HCl, etc.) or 3) Na2S2OFourIs carried out by a conventional method such as reduction at a temperature of 0 ° C. to 80 ° C. in a suitable solvent such as methanol, ethanol, water, or a mixed solvent thereof, or without solvent.
[0103]
Step D: Removal of protecting group
(D-1)
R1, R2, RThree, RFiveOr R6Or a compound (I) having an amino group as the substituent is a corresponding R1, R2, RThree, RFiveOr R6The substituents in the above are N-protected amino groups or have an N-protected amino group, and the protecting group is an amino-protecting group (for example, benzyloxycarbonyl group, tert-butoxycarbonyl group, 9-fluorene group). It can be obtained by deprotecting the amino group of the compound (I) which is a nylmethoxycarbonyl group or the like. The deprotection reaction is carried out by a conventional method selected depending on the type of protecting group to be removed. For example, 1) catalytic reduction using palladium carbon in a hydrogen atmosphere, 2) acid treatment such as hydrogen chloride or TFA, 3) Treatment with an amine such as piperidine, 4) By catalytic treatment such as Wilkinson's catalyst, at room temperature or under heating, CH2Cl2Can be carried out in an organic solvent such as THF, methanol, ethanol, acetonitrile, or without solvent.
[0104]
(D-2)
R1, R2, RThree, RFiveOr R6The compound (I) in which the substituent is a sulfamoyl group has the corresponding R1, R2, RThree, RFiveOr R6Is obtained by deprotecting the compound (I) wherein the substituent is an N-protected sulfamoyl group and the protecting group is a usual protecting group of a sulfamoyl group, such as a tert-butyl group. The deprotection reaction is carried out by a conventional method selected depending on the type of protecting group to be removed. For example, an acid such as TFA is used at room temperature and CH.2Cl2It can be carried out in an organic solvent such as
[0105]
(D-3)
R1, R2, RThree, RFour, RFiveOr R6Or the compound (I) having a carboxyl group has a corresponding R1, R2, RThree, RFour, RFiveOr R6Wherein the substituent is a protected carboxyl group or has a protected carboxyl group, and the protective group is a normal protective group of a carboxyl group (for example, a lower alkyl group, an aryl lower alkyl group, etc.) Obtained by deprotecting I). The deprotection reaction is carried out by a conventional method selected depending on the type of protecting group to be removed. For example, hydrolysis using a base such as NaOH, LiOH or KOH or an acid such as hydrochloric acid, treatment with an acid such as TFA, palladium, etc. The catalytic reduction using a catalyst such as carbon can be carried out at room temperature in an organic solvent such as methanol, ethanol, THF, or in the absence of a solvent.
[0106]
(D-4)
R1, R2, RThree, RFiveOr R6Or the compound (I) having a hydroxyl group has a corresponding R1, R2, RThree, RFiveOr R6Wherein the substituent is a protected hydroxyl group, or a compound having a protected hydroxyl group, and the protecting group is a normal protecting group for a hydroxyl group (for example, a methyl group, a methoxymethyl group, a tetrahydropyranyl group, etc.) Obtained by deprotecting I). The deprotection reaction is carried out by a conventional method selected depending on the type of protecting group to be removed. For example, demethylation of a methoxy group is performed using BBr.Three, Removal of the methoxymethyl group from −78 ° C. to room temperature, CH2Cl2Or by treatment with hydrochloric acid in an organic solvent such as methanol.
[0107]
Step E: Acylation of amino group
(E-1)
R1, R2, RThree, RFiveOr R6Are substituted with an N-acylamino group such as a lower alkanoylamino group, a lower alkoxycarbonylamino group, an arylcarbonylamino group, a chlorosulfonylcarbamoylamino group such as a 3-chlorosulfonylureido group, or a lower group such as a 3-lower alkylureido group. Substituted or unsubstituted lower alkylthiocarbamoyl such as alkylcarbamoylamino group, substituted or unsubstituted arylcarbamoylamino group such as 3- (substituted or unsubstituted aryl) ureido group, 3-lower alkylthioureido group, 3-phenyllower alkylthioureido group Compound (I) which is an amino group has the corresponding R1, R2, RThree, RFiveOr R6N-acylation of compound (I) in which the substituent is an amino group. N-acylation reaction includes 1) acylation of lower alkanoyl halide, lower alkanoic anhydride, lower alkyl halogenoformate, arylcarbonyl halide, chlorosulfonyl isocyanate, lower alkyl isocyanate, substituted or unsubstituted aryl isocyanate or lower alkyl isocyanate Agent, or 2) when synthesizing a lower alkoxycarbonylamino group, a lower alkylcarbamoylamino group, a substituted or unsubstituted arylcarbamoylamino group, a substituted or unsubstituted lower alkylthiocarbamoylamino group, a condensing agent such as CDI or thioCDI, And using the required amine or alcohol, in the presence of a base such as DIEA, pyridine, sodium hydrogen carbonate, potassium carbonate, between 0 ° C. and 100 ° C. (preferably room temperature to 90 ° C.). Or in the absence of THF, acetonitrile, CH2Cl2, DMF, toluene, or a mixed solvent thereof in a conventional manner.
[0108]
(E-2)
R1, R2, RThree, RFiveOr R6N-lower alkylsulfonylamino group such as methanesulfonylamino group, p-toluenesulfonylamino group, N-substituted or unsubstituted arylsulfonylamino group such as benzenesulfonylamino group, or quinolinosulfonylamino group Compound (I) which is an N-substituted or unsubstituted heteroarylsulfonylamino group has the corresponding R1, R2, RThree, RFiveOr R6Is obtained by N-sulfonylating the compound (I) in which the substituent is an amino group. The N-sulfonylation reaction is carried out by converting a lower alkylsulfonyl halide, a substituted or unsubstituted arylsulfonyl halide or a substituted or unsubstituted heteroarylsulfonyl halide to pyridine, EtThreeCH in the presence of a base such as N, DIEA, sodium bicarbonate, potassium carbonate, etc., between 0 ° C. and room temperature (preferably at room temperature)2Cl2, THF, DMF, acetonitrile, toluene, or an organic solvent such as a mixed solvent thereof.
[0109]
(E-3)
R1, R2, RThree, RFiveOr R6The compound (I) in which the substituent of is a ureido group has the corresponding R1, R2, RThree, RFiveOr R6Is obtained by hydrolyzing the compound (I) in which the substituent is a 3-chlorosulfonylureido group. Hydrolysis is performed using a base such as LiOH or NaOH or an acid such as HCl at room temperature, THF, CH.ThreeThe reaction can be carried out in a suitable solvent such as CN, DMF, water or a mixed solvent thereof.
[0110]
Step F: Alkylation of hydroxyl group
R1, R2, RThree, RFiveOr R6Are substituted or unsubstituted heterocycloalkyl lower alkoxy groups (e.g., substituted or unsubstituted piperidyl lower alkoxy groups, substituted or unsubstituted pyrrolidinyl lower alkoxy groups), aryl lower alkoxy groups, heteroaryl lower alkoxy groups (e.g., pyridyl Lower alkoxy group, substituted or unsubstituted thiazolyl substituted alkoxy group, substituted or unsubstituted isoxazolyl lower alkoxy group, substituted or unsubstituted thienyl lower alkoxy group), lower alkoxycarbonyl lower alkoxy group, carboxy lower alkoxy group, hydroxy lower alkoxy group, cyano Compound (I) which is a lower alkoxy group or a substituted or unsubstituted lower alkoxy group such as a lower alkoxy group has the corresponding R1, R2, RThree, RFiveOr R6It is obtained by alkylating the compound (I) in which the substituent is a hydroxy group, and then deprotecting a carboxyl group or a protecting group for a hydroxyl group by a conventional method, if necessary. The alkylation reaction may be carried out by using a halogenated lower alkane having no substituent (for example, methyl iodide), or a substituted or unsubstituted aryl group (for example, an unsubstituted aryl lower alkyl halide such as benzyl bromide), a substituted or unsubstituted heteroaryl. Groups (e.g., substituted or unsubstituted heteroaryl lower alkyl halides such as pyridylmethyl bromide, isoxazolyl methyl bromide, thiazolyl methyl bromide), heterocycloalkyl groups (e.g., N-lower alkylpyrrolidinyl lower alkyl bromides) N-lower alkyl piperidyl lower alkyl bromide substituted heterocycloalkyl lower alkyl halides), lower alkoxycarbonyl groups (eg halogenoalkanoic acid lower alkyl esters such as methyl bromoacetate), or cyano groups (eg bromoacetate With a halogenated lower alkane having a substituent such as tolyl), EtThreeCH in the presence of a base such as N, DIEA, sodium bicarbonate, potassium carbonate, etc. at room temperature to 50 ° C.2Cl2, THF, DMF, acetonitrile, toluene, and other organic solvents.
[0111]
The alkylation reaction is performed using a conventional alkylation method such as the Mitsunobu reaction (see Mitsunobu reaction: (a) Mitsunobu, Synthesis, 1-28, (1981); (b) Hyu, Organic Reactions, 42, 335. (1992); Mitsuhashi et al., J. Am. Chem. Soc., 94, 26 (1972)).
[0112]
Process G: Halogenation reaction of hydroxyl group
R1, R2, RThree, RFiveOr R6The compound (I) in which the substituent is a halogenated lower alkyl group has the corresponding R1, R2, RThree, RFiveOr R6Is obtained by halogenating the compound (I) wherein the substituent is a hydroxy lower alkyl group. The halogenation reaction is, for example, CBr.FourUsing a combination of tetrahalomethane and triphenylphosphine at room temperature2Cl2In an organic solvent such as
[0113]
Step H: Conversion of alkyl halide group to alkoxyalkyl group
R1, R2, RThree, RFiveOr R6Compound (I) in which the substituent is a lower alkoxy lower alkyl group has the corresponding R1, R2, RThree, RFiveOr R6It is obtained by reacting the compound (I) in which the substituent is a halogenated lower alkyl group with an alkali metal lower alkoxide such as sodium methoxide at room temperature in an organic solvent such as DMF, THF, and acetonitrile.
[0114]
Step I: Conversion of carboxyl group to carbamoyl group
R1, R2, RThree, RFour, RFiveOr R6N-lower alkylcarbamoyl group, N, N- (lower alkyl) (lower alkyl) carbamoyl group, N- (hydroxy lower alkyl) carbamoyl group, N- (morpholino lower alkyl) carbamoyl group, N- (aryl The compound (I) which is a substituted or unsubstituted carbamoyl group such as a (lower alkyl) carbamoyl group, N-lower alkanesulfonylcarbamoyl group, hydroxycarbamoyl group, carbamoyl group has the corresponding R1, R2, RThree, RFour, RFiveOr R6Compound (I) wherein the substituent is a carboxyl group is substituted or unsubstituted amine (for example, lower alkylamine, N, N- (lower alkyl) (lower alkyl) amine, (hydroxy lower alkyl) amine, (morpholino lower alkyl) ) Amine, (aryl lower alkyl) amine, hydroxyamine, ammonia) or a lower alkanesulfonamide.
The condensation reaction can be carried out by an ordinary peptide synthesis reaction, similar to the condensation reaction of the above compounds (II) and (III).
[0115]
Process J: Reductive alkylation
(J-1)
R1, R2, RThree, RFiveOr R6The compound (I) in which the substituent of is an amino lower alkyl group, a lower alkylamino lower alkyl group or an arylamino lower alkyl group has the corresponding R1, R2, RThree, RFiveOr R6Is obtained by reductive alkylation of the corresponding ammonia, lower alkylamine or arylamine.
The reductive alkylation reaction is carried out by a conventional method using a reducing agent such as sodium cyanoborohydride and an acid such as hydrochloric acid in an organic solvent such as methanol, THF, dioxane, or a mixed solvent thereof at room temperature. be able to.
[0116]
(J-2)
R1, R2, RThree, RFiveOr R6Compound (I) in which the substituent is a N, N-dimethylamino group has the corresponding R1, R2, RThree, RFiveOr R6It can be obtained by reductive alkylation of compound (I) in which the substituent is an amino group. In the reductive alkylation reaction, a reducing agent such as formaldehyde and sodium cyanoborohydride and an acid such as hydrochloric acid are mixed at room temperature in an organic solvent such as methanol, ethanol, THF, and dioxane, or in water or a mixed solvent thereof. And can be carried out in a conventional manner.
[0117]
Process K: Wittig reaction
R1, R2, RThree, RFiveOr R6Compound (I) in which the substituent is a lower alkoxycarbonylethenyl group has the corresponding R1, R2, RThree, RFiveOr R6Is obtained from the compound (I) in which the substituent is a formyl group by a Wittig reaction. The Wittig reaction can be carried out by a conventional method using, for example, triphenylphosphoranylideneacetic acid lower alkyl ester in an organic solvent such as toluene and THF at a temperature of 50 to 100 ° C.
[0118]
Step L: Conversion of halogenated alkyl group to aminoalkyl group
R1, R2, RThree, RFiveOr R6In which the substituent is a substituted or unsubstituted amino group, a substituted or unsubstituted piperidinyl group, a substituted or unsubstituted morpholino group, an optionally oxidized thiomorpholino group, a substituted or unsubstituted piperazinyl group, or a substituted or unsubstituted pyrrolidinyl group Compound (I) which is a lower alkyl group substituted with1, R2, RThree, RFiveOr R6The compound (I) in which the substituent is a halogenated lower alkyl group is reacted with DMF, THF, CH at room temperature or under cooling.2Cl2Et in an organic solvent such asThreeThe reaction can be carried out by reacting with a necessary amine in the presence or absence of a base such as N or DIEA.
In particular, R1And RFiveIs a hydrogen atom and R2And RThreeIs a halogen atom, and R6Lower alkyl substituted with a lower alkoxy group and a group selected from a substituted or unsubstituted amino group, a substituted or unsubstituted piperidinyl group, a substituted or unsubstituted morpholino group, a substituted or unsubstituted piperazinyl group and a substituted or unsubstituted pyrrolidinyl group Compound (I), which is a phenyl group substituted with a group, has the corresponding R1And RFiveIs a hydrogen atom and R2And RThreeIs a halogen atom, and R6Compound (I), wherein is a phenyl group substituted with a lower alkoxy group and a halogeno lower alkyl group, is substituted or unsubstituted ammonia, substituted or unsubstituted piperidine, substituted or unsubstituted morpholine, substituted or unsubstituted piperazine, and substituted Alternatively, it can be obtained by reacting with a necessary amine such as unsubstituted pyrrolidine. The reaction can be carried out as described above.
[0119]
Step M: Conversion of carbonyl group to thiocarbonyl group
Compound (I) in which Z is a sulfur atom is obtained by reacting compound (I) in which Z is an oxygen atom with Lawesson's reagent in a suitable organic solvent such as toluene or xylene at 50 to 150 ° C. It is done.
[0120]
Step N: Conversion of carboxyl group to tetrazolyl group
RFourCompound (I) in which is tetrazolyl group is RFourIs obtained from the compound (I) in which is a carboxyl group by the method described in J. Med. Chem., 41, 1513-1518, 1998. The outline of this process is shown in the following reaction formula.
Embedded image
Figure 0003795305
[0121]
Step O: Conversion from carboxyl group to alkoxycarbonyl group
R1, R2, RThree, RFour, RFiveOr R6Compound (I) in which the substituent is a substituted or unsubstituted lower alkoxycarbonyl group has the corresponding R1, R2, RThree, RFour, RFiveOr R6The compound (I) in which the substituent is a carboxyl group is obtained by condensation with a substituted or unsubstituted lower alcohol such as a halogeno lower alcohol, a pyridyl lower alcohol, a lower alkylamino lower alcohol, a lower alkoxy lower alcohol or the like.
The condensation reaction can be carried out by the usual method for synthesizing ordinary esters similar to the above production method A- (3).
[0122]
Step P: Reduction of hydroxyl group
R1, R2, RThree, RFiveOr R6Compound (I), in which the substituent of is a lower alkyl group, has the corresponding R1, R2, RThree, RFiveOr R6Is obtained by reducing compound (I) in which the substituent is a hydroxy-lower alkyl group. The reduction reaction is carried out using a silane compound (eg EtThreeReductant such as SiH)ThreeTiClFourIn the presence of Lewis acid such as acetonitrile, CH2Cl2By using in a suitable organic solvent such as THF at a temperature between 0 ° C and -78 ° C.
[0123]
Step Q: Phenyl group halogenation reaction
R6Compound (I) in which is a substituted or unsubstituted halogenophenyl group has the corresponding R6Compound (I), wherein is a substituted or unsubstituted phenyl group,FourNBrThreeHalogenating agents such as 3,5-dichloro-1-fluoropyridinium triflate and acetonitrile, CH2Cl2It can be obtained by reacting in a suitable solvent such as THF at room temperature or under heating.
[0124]
Process R: Nitration reaction of phenyl group
R6Compound (I) in which is a substituted or unsubstituted nitrophenyl group has the corresponding R6Compound (I) in which is a substituted or unsubstituted phenyl group can be reacted with nitric acid at a temperature of room temperature to 100 ° C. in a suitable solvent such as THF, acetonitrile, methanol, ethanol and the like.
[0125]
Step S: Conversion of phenyl group to carbamoylphenyl group
R6Compound (I) in which is a substituted or unsubstituted carbamoylphenyl group is 1) the corresponding R6It can be obtained by reacting compound (I) in which is a substituted or unsubstituted phenyl group with chlorosulfonyl isocyanate, and 2) hydrolyzing the resulting compound. The reaction between compound (I) and an isocyanate compound is acetonitrile, CH2Cl2In a suitable solvent such as THF, the reaction can be carried out between 0 ° C. and room temperature. Hydrolysis can be performed by reacting with an acid such as hydrochloric acid, nitric acid or sulfuric acid in a suitable solvent such as acetonitrile or water between room temperature and 100 ° C.
[0126]
Step T: Conversion of alkanoyl group to iminoalkyl group
R1, R2, RThree, RFiveOr R6Compound (I) in which the substituent of is a hydroxyimino lower alkyl group or a lower alkoxyimino lower alkyl group has the corresponding R1, R2, RThree, RFiveOr R6Compound (I) in which the substituent is a lower alkanoyl group, hydroxyamine or lower alkoxyamine, a lower alcohol such as methanol, ethanol, PrOH or BuOH, an appropriate solvent such as acetonitrile, an alkali metal acetate such as NaOAc, etc. It can be obtained by reacting with a base at room temperature or under heating.
[0127]
Step U: Conversion of a halogen atom to a heterocyclic group
R1, R2Or RThreeCompound (I) in which is a substituted or unsubstituted heterocyclic group has a corresponding R1, R2Or RThreeCan be obtained by reacting a compound (I) in which is a halogen atom with a substituted or unsubstituted heterocyclic boronic acid using a conventional aryl coupling method such as a Suzuki coupling method. The coupling reaction can be carried out according to the process described in Production Method A.
[0128]
Process V: oxidation of sulfur atom
R6In which the substituent is a lower alkylsulfinyl group, a lower alkylsulfonyl group, a thiomorpholino lower alkyl S-oxide group, or a thiomorpholino-lower alkyl S, S-dioxide group, the corresponding R6A compound (I) in which the substituent is a lower alkylthio group or a thiomorpholino lower alkyl group, an oxidizing agent such as peracid such as mCPBA, hydrogen peroxide, AcOOH, and CH2Cl2It is obtained by oxidation in a suitable solvent such as at room temperature or under cooling.
[0129]
Step W: Imidation of hydroxy lower alkyl group
R1, R2, RThreeOr R6The compound (I) in which the substituent is a lower alkyl group substituted by a 2,5-dioxo-1-imidazolidinyl group optionally substituted by a succinimide group or a lower alkyl group has the corresponding R1, R2, RThreeOr R6Is obtained by imidizing the compound (I) in which the substituent is a hydroxy lower alkyl group. The imidization reaction can be performed by a conventional method such as a Mitsunobu reaction described in Step F of the reference document. In the reaction, compound (I) may be substituted with di-lower alkyl azodicarboxylate (eg, diethyl azodicarboxylate), tri-lower alkyl- or triaryl phosphine (eg, triphenylphosphine) and succinimide, lower alkyl group. It is carried out by reacting the required imide such as hydantoin with a suitable organic solvent such as diethyl ether and THF at between -20 ° C and 50 ° C.
[0130]
The active ingredient of the present invention is exemplified by the following production examples, but is not limited thereto.
Production example
Production Example 1: N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (1A) and N- (2,6-dichlorobenzoyl) -4- (2-methoxy) Phenyl) -L-phenylalanine (1B)
1) Pyridine (3.58 mL) was added to a solution of N- (t-butoxycarbonyl) -L-tyrosine methyl ester (4.36 g) / anhydrous methylene chloride (100 mL) under nitrogen. The solution was cooled to 0 ° C. and trifluoromethanesulfonic anhydride (3 mL) was added dropwise with stirring. After the addition was complete, the ice bath was removed and the mixture was stirred at room temperature for 3 hours. The mixture was washed sequentially with water, 1N hydrochloric acid and water. The resulting methylene chloride solution was washed with aqueous sodium bicarbonate followed by water, dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, toluene / ethyl acetate (9: 1)) to give N- (t-butoxycarbonyl) -O- (trifluoromethanesulfonyl) -L-tyrosine methyl ester (6. 2 g) was obtained. ESMS: m / z 500 (MH+).
2) The product obtained above (1.0 g) under nitrogen in a toluene / DMF (25 mL / 2.5 mL) mixture of 2-methoxybenzeneboronic acid (0.446 g) and anhydrous potassium carbonate (0.84 g). Of toluene (5 mL) was added. Pd (PPhThree)Four(0.48 g) was added and the mixture was heated at 80 ° C. for 24 hours. The mixture was cooled, filtered through celite and evaporated. The residue was dissolved in ethyl acetate and washed with water. The organic layer was dried over magnesium sulfate and evaporated, and the crude material was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1/3)) to give N- (t-butoxycarbonyl) -4- ( 2-Methoxyphenyl) -L-phenylalanine methyl ester (0.64 g) was obtained. ESMS: m / z 386 (MH+).
3) To a solution of the product obtained above (2.97 g) in methylene chloride (20 mL) was added TFA (20 mL) and the mixture was stirred for 1.5 hours. The solution was evaporated. The residue was dissolved in methylene chloride (20 mL) and the solution was evaporated. This process was repeated once more, and the residue was finally dried under high vacuum to obtain 4- (2-methoxyphenyl) -L-phenylalanine methyl ester / TFA salt (2.93 g). ESMS: m / z 286 (MH+).
4) A solution of 2,6-dichlorobenzoyl chloride (0.99 mL) was stirred at 0 ° C. in a solution of the product obtained above (2.3 g) in methylene chloride (30 mL) containing DIEA (2.24 g). Added while. The mixture was warmed to room temperature and stirred for 24 hours. The mixture was washed successively with water, 1N hydrochloric acid, saturated sodium bicarbonate and brine. The resulting methylene chloride solution was dried over magnesium sulfate and evaporated, and the crude material was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1/4)) to give N- (2,6-dichloro). Benzoyl) -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (1.64 g) (1A) was obtained. ESMS: m / z 458 (MH+).
5) The product obtained above (0.1 g) was dissolved in a THF / methanol (5 mL / 2 mL) mixture. LiOH (monohydrate, 14 mg) in water (2 mL) was added and the mixture was stirred at room temperature for 3 hours. The mixture was evaporated and the residue was treated with water. The resulting mixture was adjusted to pH 2 with 1N hydrochloric acid and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried and evaporated to give N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine (0.08 g) (1B). ESMS: m / z 444 (MH+). Melting point 211 ° C.
[0131]
Production Example 2: N-[(S) -2-phenylpropionyl] -4- (2-methoxyphenyl) -L-phenylalanine
1) 4- (2-methoxyphenyl) -L-phenylalanine methyl ester hydrochloride (0.03 g), (S) -2-phenylpropionic acid (0.014 g), EDC (0.02 g), HOBT (0 0.021 g) and DIEA (0.034 mL) in DMF (5 mL) were stirred at room temperature for 18 hours. DMF was removed and the residue was partitioned between ethyl acetate and water. The organic layer was evaporated and washed sequentially with 10% citric acid, saturated sodium bicarbonate and brine. The resulting organic layer was dried over magnesium sulfate and evaporated, and the residue was purified by silica gel flash column chromatography (eluent, methylene chloride / ethyl acetate (9: 1)) to give N-[(S) -2-phenyl. Propionyl] -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (0.031 g) was obtained. ESMS: m / z 417 (MH+).
2) The product obtained above (0.031 g) was dissolved in a THF / methanol (3 mL / 0.3 mL) mixture. 2N LiOH (0.07 mL) was added and the mixture was stirred at room temperature for 3 hours. The mixture was evaporated and the residue was treated with water. The resulting mixture was adjusted to pH 2 with 1N hydrochloric acid and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried and evaporated to give the title compound (0.02 g). ESMS: m / z 403 (MH+).
[0132]
Production Example 3: N- (2,6-difluorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine
1) 2,6-Dimethoxybenzeneboronic acid (0.5 g) was dissolved in DME (10 mL). To this solution was added potassium carbonate (0.7 g), N- (t-butoxycarbonyl) -O- (trifluoromethanesulfonyl) -L-tyrosine methyl ester (0.4 g), Pd (PPHThree)Four(0.6 g) and water (0.2 mL) were added. The resulting mixture was heated to 80 ° C. overnight. Ethyl acetate and water were added sequentially to the mixture. The ethyl acetate layer was dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1: 2)) to give N- (t-butoxycarbonyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl. The ester (380 mg) was obtained.
2) CF was added to the product obtained above.ThreeCOOH (5 mL) was added and the mixture was stirred at room temperature for 4 hours. Excess CFThreeCOOH was removed under reduced pressure. The residue was dissolved in methylene chloride and washed with saturated sodium bicarbonate. The organic layer was dried over magnesium sulfate and evaporated to give 4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (260 mg).
3) The product obtained above (140 mg) was dissolved in dry methylene chloride (10 mL). The mixture was added to EtThreeN (0.15 mL) and 2,6-difluorobenzoyl chloride (72 μL) were added and the mixture was stirred at room temperature for 6 hours. Methylene chloride was added and the organic layer was washed with water, dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1: 2)) to give N- (2,6-difluorobenzoyl) -4- (2,6-dimethoxyphenyl) -L- Phenylalanine methyl ester (160 mg) was obtained. ESMS: m / z 455 (MH+).
4) A solution of LiOH (monohydrate, 12 mg) in water (0.4 mL) was added to a solution of the product obtained above (90 mg) in THF (5 mL). A few drops of methanol were added and the mixture was stirred at room temperature overnight. Excess organic solvent was removed under reduced pressure, water was added to the residue, and the resulting solution was acidified with 10% citric acid. The resulting solid was collected by filtration, washed with water and dried to give the title compound (70 mg). ESMS: m / z 441 (MH+).
[0133]
Production Example 4: N- (2,6-dichlorobenzoyl) -4- (2-thienyl) -L-phenylalanine methyl ester (4A) and: N- (2,6-dichlorobenzoyl) -4- (2-thienyl) ) -L-Phenylalanine (4B)
1) To a mixture of 2-thienylboronic acid (1.135 g) and anhydrous potassium carbonate (2.23 g) in toluene / DMF (75 mL / 7.5 mL) under nitrogen, N- (t-butoxycarbonyl) -O- ( A solution of trifluoromethanesulfonyl) -L-tyrosine methyl ester (3.42 g) in toluene (5 mL) was added. Pd (PPhThree)Four(1.4 g) was added and the mixture was heated at 80 ° C. for 24 hours. After normal work-up as shown in Production Example 1, the crude material was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1: 3)) to give N- (t-butoxycarbonyl) -4. -(2-Thienyl) -L-phenylalanine methyl ester (1.81 g) was obtained. ESMS: m / z 362 (MH+).
2) To a solution of the product obtained above (1.53 g) in methylene chloride (25 mL) was added TFA (25 mL) and the mixture was stirred at room temperature for 1.5 hours. The mixture was evaporated. The residue was partitioned with methylene chloride (20 mL) and saturated sodium bicarbonate. The organic layer was separated, washed with brine, dried over magnesium sulfate and evaporated to give 4- (2-thienyl) -L-phenylalanine methyl ester. The free base was treated with 10% hydrochloric acid in diethyl ether to give the hydrochloride (1.036 g). ESMS: m / z 262 (MH+).
3) To a mixture of the above-obtained hydrochloride (0.2 g) with DIEA (0.42 mL) in methylene chloride (5 mL) at 0 ° C., 2,6-dichlorobenzoyl chloride (0.12 mL) in methylene chloride (0.12 mL). 1 mL) solution was added. The mixture was warmed to room temperature, stirred for 24 hours and washed sequentially with water, 1N hydrochloric acid, saturated sodium bicarbonate and brine. The organic layer was dried over magnesium sulfate, evaporated, the residue was purified by silica gel flash column chromatography (eluent, methylene chloride / ethyl acetate / hexane (1: 1: 6)) and purified by N- (2,6-dichloro). Benzoyl) -4- (2-thienyl) -L-phenylalanine methyl ester (0.15 g) (4A) was obtained. ESMS: m / z 434 (MH+).
4) The product obtained above (0.1 g) was dissolved in a THF / methanol (5 mL / 2 mL) mixture. LiOH (monohydrate, 14 mg) in water (2 mL) was added and the mixture was stirred at room temperature for 3 hours. The mixture was evaporated and the residue was treated with water. The mixture was adjusted to pH 2 with 1N hydrochloric acid and extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate and evaporated to give N- (2,6-dichlorobenzoyl) -4- (2-thienyl) -L-phenylalanine (0.08 g) (4B). It was. ESMS: m / z 420 (MH+).
[0134]
Production Example 5: N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -D-phenylalanine
1) A solution of 2,6-dichlorobenzoyl chloride (0.68 mL) in methylene chloride (5 mL) was added to a solution of D-tyrosine methyl ester / hydrochloride (1.0 g) and DIEA (2.26 mL) in methylene chloride (15 mL). To the ice-cold solution. The mixture was stirred at room temperature for 24 hours. The mixture was diluted with methylene chloride (50 mL) and washed sequentially with water, 1N hydrochloric acid and brine. The organic layer was dried over magnesium sulfate and evaporated, and the residue was recrystallized (from ethyl acetate / hexane) to give N- (2,6-dichlorobenzoyl) -D-tyrosine methyl ester (1.46 g). . ESMS: m / z 369 (MH+).
2) To an ice-cold solution of the product obtained above (0.5 g) containing methylene chloride (0.33 mL) containing pyridine (0.33 mL), slowly add trifluoromethanesulfonic anhydride (0.27 mL). added. The mixture was stirred for 2.5 hours and washed sequentially with water, 1N hydrochloric acid, saturated sodium bicarbonate and water. The organic layer was dried over magnesium sulfate and evaporated, and the residue was purified by silica gel flash column chromatography (eluent, toluene / ethyl acetate (9: 1)) to give N- (2,6-dichlorobenzoyl) -O—. (Trifluoromethanesulfonyl) -D-tyrosine methyl ester (0.65 g) was obtained. ESMS: m / z 501 (MH+).
3) Pd (PPhThree)Four(0.09 g) was suspended in 2-methoxybenzeneboronic acid (0.082 g), potassium carbonate (0.16 g) and the product obtained above (0.214 g) in toluene / DMF (4 mL / 0.4 mL). To the suspension was added under nitrogen. The mixture was heated at 80 ° C. for 24 hours, cooled, filtered and the solvent was evaporated. The residue was dissolved in ethyl acetate, washed with water, dried over magnesium sulfate and evaporated. The crude product was purified by silica gel flash column chromatography (eluent, toluene / ethyl acetate (10: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -D- Phenylalanine methyl ester (45 mg) was obtained. ESMS: m / z 458 (MH+).
4) The product obtained above (90 mg) was hydrolyzed with LiOH in the same manner as described in the preparation method of Preparation Example 1 to obtain the title compound (25 mg). ESMS: m / z 444 (MH+). Melting point 195 ° C.
[0135]
Production Example 6: N- (2,6-dichlorobenzoyl) -3- (2-methoxyphenyl) -D, L-phenylalanine
The title compound was obtained according to the same production method as in Production Example 5. ESMS: m / z 444 (MH+). Melting point 104 ° C.
[0136]
Production Example 7: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (7A) and N- (2,6-dichlorobenzoyl) -4- (2 , 6-Dimethoxyphenyl) -L-phenylalanine (7B) 1) 1,3-dimethoxybenzene (4 g) was dissolved in freshly distilled THF (10 mL). The solution was cooled to −78 ° C., and n-BuLi (24 mL, 1.6 M hexane solution) was added dropwise to the cold solution. The mixture was stirred at −78 ° C. for 1 hour, then warmed to room temperature and stirred for 1 hour. The resulting mixture is again cooled to −78 ° C. and (MeO)ThreeB (6.7 mL) was added. The mixture was warmed to room temperature and stirred overnight. Water (10 mL) was added and the mixture was stirred for 0.5 h, acidified to pH 4 with acetic acid and extracted with ethyl acetate. The extract was dried over magnesium sulfate and evaporated to give 2,6-dimethoxybenzeneboronic acid, which was used without further purification. 2) The product obtained above (0.3 g) and potassium carbonate (0.5 g) were suspended in DME (10 mL). The mixture was mixed with N- (2,6-dichlorobenzoyl) -4-bromo-L-phenylalanine methyl ester (0.3 g), Pd (PPhThree)Four(0.3 g) and water (0.4 mL) were added and the mixture was heated at 80 ° C. for 6 hours. After cooling, ethyl acetate and water were added to the mixture. The ethyl acetate layer was dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1: 2)), and N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L- Phenylalanine methyl ester (0.2 g) (7A) was obtained.
3) The product obtained above (0.1 g) was dissolved in dry THF (5 mL). To the solution was added LiOH (monohydrate, 12 mg) in water (0.5 mL) and a few drops of methanol. The mixture was stirred at room temperature for 2 hours and evaporated. The residue was dissolved in water and acidified with 10% citric acid. The separated solid was collected by filtration and dried to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenalanine (80 mg).1H-NMR (300 MHz, DMSO-d6): Δ 2.9 (dd, 1H), 3.2 (dd, 1H), 3.7 (s, 6H), 4.72 (m, 1H), 6.7 (d, 2H), 7. 1-7.5 (m, 8H), 9.1 (d, 1H). ESMS: m / z 474 (MH+), 472 ([MH]-).
[0137]
Production Example 8: N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine
1) Hydrogen chloride gas was blown into a solution of N- (t-butoxycarbonyl) -4-bromo-L-phenylalanine (5 g) in ethanol (35 mL) and the mixture was left at room temperature overnight. The separated solid was collected by filtration, washed with ether, and air dried to give 4-bromo-L-phenylalanine ethyl ester hydrochloride (3.46 g). ESMS: m / z 274 (MH+).
2) DIEA (6.1 mL) was added at 0 ° C. to a suspension of the hydrochloride obtained above (3.2 g) in methylene chloride (40 mL). To the mixture was added a solution of 2,6-dichlorobenzoyl chloride (2.0 mL) in methylene chloride (5 mL) and the mixture was stirred at room temperature overnight. The solvent was removed and the residue was partitioned with 1N hydrochloric acid and ethyl acetate. The organic layer was separated, washed with brine and evaporated. The product was purified by silica gel flash column chromatography (eluent, hexane / ethyl acetate (4: 1)) to give N- (2,6-dichlorobenzoyl) -4-bromo-L-phenylalanine ethyl ester (3. 9 g) was obtained. ESMS: m / z 446 (MH+).
3) Pd (PPhThree)Four(1.61 g) was added to a suspension of 2-methoxybenzeneboronic acid (1.5 g), potassium carbonate (2.83 g) and the product obtained above (3.65 g) in DME (50 mL) under argon. added. The mixture was heated at 80 ° C. for 24 hours, cooled and filtered to evaporate the solvent. The residue was dissolved in ethyl acetate and the ethyl acetate solution was washed with water, dried and evaporated. The residue was purified by silica gel flash column chromatography (eluent, hexane / ethyl acetate (4: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine ethyl. The ester (2.1 g) was obtained. ESMS: m / z 472 (MH+).
4) A solution of LiOH (monohydrate, 82 mg) in water (1 mL) was added to the product obtained above (0.4 g) in THF / methanol (5 mL / 1 mL) and the mixture was stirred for 1.5 hours. . The solvent was removed and the residue was dissolved in water. The solution was acidified to pH 2 with 1N hydrochloric acid and the separated solid was collected by filtration, washed with water and air dried to give the title compound.
The following compounds (Production Examples 9 to 14) were produced by the same production method as in Production Example 7.
[0138]
Production Example 9: N- (2,6-dichlorobenzoyl) -4- (2,4-dimethoxyphenyl) -L-phenylalanine
ESMS: m / z 474 (MH+), 472 ([MH]-).
[0139]
Production Example 10: N- (2,6-dichlorobenzoyl) -4- (2,3,6-trimethoxyphenyl) -L-phenylalanine
ESMS: m / z 504 (MH+), 502 ([MH]-).
[0140]
Production Example 11: N- (2,6-dichlorobenzoyl) -4- (2,4,6-trimethoxyphenyl) -L-phenylalanine
ESMS: m / z 504 (MH+), 502 ([MH]-).
[0141]
Production Example 12: N- (2,6-dichlorobenzoyl) -4- (4-chloro-2,6-dimethoxyphenyl) -L-phenylalanine
ESMS: m / z 509 (MH+), 507 ([MH]-).
[0142]
Production Example 13: N- (2,6-dichlorobenzoyl) -4- (2,6-diethoxyphenyl) -L-phenylalanine
ESMS: m / z 502 (MH+), 500 ([MH]-).
[0143]
Production Example 14: N- (2,6-dichlorobenzoyl) -4- (2-ethoxy-6-methoxyphenyl) -L-phenylalanine
ESMS: m / z 488 (MH+), 486 ([MH]-).
[0144]
Production Example 15: N- (2,6-dichlorobenzoyl) -4- [2- [N- (t-butyl) sulfamoyl] phenyl] -L-phenylalanine methyl ester
2- [N- (t-butyl) sulfamoyl] benzeneboronic acid (0.4 g) was dissolved in DME (10 mL). To this solution was added potassium carbonate (0.1 g), N- (2,6-dichloronebenzoyl) -4-bromo-L-phenylalanine methyl ester (0.1 g), Pd (PPhThree)Four(0.1 g) and water (0.2 mL) were added. The mixture was heated at 80 ° C. overnight. After cooling, ethyl acetate and water were added to the mixture. The ethyl acetate layer was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1: 2)) to obtain the title compound (100 mg). ESMS: m / z 585 ([M + Na]+).
[0145]
Production Example 16: N- (2,6-dichlorobenzoyl) -4- [2- [N- (t-butyl) sulfamoyl] phenyl] -L-phenylalanine
N- (2,6-dichlorobenzoyl) -4- [2- [N- (t-butyl) sulfamoyl] phenyl] -L-phenylalanine methyl ester (75 mg) was dissolved in THF (5 mL) and LiOH was added to this solution. A solution of (monohydrate, 10 mg) in water (0.4 mL) was added. A few drops of methanol were added and the mixture was stirred at room temperature overnight. The mixture was evaporated, water was added to the residue and the mixture was acidified with 10% citric acid. The separated solid was collected by filtration, washed with water and dried to obtain the title compound (60 mg). ESMS: m / z 549 (MH+), 547 ([MH]-).
[0146]
Production Example 17: N- (2,6-dichlorobenzoyl) -4- (2-sulfamoylphenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- [2- [N- (t-butyl) sulfamoyl] phenyl] -L-phenylalanine methyl ester (130 mg) was dissolved in TFA (2 mL), and this solution To was added anisole (20 μM) and the mixture was stirred at room temperature for 6 hours. TFA was removed under reduced pressure to give N- (2,6-dichlorobenzoyl) -4- (2-sulfamoylphenyl) -L-phenylalanine methyl ester (100 mg). ESMS: m / z 507 (MH+).
2) The product obtained above (100 mg) was hydrolyzed in the same manner as described in Preparation 16 to give the title compound (80 mg). ESMS: m / z 493 (MH+), 491 ([MH]-).
[0147]
Production Example 18: N- (2,6-dichlorobenzoyl) -4- [2- (N-benzoylsulfamoyl) phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-sulfamoylphenyl) -L-phenylalanine methyl ester (100 mg) was dissolved in anhydrous pyridine (5 mL). To this solution was added benzoyl chloride (50 μL) and the mixture was stirred at room temperature for 12 hours under nitrogen. Ethyl acetate and saturated sodium bicarbonate were added to the mixture and the ethyl acetate layer was washed with 1N hydrochloric acid, dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1: 2)) to give N- (2,6-dichlorobenzoyl) -4- [2- (N-benzoylsulfamoyl) phenyl. ] -L-phenylalanine methyl ester was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 16 to give the title compound (80 mg). ESMS: m / z 595 ([MH]-).
[0148]
Production Example 19: N- (2,6-dichlorobenzoyl) -4- [2- (N-acetylsulfamoyl) phenyl] -L-phenylalanine
The title compound was produced by the same production method as in Production Example 18 except that benzoyl chloride was replaced with AcCl. ESMS: m / z 533 ([MH]-).
The following compounds (Preparation Examples 20 and 21) were prepared by steps similar to those outlined in Preparation Examples 15 and 16, respectively, and deprotection.
[0149]
Production Example 20: N- (2,6-dichlorobenzoyl) -4- [2- (N-methylsulfamoyl) phenyl] -L-phenylalanine
ESMS: m / z 505 ([MH]-).
[0150]
Production Example 21: N- (2,6-dichlorobenzoyl) -4- [2- (N, N-dimethylsulfamoyl) phenyl] -L-phenylalanine
ESMS: m / z 519 ([MH]-).
[0151]
Production Example 22: N- (2,6-dichlorobenzoyl) -4- [2- (t-butoxycarbonylamino) phenyl] -L-phenylalanine
1) Description of Preparation Example 15 with 2- (t-butoxycarbonylamino) benzeneboronic acid (0.3 g) and N- (2,6-dichlorobenzoyl) -4-bromo-L-phenylalanine methyl ester (270 mg) The coupling reaction was carried out by the same production method as above to obtain N- (2,6-dichlorobenzoyl) -4- [2- (t-butoxycarbonylamino) phenyl] -L-phenylalanine methyl ester (250 mg). ESMS: m / z 543 (MH+).
2) The product (40 mg) obtained above was hydrolyzed in the same manner as described in Preparation 16 to give the title compound (35 mg). ESMS: m / z 529 (MH+), 527 ([MH]-).
[0152]
Production Example 23: N- (2,6-dichlorobenzoyl) -4- (2-aminophenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- [2- (t-butoxycarbonylamino) phenyl] -L-phenylalanine methyl ester (90 mg) was treated with TFA (1 mL) at room temperature for 2 hours. . Excess TFA was removed in vacuo to give N- (2,6-dichlorobenzoyl) -4- (2-aminophenyl) -L-phenylalanine methyl ester.TFA salt.
2) The resulting TFA salt was hydrolyzed in the same manner as described in Preparation 16 to give the title compound (57 mg). ESMS: m / z 429 (MH+).
[0153]
Production Example 24: N- (2,6-dichlorobenzoyl) -4- [2- (methanesulfonylamino) phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-aminophenyl) -L-phenylalanine methyl ester / TFA salt (90 mg) was dissolved in dry methylene chloride (5 ml). In this solution, EtThreeN (85 μL) and MsCl (30 μL) were added. The mixture was stirred at room temperature for 3 hours and diluted with water. The organic layer was dried over magnesium sulfate and evaporated to give N- (2,6-dichlorobenzoyl) -4- [2- (methanesulfonylamino) phenyl] -L-phenylalanine methyl ester.
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 16 to give the title compound (70 mg). ESMS: m / z 507 (MH+).
[0154]
Production Example 25: N- (2,6-dichlorobenzoyl) -4- [2- (acetylamino) phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-aminophenyl) -L-phenylalanine methyl ester / TFA salt (90 mg) was dissolved in dry THF (5 mL). Acetic anhydride (60 μL) and DIEA (160 μL) were added and the mixture was stirred at room temperature for 12 hours. Ethyl acetate was added and the resulting mixture was extracted with water. The organic layer was dried over magnesium sulfate and evaporated to give N- (2,6-dichlorobenzoyl) -4- [2- (acetylamino) phenyl] -L-phenylalanine methyl ester.
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 16 to give the title compound (60 mg). ESMS: m / z 471 (MH+).
[0155]
Production Example 26: N- (2,6-dichlorobenzoyl) -4- [2- (methoxycarbonylamino) phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-aminophenyl) -L-phenylalanine methyl ester / TFA salt (90 mg) was dissolved in THF (5 mL), and DIEA (160 μL) and ClCOOMe (20 μL) was added. The mixture was stirred at room temperature for 12 hours. After the usual work-up shown in Production Example 25, N- (2,6-dichlorobenzoyl) -4- [2- (methoxycarbonylamino) phenyl] -L-phenylalanine methyl ester was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 16 to give the title compound (70 mg). ESMS: m / z 487 (MH+).
[0156]
Production Example 27: N- (2,6-dichlorobenzoyl) -4- [2- (N, N-dimethylamino) phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-aminophenyl) -L-phenylalanine methyl ester / TFA salt (90 mg) was dissolved in ethanol (5 mL). To this solution, formalin (96 μL), 1N hydrochloric acid (234 μL) and NaCNBH were added.Three(36 mg) was added. The mixture was stirred at room temperature for 0.5 h, then a mixture (1: 1) of ethanol (0.5 mL) and 1N hydrochloric acid (0.5 mL) was added and the mixture was stirred overnight. Further 1N hydrochloric acid was added and the mixture was stirred for 0.5 h. The mixture was neutralized with sodium bicarbonate and extracted with ethyl acetate. The extracts were combined, dried over magnesium sulfate and evaporated to give N- (2,6-dichlorobenzoyl) -4- [2- (N, N-dimethylamino) phenyl] -L-phenylalanine methyl ester.
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 16 to give the title compound (70 mg). ESMS: m / z 457 (MH+).
[0157]
Production Example 28: N- (2,6-dichlorobenzoyl) -4- (2-ureidophenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-aminophenyl) -L-phenylalanine methyl ester / TFA salt (90 mg) was dissolved in dry THF (5 mL). To this solution was added chlorosulfonyl isocyanate (22 μL) and the mixture was stirred at room temperature for 2 hours. The mixture was neutralized with sodium bicarbonate and extracted with ethyl acetate. The extracts were combined, dried over magnesium sulfate and evaporated.
2) The residue was hydrolyzed in the same manner as described in Preparation 16 and HPLC (eluent, 60% acetonitrile, 0.1% CFThreePurification (COOH, 40% water) gave the title compound (30 mg). ESMS: m / z 472 (MH+).
[0158]
Production Example 29: N- (2,6-dichlorobenzoyl) -4- [2- (N, N-dimethylamino) -6-methoxyphenyl] -L-phenylalanine
1) 2-methoxy-6- (N, N-dimethylamino) benzeneboronic acid was coupled with N- (2,6-dichlorobenzoyl) -4-bromo-L-phenylalanine methyl ester to give N- ( 2,6-Dichlorobenzoyl) -4- [2- (N, N-dimethylamino) -6-methoxyphenyl] -L-phenylalanine methyl ester was obtained. The synthesis of the boronic acid and the coupling reaction were performed in the same manner as described in Preparation Example 7.
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 7 to give the title compound. ESMS: m / z 487 (MH+).
[0159]
Production Example 30: N- (2,6-dichlorobenzoyl) -4- (2-hydroxyphenyl) -L-phenylalanine
1) BBrThree(1 mL, 1 M methylene chloride solution) was added to a solution of N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (0.215 g) in methylene chloride (10 mL) at 0 ° C. Was added with stirring and the solution was allowed to warm slowly to room temperature. The mixture was stirred for 3 hours and quenched with ethanol. The solvent was removed and the residue was dissolved in ethyl acetate. The solution was washed with saturated sodium bicarbonate followed by brine, dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, hexane / ethyl acetate (2: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2-hydroxyphenyl) -L-phenylalanine methyl ester. (0.105 g) was obtained. ESMS: m / z 444 (MH+).
2) To a solution of the product obtained above (0.03 g) in THF / methanol (2 mL / 0.2 mL) was added LiOH (monohydrate, 4 mg) in water (0.2 mL) and the mixture was allowed to cool to room temperature. For 3 hours. The solvent was removed and the residue was dissolved in water. The mixture was acidified to pH 2 with 1N hydrochloric acid and the precipitated solid was collected by filtration, washed with water and air dried to give the title compound (0.025 g). ESMS: m / z 430 (MH+).
[0160]
Production Example 31: N- (2,6-dichlorobenzoyl) -4- (2-hydroxy-6-methoxyphenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine ethyl ester (0.16 g, prepared in the same manner as the methyl ester described in Preparation Example 8) ) Was dissolved in anhydrous methylene chloride (8 mL). The solution is cooled to -78 ° C and BBrThree(0.56 mL, 1M methylene chloride solution) was added. The mixture was warmed to 0 ° C. and stirred at that temperature for 2 hours. Subsequently, the mixture was allowed to warm to room temperature and quenched with saturated sodium bicarbonate (5 mL). The mixture was stirred for 1 hour and diluted with methylene chloride. The organic layer was dried over magnesium sulfate and concentrated. The residue was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1: 2)) to give N- (2,6-dichlorobenzoyl) -4- (2-hydroxy-6-methoxyphenyl) -L. -Phenylalanine ethyl ester (40 mg) was obtained. ESMS: m / z 488 (MH+).
2) The product (0.04 g) obtained above was hydrolyzed in the same manner as described in Preparation 1 to give the title compound (35 mg). ESMS: m / z 460 (MH+).
[0161]
Production Example 32: N- (2,6-dichlorobenzoyl) -4- [2- (carboxymethoxy) phenyl] -L-phenylalanine
1) A solution of the product obtained in Preparation Example 30-1) (0.1 g) in a DMF (2 mL) solution under nitrogen under Cs2COThree(0.11 g) was added and the mixture was stirred for 30 minutes. BrCH2CO2A solution of Me (61 mL) in DMF (1 mL) was added and the mixture was stirred at 50 ° C. for 6 hours. DMF was removed and the residue was partitioned between ethyl acetate and water. The ethyl acetate layer was washed with brine, dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, hexane / ethyl acetate (1: 1)) to give N- (2,6-dichlorobenzoyl) -4- [2- (methoxycarbonylmethoxy) phenyl] -L. -Phenylalanine methyl ester (0.86 mg) was obtained. ESMS: m / z 516 (MH+).
2) The product obtained above (0.86 g) was hydrolyzed in the same manner as described in Preparation 1 to give the title compound (0.6 g). ESMS: m / z 488 (MH+).
[0162]
Production Example 33: N- (2,6-dichlorobenzoyl) -4- [2- (cyanomethoxy) phenyl] -L-phenylalanine methyl ester
The title compound was prepared in a similar manner as described in Preparation 32, starting from N- (2,6-dichlorobenzoyl) -4- (2-hydroxyphenyl) -L-phenylalanine methyl ester and bromoacetonitrile. ESMS: m / z 483 (MH+).
The following compounds are reacted in the same manner as in Preparation 32, starting from N- (2,6-dichlorobenzoyl) -4- (2-hydroxyphenyl) -L-phenylalanine methyl ester and reacted with the required halide compound. Obtained.
[0163]
[Table 1]
Figure 0003795305
[0164]
Production Example 45: N- (2,6-dichlorobenzoyl) -4- (2-formylphenyl) -L-phenylalanine
1) Production Example 1 except that N- (2,6-dichlorobenzoyl) -4- (2-formylphenyl) -L-phenylalanine methyl ester is replaced with 2-methoxybenzeneboronic acid by 2-formylbenzeneboronic acid Manufactured according to similar order. ESMS: m / z 456 (MH+).
2) The product obtained above (50.4 mg) was dissolved in a mixture of THF (1.33 mL) and methanol (220 μL). 1M LiOH (220 μL) was added and the resulting mixture was stirred at room temperature under nitrogen for 2 hours. Water was then added and the mixture was acidified with 1N hydrochloric acid (approximately pH 2), extracted with ethyl acetate, dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, chloroform then chloroform / methanol (10: 1)) to obtain the title compound (46.8 mg). ESMS: m / z 442 (MH+).
[0165]
Production Example 46: N- (2,6-dichlorobenzoyl) -4- [2-[(phenylamino) methyl] phenyl] -L-phenylalanine
1) Add N- (2,6-dichlorobenzoyl) -4- (2-formylphenyl) -L-phenylalanine methyl ester (49.1 mg) to a mixture of anhydrous methanol (1 mL) and anhydrous THF (0.5 mL). Dissolved. Then aniline (58.8 μL), hydrochloric acid (53.8 μL, 4M dioxane solution) and 3M molecular sieves were added and the mixture was stirred at room temperature under nitrogen for 1 hour. Sodium cyanoborohydride (4.06 mg) was added and the mixture was stirred for a further 72 hours. To stop the reaction, the pH of the mixture was brought to approximately 2 using 1N hydrochloric acid. The mixture was diluted with water and neutralized with 1M potassium hydroxide. This was then extracted with methylene chloride and the combined organic extracts were dried (potassium carbonate) and evaporated. The residue was purified by silica gel preparative TLC (eluent, methylene chloride) to give N- (2,6-dichlorobenzoyl) -4- [2- (phenylamino) methyl] phenyl] -L-phenylalanine methyl ester (21. 2 mg) was obtained. ESMS: m / z 533 (MH+).
2) The product obtained above (21.2 mg) was hydrolyzed in the same manner as described in Preparation Example 1. The mixture was acidified with AcOH to pH 4-5, extracted with ethyl acetate (5 × 20 mL), dried over magnesium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent, chloroform / methanol (10: 1)) to obtain the title compound. ESMS: m / z 519 (MH+).
The following compounds (Preparation Examples 47 and 48) were prepared in a similar manner as described in Preparation Example 46.
[0166]
Production Example 47: N- (2,6-dichlorobenzoyl) -4- [2- (aminomethyl) phenyl] -L-phenylalanine. ESMS: m / z 443 (MH+).
[0167]
Production Example 48: N- (2,6-dichlorobenzoyl) -4- [2-[(benzylamino) methyl] phenyl] -L-phenylalanine. ESMS: m / z 533 (MH+).
[0168]
Production Example 49: N- (2,6-dichlorobenzoyl) -4- [2- (2-carboxyethenyl) phenyl] -L-phenylalanine
1) anhydrous N- (2,6-dichlorobenzoyl) -4- (2-formylphenyl) -L-phenylalanine methyl ester (51.7 mg) and (triphenylphosphoranylidene) acetic acid methyl ester (75.8 mg) Dissolved in toluene (1 mL) and stirred at 80 ° C. for 18 hours under nitrogen. The mixture was cooled and purified by silica gel preparative TLC (eluent, hexane / ethyl acetate (2: 1)) to give N- (2,6-dichlorobenzoyl) -4- [2- [2- (methoxycarbonyl ) Ethenyl] phenyl] -L-phenylalanine methyl ester (48.0 mg) was obtained. ESMS: m / z 512 (MH+).
2) The product obtained above (26.4 mg) was hydrolyzed with LiOH hydrate (5 eq) in the same manner as described in Preparation 1 to give a mixture of trans and cis isomers (4 1) to give the title compound (22.0 mg). ESMS: m / z 484 (MH+).
[0169]
Production Example 50: N- (2,6-dichlorobenzoyl) -4- [2- (hydroxymethyl) phenyl] -L-phenylalanine
1) NaBHFour(21 mg) was added to a solution of N- (2,6-dichlorobenzoyl) -4- (2-formylphenyl) -L-phenylalanine methyl ester (0.23 g) in methanol (5 mL) and the mixture was stirred at room temperature for 3 hours. did. The reaction was quenched with acetone and the mixture was evaporated. The residue was partitioned with ethyl acetate and water. The ethyl acetate layer was dried over magnesium sulfate and evaporated to give N- (2,6-dichlorobenzoyl) -4- [2- (hydroxymethyl) phenyl] -L-phenylalanine methyl ester (0.24 g). ESMS: m / z 480 ([M + Na]+).
2) The product obtained above was hydrolyzed in the same manner as described in Preparation Example 1 to give the title compound (0.2 g). ESMS: m / z 450 ([M + Li]+).
[0170]
Production Example 51: N- (2,6-dichlorobenzoyl) -4- [2- (methoxymethyl) phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- [2- (hydroxymethyl) phenyl] -L-phenylalanine methyl ester (0.15 g), CBrFour(0.22 g) and PPhThreeA mixture of (0.173 g) of methylene chloride (5 mL) was stirred at room temperature for 18 hours. The solvent was evaporated and the residue was purified by silica gel flash column chromatography (eluent, methylene chloride / ethyl acetate (9: 1) to (8: 1)) to purify N- (2,6-dichlorobenzoyl) -4- [2- (Bromomethyl) phenyl] -L-phenylalanine methyl ester (0.12 g) was obtained. ESMS: m / z 522 (MH+).
2) A mixture of the product obtained above (0.04 g) and NaOMe (0.04 g) in DMF (3 mL) was stirred at room temperature for 18 hours. DMF was removed and the residue was partitioned between ethyl acetate and water. The aqueous layer was separated, adjusted to pH 4 with 1N hydrochloric acid, and extracted with ethyl acetate. The ethyl acetate layer was washed with brine, dried over magnesium sulfate and evaporated. The residue was HPLC (eluent, 60% acetonitrile, 0.1% CFThreePurification (COOH, 40% water) gave the title compound (9.4 mg). ESMS: m / z 480 ([M + Na]+).
[0171]
Production Example 52: N- (2,6-dichlorobenzoyl) -4- (2-carboxyphenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-formylphenyl) -L-phenylalanine methyl ester (104 mg) was dissolved in acetone (700 μL) by warming to about 40 ° C. KMnO warmed to 40 ° CFourA mixed solution of (61.2 mg) in acetone (900 μL) and water (130 μL) was added over 1 hour and the resulting mixture was stirred at the same temperature for another 2 hours. The mixture was filtered through celite and washed with acetone. The filtrate was dissolved in water, acidified with 1N hydrochloric acid to approximately pH 2, and extracted with ethyl acetate. The extracts were combined, dried over magnesium sulfate and evaporated. The residue was purified by silica gel column (eluent, toluene then toluene / ethyl acetate (gradient 20: 1 to 3: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2-carboxyphenyl) -L-phenylalanine methyl ester (85.0 mg) was obtained. ESMS: m / z 472 (MH+).
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 1 to give the title compound (34.1 mg). ESMS: m / z 458 (MH+).
[0172]
Production Example 53: N- (2,6-dichlorobenzoyl) -4- [2- (N-benzylcarbamoyl) phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-carboxyphenyl) -L-phenylalanine methyl ester (51.9 mg) was dissolved in anhydrous DMF (1 mL), EDC (25.3 mg), HOBT (20.2 mg), DIEA (28.7 μL) and benzylamine (14.4 μL) were added. The resulting mixture was stirred at room temperature under nitrogen for 20 hours, diluted with ethyl acetate and washed with 1N hydrochloric acid, saturated sodium bicarbonate, water and brine. The organic layer was dried over magnesium sulfate and evaporated. The residue was purified by silica gel column (eluent, hexane / ethyl acetate (1: 1 to 1: 2)) to give N- (2,6-dichlorobenzoyl) -4- [2- (N-benzylcarbamoyl) phenyl. ] -L-phenylalanine methyl ester (48.9 mg) was obtained. ESMS: m / z 561 (MH+).
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 1 to give the title compound (34.2 mg). ESMS: m / z 547 (MH+).
The following compounds (Preparation Examples 54-59) were prepared in a similar manner as described in Preparation Example 53.
[0173]
Production Example 54: N- (2,6-dichlorobenzoyl) -4- [2- (N-methylcarbamoyl) phenyl] -L-phenylalanine. ESMS: m / z 471 (MH+).
[0174]
Production Example 55: N- (2,6-dichlorobenzoyl) -4- [2- (Nn-butylcarbamoyl) phenyl] -L-phenylalanine. ESMS: m / z 513 (MH+).
[0175]
Production Example 56: N- (2,6-dichlorobenzoyl) -4- [2- [N- (2-hydroxyethyl) carbamoyl] phenyl] -L-phenylalanine. ESMS: m / z 501 (MH+).
[0176]
Production Example 57: N- (2,6-dichlorobenzoyl) -4- [2- [N- (3-hydroxypropyl) carbamoyl] phenyl] -L-phenylalanine. ESMS: m / z 515 (MH+).
[0177]
Production Example 58: N- (2,6-dichlorobenzoyl) -4- [2- (N, N-dimethylcarbamoyl) phenyl] -L-phenylalanine. ESMS: m / z 485 (MH+).
[0178]
Production Example 59: N- (2,6-dichlorobenzoyl) -4- [2- [N- (2-morpholinoethyl) carbamoyl] phenyl] -L-phenylalanine. ESMS: m / z 570 (MH+).
[0179]
Production Example 60: N- (2,6-dichlorobenzoyl) -4- [2- (carbamoyl) phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-carboxyphenyl) -L-phenylalanine methyl ester (52.6 mg) was dissolved in anhydrous THF (1 mL) and carbonyldiimidazole (36.1 mg) And the mixture was stirred at room temperature under nitrogen for 2 hours. Ammonium hydroxide (29% aqueous solution, 135 μL) was added and the mixture was stirred for an additional 22 hours. The mixture was then extracted with ethyl acetate. The extract was washed with 1N hydrochloric acid, saturated sodium bicarbonate and brine, dried over magnesium sulfate and evaporated. The residue was purified by silica gel column (eluent, toluene / ethyl acetate (1: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2-carbamoylphenyl) -L-phenylalanine methyl ester (48 0.1 mg) was obtained. ESMS: m / z 471 (MH+).
2) The product obtained above was hydrolyzed with LiOH (3 eq) in the same manner as described in Preparation 1 to give the title compound (41.6 mg). ESMS: m / z 457 (MH+).
[0180]
Production Example 61: N- (2,6-dichlorobenzoyl) -4- [2-[(N-methanesulfonyl) carbamoyl] phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2-carboxyphenyl) -L-phenylalanine methyl ester (57.0 mg) was dissolved in anhydrous THF (1 mL), and carbonyldiimidazole (23.5 mg) And the mixture was stirred at room temperature under nitrogen for 2 hours. Methanesulfonamide (17.2 mg) and DBU (27 μL) were added and the mixture was stirred for an additional 18 hours. The mixture was then heated to 40 ° C., stirred at that temperature for 7 hours, cooled to room temperature, diluted with ethyl acetate, washed with 1N hydrochloric acid then brine, dried over magnesium sulfate and evaporated. The residue was purified by silica gel preparative TLC (eluent, methylene chloride: methanol (100: 1-10: 1)) to give N- (2,6-dichlorobenzoyl) -4- [2- [N- (methane Sulfonyl) carbamoyl] phenyl] -L-phenylalanine methyl ester (37.0 mg) was obtained. ESMS: m / z 549 (MH+).
2) The product obtained above was hydrolyzed with LiOH (3 eq) in the same manner as described in Preparation 1 to give the title compound (36 mg). ESMS: m / z 535 (MH+).
[0181]
Production Example 62: N- (2-chloro-4-nitrobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine
1) Replacing N- (2-chloro-4-nitrobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine methyl ester with 2,6-dichlorobenzoyl chloride with 2-chloro-4-nitrobenzoyl chloride Except for the above, it was produced in the same manner as described in Production Examples 1-1), 2), 3) and 4).
2) The methyl ester obtained above was then hydrolyzed in the same manner as described in Preparation 1-5) to give the title compound. ESMS: m / z 455 (MH+).
[0182]
Production Example 63: N- (4-amino-2-chlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine
1) Raney nickel (0.4 mL, 50% dispersion in water) was added to anhydrous N- (2-chloro-4-nitrobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (1.04 g). To the methanol (50 mL) solution, add the mixture to H.2Stir for 3.5 hours at room temperature under atmosphere. The mixture was then filtered through celite and washed with methanol. The filtrate was evaporated and the residue was purified by silica gel flash column chromatography (eluent, methylene chloride / methanol (100: 1-20: 1)) to give N- (4-amino-2-chlorobenzoyl) -4. -(2-Methoxyphenyl) -L-phenylalanine methyl ester (887 mg) was prepared. ESMS: m / z 439 (MH+). The above compound is coupled with 4-amino-2-chlorobenzoic acid in the same manner as described in Preparation 2 using 4- (2-methoxyphenyl) -L-phenylalanine methyl ester hydrochloride, using EDC and HOBT. It is also produced by reacting.
2) The product obtained above (57.0 mg) was hydrolyzed with LiOH in a THF / methanol mixture in the same manner as described in Preparation 1-5). The solvent was removed and the residue was dissolved in water. The mixture was acidified with 10% citric acid to approximately pH 5, extracted with ethyl acetate, dried over magnesium sulfate and evaporated. The residue was purified by silica gel column (eluent, chloroform / methanol (10: 1)) to obtain the title compound (53.9 mg). ESMS: m / z 425 (MH+).
[0183]
Production Example 64: N- [2-chloro-4- (methanesulfonylamino) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
1) Anhydrous methylene chloride (1 mL) containing DIEA (66.6 μL) of N- (4-amino-2-chlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (56.0 mg) In solution, MeSO2Cl (24 μL) was added. The resulting mixture was stirred at room temperature under nitrogen for 3 hours, diluted with methylene chloride, washed with 1N hydrochloric acid, water, dried over magnesium sulfate and evaporated. The residue was purified by silica gel column (eluent, methylene chloride) to give N- [2-chloro-4- (N, N-dimethanesulfonylamino) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine. The methyl ester (59.4 mg) was obtained. ESMS: m / z 595 (MH+).
2) The product obtained above was hydrolyzed with LiOH (3 eq) in the same manner as described in Preparation 1-5) to give the title compound (43.4 mg). ESMS: m / z 503 (MH+).
The following compounds (Preparation Examples 65-68) were prepared in a similar manner as described in Preparation Example 64.
[0184]
Production Example 65: N- [2-chloro-4- (trifluoromethanesulfonylamino) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine. ESMS: m / z 557 (MH+). MeSO2Cl to CFThreeSO2Replaced with Cl.
[0185]
Production Example 66: N- [2-chloro-4- (ethoxycarbonylamino) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine. ESMS: m / z 497 (MH+). MeSO2Cl was replaced with EtOCOCl.
[0186]
Production Example 67: N- [2-chloro-4- (acetylamino) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine. ESMS: m / z 467 (MH+). MeSO2Cl was replaced with AcCl.
[0187]
Production Example 68: N- [2-chloro-4- (benzenesulfonylamino) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine. ESMS: m / z 565 (MH+). MeSO2Cl to PhSO2Replaced with Cl.
[0188]
Production Example 69: N- (2-chloro-4-ureidobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine.
1) A solution of chlorosulfonyl isocyanate (16.4 μL) in N- (4-amino-2-chlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (55.2 mg) in anhydrous acetonitrile (1 mL) And the mixture was stirred at room temperature under nitrogen for 1 hour. Saturated sodium bicarbonate (40 mL) was added slowly and the mixture was extracted with ethyl acetate. The extracts were combined, dried over magnesium sulfate and evaporated. The residue was purified by silica gel preparative TLC (eluent, chloroform / methanol).
2) The product obtained above was hydrolyzed with LiOH in the same manner as described in Preparation 64 to give the title compound (24 mg). ESMS: m / z 468 (MH+).
[0189]
Production Example 70: N- [2-Chloro-4- (3-methylthioureido) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
1) anhydrous DMF containing N- (4-amino-2-chlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (55.1 mg) DIEA (22 μL) and DMAP (catalytic amount) To the (1 mL) solution, methyl isothiocyanate (43 μL) was added. The resulting mixture was then heated at 90 ° C. under nitrogen for 1 day. After cooling, the mixture was diluted with ethyl acetate, washed sequentially with 1N hydrochloric acid, saturated sodium bicarbonate and water, dried over magnesium sulfate and evaporated. The residue was purified by silica gel preparative TLC (eluent, methylene chloride / methanol (15: 1)) to give N- [2-chloro-4- (3-methylthioureido) benzoyl] -4- (2-methoxyphenyl). ) -L-phenylalanine methyl ester (22.7 mg) was obtained. ESMS: m / z 512 (MH+).
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 64 to give the title compound (22.0 mg). ESMS: m / z 498 (MH+).
[0190]
Production Example 71: 3-acetyl-N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine
1) 3-Acetyl-L-tyrosine ethyl ester was produced by blowing hydrogen chloride gas into a solution of 3-acetyl-L-tyrosine (5 g) in ethanol (30 mL). Di-t-butyl dicarbonate (5 g) was added to a solution of 3-acetyl-L-tyrosine ethyl ester (5 g) in THF (50 mL) and DIEA (10 mL) and the mixture was stirred at room temperature overnight. The THF was removed and the residue was partitioned with water and methylene chloride. The organic layer was separated, dried with magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, hexane / ethyl acetate (4: 1)) to give N- (t-butoxycarbonyl) -3-acetyl-L-tyrosine ethyl ester (4.3 g). Obtained. ESMS: m / z 352 (MH+).
2) Anhydrous pyridine (1.1 mL, 12.82 mmol) was added to a solution of the product obtained above (1.5 g) in methylene chloride (15 mL) at 0 ° C. with stirring. Trifluoromethanesulfonic anhydride (1.1 mL) was added dropwise, and the mixture was slowly warmed to room temperature and stirred for 24 hours. The mixture is diluted with methylene chloride, washed successively with 1N hydrochloric acid, brine, saturated sodium bicarbonate and brine, dried over magnesium sulfate and evaporated to give N- (t-butoxycarbonyl) -3-acetyl-O—. (Trifluoromethanesulfonyl) -L-tyrosine ethyl ester (2.5 g) was obtained. ESMS: m / z 506 ([M + Na]+).
3) A solution of the product obtained above (0.3 g) in toluene (3 mL) was mixed with a solution of 2-methoxybenzeneboronic acid (0.13 g) and potassium carbonate (0.25 g) in toluene / DMF (4/1 mL). Was added with stirring under nitrogen. Pd (PPhThree)Four(0.14 g) was added and the mixture was heated at 85 ° C. for 48 hours. The mixture was cooled, filtered and the solvent was evaporated. The residue was dissolved in ethyl acetate, washed with water, dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, hexane / ethyl acetate (2.5: 1)) to give 3-acetyl-N- (t-butoxycarbonyl) -4- (2-methoxyphenyl)- L-phenylalanine ethyl ester (0.18 g) was obtained. ESMS: m / z 442 (MH+).
4) A solution of the product obtained above (0.18 g) in TFA / methylene chloride (8 mL, 50% v / v) was stirred at room temperature for 1 hour. The solution was evaporated and dried under high vacuum to give 3-acetyl-4- (2-methoxyphenyl) -L-phenylalanine ethyl ester.TFA salt.
5) To an ice-cooled solution of the TFA salt obtained above in methylene chloride (2 mL) was added DIEA (213 μL) followed by 2,6-dichlorobenzoyl chloride (65 mL) / methylene chloride (7 mL) solution. The mixture was warmed to room temperature and stirred for 24 hours. After ordinary workup as described in Production Example 1-4), the crude material was purified by silica gel flash column chromatography (eluent, hexane / ethyl acetate (3: 1)) to give 3-acetyl-N- ( 2,6-Dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine ethyl ester (0.142 g) was obtained. ESMS: m / z 514 (MH+).
6) The product obtained above (0.05 g) was hydrolyzed with LiOH in the same manner as described in Preparation Example 1-5) to give the title compound (46.5 mg). Mp 87-89 ° C. ESMS: m / z 486 (MH+).
[0191]
Production Example 72: 3-acetyl-N- (2,6-dichlorobenzoyl) -4-phenyl-L-phenylalanine
The solid title compound was obtained in the same manner as described in Preparation 71 except that 2-methoxybenzeneboronic acid was replaced with benzeneboronic acid. Melting point 109-111 ° C. ESMS: m / z 456 (MH+).
[0192]
Production Example 73: N- (2,6-dichlorobenzoyl) -3- (1-hydroxyethyl) -4- (2-methoxyphenyl) -L-phenylalanine
1) NaBHFour(12 mg) was added to a solution of 3-acetyl-N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine ethyl ester (0.1 g) / methanol (3 mL) and the mixture was Stir at room temperature for 2 hours. The mixture was quenched with 1N hydrochloric acid and extracted with methylene chloride. The extract was washed successively with 1N hydrochloric acid and brine, dried and evaporated. The residue was purified by silica gel flash column chromatography (eluent, hexane / ethyl acetate (3: 1)) to give N- (2,6-dichlorobenzoyl) -3- (1-hydroxyethyl) -4- (2 -Methoxyphenyl) -L-phenylalanine ethyl ester (45 mg) was obtained. ESMS: m / z 516 (MH+).
2) The product obtained above (0.040 g) was hydrolyzed with LiOH in the same manner as described in Preparation 1-5) to give the title compound (28 mg). ESMS: m / z 488 (MH+).
[0193]
Production Example 74: N- (2,6-dichlorobenzoyl) -3- (1-hydroxyethyl) -4-phenyl-L-phenylalanine
The title compound was prepared from 3-acetyl-N- (2,6-dichlorobenzoyl) -4-phenyl-L-phenylalanine ethyl ester in the same manner as described in Preparation 73. Mp 115-117 ° C. MS: m / z 458 (MH+).
[0194]
Production Example 75: N- (2,6-dichlorobenzoyl) -3-methoxy-4- (2-methoxyphenyl) -L-phenylalanine
1) 3,4-Dihydroxy-L-phenylalanine methyl ester was prepared by blowing hydrogen chloride into a solution of 3,4-dihydroxy-L-phenylalanine (10 g) in methanol (100 mL). Di-t-butyl dicarbonate (12.1 g) was added to a solution of the ester in THF (250 mL) and DIEA (35.4 mL) and the mixture was warmed for 5 minutes and stirred at room temperature for 1 hour. THF was removed and the residue was partitioned between water and ethyl acetate. The organic layer was washed with 1N hydrochloric acid and brine, dried over magnesium sulfate and evaporated. The residue was purified by silica gel flash column chromatography (eluent, hexane / ethyl acetate (1: 1)) to obtain the desired N- (t-butoxycarbonyl) -3,4-dihydroxy-L-phenylalanine methyl ester (13 .4 g) was obtained. ESMS: m / z 312 (MH+).
2) 2,6-Dichlorobenzyl chloride (17.3 g) was added to N- (t-butoxycarbonyl) -3,4-dihydroxy-L-phenylalanine methyl ester (2.5 g), potassium carbonate (2.22 g) and n-BuFourTo a suspension of NI (0.297 g) in DMF (15 mL) was added at room temperature. The mixture was stirred at room temperature overnight, diluted with water and extracted with ether. The extract was dried over magnesium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / methylene chloride / ethyl acetate (5: 5: 1)) to give N- (t-butoxycarbonyl) -3,4-bis (2,6- Dichlorobenzyloxy) -L-phenylalanine methyl ester (2.0 g, ESMS: m / z 630 (MH+)), N- (t-butoxycarbonyl) -3- (2,6-dichlorobenzyloxy) -4-hydroxy-L-phenylalanine methyl ester (0.39 g, ESMS: m / z 470 (MH+)) And N- (t-butoxycarbonyl) -4- (2,6-dichlorobenzyloxy) -3-hydroxy-L-phenylalanine methyl ester (0.45 g, ESMS: m / z 470 (MH+)).
3) N- (t-butoxycarbonyl) -4- (2,6-dichlorobenzyloxy) -3-hydroxy-L-phenylalanine methyl ester (0.45 g), potassium carbonate (0.199 g) and n-BuFourTo a suspension of NI (0.035 g) in DMF (4.0 mL) was added methyl iodide (0.072 mL) and the mixture was stirred at room temperature overnight. DMF was removed and the residue was partitioned between water and ethyl acetate. The organic layer was separated and the aqueous solution was extracted with ethyl acetate. The extracts were combined, dried over magnesium sulfate and evaporated. The residue was purified by silica gel preparative TLC (eluent, hexane / methylene chloride / ethyl acetate (3: 3: 1)) to give N- (t-butoxycarbonyl) -4- (2,6-dichlorobenzyloxy). -3-Methoxy-L-phenylalanine methyl ester (0.396 g) was obtained. ESMS: m / z 484 (MH+).
4) Hydrogen gas was bubbled into a suspension of the product obtained above (0.39 g) and 10% Pd-carbon in methanol (10 mL) at room temperature overnight. The catalyst was filtered through celite and the filtrate was evaporated. The residue was purified by silica gel preparative TLC (eluent, methylene chloride / methanol (10: 1)) to give N- (t-butoxycarbonyl) -4-hydroxy-3-methoxy-L-phenylalanine methyl ester (0. 21 g) was obtained. ESMS: m / z 348 ([M + Na]+).
5) Anhydrous pyridine (0.15 mL) was added to a solution of the product obtained above (0.2 g) in methylene chloride (3.0 mL) with stirring at 0 ° C. Trifluoromethanesulfonic anhydride (0.16 mL) was added dropwise and the mixture was allowed to warm slowly to room temperature and stirred at room temperature for 3 hours. The mixture was diluted with methylene chloride and washed sequentially with 1N hydrochloric acid, brine, saturated sodium bicarbonate and brine. The organic layer was dried over magnesium sulfate and evaporated to give N- (t-butoxycarbonyl) -3-methoxy-4-trifluoromethanesulfonyloxy-L-phenylalanine methyl ester (0.28 g). ESMS: m / z 457 [(M + Na)+).
6) A solution of the product obtained above (0.28 g) in DME (2.0 mL) was added to a solution of 2-methoxybenzeneboronic acid (0.112 g) and potassium carbonate (0.21 g) in DME (2.0 mL). Under nitrogen. Pd (PPhThree)Four(0.12 g) was added and the mixture was heated at 65 ° C. for 48 hours, cooled, filtered and the solvent was evaporated. The residue was extracted with ethyl acetate and the extract was washed with water, dried and evaporated. The residue was purified by silica gel preparative TLC (eluent, hexane / ethyl acetate (3: 1)) to give N- (t-butoxycarbonyl) -3-methoxy-4- (2-methoxyphenyl) -L-phenylalanine. The methyl ester (0.02 g) was prepared. ESMS: m / z 438 ([M + Na]+).
7) A TFA / methylene chloride (1 mL, 50% v / v) mixture of the product obtained above (0.055 g) was stirred at room temperature for 1 h, evaporated and dried under high vacuum. To an ice-cold solution of the residual methylene chloride (2 mL) was added DIEA (0.069 mL), followed by a 2,6-dichlorobenzoyl chloride (0.02 mL) / methylene chloride (1 mL) solution. The mixture was warmed to room temperature and stirred overnight. After normal work-up in the same manner as in Production Example 1, the crude material was purified by silica gel preparative TLC (eluent, hexane / ethyl acetate (2: 1)) to give N- (2,6-dichlorobenzoyl). -3-Methoxy-4- (2-methoxyphenyl) -L-phenylalanine methyl ester (0.04 g) was obtained. ESMS: m / z 488 (MH+).
8) The product obtained above (0.04 g) was hydrolyzed with LiOH in the same manner as described in Preparation 1-5) to give the title compound (17.8 mg). Mp 100-102 ° C. ESMS: m / z 474 (MH+).
The following compounds were produced from the corresponding substances in the same manner as described in the above production examples.
[0195]
[Table 2]
Figure 0003795305
[0196]
[Table 3]
Figure 0003795305
[0197]
[Table 4]
Figure 0003795305
[0198]
[Table 5]
Figure 0003795305
[0199]
[Table 6]
Figure 0003795305
[0200]
[Table 7]
Figure 0003795305
[0201]
[Table 8]
Figure 0003795305
[0202]
[Table 9]
Figure 0003795305
[0203]
[Table 10]
Figure 0003795305
[0204]
Production Example 135: N- (2,6-dichlorobenzoyl) -4- (2,6-difluorophenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -O- (trifluoromethanesulfonyl) -L-tyrosine methyl ester was produced in the same manner as described in Production Examples 5-1) and 2).
2) A mixture of the product obtained above (3.00 g), hexamethyldistin (1.96 g) and anhydrous LiCl (0.76 g) in dioxane (30 mL) under nitrogen with Pd (PPhThree)Four(0.34 g) was added and the mixture was heated at 98 ° C. for 3 h. The mixture was cooled, diluted with ethyl acetate, filtered through celite and evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1: 3)) to give N- (2,6-dichlorobenzoyl) -4-trimethylstannio-L-phenylalanine methyl ester (2. 46 g) was obtained. ESMS: m / z 516 (MH+) And 514 (M-H)-.
3) A mixture of the product obtained above (0.17 g) and 1-bromo-2,6-difluorobenzene (95 mg) / toluene (2 mL) under nitrogen with Pd (PPhThree)Four(0.02 g) was added and the mixture was heated at 110 ° C. for 2 hours. The mixture was evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1: 3)) to give N- (2,6-dichlorobenzoyl) -4- (2,6-difluorophenyl) -L-phenylalanine. The methyl ester (58 mg) was obtained. ESMS: m / z 464 (MH+), 486 (M++ Na) and 562 (MH)-.
4) The product obtained above (0.058 g) was hydrolyzed with LiOH as described in Preparation 1-5) to give the title compound (0.04 g). ESMS: m / z 450 (MH+), 472 (M++ Na) and 448 (M−H)-.
The following compounds (Production Examples 136 to 140) were produced by the same production method as described in Production Example 135, except that 1-bromo-2,6-difluorobenzene was replaced with the necessary bromobenzene.
[0205]
[Table 11]
Figure 0003795305
[0206]
The following compounds (Production Examples 141 to 146) were produced by the same production method as described in Production Example 5 except that 2-methoxybenzeneboronic acid was replaced with the necessary benzeneboronic acid.
[0207]
[Table 12]
Figure 0003795305
[0208]
The following compounds (Production Examples 147 to 149) were produced in the same manner as in Production Example 7, except that 1,3-dimethoxybenzene was replaced with the necessary benzene.
[0209]
[Table 13]
Figure 0003795305
[0210]
Production Example 150: N- (2,6-dichlorobenzoyl) -4- (2-cyano-6-carbamoylphenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) under nitrogen in a mixture of 2,6-dicyanobenzeneboronic acid (0.516 g) and anhydrous potassium carbonate (0.52 g) in DME / water (10 mL / 0.5 mL). ) -O- (trifluoromethanesulfonyl) -L-tyrosine methyl ester (0.5 g) was added. Pd (PPhThree)FourCatalyst (0.1 g) was added and the mixture was heated at 80 ° C. for 5 hours. The mixture was cooled, diluted with ethyl acetate, washed sequentially with water and brine. The organic layer is dried over magnesium sulfate and evaporated, and the residue is purified by silica gel column chromatography (eluent, ethyl acetate / hexane (3: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2-Cyano-6-carbamoylphenyl) -L-phenylalanine methyl ester (325 mg) was obtained. ESMS: m / z 496 (MH+), 494 (M-H)-.
2) The product obtained above (150 mg) was hydrolyzed with LiOH as described in Preparation Example 1-5) to give the title compound (0.06 g). MS: m / z 465 (MH+).
[0211]
Production Example 151: N- (2,6-dichlorobenzoyl) -4- (2,6-dicyanophenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -O- (trifluoro) in a toluene (10 mL) mixture of 2,6-dicyanobenzeneboronic acid (0.516 g) and anhydrous potassium carbonate (0.2 g) under nitrogen. Lomethanesulfonyl) -L-tyrosine methyl ester (0.5 g) was added. Pd (PPhThree)Four(0.1 g) was added and the mixture was heated at 90 ° C. for 8 hours. The mixture was cooled, diluted with ethyl acetate, washed sequentially with water and brine. The organic layer is dried over magnesium sulfate and evaporated, and the residue is purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2,6-Dicyanophenyl) -L-phenylalanine methyl ester (58 mg) was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound. MS: m / z 482 (MH+).
[0212]
Production Example 152: N- (2,6-dichlorobenzoyl) -4- [2- (methylsulfonyl) phenyl] -L-phenylalanine (152B) and N- (2,6-dichlorobenzoyl) -4- [2- (Methylsulfinyl) phenyl] -L-phenylalanine (152A and 152C).
1) N- (2,6-dichlorobenzoyl) -4- [2- (methylthio) phenyl] -L-phenylalanine methyl ester (0.35 g) was dissolved in methylene chloride (5 mL). mCPBA (50-60%, 0.255 g) was added at 0 ° C. and the mixture was stirred at 0 ° C. for 2 hours. The mixture was washed sequentially with aqueous sodium bicarbonate, water and brine, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1: 3)) to give N- (2,6-dichlorobenzoyl) -4- [2- (methylsulfonyl) phenyl] -L- Phenylalanine methyl ester (0.125 g, ESMS: m / z 506 (MH+), 528 (M++ Na), 504 (M+-1)), and N- (2,6-dichlorobenzoyl) -4- [2- (methylsulfinyl) phenyl] -L-phenylalanine methyl ester (mixture of two diastereomers, 0.227 mg, ESMS: m / z 490 (MH+), 512 (M++ Na), 488 (M-1)-Got.
2) N- (2,6-dichlorobenzoyl) -4- [2- (methylsulfonyl) phenyl] -L-phenylalanine methyl ester was hydrolyzed with LiOH as described in Preparation Example 1-5). N- (2,6-dichlorobenzoyl) -4- [2- (methylsulfonyl) phenyl] -L-phenylalanine (152B) was obtained. ESMS: m / z 492 (MH+), 514 (M++ Na), 491 (M-H)-.
3) N- (2,6-dichlorobenzoyl) -4- [2- (methylsulfinyl) phenyl] -L-phenylalanine methyl ester (a mixture of two diastereomers) was prepared according to Preparation Example 1-5). Hydrolysis using LiOH as above gave N- (2,6-dichlorobenzoyl) -4- [2- (methylsulfinyl) phenyl] -L-phenylalanine (mixture of two diastereomers). The mixture was dissolved in methylene chloride and the solid was collected by filtration, washed with methylene chloride, dried and the N- (2,6-dichlorolobenzoyl) -4- [2- (methylsulfinyl) phenyl] -L-phenylalanine. One diastereomer (152A) (80 mg) was obtained. ESMS: m / z 476 (MH+), 498 (M++ Na), 474 (M−H)-.
1H-NMR (DMSO-d6): Δ 2.41 (s, 3H), 2.97 (m, 1H), 3.2 (dd, 1H), 4.72 (m, 1H), 7.32 (m, 3H), 7. 4 (m, 5H), 7.6-7.7 (m, 2H), 8.0 (d, 1H), 9.15 (d, 1H).
The filtrate was evaporated and the residue crystallized (from ethyl acetate / hexane) to give the other diastereomer of N- (2,6-dichlorobenzoyl) -4- [2- (methylsulfinyl) phenyl] -L-phenylalanine. (152C) (44 mg) was obtained. ESMS: m / z 476 (MH+), 498 (M++ Na), 474 (M−H)-.
1H-NMR (DMSO-d6): Δ 2.43 (s, 3H), 2.98 (m, 1H), 3.22 (m, 1H), 4.74 (m, 1H), 7.32 (m, 3H), 7. 4 (m, 5H), 7.6-7.7 (m, 2H), 8.0 (d, 1H), 9.15 (d, 1H).
[0213]
Production Example 153: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-fluorophenyl) -L-phenylalanine (153A) and N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3,5-difluorophenyl) -L-phenylalanine (153B)
1) N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (232 mg) was dissolved in anhydrous acetonitrile (10 mL) under nitrogen, and 3,5-dichloro -1-Fluoropyridinium trifluoromethanesulfonate (85%, 353 mg) was added and the mixture was refluxed for 1 day. Further 3,5-dichloro-1-fluoropyridinium trifluoromethanesulfonate (175 mg) was added and the mixture was refluxed for an additional day. The mixture was then concentrated and the residue was dissolved in water and extracted with methylene chloride. The extract was washed with saturated sodium bicarbonate, water, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel preparative TLC (eluent, hexane / ethyl acetate (5: 1 to 2: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3). -Fluorophenyl) -L-phenylalanine methyl ester (109 mg) and N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3,5-difluorophenyl) -L-phenylalanine methyl ester (37 mg) Got. 2) The two products obtained above were hydrolyzed separately in the same manner as described in Preparation Example 1-5) to give N- (2,6-dichlorobenzoyl) -4- (2,6- Dimethoxy-3-fluorophenyl) -L-phenylalanine (153A) (mp 228-229 ° C .; MS: m / z 492 (MH+)) And N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3,5-difluorophenyl) -L-phenylalanine (153B) (mp 201-202 ° C .; MS: m / z 510 (MH+)).
[0214]
Production Example 154: N- (2,6-dichlorobenzoyl) -4- (2,3-methylenedioxy-5-fluoro-6-methoxyphenyl) -L-phenylalanine
The title compound was prepared in a similar manner as described in Preparation 153. Mp 198-199 ° C.
[0215]
Production Example 155: N- (2,6-dichlorobenzoyl) -4- [4- (N-allyl-Nt-butoxycarbonylamino) -2,6-dimethoxyphenyl] -L-phenylalanine
1) 4- (N-allyl-Nt-butoxycarbonylamino) -2,6-dimethoxybenzeneboronic acid and N- (2,6-dichlorobenzoyl) -O- (trifluoromethanesulfonyl) -L-tyrosine methyl The ester was subjected to a coupling reaction in the same manner as described in Preparation Example 7-2) to give N- (2,6-dichlorobenzoyl) -4- [4- (N-allyl-Nt-butoxycarbonylamino). -2,6-dimethoxyphenyl] -L-phenylalanine methyl ester was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound. MP 138-139 ° C; MS: m / z 629 (MH+).
[0216]
Production Example 156: N- (2,6-dichlorobenzoyl) -4- (4-allylamino-2,6-dimethoxyphenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- [4-[(N-allyl-Nt-butoxycarbonylamino) -2,6-dimethoxyphenyl] -L-phenylalanine methyl ester (1.25 g ) Was dissolved in methylene chloride (10 mL), TFA (10 mL) was added, and the mixture was stirred at room temperature under nitrogen for 1.5 hours. The mixture was evaporated and the residue was dissolved in methylene chloride, washed with saturated sodium bicarbonate, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (5: 1 to 1: 1)) to give N- (2,6-dichlorobenzoyl) -4- (4-allylamino-2,6). -Dimethoxyphenyl) -L-phenylalanine methyl ester (938 mg) was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound. Mp 262-263 ° C (decomposition); MS: m / z 529 (MH+).
[0217]
Production Example 157: N- (2,6-dichlorobenzoyl) -4- (4-amino-2,6-dimethoxyphenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (4-allylamino-2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (0.93 g) was dissolved in acetonitrile / water (40 mL, 84 : 16). Wilkinson's catalyst (79 mg) was added and the mixture was boiled. After 2 hours, more catalyst (170 mg) was added and the reaction continued for a further 6 hours. The solvent was evaporated and the remaining water was coevaporated with acetonitrile. The residue was purified by silica gel preparative TLC (eluent, hexane / ethyl acetate (2: 1 to 1: 2)) to give N- (2,6-dichlorobenzoyl) -4- (4-amino-2,6 -Dimethoxyphenyl) -L-phenylalanine methyl ester (708 mg) was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound. MP 221-222 ° C; MS: m / z 489 (MH+).
[0218]
Production Example 158: N- (2,6-dichlorobenzoyl) -4- (4-methoxycarbonylamino-2,6-dimethoxyphenyl) -L-phenylalanine
In the same manner as described in Production Example 64, N- (2,6-dichlorobenzoyl) -4- (4-amino-2,6-dimethoxyphenyl) -L-phenylalanine methyl ester and MeSO2The title compound was obtained by reacting MeOCOCl instead of Cl. MP 235-236 ° C; MS: m / z 548 (MH+).
[0219]
Production Example 159: N- (2,6-dichlorobenzoyl) -4- (4-acetylamino-2,6-dimethoxyphenyl) -L-phenylalanine
In the same manner as described in Production Example 64, N- (2,6-dichlorobenzoyl) -4- (4-amino-2,6-dimethoxyphenyl) -L-phenylalanine methyl ester and MeSO2The title compound was obtained by reacting MeCOCl instead of Cl. MP 243-244 ° C; MS: m / z 531 (MH+).
[0220]
Production Example 160: N- (2,6-dichlorobenzoyl) -4- [4- (3-methylureido) -2,6-dimethoxyphenyl] -L-phenylalanine
In the same manner as described in Production Example 70, N- (2,6-dichlorobenzoyl) -4- (4-amino-2,6-dimethoxyphenyl) -L-phenylalanine methyl ester and MeNCO instead of MeNCS The title compound was obtained by the reaction. Mp 206-207 ° C; MS: m / z 547 (MH+).
[0221]
Production Example 161: N- (2,6-dichlorobenzoyl) -4- [4- [3- (2-methylphenyl) ureido] -2,6-dimethoxyphenyl] -L-phenylalanine
In the same manner as described in Production Example 70, N- (2,6-dichlorobenzoyl) -4- (4-amino-2,6-dimethoxyphenyl) -L-phenylalanine methyl ester and 2- The title compound was obtained by reacting with methylphenyl isocyanate. MP 194-195 ° C; MS: m / z 622 (MH+).
[0222]
Production Example 162: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (3-methylthioureido) phenyl] -L-phenylalanine
Prepare the title compound in the same manner as described in Preparation 70 starting from N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-4-aminophenyl) -L-phenylalanine methyl ester. did. MS: m / z 562 (MH+); Mp 197-198 ° C.
[0223]
Production Example 163: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(methylsulfonyl) amino] phenyl] -L-phenylalanine
In a manner similar to that described in Preparation 64, the title compound is obtained starting from N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-4-aminophenyl) -L-phenylalanine methyl ester. It was. MS: m / z 567 (MH+); Mp 154-155 ° C.
[0224]
Production Example 164: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (dimethylamino) phenyl] -L-phenylalanine
The title compound is obtained in a manner analogous to that described in Preparation 27, starting from N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-4-aminophenyl) -L-phenylalanine methyl ester. It was. MS: m / z 517 (MH+).
[0225]
Production Example 165: N- (2,6-dichlorobenzoyl) -4- (4-methylcarbamoyl-2,6-dimethoxyphenyl) -L-phenylalanine
1) 4- (1,3-Dioxolan-2-yl) -2,6-dimethoxybenzeneboronic acid with N- (2,6-dichlorobenzoyl) -O- (trifluoromethanesulfonyl) -L-tyrosine methyl ester In the same manner as described in Preparation Example 7-2) to give N- (2,6-dichlorobenzoyl) -4- [4- (1,3-dioxolan-2-yl) -2,6- Dimethoxyphenyl] -L-phenylalanine methyl ester was obtained.
2) The product obtained above was dissolved in THF (60 mL) and 5% hydrochloric acid (30 mL) was added to the solution. The mixture was stirred at room temperature under nitrogen for 3 hours. The mixture was evaporated and water (50 mL) was added to the residue. The mixture was extracted with methylene chloride, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (2: 1 to 1: 1)) to give N- (2,6-dichlorobenzoyl) -4- (4-formyl-2,6 -Dimethoxyphenyl) -L-phenylalanine methyl ester (2.06 g) was obtained.
3) The product obtained above was oxidized by the same production method as described in Production Example 52-1) to give N- (2,6-dichlorobenzoyl) -4- (4-carboxy-2,6-dimethoxy). Phenyl) -L-phenylalanine methyl ester was obtained.
4) The product obtained above was reacted with methylamine in the same manner as described in Preparation 53 to give the title compound. MS: m / z 531 (MH+); Mp 251-252 ° C.
[0226]
The following compounds (Production Examples 166 to 171) were prepared in the same manner as described in Production Example 53, and N- (2,6-dichlorobenzoyl) -4- (4-carboxy-2,6-dimethoxyphenyl) -L -Prepared using phenylalanine methyl ester and the appropriate amine.
[0227]
[Table 14]
Figure 0003795305
[0228]
Production Example 172: N- (2,6-dichlorobenzoyl) -4- (4-carboxy-2,6-dimethoxyphenyl) -L-phenylalanine
N- (2,6-dichlorobenzoyl) -4- (4-carboxy-2,6-dimethoxyphenyl) -L-phenylalanine methyl ester is hydrolyzed in the same manner as described in Production Example 1-5), The title compound was obtained. MS: m / z 517 (MH+); Mp 277-278 ° C.
[0229]
Production Example 173: N- (2,6-dichlorobenzoyl) -4- [4- (methanesulfonylamino) carbonyl-2,6-dimethoxyphenyl] -L-phenylalanine
The title compound was obtained in the same manner as described in Production Example 61 using N- (2,6-dichlorobenzoyl) -4- (4-carboxy-2,6-dimethoxyphenyl) -L-phenylalanine methyl ester. It was. MS: m / z 595 (MH+); Mp 277-278 ° C.
[0230]
Production Example 174: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-methoxymethoxyphenyl) -L-phenylalanine
1) Description of production example 7-2) 2,6-dimethoxy-3-methoxymethoxybenzeneboronic acid and N- (2,6-dichlorobenzoyl) -O- (trifluoromethanesulfonyl) -L-tyrosine methyl ester In the same manner as above, the coupling reaction was performed to obtain N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-methoxymethoxyphenyl) -L-phenylalanine methyl ester.
2) The product obtained above was hydrolyzed according to the same production method as described in Production Example 7-3) to give the title compound. MS: m / z 534 (MH+); Mp 156-157 ° C.
[0231]
Production Example 175: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-hydroxyphenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-methoxymethoxyphenyl) -L-phenylalanine methyl ester (165 mg) was dissolved in methanol (5 mL) and 4M dioxane of hydrochloric acid was dissolved. Solution (1 mL) was added to the mixture. The mixture was stirred at room temperature for 3 hours. The mixture was evaporated and the residue was dissolved in water (40 mL) and extracted with methylene chloride. The extract was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel preparative TLC (eluent, hexane / ethyl acetate (3: 1 to 1: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3). -Hydroxyphenyl) -L-phenylalanine methyl ester (145 mg) was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound. MP 164-165 ° C; MS: m / z 490 (MH+).
[0232]
Production Example 176: N- [2-Chloro-4- (t-butoxycarbonyl) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
1) 2-chloro-4- (t-butoxycarbonyl) benzoic acid is converted to 4- (2-methoxyphenyl) -L-phenylalanine methyl ester (free amine derived from Production Example 1-3), and Production Example 2-1 ) To produce a N- [2-chloro-4- (t-butoxycarbonyl) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (0 .332 g) was obtained.
3) The product (19.8 mg) obtained above was hydrolyzed in the same manner as described in Preparation Example 1-5) to give the title compound (17.5 mg). MS: (m / z) 508 (M-H)-.
[0233]
Production Example 177: N- [2-chloro-4-carboxybenzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
1) N- [2-chloro-4- (t-butoxycarbonyl) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (305 mg) was dissolved in anhydrous methylene chloride (2 mL) under nitrogen, TFA (2 mL) was added. The mixture was stirred at room temperature for 2 hours to give N- [2-chloro-4-carboxybenzoyl] -4- (2-methoxyphenyl) -L-phenylalanine methyl ester (315 mg).
2) Next, the product (48.6 mg) obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give N- [2-chloro-4-carboxybenzoyl] -4- ( 2-Methoxyphenyl) -L-phenylalanine (42.9 mg) was obtained. MS: (m / z) 452 (M-H)-.
[0234]
Production Example 178: N- [2-chloro-4-carbamoylbenzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
The title compound was prepared from N- [2-chloro-4-carboxybenzoyl] -4- (2-methoxyphenyl) -L-phenylalanine methyl ester using a method similar to that described in Preparation Example 60. MS: (m / z) 451 (M-H)-.
[0235]
Production Example 179: N- [2-chloro-4- [N- (methanesulfonyl) carbamoyl] -benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
The title compound was prepared from N- [2-chloro-4-carboxybenzoyl] -4- (2-methoxyphenyl) -L-phenylalanine methyl ester using a method similar to that described in Preparation Example 61. MS: (m / z) 529 (MH)-.
[0236]
Production Example 180: N- [2-chloro-5-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
The production method was the same as described in Production Examples 62, 63, 64 and 65 except that 2-chloro-4-nitrobenzoyl chloride in the coupling step of Production Example 62 was replaced with 2-chloro-5-nitrobenzoyl chloride. The title compound was prepared. MS: (m / z) 555 (M-H)-.
[0237]
Production Example 181: N- [2-chloro-3-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
The production method was the same as described in Production Examples 62, 63, 64 and 65 except that 2-chloro-4-nitrobenzoyl chloride was replaced with 2-chloro-3-nitrobenzoyl chloride in the coupling step of Production Example 62. The title compound was prepared. MS: (m / z) 555 (M-H)-.
[0238]
Production Example 182: N- [2,6-dichloro-4-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
Except for using 2,6-dichloro-4-nitrobenzoic acid (U.S. Pat. No. 3,423,475) during the coupling step of Preparation Example 62, Preparation Examples 62, 63, 64 and 65 The title compound was obtained by continuously carrying out the same production method as described above. MS: (m / z) 589 (M-H)-.
[0239]
Production Example 183: N- [2-chloro-4-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine
The same as described in Preparation Examples 62, 63, 64 and 65 except that 4- (2-methoxyphenyl) -L-phenylalanine methyl ester is replaced with 4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester. The title compound was produced by continuously performing the production method. MS: (m / z) 585 (M-H)-.
[0240]
Production Example 184: N- [2,6-dichloro-4-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine
2,6-dichlorobenzoyl chloride to 2,6-dichloro-4-nitrobenzoyl chloride and 4- (2-methoxyphenyl) -L-phenylalanine methyl ester to 4- (2,6-dimethoxyphenyl) -L- The title compound was produced in the same manner as described in Production Examples 62, 63, 64 and 65 except that phenylalanine methyl ester was used. MS: (m / z) 619 (M-H)-.
[0241]
Production Example 185: N- [2-chloro-6-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
The title compound was obtained in the same manner as described in Production Examples 62, 63, 64 and 65 except that 2-amino-6-chlorobenzoic acid was used in the coupling step of Production Example 62. MS: (m / z) 555 (M-H)-.
[0242]
Production Example 186: N- [2-chloro-3-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2-methoxyphenyl) -D-phenylalanine
The title compound was obtained in a similar manner as described in Preparation Examples 62, 63, 64 and 65 starting from 4- (2-methoxyphenyl) -D-phenylalanine methyl ester. MS: (m / z) 555 (M-H)-.
[0243]
The following compounds (Production Examples 187 to 193) were converted to MeSO.2Production was carried out in the same manner as described in Production Examples 62, 63, 64 and 65 except that Cl was replaced with the required arylsulfonyl chloride.
[0244]
Production Example 187: N- [2-chloro-4-[[(4-trifluoromethylphenyl) sulfonyl] amino] benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine; ESMS: m / z 655 ( M++ Na), 633 (MH+), 631 (MH)-.
[0245]
Production Example 188: N- [2-chloro-4- (tosylamino) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine; ESMS: m / z 601 (M++ Na), 579 (MH+), 777 (M-H)-.
[0246]
Production Example 189: N- [2-chloro-4-[[(4-fluorophenyl) sulfonyl] amino] benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine; ESMS: m / z 605 (M++ Na), 583 (MH+), 581 (M-H)-.
[0247]
Production Example 190: N- [2-chloro-4-[[(4-methoxyphenyl) sulfonyl] amino] benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine; ESMS: m / z 617 (M++ Na), 595 (MH+), 593 (M-H)-.
[0248]
Production Example 191: N- [2-chloro-4-[(2-thienylsulfonyl) amino] benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine; ESMS: m / z 593 (M++ Na), 571 (MH+), 569 (M-H)-.
[0249]
Production Example 192: N- [2-chloro-4-[[(2-methylphenyl) sulfonyl] amino] benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine; ESMS: m / z 601 (M++ Na), 579 (MH+), 777 (M-H)-.
[0250]
Production Example 193: N- [2,6-dichloro-4-[(2-thienylsulfonyl) amino] benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine; mp 141-142 ° C. ESMS: m / z 635 (MH+).
[0251]
Production Example 194: N- [4- (3-Benzylthioureido) -2-chlorobenzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
1) A solution of N- (4-amino-2-chlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine (57 mg) in DMF (1.5 mL) was added to 1,1′-thiocarbonyldiimidazole ( 28 mg) in DMF (1 mL) under nitrogen at 0 ° C. over 2.5 hours. The mixture was then allowed to warm slowly to room temperature and stirred for an additional 2 hours. Benzylamine (21 μL) was added and the resulting mixture was stirred at 80 ° C. for 2 hours. The mixture was concentrated and the residue was dissolved in methylene chloride and washed with 1N hydrochloric acid and water. The organic layer was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel preparative TLC (eluent, methylene chloride / methanol / EtThreeN (100: 1: 1)) purification was performed to give a solid. The solid is dissolved in methylene chloride, washed with 1N hydrochloric acid, dried and evaporated to give N- [4- (3-benzylthioureido) -2-chlorobenzoyl] -4- (2-methoxyphenyl) -L-phenylalanine. The methyl ester (42 mg) was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound (26.9 mg). ESMS: m / z 572 (M+-1).
[0252]
The following compounds (Production Examples 195 to 198) were produced in the same manner as described in Production Example 70 except that methyl isothiocyanate was replaced with an appropriate isothiocyanate compound.
[0253]
[Table 15]
Figure 0003795305
[0254]
The following compounds (Preparation Examples 199-204) were prepared in a similar manner as described in Preparation Examples 64, 69 or 70.
[0255]
[Table 16]
Figure 0003795305
[0256]
Production Example 205: N- (4-ureido-2,6-dichlorobenzoyl-4- (3-carbamoyl-2,6-dimethoxyphenyl) -L-phenylalanine
The title compound was prepared using a method similar to that described in Preparation Example 69. ESMS: m / z 575 (MH+). 217-219 ° C.
[0257]
Production Example 206: N- (4-amino-2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine
The title compound was prepared in a similar manner as described in Preparation 63. ESMS: m / z 489 (MH+). Melting point 221-222 ° C. (decomposition).
The following compounds (Production Examples 207 to 208) were produced in the same manner as described in Production Example 2.
[0258]
[Table 17]
Figure 0003795305
[0259]
Except that 2,6-dichlorobenzoyl chloride and (S) -2-phenylpropionic acid are replaced with the necessary benzoyl chloride and benzoic acid, the following compounds (Preparation Examples 209 to 209) are prepared in the same manner as described in Preparation Examples 1 and 2. 212) was produced.
[0260]
[Table 18]
Figure 0003795305
[0261]
Production Example 213: N- [2- (2,6-dichlorophenyl) propionyl] -4- (2-methoxyphenyl) -L-phenylalanine
1) (2,6-Dichlorophenyl) acetic acid (2.55 g) was dissolved in anhydrous methanol (60 mL), HCl (gas) was bubbled through the mixture and the resulting solution was stirred at room temperature for 18 hours. The solvent was then evaporated to give (2,6-dichlorophenyl) acetic acid methyl ester (2.7 g).
2) LDA (2M heptane / THF / ethylbenzene solution) was added to anhydrous THF (10 mL) and the mixture was cooled to −78 ° C. under nitrogen. The product obtained above (1.1 g) was added dropwise and the mixture was stirred at −78 ° C. for 30 minutes. MeI (0.467 mL) was added and the mixture was allowed to warm to room temperature and stirred overnight. The mixture was concentrated. The residue was dissolved in ethyl acetate (75 mL) and washed successively with 1N hydrochloric acid, water and brine. The mixture was dried over magnesium sulfate, filtered and evaporated to give 2- (2,6-dichlorophenyl) propionic acid methyl ester (1.11 g).
3) The product obtained above was dissolved in THF / methanol / toluene (65 mL, 11: 1: 1) and 1M KOH (9.18 mL) was added. The mixture was stirred at room temperature for 6 hours, heated to 50 ° C. and stirred overnight. Ethanol (5 mL) was added and the mixture was stirred at 60 ° C. for 6 hours and refluxed overnight. The mixture was concentrated, dissolved with water (60 mL) and acidified to pH <2 with 1N hydrochloric acid. The product was collected by filtration to give 2- (2,6-dichlorophenyl) propionic acid (0.84 g).
4) The product obtained above was subjected to a coupling reaction with 4- (2-methoxyphenyl) -L-phenylalanine methyl ester in the same manner as described in Preparation Example 2, and hydrolyzed with LiOH to give the title compound. Got. ESMS: m / z 472 (MH+). Melting point 109-110 ° C.
The following compounds (Production Examples 214 to 217) were produced by the same production method as described in Production Example 4.
[0262]
Production Example 214: N- (2,6-dichlorobenzoyl) -4- (2-formyl-3-thienyl) -L-phenylalanine; ESMS: m / z 470 (M++ Na), 448 (MH+), 446 (M-H)-.
[0263]
Production Example 215: N- (2,6-dichlorobenzoyl) -4- (5-acetyl-2-thienyl) -L-phenylalanine; ESMS: m / z 484 (M++ Na), 462 (MH+), 460 (M-H)-Mp 194-195 ° C.
[0264]
Production Example 216: N- (2,6-dichlorobenzoyl) -4-[(3,5-dimethyl-4-isoxazolyl) -2,6-dimethoxyphenyl] -L-phenylalanine; ESMS: m / z 433 ( MH+), Melting point 118.7 ° C.
[0265]
Production Example 217: N- (2,6-dichlorobenzoyl) -4- (4-pyridyl) -L-phenylalanine; ESMS: m / z 415 (MH+).
[0266]
Production Example 218: N- (2,6-dichlorobenzoyl) -4- (2-hydroxymethyl-3-thienyl) -L-phenylalanine
The title compound was converted to N- (2,6-dichlorobenzoyl) -4- (2-formyl-3-thienyl) -L-phenylalanine methyl ester with NaBH.FourPrepared by reduction and subsequent hydrolysis as described in Preparation 50. ESMS: m / z 472 (M++ Na), 448 (MH)-.
[0267]
Production Example 219: N- (2,6-dichlorobenzoyl) -4- (2-cyano-3-thienyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -O- (trifluoromethanesulfonyl) -L-tyrosine methyl ester (361 mg), trimethyl (2-cyano-3-thienyl) tin (393 mg), Pd (PPhThree)FourA mixture of (42 mg) and LiCl (93 mg) in dioxane (8 mL) was stirred at 100 ° C. under nitrogen for 38 hours. Dilute the mixture with ethyl acetate and add 10% NH.FourTreated with aqueous Cl (6 mL). After stirring at room temperature for 1 hour, the mixture was filtered through celite and washed with ethyl acetate. The organic layers were combined, washed sequentially with water and brine, dried over magnesium sulfate, and evaporated under reduced pressure. The residue was purified by silica gel chromatography to give N- (2,6-dichlorobenzoyl) -4- (2-cyano-3-thienyl) -L-phenylalanine methyl ester (126 mg). ESMS: m / z 481 (M++ Na), 459 (MH+), 457 (M-H)-.
2) The product obtained above was hydrolyzed with LiOH as described in Preparation 1-5) to give N- (2,6-dichlorobenzoyl) -4- (2-cyano-3-thienyl) -L. -Phenylalanine (110 mg) was obtained. ESMS: m / z 467 (M++ Na), 445 (MH+), 443 (M-H)-.
The following compounds (Preparation Examples 220-226) were prepared in a similar manner as described in Preparation Example 32.
[0268]
Production Example 220: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (3-thienylmethoxy) phenyl] -L-phenylalanine; ESMS: m / z 584 (M-H)-.
[0269]
Production Example 221: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(2,6-dichlorophenyl) methoxy] phenyl] -L-phenylalanine; ESMS: m / z 672 ( M++ Na), 648 (M-H)-.
[0270]
Production Example 222: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (2-hydroxyethoxy) phenyl] -L-phenylalanine; ESMS: m / z 556 (M++ Na), 534 (MH+), 532 (M-H)-.
[0271]
Production Example 223: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- [2- (N, N-dimethylamino) ethoxy] phenyl] -L-phenylalanine; ESMS: m / z 561 (MH)+.
[0272]
Production Example 224: N- (2,6-dichlorobenzoyl) -4- (3-isopropoxyphenyl) -L-phenylalanine; ESMS: m / z 494 (M++ Na), 472 (MH+), 470 (M-H)-.
[0273]
Production Example 225: N- (2,6-dichlorobenzoyl) -4- (2-isopropoxyphenyl) -L-phenylalanine; ESMS: m / z 494 (M++ Na), 472 (MH+), 470 (M-H)-.
[0274]
Production Example 226: N- (2,6-dichlorobenzoyl) -4- (2-isopropyloxy-6-methoxyphenyl) -L-phenylalanine; ESMS: m / z 524 (M++ Na), 500 (MH)-.
[0275]
Production Example 227: N- (2,6-dichlorobenzoyl) -4- [6-methoxy-2- (2-hydroxyethoxy) phenyl] -L-phenylalanine
1) Preparation of 6-methoxy-2-methoxymethoxybenzeneboronic acid (1.92 g) with N- (2,6-dichlorobenzoyl) -O- (trifluoromethanesulfonyl) -L-tyrosine ethyl ester 5-3) In the same manner as above, a coupling reaction was performed to give N- (2,6-dichlorobenzoyl) -4- (6-methoxy-2-methoxymethoxyphenyl) -L-phenylalanine ethyl ester (0.942 mg). ESMS: m / z 532 (MH+), 530 (MH)-.
2) A solution of N- (2,6-dichlorobenzoyl) -4- (6-methoxy-2-methoxymethoxyphenyl) -L-phenylalanine ethyl ester (938 mg) in ethanol (25 mL) was added hydrochloric acid (4N dioxane solution, 5 mL). ) And then the mixture was stirred at room temperature under nitrogen for 4 hours. The mixture was diluted with ethyl acetate, washed with water and brine, dried over magnesium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1: 2)) to give N- (2,6-dichlorobenzoyl) -4- (6-methoxy-2-hydroxyphenyl) -L. -Phenylalanine ethyl ester (795 mg) was obtained. ESMS: m / z 488 (MH+), 486 (M-H)-.
3) A mixture of the product obtained above (256 mg), 2-bromoethyl acetate (271 mg) and potassium carbonate (217 mg) in DMF (5 mL) was stirred at 60 ° C. under nitrogen for 15 hours. The mixture was diluted with ethyl acetate, washed with water and brine, dried over magnesium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1: 5 to 1: 3)) to give N- (2,6-dichlorobenzoyl) -4- [6-methoxy-2- ( 2-Acetoxyethoxy) phenyl] -L-phenylalanine ethyl ester (203 mg) was obtained. ESMS: m / z 574 (MH+), 572 (M-H)-.
4) The product obtained above (196 mg) was hydrolyzed with LiOH (29 mg) as described in Preparation 1-5). The crude material was crystallized from methylene chloride / ethyl acetate / hexane to give the title compound (145 mg). Melting point 158-159 ° C .; ESMS: m / z 526 (M++ Na), 504 (MH+), 502 (M-H)-.
[0276]
Production Example 228: N- (2,6-dichlorobenzoyl) -4- [6-methoxy-2- (2-fluoroethoxy) phenyl] -L-phenylalanine
The title compound was produced in the same manner as in Production Example 227, except that 2-bromoethyl acetate was replaced with 2-fluoroethyl bromide. Melting point 206-207 ° C .; ESMS: m / z 506 (MH+).
The following compounds (Production Examples 229-232) were produced in the same manner as described in Production Example 227, using the necessary benzeneboronic acid.
[0277]
[Table 19]
Figure 0003795305
[0278]
The following compounds (Production Examples 233-241) were produced in the same manner as described in Production Example 228, using the necessary benzeneboronic acid.
[0279]
Production Example 233: N- (2,6-dichlorobenzoyl) -4- [2,3-methylenedioxy-6- (2-methoxyethoxy) phenyl] -L-phenylalanine; mp 167 ° -168 ° C .; ESMS: m / z 532 (MH+).
[0280]
Production Example 234: N- (2,6-dichlorobenzoyl) -4- [2,3-methylenedioxy-6- [2- (N, N-dimethylamino) ethoxy] phenyl] -L-phenylalanine; ESMS: m / z 545 (MH+), 543 (M-H)-.
[0281]
Production Example 235: N- (2,6-dichlorobenzoyl) -4- [2,3-methylenedioxy-6- (methoxymethoxy) phenyl] -L-phenylalanine; ESMS: m / z 518 (MH+), 516 (M-H)-.
[0282]
Production Example 236: N- (2,6-dichlorobenzoyl) -4- (2,3-methylenedioxy-6-hydroxyphenyl) -L-phenylalanine; ESMS: m / z 474 (MH+).
[0283]
Production Example 237: N- (2,6-dichlorobenzoyl) -4- (2,3-methylenedioxy-6-ethoxyphenyl) -L-phenylalanine; ESMS: m / z 502 (MH+).
[0284]
Production Example 238: N- (2,6-dichlorobenzoyl) -4- [2,3-methylenedioxy-6- (2-hydroxyethoxy) phenyl] -L-phenylalanine; ESMS: m / z 518 (MH+), 516 (M-H)-.
[0285]
Production Example 239: N- (2,6-dichlorobenzoyl) -4- [2,3-methylenedioxy-6- (cyanomethoxy) phenyl] -L-phenylalanine; ESMS: m / z 513 (MH+).
[0286]
Production Example 240: N- (2,6-dichlorobenzoyl) -4- (2,3-methylenedioxy-6-methoxyphenyl) -L-phenylalanine; ESMS: m / z 488 (MH+).
[0287]
Production Example 241: N- (2,6-dichlorobenzoyl) -4- (2,3-ethylenedioxy-6-methoxyphenyl) -L-phenylalanine; ESMS: m / z 502 (MH+); Mp 218 ° C.
[0288]
Production Example 242: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(methylamino) methyl] phenyl] -L-phenylalanine
1) 2,6-Dimethoxy-4-[(t-butyldiphenylsilyloxy) methyl] benzeneboronic acid (5.2 g), N- (2,6-dichlorobenzoyl) -4-bromo-L-phenylalanine ethyl ester (1.71 g), Pd (PPhThree)FourA mixture of DME / water (20 mL / 0.5 mL) of (0.44 g) and potassium carbonate (1.59 g) was heated at 80 ° C. under nitrogen for 24 hours. The mixture was worked up and purified in the same manner as in Production Example 8-3) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(t-butyldiphenylsilyl). Oxy) methyl] phenyl] -L-phenylalanine ethyl ester (2.9 g) was obtained. ESMS: m / z 770 (MH+).
2) To an ice-cooled solution of the product obtained above (2.9 g) in THF (10 mL) was added tetrabutylammonium fluoride (4.45 mL, 1 M THF solution) under nitrogen and the mixture was stirred for 2 hours. . The THF was evaporated and the residue was purified by preparative TLC (eluent, hexane-50% hexane / ethyl acetate) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (Hydroxymethyl) phenyl] -L-phenylalanine ethyl ester (1.86 g) was obtained. ESMS: m / z 532 (MH+).
3) Product obtained above (1.8 g), CBrFour(2.25g), PhThreeA mixture of P (1.78 g) in methylene chloride (20 mL) was stirred at 0 ° C. overnight. The solvent was evaporated and the residue was purified by silica gel column chromatography (eluent, hexane-10% hexane / ethyl acetate) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4. -(Bromomethyl) phenyl] -L-phenylalanine ethyl ester (0.9 g) was obtained. ESMS: m / z 596 (MH+).
4) The product obtained above (0.15 g) and MeNH2A mixture of (2M THF solution, 0.8 mL) in methylene chloride (3 mL) was stirred at room temperature for 4 hours. The crude mixture was purified by silica gel preparative TLC (eluent, methylene chloride / ethanol (9.5: 5), a few drops of NHFourN- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(methylamino) methyl] phenyl] -L-phenylalanine ethyl ester (45 mg) Got. ESMS: m / z 545 (MH+).
5) The product obtained above (0.093 g) was hydrolyzed with LiOH (2N solution, 0.175 mL) as described in Preparation 1-5) to give the title compound (75 mg). Melting point 274 ° C .; ESMS: m / z 517 (MH+).
MeNH2The following compounds (Preparation Examples 243 to 252) were prepared in a manner similar to that described in Preparation Example 242, except that was replaced with the necessary amine.
[0289]
[Table 20]
Figure 0003795305
[0290]
Production Example 253: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (thiomorpholinomethyl) phenyl] -L-phenylalanine
1) 2,6-dimethoxy-4- (thiomorpholinomethyl) benzeneboronic acid (1.1 g), N- (2,6-dichlorobenzoyl) -4-bromo-L-phenylalanine ethyl ester (0.71 g), Pd (PPhThree)FourA mixture of (1.0 g) and potassium carbonate (1.00 g) in DME / water (10 mL / 0.5 mL) was heated at 80 ° C. under nitrogen for 6 hours. The mixture was worked up and purified according to the production method described in Preparation Example 8-3) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (thiomorpholinomethyl) phenyl. ] -L-phenylalanine ethyl ester (0.15 g) was obtained. Melting point 86-89 ° C .; ESMS: m / z 616 (MH+), Hydrochloride: mp 204-205 ° C.
2) The product obtained above (0.15 g) was hydrolyzed with LiOH as described in Preparation 1-5) to give the title compound (120 mg). ESMS: m / z 588 (MH+).
The following compounds (Preparation Examples 254 to 261) were prepared from the required starting materials in a manner similar to that described in Preparation Examples 242 or 253.
[0291]
Production Example 254: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(diethylamino) methyl] phenyl] -L-phenylalanine; ESMS: m / z 559 (MH+).
[0292]
Production Example 255: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(N, N-dimethylamino) methyl] phenyl] -L-phenylalanine; ESMS: m / z 531 (MH+).
[0293]
Production Example 256: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (piperidinomethyl) phenyl] -L-phenylalanine; ESMS: m / z 571 (MH+).
[0294]
Production Example 257: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (morpholinomethyl) phenyl] -L-phenylalanine; ESMS: m / z 573 (MH+).
Production Example 258: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(4-benzyl-1-piperazinyl) methyl] phenyl] -L-phenylalanine; ESMS: m / z 662 (MH+).
[0295]
Production Example 259: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(N, N-dimethylamino) methyl] phenyl] -L-phenylalanine ethyl ester / hydrochloride; ESMS : M / z 560 (MH+); Melting point 146.5 ° C.
[0296]
Production Example 260: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (piperidinomethyl) phenyl] -L-phenylalanine ethyl ester / hydrochloride; ESMS: m / z 600 (MH+); Melting point 205.5 ° C.
[0297]
Production Example 261: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (morpholinomethyl) phenyl] -L-phenylalanine ethyl ester / hydrochloride; ESMS: m / z 601 (MH+); Melting point 177.5 ° C.
[0298]
Production Example 262: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(1-piperazinyl) methyl] phenyl] -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(4-t-butoxycarbonyl-1-piperazinyl) methyl] phenyl] -L-phenylalanine ethyl ester , 6-dimethoxy-4- (thiomorpholinomethyl) benzeneboronic acid was replaced with 2,6-dimethoxy-4-[(4-t-butoxycarbonyl-1-piperazinyl) methyl] benzeneboronic acid in Preparation Example 253. Obtained in the same manner as described.
2) A solution of the product obtained above (0.09 g) in methylene chloride / TFA (5 mL / 3 mL) was stirred at room temperature for 3 hours. The mixture was evaporated and the residue was partitioned between ethyl acetate and saturated sodium bicarbonate. The ethyl acetate layer was washed with water, dried and evaporated to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(1-piperazinyl) methyl] phenyl] -L-phenylalanine ethyl ester (70 mg) was obtained. ESMS: m / z 600 (MH+).
3) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to obtain the title compound (50 mg). ESMS: m / z 572 (MH+).
[0299]
Production Example 263: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (thiomorpholinomethyl) phenyl] -L-phenylalanine S-oxide (263B) and N- (2,6 -Dichlorobenzoyl) -4- [2,6-dimethoxy-4- (thiomorpholinomethyl) phenyl] -L-phenylalanine S, S-dioxide (263B)
1) To a solution of N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (thiomorpholinomethyl) phenyl] -L-phenylalanine ethyl ester (0.1 g) in methylene chloride (3 mL) At −10 ° C. under nitrogen, mCPBA (40 mg) was added and the mixture was stirred for 2 hours. The mixture was diluted with methylene chloride, washed with saturated sodium bicarbonate and brine, dried, evaporated and subjected to preparative TLC purification to give N- (2,6-dichlorobenzoyl) -4- [2,6- Dimethoxy-4- (thiomorpholinomethyl) phenyl] -L-phenylalanine ethyl ester S-oxide (49 mg; ESMS: m / z 633 (MH+)) And N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (thiomorpholinomethyl) phenyl] -L-phenylalanine ethyl ester S, S-dioxide (10 mg; ESMS: m / z 649 (MH+)).
2) The two products obtained above were hydrolyzed separately in the same manner as described in Preparation Example 1-5) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy- 4- (thiomorpholinomethyl) phenyl] -L-phenylalanine S-oxide (17 mg, mp 162.8 ° C., ESMS: m / z 605 (MH+)) And N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (thiomorpholinomethyl) phenyl] -L-phenylalanine S, S-dioxide (7 mg; melting point 230 ° C. (decomposition) , ESMS: m / z 649 (MH+)).
[0300]
Production Example 264: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- [2- (4-methyl-1-piperazinyl) ethyl] phenyl] -L-phenylalanine
1) 2,6-dimethoxy-4- (2-hydroxyethyl) benzeneboronic acid is converted to N- (2,6-dichlorobenzoyl) -4-bromo-L-phenylalanine ethyl ester as described in Preparation Example 8-3). A coupling reaction was carried out according to the production method to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (2-hydroxyethyl) phenyl] -L-phenylalanine ethyl ester (1.3 g). Obtained. ESMS: m / z 546 (MH+).
2) The product obtained above (1.25 g) was dissolved in methylene chloride and PhThreeP (907 mg) was added and then the solution was cooled to 0 ° C. CBrFour(1.14 g) was added to the mixture and the mixture was stirred at 0 ° C. for 2 h. The mixture was partitioned with water / ethyl acetate (20 mL each). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3 × 20 mL). The organic layers were combined, dried over magnesium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (3: 7)) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (2- Bromoethyl) phenyl] -L-phenylalanine ethyl ester (1.1 g) was obtained. ESMS: m / z 610 (MH+).
3) The product obtained above (200 mg) was dissolved in methylene chloride (3 mL), and N-methylpiperazine (0.11 mL) was added. The mixture was stirred at room temperature for 40 hours and evaporated. The residue was purified by silica gel column chromatography (eluent, methylene chloride / ethanol (96: 4)) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- [2- (4-Methyl-1-piperazinyl) ethyl] phenyl] -L-phenylalanine ethyl ester (113 mg) was obtained. ESMS: m / z 628 (MH+).
4) The product obtained above was hydrolyzed with LiOH as described in Preparation 1-5) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- [2- (4-Methyl-1-piperazinyl) ethyl) phenyl] -L-phenylalanine was obtained. Melting point 178.9 ° C. ESMS: m / z 600 (MH+).
[0301]
Production Example 265: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (2-piperidinoethyl) phenyl] -L-phenylalanine
The title compound was synthesized in the same manner as described in Preparation Example 264 except that N-methylpiperazine was replaced with piperidine. Melting point 194.9 ° C. ESMS: m / z 585 (MH+).
[0302]
Production Example 266: N- (2,6-dichlorothiobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (0.25 g) and Loesssen reagent (2,4-bis (4-methoxyphenyl) A mixture of xylene (10 mL) of 1,3-dithia-2,4-diphosphetane-2,4-disulfide; 0.21 g) was refluxed overnight. The mixture was cooled to about 50 ° C., water (15 mL) was added and refluxed for 2 hours. The mixture was stirred at room temperature overnight and evaporated. The residue was partitioned between ethyl acetate and water. The ethyl acetate layer was washed with water, dried and evaporated to give N- (2,6-dichlorothiobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (0.25 g). ESMS: m / z 504 (MH+).
2) The product obtained above was hydrolyzed using LiOH as described in Preparation Example 1-5). The crude product was purified by silica gel column chromatography (eluent, methylene chloride / methanol (95: 5) to methylene chloride / methanol / AcOH (95: 5: 0.1)) to give the title compound (25 mg). It was. Melting point: 180.4 ° C., ESMS: m / z 490 (MH+).
[0303]
Production Example 267: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine N- (methylsulfonyl) amide
1) A solution of N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine (0.1 g) in THF (5 mL) at 0 ° C. under nitrogen at 0 ° C. 055 mL) followed by 1 drop of DMF. The solution was stirred at 0 ° C. for 2 hours followed by 2 hours at room temperature. The THF was evaporated, fresh THF (5 mL) was added and the solution was evaporated again. This step was repeated once more, and the residue was vacuum-dried to obtain N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanyl chloride.
2) A solution of the product obtained above in THF (10 mL) was added to MeSO.2NH2(0.0292 g) was added, followed by DBU (0.035 mL). The mixture was stirred at room temperature for 4 hours and heated to reflux for 2 hours. The mixture was evaporated and the residue was purified by silica gel column chromatography (eluent, methylene chloride to 3% methylene chloride / methanol) and recrystallized from methylene chloride / diethyl ether to give the title compound (25 mg). ESMS: m / z 551 (MH+).
[0304]
Production Example 268: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine N-hydroxyamide
Sodium bicarbonate (0.21 g) with NH2To a solution of OH · hydrochloride (0.14 g) in THF / water (5 mL each) at 0 ° C., the mixture was stirred for 1/2 hour. A solution of N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanyl chloride (0.1 g) in THF (5 mL) is added to the mixture at 0 ° C. and the mixture is added. Stir at room temperature overnight. The mixture was partitioned with ethyl acetate and water. The ethyl acetate layer was washed successively with 1N hydrochloric acid and brine, dried and evaporated. The residue was purified by silica gel preparative TLC (eluent, 8% methylene chloride / methanol) to obtain the title compound (27 mg). ESMS: m / z 489 (MH+).
[0305]
Production Example 269: N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine N-hydroxyamide
1) To a solution of N- (2,6-dichlorobenzoyl) -4- (2-methoxyphenyl) -L-phenylalanine (0.098 g) and t-butylhydroxylamine (0.047 g) in methylene chloride (5 mL), BOP reagent (0.17 g) was added followed by DIEA (0.1 mL) and the mixture was stirred at room temperature overnight. The mixture was evaporated and the residue was dissolved in ethyl acetate (30 mL). The ethyl acetate solution was washed successively with 1N hydrochloric acid, saturated sodium bicarbonate, and saturated LiCl, dried over magnesium sulfate, and concentrated. The residue was purified by silica gel preparative TLC (eluent, hexane / ethyl acetate / methylene chloride (6: 1: 1)) and recrystallized from methylene chloride / hexane to give N- (2,6-dichlorobenzoyl) -4. -(2-Methoxyphenyl) -L-phenylalanine N- (t-butyl) -N-hydroxyamide (74 mg) was obtained. ESMS: m / z 515 (MH+).
2) A solution of the product obtained above (0.030 g) in methylene chloride / TFA (3 mL each) was stirred at room temperature for 72 hours. The mixture was evaporated and the residue was purified by silica gel column chromatography (eluent, methylene chloride to 5% methylene chloride / methanol) to give the title compound (10 mg). ESMS: m / z 459 (MH+).
[0306]
Production Example 270: (1S) -N- (2,6-dichlorobenzoyl) -2- [4- (2,6-dimethoxyphenyl) phenyl] -1- (1H-tetrazol-5-yl) ethylamine
The title compound was prepared according to the method described in J. Med. Chem., 41, 1513-1518, 1998.
1) N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine (0.17 g), HOBT (0.08 g), DIEA (0.19 mL) and 2-cyanoethyl A solution of amine (0.03 mL) in DMF (5 mL) was stirred at room temperature under nitrogen. After 10 minutes, EDC (0.14 g) was added and the mixture was stirred at room temperature under nitrogen. The mixture was diluted with water and extracted with ethyl acetate. The extract was washed successively with water, 1N hydrochloric acid, saturated sodium bicarbonate and brine, dried and evaporated to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L- Phenylalanine N- (2-cyanoethyl) amide (0.17 g) was obtained. ESMS: m / z 526 (MH+).
2) PhThreeP (0.21 g) was added to a solution of the product obtained above (0.17 g) in acetonitrile (10 mL). The mixture was cooled to 0 ° C., DIAD (0.16 mL) and TMSNThree(0.11 mL) was added. The mixture was warmed to room temperature, heated at 40 ° C. for 1 hour, cooled to room temperature and stirred overnight. The mixture was partitioned with ethyl acetate and water. The organic layer was washed with saturated sodium bicarbonate followed by brine, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1: 1)) to give (1S) -N- (2,6-dichlorobenzoyl) -2- [4- (2,6- Dimethoxyphenyl) phenyl] -1- [1- (2-cyanoethyl) -1H-tetrazol-5-yl] ethylamine (0.076 mg) was obtained. ESMS: m / z 551 (MH+).
3) To a solution of the product obtained above (0.073 g) in chloroform (5 mL) was added DBU (0.059 mL), and the mixture was stirred at room temperature for 48 hours under nitrogen. The mixture was diluted with ethyl acetate, washed with 1N hydrochloric acid and brine, dried and evaporated to give the title compound (0.067 g). ESMS: m / z 498 (MH+).
The following compounds (Production Examples 271 to 274) were produced by the same production method as described in Production Example 270-1).
[0307]
Production Example 271: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine 2- (dimethylamino) ethyl ester; ESMS: m / z 582 (MH+).
[0308]
Production Example 272: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine 2-pyridylmethyl ester; ESMS: m / z 582 (MH+).
[0309]
Production Example 273: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine 3-pyridylmethyl ester; ESMS: m / z 582 (MH+).
[0310]
Production Example 274: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine 4-pyridylmethyl ester; ESMS: m / z 582 (MH+).
[0311]
Production Example 275: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine isopropyl ester
Hydrogen chloride gas was blown into a THF / 2-propanol (2/5 mL) solution of N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine (0.15 g) for 15 minutes. And the solution was stirred at room temperature overnight. The mixture was saturated with hydrogen chloride gas, left at room temperature overnight and evaporated. The residue was partitioned with ethyl acetate and water. The ethyl acetate layer is washed with water, dried and evaporated, and the residue is purified by column chromatography (eluent, ethyl acetate / hexane (1: 1)) and triturated with hexane / diethyl ether (5: 0.5) to give the title compound. (0.1 g) was obtained. ESMS: m / z 516 (MH+).
[0312]
Production Example 276: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine cyclohexyl ester
The title compound was prepared in a manner analogous to Preparation 275, replacing 2-propanol with cyclohexanol. ESMS: m / z 556 (MH+).
The following compounds (Preparation Examples 277 to 286) were prepared in the same manner as described in Preparation Example 1 or 2, except that 2,6-dichlorobenzoic acid or 2,6-benzoyl chloride was replaced with a suitable substituted benzoic acid or acid chloride thereof. ) Was manufactured.
[0313]
[Table 21]
Figure 0003795305
[0314]
The following compounds (Preparation Examples 287-290) were prepared in a manner similar to that described in Preparation Example 2, replacing (S) -2-phenylpropionic acid with the appropriate substituted 2-chlorobenzoic acid.
[0315]
[Table 22]
Figure 0003795305
[0316]
Production Example 291: N- [2-chloro-4- (2-hydroxymethyl-1-pyrrolyl) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine
From N- [2-chloro-4- (2-formyl-1-pyrrolyl) benzoyl] -4- (2-methoxyphenyl) -L-phenylalanine methyl ester, NaBHFourFollowed by saponification with LiOH as described in Preparation 50 to give the title compound. ESMS: m / z 503 (M-H)-.
The following compounds (Production Examples 292 to 293) were produced in the same manner as described in Production Example 2.
[0317]
[Table 23]
Figure 0003795305
[0318]
Production Example 294: N- (2,6-dichlorobenzoyl) -3- [5- (2,6-dimethoxyphenyl) -2-thienyl] -L-alanine
1) N- (9-fluorenylmethoxycarbonyl) -3- (5-bromo-2-thienyl) -L-alanine (813 mg) was dissolved in ethanol (15 mL), and hydrogen chloride (gas) was added to the solution. Blowed at 0 ° C for 5 minutes. The mixture was warmed to 50 ° C. and stirred for 1 hour. After cooling to room temperature, the solvent was evaporated. The residue was purified by silica gel column chromatography (eluent, hexane to hexane / ethyl acetate (1: 1)) to give N- (9-fluorenylmethoxycarbonyl) -3- (5-bromo-2-thienyl). -L-alanine ethyl ester (767 mg) was obtained. ESMS: m / z 500 (MH+).
2) Piperidine (1 mL) was added to a solution of the product obtained above (758 mg) in methylene chloride (10 mL). The mixture was warmed to 45 ° C., stirred for 2 hours and evaporated. The residue was diluted with methylene chloride (10 mL) and EtThreeDissolved in N (1.1 mL). To this solution was added 2,6-dichlorobenzoyl chloride (240 μL) and the mixture was stirred at room temperature overnight. 1N hydrochloric acid (20 mL) was added and the mixture was extracted with ethyl acetate. The extract is dried (Na2SOFour), Filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane to hexane / ethyl acetate (1: 1)) to give N- (2,6-dichlorobenzoyl) -3- (5-bromo-2-thienyl)- L-alanine ethyl ester (650 mg) was obtained. ESMS: m / z 450 (MH+).
3) The title compound was prepared from the product obtained above according to the process described in Preparation Examples 7-2) and 3). ESMS: m / z 480 (MH+), Melting point 134 ° C. (decomposition).
[0319]
Production Example 295: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-homophenylalanine
The title compound was prepared in a similar manner as described in Preparation 5. ESMS: m / z 488 (MH+), Mp 105-107 ° C.
[0320]
Production Example 296: N- (2,6-dichlorobenzoyl) -3-ethyl-4- (2-methoxyphenyl) -L-phenylalanine
To a solution of N- (2,6-dichlorobenzoyl) -3- (1-hydroxyethyl) -4- (2-methoxyphenyl) -L-phenylalanine ethyl ester (0.08 g) in acetonitrile (3 mL) at 0 ° C., EtThreeSiH (0.075 mL) followed by BFThree• Etherate (0.0197 mL) was added. The mixture was warmed to room temperature and stirred for 1 hour. CHThreeThe reaction was quenched with OH / water and the mixture was extracted with methylene chloride. The organic layer was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel preparative TLC (eluent, ethyl acetate / hexane (1: 2)) to give N- (2,6-dichlorobenzoyl) -3-ethyl-4- (2-methoxyphenyl) -L. -Phenylalanine ethyl ester (39 mg) was obtained. ESMS: m / z 500 (MH+).
2) The product obtained above was hydrolyzed with LiOH as described in Preparation Example 1-5) to give the title compound (30 mg). Melting point 105 to 107 ° C., ESMS: m / z 472 (MH+).
[0321]
Production Example 297: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -3-acetylamino-L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -3-nitro-L-phenylalanine ethyl ester is prepared in the same manner as described in Preparation 1 in the form of N- (t Prepared by replacing -butoxycarbonyl) -L-tyrosine ethyl ester with Nt-butoxycarbonyl-3-nitro-L-tyrosine ethyl ester.
2) The product obtained above (1.07 g) was dissolved in methanol (15 mL) under nitrogen. Raney nickel (100 mg) is added and H2Gas was bubbled through the mixture for 15 minutes. H2Stirring was continued for 6 hours. The mixture was filtered through celite, washed with methanol and the filtrate was evaporated. The residue was purified by silica gel column chromatography (eluent, hexane to hexane / ethyl acetate (1: 1)) to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -3. -Amino-L-phenylalanine ethyl ester (845 mg) was obtained. ESMS: m / z 503 (MH+).
3) The product obtained above (119 mg) was dissolved in methylene chloride (1 mL) and pyridine (57 μL). To this solution was added acetic anhydride (45 μL) and the mixture was stirred at room temperature for 18 hours. The mixture was evaporated and the residue was purified by silica gel column chromatography (eluent, hexane-ethyl acetate) to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -3-acetyl. Amino-L-phenylalanine ethyl ester (127 mg) was obtained. ESMS: m / z 545 (MH+).
4) The product (126 mg) obtained above was hydrolyzed with LiOH as described in Preparation Example 1-5) to give the title compound (98 mg). Mp 142-144 ° C .; ESMS: m / z 531 (MH+).
The following compounds (Production Examples 298 to 299) were produced by the same production method as described in Production Example 297.
[0322]
[Table 24]
Figure 0003795305
[0323]
Production Example 300: N- (2,6-dichlorobenzoyl) -3- (2-oxo-1-pyrrolidinyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine
1) Raney nickel (100 mg) was added to a solution of N- (2,6-dimethoxybenzoyl) -3-nitro-4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (1.07 g) in methanol (15 mL). And add H2Gas was bubbled through the mixture for 15 minutes. The mixture was filtered through celite and the filtrate was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (eluent, hexane to hexane / ethyl acetate (1: 1)) to give N- (2,6-dichlorobenzoyl) -3-amino-4- (2,6-dimethoxy). Phenyl) -L-phenylalanine methyl ester (845 mg) was obtained. ESMS: m / z 503 (MH+).
2) To a solution of the product obtained above (122 mg) in methylene chloride (1 mL) and pyridine (78 μL), 4-chlorobutyryl chloride (54 μL) was added. The mixture was stirred at room temperature for 12 hours and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent, hexane to ethyl acetate) to give N- (2,6-dichlorobenzoyl) -3- (4-chlorobutyrylamino) -4- (2,6-dimethoxy). Phenyl) -L-phenylalanine methyl ester (56 mg) was obtained. ESMS: m / z 607 (MH+).
3) To a solution of the product obtained above (56 mg) in DMF (1 mL) was added NaH (11 mg in 60% oil) and the mixture was stirred at room temperature for 30 minutes. 1N hydrochloric acid was added to the mixture and the mixture was extracted with ethyl acetate. The extract is dried (Na2SOFour) And evaporated. The residue was purified by silica gel column chromatography (eluent, methylene chloride-10% methanol / methylene chloride) to obtain the title compound (23 mg). ESMS: m / z 557 (MH+).
[0324]
The following compounds (Preparation Examples 301-302) were prepared in the same manner as described in Preparation Example 2 with 2-phenylpyropionic acid as the required benzoic acid and 4- (2-methoxyphenyl) -L-phenylalanine methyl. Prepared by replacing the ester · hydrochloride with 4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester · hydrochloride.
[0325]
Production Example 301: N- (2,6-Dichloro-4-phenylbenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine
ESMS: m / z 550 (MH+); Mp 215 ° C.
[0326]
Production Example 302: N- [2,6-dichloro-4- (1-methyl-2-pyrrolyl) benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine
ESMS: m / z 553 (MH+), Mp 199 ° C.
[0327]
Production Example 303: N- [4- (2-pyrrolyl) -2,6-dichlorobenzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine
1) N- (4-bromo-2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (0.410 g) was converted to 1-t-butoxycarbonyl-2-pyrrole boron Acid (0.930 g) / THF (10 mL) and a coupling reaction as described in Preparation Example 7-2) to give N- [4- (1-t-butoxycarbonyl-2-pyrrolyl) -2,6- Dichlorobenzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (0.435 g) was obtained. ESMS: m / z 653 (MH+).
2) The compound obtained above was treated with TFA as described in Preparation Example 1-3) to give N- [4- (2-pyrrolyl) -2,6-dichlorobenzoyl] -4- (2,6- Dimethoxyphenyl) -L-phenylalanine methyl ester (0.198 g) was obtained. ESMS: m / z 553 (MH+).
3) The product obtained above (0.170 g) was hydrolyzed with LiOH as described in Preparation 1-5) to give the title compound (0.127 g). ESMS: m / z 539 (MH+), Melting point 250 ° C.
[0328]
Production Example 304: N- [4- (5-pyrazolyl) -2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine
1) N- (4-Bromo-2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (0.240 g) was converted to 1-[[2- (trimethylsilyl) ethoxy ] Methyl] -5-pyrazoleboronic acid (0.343 g) in THF (10 mL) and a coupling reaction as described in Preparation Example 7-2) to give N- [4- [1-[[2- ( Trimethylsilyl) ethoxy] methyl] -5-pyrazolyl] -2,6-dichlorobenzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (0.277 g) was obtained. ESMS: m / z 684 (MH+) And 682 (M-H)-.
2) Concentrated hydrochloric acid (0.20 mL) was added to a solution of the product obtained above (0.277 g) in methanol (10 mL), and after 3 hours, a second concentrated hydrochloric acid (0.20 mL) was added. After stirring at room temperature overnight, the mixture was concentrated. The residue was dissolved in ethyl acetate, washed with sodium bicarbonate and brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel preparative TLC (eluent, hexane to hexane / ethyl acetate (1: 1)) to give N- [4- (5-pyrazolyl) -2,6-dichlorobenzoyl] -4- (2 , 6-Dimethoxyphenyl) -L-phenylalanine methyl ester (0.148 g) was obtained. ESMS: m / z 554 (MH+).
3) The product obtained above was hydrolyzed as described in Production Example 1-5) to give the title compound (0.133 g). ESMS: m / z 540 (MH+) And 652 (M-+ TFA), mp 156 ° C.
[0329]
Production Example 305: N- [3- (3,5-dimethyl-4-isoxazolyl) -2,6-dichlorobenzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine The title compound was prepared in the same manner as in Production Example 303. Prepared in the same manner as described above starting from N- (3-bromo-2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester. MS: m / z 569 (MH+), Melting point 144.8 ° C.
[0330]
Production Example 306: N- [4- (1,3-thiazol-2-yl) -2,6-dichlorobenzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine
1) To a solution of N- (4-bromo-2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (0.240 g) in toluene (10 mL) Nio-1,3-thiazole (0.52 g) and Pd (PPhThree)Four(0.11 g) was added and the solution was heated to 80 ° C. under nitrogen for 24 hours. Work up and purify in the same manner as described in Preparation Example 135-3) to give N- [4- (1,3-thiazol-2-yl) -2,6-dichlorobenzoyl] -4- (2, 6-Dimethoxyphenyl) -L-phenylalanine methyl ester (30 mg) was obtained. ESMS: m / z 571 (MH+).
2) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound (22.7 mg). ESMS: m / z 557 (MH+), Melting point 141.9 ° C.
[0331]
Production Example 307: N- [4- (1,3-thiazol-4-yl) -2,6-dichlorobenzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine
The title compound was prepared in a similar manner to Preparation Example 306, replacing 2-tributylstannio-1,3-thiazole with 4-tributylstannio-1,3-thiazol. ESMS: m / z 557 (MH+) And 555 (M--H), mp 186.5 ° C.
[0332]
Production Example 308: N- [4- (2-pyrazinyl) -2,6-dichlorobenzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine
The title compound was prepared in a similar manner as described in Preparation 306, replacing 2-tributylstannio-1,3-thiazole with 2-tributylstaniopyrazine. ESMS: m / z 552 (MH+), Mp 145.7 ° C.
The following compounds (Production Examples 309 to 318) were produced in the same manner as described in Production Example 303.
[0333]
[Table 25]
Figure 0003795305
[0334]
Production Example 319: N- (2,6-Dichlorobenzoyl) -4- [2,6-dimethoxy-3- (morpholinomethyl) phenyl] -L-phenylalanine
1) 2,6-dimethoxy-3- (hydroxymethyl) benzeneboronic acid is replaced with N- (2,6-dichlorobenzoyl) -4-bromo-L-phenylalanine ethyl ester as described in Production Example 7-2) The coupling reaction was carried out to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-3- (hydroxymethyl) phenyl] -L-phenylalanine ethyl ester.
2) Thionyl chloride (100 mL) was added to an ice-cooled solution of the product obtained above (0.212 mg) in methylene chloride (5 mL) under nitrogen. The mixture was stirred at room temperature for 1 hour and evaporated. The residue is dissolved in methylene chloride, evaporated and dried under vacuum to give the crude product N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-3- (chloromethyl) phenyl]- L-phenylalanine ethyl ester (0.22 g) was obtained.
3) A solution of the product obtained above (0.22 g) in DMF (5 mL) was added to morpholine (41 mg) in Et.ThreeTo an ice-cold solution of DMF (1 mL) containing N (0.111 mL) was added under nitrogen. The mixture was stirred at room temperature for 14 hours and then partitioned between ethyl acetate and water. The ethyl acetate layer was separated, washed sequentially with saturated sodium bicarbonate, water and brine, dried and evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-3- (morpholinomethyl) phenyl] -L-phenylalanine. The ethyl ester (0.186 g) was obtained. ESMS: m / z 601 (MH+).
4) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound. ESMS: m / z 573 (MH+), Mp 241-242 ° C.
[0335]
Production Example 320: N- (2,6-dichloro-4-fluorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine
The title compound was prepared in the same manner as described in Preparation Example 2. MS: m / z 492 (MH+), Mp 206-207 ° C.
[0336]
Production Example 321: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (trifluoromethyl) phenyl] -L-phenylalanine
The title compound was prepared in the same manner as described in Preparation Example 2.
MS: m / z 542 (MH+), Mp 231-232 ° C.
[0337]
Production Example 322: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-bromophenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (1.01 g) was dissolved in methylene chloride (40 mL) under nitrogen, and tetratribromide was dissolved. Butylammonium (1.21 g) was added and the mixture was stirred at room temperature overnight. Further tetrabutylammonium tribromide (0.55 g) was added and the mixture was stirred for 1 day. The mixture was then washed with water (25 mL) and the organic layer was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel flash column chromatography (eluent, hexane and ethyl acetate) to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-bromophenyl) -L-phenylalanine. The methyl ester (1.17 g) was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Preparation 1-5) to give the title compound. MS: m / z 555 (MH+), Mp 205-206 ° C.
[0338]
Production Example 323: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-aminophenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (1.59 g) was dissolved in THF (4 mL) under nitrogen and then 70% HNO.Three(4 mL) was added and the mixture was stirred at 50 ° C. overnight. The mixture was diluted with ethyl acetate (150 mL) and washed with water (100 mL). The organic layer was dried over magnesium sulfate, filtered and evaporated. The residue was dissolved in anhydrous methanol (100 mL) and dry hydrogen chloride gas was bubbled into the mixture at 0 ° C. for several minutes. The mixture was stirred at room temperature overnight, concentrated, dissolved in ethyl acetate, and washed with 1N hydrochloric acid, saturated sodium bicarbonate, and brine. The organic layer was dried over magnesium sulfate, filtered and evaporated. The crude product was purified by silica gel flash column chromatography (eluent, hexane and ethyl acetate) to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-nitrophenyl) -L. -Phenylalanine methyl ester (1.1 g) was obtained.
2) The product obtained above is dissolved in ethanol (40 mL) and Na2S2OFour(2.6 g) / water (5 mL) was added. The mixture was refluxed for 2 hours and concentrated. The residue was dissolved with ethyl acetate and washed with brine. The organic layer was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel preparative TLC (eluent, hexane and ethyl acetate) to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-aminophenyl) -L-phenylalanine methyl. The ester (0.31 g) was obtained.
3) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound. MS: m / z 542 (MH+), Mp 231-232 ° C.
[0339]
Production Example 324: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-3- (methylureido) phenyl] -L-phenylalanine
In the same manner as described in Preparation Example 70, N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-aminophenyl) -L-phenylalanine methyl ester was replaced with MeNCO instead of MeNCS. Reaction gave the title compound. MS: m / z 546 (MH+), Mp 236-237 ° C.
[0340]
Production Example 325: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-3- (acetylamino) phenyl] -L-phenylalanine
In the same manner as described in Production Example 67, N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-aminophenyl) -L-phenylalanine methyl ester and acetyl chloride are reacted. The title compound was obtained. MS: m / z 531 (MH+), Mp 244-245 ° C.
[0341]
Production Example 326: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-carbamoylphenyl) -L-phenylalanine
1) N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine methyl ester (150 mg) was dissolved in acetonitrile (6 mL) under nitrogen, and chlorosulfonyl isocyanate (45 μL) was dissolved. In addition, the mixture was stirred at room temperature for 2.5 hours. The mixture was concentrated and 1N hydrochloric acid (8 mL) was added. The mixture was stirred at room temperature overnight, extracted with ethyl acetate, dried over magnesium sulfate, filtered and evaporated. The crude product was purified by silica gel preparative TLC (eluent, ethyl acetate) to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-3-carbamoylphenyl) -L-phenylalanine methyl. The ester (156 mg) was obtained.
2) The product obtained above was hydrolyzed in the same manner as described in Production Example 1-5) to give the title compound. MS: m / z 517 (MH+), Mp 227-228 ° C.
The following compounds (Production Examples 327 to 328) were prepared in the same manner as described in Production Example 7 with 7-bromo-2,3-dihydrobenzo [b] furan and 8-bromo-3,4-dihydro-2H- Prepared from benzopyran (Tet. Lett., 1998, 39, 2219-2222 by Kerrigan, F., Martin, C., Thomas, GH).
[0342]
[Table 26]
Figure 0003795305
[0343]
Production Example 329: N- (2,6-dichlorobenzoyl) -4- (1-t-butoxycarbonyl-2-pyrrolyl) -L-phenylalanine
The title compound was prepared in the same manner as described in Preparation Example 7 using 1- (t-butoxycarbonyl) pyrrole-2-boronic acid (Frontier Scientific). MS: m / z 503 (MH+), Mp 98-99 ° C.
[0344]
Production Example 330: N- (2,6-dichlorobenzoyl) -4- (3,5-dimethyl-4-isoxazolyl) -L-phenylalanine
The title compound and its methyl ester were prepared in the same manner as described in Preparation Example 7. MS: m / z 433 (MH+), Mp 119 ° C.
Methyl ester form of the title compound: MS: m / z 447 (MH+), Mp 152 ° C.
[0345]
Production Example 331: N- (2,6-dichloro-3-bromobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine
The title compound was prepared in a manner similar to that described in Preparation 322. MS: m / z 553 (MH-), Melting point 234.8 ° C.
The following compounds (Production Examples 332 to 335) were produced in the same manner as described in Production Example 2.
[0346]
[Table 27]
Figure 0003795305
[0347]
Production Example 335: N- [2-chloro-4- (methanesulfonylamino) benzoyl] -4- [2- (trifluoromethyl) phenyl] -L-phenylalanine
The title compound was prepared in a similar manner as described in Preparation 3. MS: m / z 541 (MH+), Melting point 114 ° C.
[0348]
Production Example 336: N- (2,6-dichlorobenzoyl) -3-chloro-4- (2-methoxyphenyl) -L-phenylalanine
The title compound was prepared in the same manner as described in Preparation Example 1 using N- (t-butoxycarbonyl) -3-chloro-L-tyrosine methyl ester. ESMS: m / z 479 (MH+), Melting point 131 ° C.
The following compounds (Production Examples 337 to 339) were produced in the same manner as described in Production Example 71.
[0349]
[Table 28]
Figure 0003795305
[0350]
The following compounds (Production Examples 340 to 342) were produced by the same production method as described in Production Example 73.
[0351]
[Table 29]
Figure 0003795305
[0352]
Production Example 343: N- (2,6-dichlorobenzoyl) -3-acetylamino-4-phenyl-L-phenylalanine
The title compound was produced in the same manner as described in Production Example 80. ESMS: m / z 471 (MH+).
The following compounds (Production Examples 344 to 345) were produced in the same manner as described in Production Example 64 using ethyl chloroformate.
[0353]
[Table 30]
Figure 0003795305
[0354]
Production Example 346: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-4-hydroxyethyl) -L-phenylalanine
1) 2,6-Dimethoxy-4- (t-butyldiphenylsilyloxy) benzeneboronic acid (3 g), N- (2,6-dichlorobenzoyl) -4-bromo-L-phenylalanine ethyl ester (0.8 g) , Pd (PPhThree)FourA mixture of (1 g) and potassium carbonate (2.1 g) in DME / water (20 mL / 0.5 mL) was heated at 80 ° C. under nitrogen for 6 hours. The mixture was diluted with ethyl acetate, washed with water, dried and evaporated. The residue was dissolved in ethyl acetate and the solution was filtered through a silica gel column and evaporated. The residue was dissolved in THF and TBAF (1.6 M THF solution, 4 mL) was added. The mixture was stirred at room temperature for 1 hour, diluted with water and extracted with ethyl acetate. The extract was washed with water, dried and evaporated. The residue was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1: 2)) to give N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-4-hydroxyphenyl). ) -L-phenylalanine ethyl ester (0.5 g) was obtained. ESMS: m / z 490 (MH+).
2) The product obtained above (0.05 g) was hydrolyzed with LiOH in the same manner as described in Preparation Example 1-5) to give the title compound (0.4 g). ESMS: m / z 490 (MH+).
The following compounds (Production Examples 347 to 350) were produced by the same production method as described in Production Example 32.
[0355]
[Table 31]
Figure 0003795305
[0356]
Production Example 351: N- (2,6-dichlorobenzoyl) -3- [1- (hydroxyimino) ethyl] -4- (2-methoxyphenyl) -1-phenylalanine
1) N- (2,6-dichlorobenzoyl) -3-acetyl-4- (2-methoxyphenyl) -L-phenylalanine ethyl ester (0.15 g) in n-butanol (5 mL) in hydroxyamine hydrochloride ( 23 mg) and sodium acetate (40 mg) were added. The mixture was refluxed for 6 hours and evaporated. The resulting residue was diluted with methylene chloride, washed with 1N hydrochloric acid, dried and evaporated. The residue was purified by silica gel preparative TLC (eluent, ethyl acetate / hexane (1: 1)) to give N- (2,6-dichlorobenzoyl) -3- [1- (hydroxyimino) ethyl] -4- (2-Methoxyphenyl) -L-phenylalanine ethyl ester was obtained. ESMS: m / z 490 (MH+).
2) The product obtained above was hydrolyzed with LiOH in the same manner as in Production Example 1-5) to give the title compound. ESMS: m / z 501 (MH+).
[0357]
Production Example 352: N- (2,6-dichlorobenzoyl) -3- [1- (methoxyimino) ethyl] -4- (2-methoxyphenyl) -L-phenylalanine
1) Methoxyamine hydrochloride (24 mg) in a solution of N- (2,6-dichlorobenzoyl) -3-acetyl-4- (2-methoxyphenyl) -L-phenylalanine ethyl ester (0.12 g) in ethanol (5 mL) And DIEA (60 mg) were added. The mixture was refluxed for 2 hours and evaporated. The resulting residue was diluted with ethyl acetate, washed with 1N hydrochloric acid, dried and evaporated. The residue was purified by silica gel preparative TLC (eluent, ethyl acetate / hexane (2: 1)) to give N- (2,6-dichlorobenzoyl) -3- [1- (methoxyimino) ethyl] -4- (2-Methoxyphenyl) -L-phenylalanine ethyl ester (0.058 g) was obtained. ESMS: m / z 534 (M-H)-.
2) The product obtained above was hydrolyzed with LiOH in the same manner as in Production Example 1-5) to obtain the title compound (0.04 g). ESMS: m / z 513 (M-H)-Melting point: 106.8 ° C.
[0358]
The following compounds (Production Examples 353 to 356) were synthesized in the same manner as in the above Production Example.
[Table 32]
Figure 0003795305
[0359]
Production Example 357: N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (succinimidomethyl) phenyl] -L-phenylalanine
1) DEAD (0.13 mL) was added to N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (hydroxymethyl) phenyl] -L-phenylalanine t-butyl ester (250 mg), To an ice-cold solution of phenylphosphine (175 mg) and succinimide (90 mg) in THF (3 mL) was added under nitrogen. The mixture was stirred at 0 ° C. for 30 minutes, warmed to room temperature, and stirred for 2 hours. The mixture was partitioned between water and ethyl acetate, and the aqueous layer was extracted with ethyl acetate. The collected organic layer was dried over magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel preparative TLC (eluent, ethyl acetate / hexane (1: 1)) to give N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (succinimide). Methyl) phenyl] -L-phenylalanine t-butyl ester (138 mg) was obtained.
2) TFA (2 mL) was added to a solution of the product obtained above (120 mg) in methylene chloride (4 mL). The mixture was stirred at room temperature for 3 days and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent, methylene chloride / methanol (95: 5)) and recrystallized from ethanol / water to obtain the title compound (61 mg). Melting point: 137 ° C., ESMS: m / z 608 [M + Na]+.
[0360]
Production Example 358: N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxy-4-[(3-methyl-2,5-dioxo-1-imidazolidinyl) methyl] phenyl] -L-phenylalanine
The title compound was obtained in the same manner as in Production Example 357 except that succinimide was replaced with 1-methylhydantoin. Melting point: 248 ° C., ESMS: m / z 624 [M + Na]+.
[0361]
Production Example 359: N- (2,6-dichlorobenzoyl) -4- (6-methoxy-2-hydroxyphenyl) -L-phenylalanine
N- (2,6-dichlorobenzoyl) -4- (6-methoxy-2-hydroxyphenyl) -L-phenylalanine ethyl ester was hydrolyzed with LiOH in the same manner as in Production Example 1-5) to give the title compound. Got. Melting point: 224.4 ° C., ESMS: m / z 460 (MH+), 458 (M-H)-.
[0362]
Production Example 360: N- (2,6-dichlorobenzoyl) -4- (2,6-dihydroxyphenyl) -L-phenylalanine
1) 2,6-Di (methoxymethoxy) benzeneboronic acid (0.25 g) was prepared in the same manner as in Production Example 5-3), and N- (2,6-dichlorobenzoyl) -O- (trifluoromethanesulfonyl)- Coupling with L-tyrosine ethyl ester gave N- (2,6-dichlorobenzoyl) -4- [2,6-di (methoxymethoxy) phenyl] -L-phenylalanine ethyl ester. ESMS: m / z 562 (MH+).
2) Hydrochloric acid (4N dioxane solution, 1.2 mL) was added to a solution of the product obtained above (0.076 g) in ethanol (5 mL), and the mixture was stirred at room temperature for 4 hours under nitrogen. The mixture was evaporated to give N- (2,6-dichlorobenzoyl) -4- (2,6-dihydroxyphenyl) -L-phenylalanine ethyl ester (61.6 mg). ESMS: m / z 474 (MH+).
3) The product (61.6 mg) obtained above was hydrolyzed with LiOH (33.8 mg) in the same manner as in Production Example 1-5) to give N- (2,6-dichlorobenzoyl) -4- (2 , 6-Dihydroxyphenyl) -L-phenylalanine (58.3 mg) was obtained. ESMS: m / z 446 (MH+), 444 (M-H)-Mp 238 ° C.
[0363]
Reference example
Reference Example 1: 2,6-dichlorobenzeneboronic acid
1-Bromo-2,6-dichlorobenzene (2.00 g) was dissolved in freshly distilled THF (7 mL). The solution was cooled to −78 ° C., and 1.6M hexane solution (8.3 mL) of n-BuLi was added dropwise to the cooled solution under nitrogen. The mixture was stirred at −78 ° C. for 5 min and (MeO)ThreeB (2.2 mL) was added. The resulting mixture was allowed to warm to room temperature and stirred overnight. Water was added and the resulting mixture was stirred for 0.5 hour, then acidified with acetic acid and extracted with ethyl acetate. The organic layer was further washed with water and brine, dried over magnesium sulfate, filtered and evaporated to give 2,6-dichlorobenzeneboronic acid (1.6 g).
[0364]
Reference Example 2: 2,6-dicyanobenzeneboronic acid
1,3-Dicyanobenzene (1.00 g) was dissolved in freshly distilled THF (70 mL). The solution was cooled to −96 ° C. and a 2M solution of LDA (4.2 mL) was added dropwise under nitrogen. The mixture was stirred at −96 ° C. for 30 minutes and (MeO)ThreeB (1.3 mL) was added. The resulting mixture was allowed to warm to room temperature and stirred overnight. Water was added and the resulting mixture was stirred for 0.5 hour, then acidified with acetic acid and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered and evaporated. The residue was dissolved in methylene chloride, filtered and evaporated to give 2,6-dicyanobenzeneboronic acid (0.56 g).
[0365]
Reference Example 3: 2,6-dimethoxy-4-propylbenzeneboronic acid
1) Ethyltriphenylphosphonium bromide (4.69 g) was dissolved in anhydrous THF (70 mL) and the mixture was cooled to 0-5 ° C. A 2.5M hexane solution (5.05 mL) of n-BuLi was added dropwise, and the resulting mixture was stirred at room temperature for 3 hours. The mixture was cooled to −78 ° C. and a solution of 3,5-dimethoxybenzaldehyde (2 g) in anhydrous THF (14 mL) was added. The mixture was allowed to warm to room temperature and stirred overnight. The mixture was concentrated and the residue was dissolved in ethyl acetate, washed with water and brine, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (10: 1)), and 3,5-dimethoxy-1- (1-propenyl) benzene was mixed with a cis- and trans-isomer (2. 15 g).
2) The product obtained above was dissolved in ethanol (60 mL) and 10% Pd / C (215 mg) was added. The mixture was stirred for 19 hours under hydrogen atmosphere. The mixture was passed through a silica pad using methylene chloride as solvent and evaporated to give 3,5-dimethoxy-1-propylbenzene (1.76 g).
3) The product obtained above was treated in the same manner as in Production Example 7- (1) except that 1,3-dimethoxybenzene was replaced with 3,5-dimethoxy-1-propylbenzene to give the title compound. It was.
[0366]
Reference Example 4: 2,6-dimethoxy-4-trifluoromethylbenzeneboronic acid
1) 3-Methoxy-5- (trifluoromethyl) aniline (5 g) is suspended in 20% hydrochloric acid (200 mL), stirred for 30 minutes, cooled to 0-5 ° C., and NaNO2(2.17 g) was added in small portions to diazotize. The mixture was stirred at the same temperature for 30 minutes and added dropwise into boiling water (200 mL). The mixture was refluxed for 15 minutes, allowed to cool to room temperature, extracted with ethyl acetate, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane and ethyl acetate) to give 3-methoxy-5- (trifluoromethyl) phenol (3.6 g).
2) The product obtained above was dissolved in acetone (20 mL), and potassium carbonate (5.18 g) and methyl iodide (1.75 mL) were added. The mixture was stirred at room temperature for 2 days under nitrogen, evaporated, dissolved in water (50 mL), extracted with methylene chloride, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (10: 1 to 1: 1)) to give the desired 3,5-dimethoxy-α, α, α-trifluorotoluene (2.97 g). )
3) The product obtained above was treated in the same manner as in Production Example 7- (1) except that 1,3-dimethoxybenzene was replaced with 3,5-dimethoxy-α, α, α-trifluorotoluene. The title compound was obtained.
[0367]
Reference Example 5: 4- (1,3-Dioxolan-2-yl) -2,6-dimethoxybenzeneboronic acid
1) 4-Bromo-3,5-dimethoxybenzaldehyde (3 g) was dissolved in toluene (50 mL) and ethylene glycol (6.8 mL), and a catalytic amount of p-TSA was added. The mixture was refluxed overnight using a Dean-Stark distillation apparatus and distilled. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (5: 1 to 2: 1)) to give 4-bromo-3,5-dimethoxybenzaldehyde ethylene acetal (2.63 g).
2) The product obtained above was treated in the same manner as in Production Example 7- (1) to give the title compound.
[0368]
Reference Example 6: 2,6-dimethoxy-3-methoxymethoxybenzeneboronic acid
1) A solution of 2,4-dimethoxyphenol (3.3 g, J.O.C. 1984, 49, 4740) in acetone (20 mL) was added to a solution of anhydrous potassium carbonate (3.55 g) in acetone (10 mL) under nitrogen. Chloromethyl methyl ether (1.79 mL) was added dropwise and the mixture was stirred at room temperature for 18 hours and then heated to 50 ° C. for 24 hours. Additional chloromethyl methyl ether (1.79 mL) was added and the mixture was further stirred at 50 ° C. for 1 day and evaporated. The residue was dissolved in water and extracted with ethyl acetate. The extract was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (20: 1 to 10: 1)) to give 1,3-dimethoxy-4-methoxymethoxybenzene (1.18 g).
2) The product obtained above was treated in the same manner as in Production Example 7- (1) except that 1,3-dimethoxybenzene was replaced with 1,3-dimethoxy-4-methoxymethyloxybenzene to give the title compound. Obtained.
[0369]
Reference Example 7: 6-methoxy-1,4-benzodioxan-5-ylboronic acid
1) 1,4-Benzodioxane-6-carboxaldehyde (5.20 g) was dissolved in methanol (60 mL) containing concentrated sulfuric acid (0.6 mL). A 30% aqueous hydrogen peroxide solution (4.7 mL) was added at 0 ° C. over 5 minutes. The mixture was warmed to room temperature, stirred for an additional 18 hours and then evaporated. The residue was dissolved in water and extracted with methylene chloride. The extract was dried over sodium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane to hexane / ethyl acetate (3: 1)) to obtain 6-hydroxy-1,4-benzodioxane (3.85 g). ESMS: m / z 153 MH+.
2) The product obtained above (3.83 g), potassium carbonate (7.0 g) and n-BuFourTo a mixture of NI (186 mg) in DMF (10 mL) was added iodomethane (2.3 mL) and the mixture was stirred at room temperature under nitrogen for 24 hours, filtered and washed three times with ethyl acetate (15 mL). The filtrate was washed with brine, dried over sodium sulfate and concentrated. The residue was purified by silica gel column chromatography (eluent, hexane to hexane / ethyl acetate (4: 1)) to give 6-methoxy-1,4-benzodioxane (3.25 g). ESMS: m / z 167 (MH+).
3) The product obtained above was treated in the same manner as in Production Example 7- (1) to give the title compound.
[0370]
Reference Example 8: 6-methoxy-2-methoxymethoxybenzeneboronic acid
The title compound was obtained in the same manner as in Reference Example 6 from 3-methoxyphenol.
[0371]
Reference Example 9: 2,6-dimethoxy-4-[(t-butyldiphenylsilyloxy) methyl] benzeneboronic acid
1) A mixture of 3,5-dimethoxybenzyl alcohol (4.0 g), t-butyl-diphenylsilyl chloride (6.54 g) and imidazole (3.28 g) in DMF (60 mL) was stirred at room temperature for 24 hours. DMF was distilled off, and the residue was purified by silica gel column chromatography (eluent, 20% ethyl acetate in hexane to hexane) to obtain 3,5-dimethoxy-1-[(t-butyldiphenylsilyloxy) methyl]. Benzene (8.5 g) was obtained. ESMS: m / z 407 (MH+).
2) The product obtained above was treated in the same manner as in Production Example 7- (1) to give the title compound. ESMS: m / z 451 (MH+).
[0372]
Reference Example 10: 2,6-dimethoxy-4- (thiomorpholinomethyl) benzeneboronic acid
1) Thiomorpholine (3.4 g) was added to a solution of 3,5-dimethoxybenzyl chloride (2 g) in THF (25 mL) and the mixture was stirred at room temperature overnight. The solid was filtered off and the filtrate was evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1: 2)) to give 3,5-dimethoxy-1- (thiomorpholinomethyl) benzene (2 g). ESMS: m / z 253 (M).
2) The product obtained above was treated in the same manner as in Production Example 7- (1) to give the title compound.
[0373]
Reference Example 11: 2,6-dimethoxy-4-[(4-t-butoxycarbonylpiperazinyl) methyl] benzeneboronic acid
The title compound was obtained in the same manner as in Reference Example 10 except that thiomorpholine was replaced with N- (t-butoxycarbonyl) piperazine.
[0374]
The following compounds (Reference Examples 12-17) were obtained in the same manner as Reference Example 10 except that thiomorpholine was replaced with the necessary amine.
Reference Example 12: 2,6-dimethoxy-4-[(diethylamino) methyl] benzeneboronic acid
Reference Example 13: 2,6-dimethoxy-4- (piperidinomethyl) benzeneboronic acid
Reference Example 14: 2,6-dimethoxy-4- (morpholinomethyl) benzeneboronic acid
Reference Example 15: 2,6-dimethoxy-4-[(4-benzyl-1-piperazinyl) methyl] benzeneboronic acid
Reference Example 16: 2,6-dimethoxy-4-[(dimethylamino) methyl] benzeneboronic acid
Reference Example 17: 2,6-dimethoxy-4-[(4-t-butoxycarbonylpiperazinyl) methyl] benzeneboronic acid
[0375]
Reference Example 18: 2,6-dimethoxy-4- (2-hydroxyethyl) benzeneboronic acid
1) A solution of (3,5-dimethoxy) phenylacetic acid (3 g) in diethyl ether (100 mL) was cooled to 0 ° C. and LiAlHFourOf 1M diethyl ether (16.8 mL) was added. The mixture was warmed to room temperature, stirred for 5 hours, and the pH was adjusted to pH 5 with 1M hydrochloric acid. The mixture was washed with water / ethyl acetate and the organic layer was separated. The aqueous layer was extracted with ethyl acetate, and the collected organic layer was dried over magnesium sulfate and concentrated in vacuo to give 3,5-dimethoxy-4- (2-hydroxyethyl) benzene (2.8 g) as a crude product. .
2) The product obtained above was treated in the same manner as in Production Example 7- (1) to give the title compound.
[0376]
Reference Example 19: 2,6-dimethoxy-4- (t-butyldiphenylsilyloxy) benzeneboronic acid
1) A mixture of 3,5-dimethoxyphenol (4.0 g), t-butyl-diphenylsilyl chloride (6.54 g) and imidazole (3.28 g) in DMF (60 mL) was stirred at room temperature for 24 hours. DMF was distilled off, and the residue was purified by silica gel column chromatography (eluent, 20% ethyl acetate in hexane to hexane) to obtain 3,5-dimethoxyphenyl-t-butyldiphenylsilyl ether (8.5 g). Obtained. ESMS: m / z 407 (MH+).
2) The product obtained above was treated in the same manner as in Production Example 7 to obtain the title compound. ESMS: m / z 451 (MH+).
[0377]
Reference Example 20: 2,6-dimethoxy-4-hydroxymethylbenzeneboronic acid
3,5-Dimethoxybenzyl alcohol was treated in the same manner as in Production Example 7 to obtain the title compound.
[0378]
Reference Example 21: 2,6-dimethoxy-3-hydroxymethylbenzeneboronic acid
2,4-Dimethoxybenzyl alcohol was treated in the same manner as in Production Example 7 to obtain the title compound.
[0379]
Reference Example 22: 1-bromo-2,4-dimethoxy-6-cyanobenzene
To a solution of 3,5-dimethoxybenzonitrile (2 g) in methylene chloride (100 mL) was added pyridinium tribromide (4 g). The mixture was stirred at room temperature for 24 hours, washed sequentially with aqueous sodium bicarbonate, water and brine, dried over magnesium sulfate, filtered and evaporated. The residue was crystallized from methylene chloride and hexane to give the title compound (1.8 g).
[0380]
Reference Example 23: N-allyl-Nt-butoxycarbonyl-4-bromo-3,5-dimethoxyaniline
1) 3,5-Dimethoxyaniline (7.55 g) was dissolved in methylene chloride (100 mL) under nitrogen and the solution was cooled to -78 ° C. A solution of tetrabutylammonium tribromide (25 g) in methylene chloride (100 mL) was added and the mixture was stirred at the same temperature for 45 minutes. The mixture was allowed to warm to room temperature, stirred for 1.5 hours and extracted with 1N hydrochloric acid. The extract was neutralized with 3N sodium hydroxide and extracted with ethyl acetate. The extract was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (4: 1 to 2: 3)) to give 4-bromo-3,5-dimethoxyaniline (3.76 g).
2) The product obtained above (3 g) was dissolved in anhydrous THF (25 mL) under nitrogen and DIEA (5.4 mL) was added. Di-t-butyl dicarbonate (3.39 g) in anhydrous THF (20 mL) was added and the mixture was stirred at 45 ° C. for 3.5 days. The solvent was distilled off, the residue was dissolved in ethyl acetate and washed successively with 1N hydrochloric acid, saturated sodium bicarbonate solution and brine. The organic layer was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (4: 1)) to obtain a solid. The resulting solid was triturated with hexane to remove the remaining di-t-butyl dicarbonate and Nt-butoxycarbonyl-4-bromo-3,5-dimethoxyaniline (3.67 g) was filtered off. Isolated.
3) 60% sodium hydride (0.585 g) was added to a solution of the product obtained above in anhydrous THF / DMF (100/6 mL) and the mixture was stirred for several minutes. Allyl bromide (1.13 mL) was added, the mixture was stirred at room temperature overnight, concentrated, and the residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (4: 1)) to give the title compound ( 3.96 g) was obtained.
[0381]
Synthesis of benzoic acids:
Reference Example 24: 4-amino-2,6-dichlorobenzoic acid methyl ester
1) Anhydrous methylene chloride (60 mL) and thionyl chloride (40 mL) were added to 2,6-dichloro-4-nitrobenzoic acid (12.8 g, US Pat. No. 3,423,475) and the resulting mixture was then refluxed for 19 hours. . The mixture was allowed to cool to room temperature and evaporated. Additional methylene chloride (10 mL) was added and then the solution was evaporated. Methanol (100 mL) was added to the residue and the mixture was refluxed for 17 hours. The mixture was allowed to cool to room temperature and placed in an ice bath. The precipitated solid was collected by filtration to give methyl 2,6-dichloro-4-nitrobenzoate (10.8 g, 80%).
2) A solution of the product obtained above in ethanol (250 mL) was added to Na2S2OFourA solution of (45 g) in water (100 mL) was added. The mixture was refluxed for 2 hours, stirred at room temperature overnight, filtered and concentrated. The residue was dissolved in 1N hydrochloric acid (250 mL), stirred for 2 hours, neutralized with 10% sodium hydroxide, and extracted with ethyl acetate. The extract was dried over magnesium sulfate, filtered and evaporated. The residue was recrystallized from ethyl acetate / hexane to obtain the title compound (7.48 g).
[0382]
Reference Example 25: 4-Bromo-2,6-dichlorobenzoic acid and 4-bromo-2,6-dichlorobenzoyl chloride
1) 4-Amino-2,6-dichlorobenzoic acid methyl ester (1.00 g) was suspended in 40% aqueous hydrobromic acid solution, and the mixture was cooled to 0-5 ° C. After adding sodium nitrite (376 mg) in small portions, the mixture was stirred for about 5 minutes. Copper (100 mg) was added and the mixture was warmed to 100 ° C. The mixture was stirred at 100 ° C. for 30 minutes, diluted with water and extracted with ethyl acetate. The extract was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (50: 1)) to give 4-bromo-2,6-dichlorobenzoic acid methyl ester (1.07 g).
2) The product obtained above (1.06 g) was dissolved in THF / methanol (6: 1, 50 mL), and 1M lithium hydroxide (7.47 mL) was added. The mixture was refluxed for 1 day, evaporated, the residue was dissolved in water (50 mL) and the pH was adjusted to 2 or less with 1N hydrochloric acid. The mixture was extracted with ethyl acetate, dried over magnesium sulfate, filtered and evaporated to give 4-bromo-2,6-dichlorobenzoic acid (0.94 g).
3) To a solution of the product obtained above in methylene chloride (20 mL) was added thionyl chloride (2.51 mL). The mixture was refluxed for 5 hours, evaporated and azeotroped with methylene chloride to give 4-bromo-2,6-dichlorobenzoyl chloride.
[0383]
Reference Example 26: 2,6-dichloro-4-hydroxybenzoic acid
1) 4-Amino-2,6-dichlorobenzoic acid methyl ester (0.5 g) was suspended in 20% hydrochloric acid (25 mL), and the mixture was stirred for 30 minutes and then cooled to 0-5 ° C. After slow addition of sodium nitrite (188 mg), the mixture was stirred at the same temperature for 30 minutes and then added to boiling water (50 mL). The mixture was refluxed for 2 hours, allowed to cool to room temperature, extracted with ethyl acetate, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel preparative TLC (eluent, methylene chloride) to give 2,6-dichloro-4-hydroxybenzoic acid methyl ester (275 mg).
2) To a solution of the product obtained above (265 mg) in THF / methanol (6: 1, 25 mL) was added 1M sodium hydroxide (3.6 mL) and the mixture was refluxed for 1 day. 1N sodium hydroxide (3.6 mL) was added and the mixture was refluxed for an additional day. The mixture was evaporated and the residue was dissolved in water, brought to pH <2 with 1N hydrochloric acid and extracted with ethyl acetate containing a small amount of methanol. The extract was dried over magnesium sulfate, filtered and evaporated to give the title compound (248 mg).
[0384]
Reference Example 27: 2,6-dichloro-4-fluorobenzoic acid
1) 4-Amino-2,6-dichlorobenzoic acid methyl ester (0.5 g) was suspended in 15% hydrochloric acid (10 mL), and the mixture was stirred for 30 minutes and then cooled to 0-5 ° C. After adding sodium nitrite (188 mg) in small portions, the mixture was stirred at the same temperature for 30 minutes. Precooled HBFFour(0.46 mL) was added and the mixture was stirred for 30 minutes. The resulting precipitate was collected and washed sequentially with cold water, methanol and ether. The solid was then dried for several days using concentrated sulfuric acid in a vacuum desiccator. The solid was heated with a Bunsen burner until all solids were melted. The resulting gaseous product was collected on water (using a distillation apparatus). The product was recovered with diethyl ether. The solvent was distilled off and the crude product was purified by silica gel preparative TLC (eluent, hexane / ethyl acetate (50: 1-20: 1)) to give 2,6-dichloro-4-fluorobenzoic acid methyl ester ( 241 mg) was obtained.
2) TMSI (164 mL) was added to a carbon tetrachloride solution of the product obtained above (233 mg). The mixture was stirred at 50 ° C. under nitrogen for 2 days. Water was added and the mixture was stirred for 1 hour. 1N hydrochloric acid (25 mL) was added and the mixture was extracted with ethyl acetate. The extract was dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, gradient elution with chloroform / methanol) to obtain 38 mg of the title compound.
[0385]
Reference Example 28: 2-chloro-4- (2-thiazolinylamino) benzoic acid
1) A mixture of 4-amino-2-chlorobenzoic acid methyl ester (0.5 g) and 2-chloroethyl isothiocyanate (0.26 mL) in THF (20 mL) was refluxed for 24 hours. THF was distilled off, and the residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (3: 1 to 1: 1)) to give 2-chloro-4- (2-thiazolinylamino) benzoic acid. Acid methyl ester (74 mg) was obtained. ESMS: m / z 271 (MH+).
2) The product obtained above was hydrolyzed with LiOH to give the title compound (43 mg). ESMS: m / z 257 (MH+).
[0386]
Reference Example 29: 2-chloro-4- (2-oxazolinylamino) benzoic acid
1) A mixture of 4-amino-2-chlorobenzoic acid methyl ester (0.5 g) and 2-chloroethyl isocyanate (0.23 mL) in THF (20 mL) was heated to reflux for 24 hours. THF was distilled off and the residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (3: 1 to 1: 1)) to give 4- [3- (2-chloroethyl) ureido] -2- Chlorobenzoic acid methyl ester (0.63 mg) was obtained. ESMS: m / z 291 (MH+).
2) Sodium methoxide (0.21 g) was added to a solution of the product obtained above (0.58 g) in THF (20 mL) and refluxed overnight. THF was distilled off and the residue was extracted with ethyl acetate. The extract was washed with water, dried over magnesium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate) to give 2-chloro-4- (2-oxazolidinylamino) benzoic acid methyl ester (0.46 g). ESMS: m / z 254 (MH+).
3) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 240 (MH+).
[0387]
Reference Example 30: 2-Chloro-4- (2-oxo-1-pyrrolidinyl) benzoic acid
1) A solution of 4-amino-2-chlorobenzoic acid methyl ester hydrochloride (0.52 g) and DIEA (0.27 mL) in methylene chloride (20 mL) was added 4-chlorobutyryl chloride (0 .3 mL) was added and the mixture was stirred at the same temperature for 4 hours. DMAP (0.23 mmol) was added and the mixture was stirred at room temperature overnight. 4-Chlorobutyryl chloride (0.3 mL) and DIEA (0.09 mL) were added and the mixture was stirred for 24 hours. The mixture was diluted with methylene chloride (100 mL) and the solution was washed successively with 1N hydrochloric acid, saturated sodium bicarbonate solution, brine, dried and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (3: 1)) to give 4- (4-chlorobutyryl) amino-2-chlorobenzoic acid methyl ester (0.64 g). ESMS: m / z 290 (MH+).
2) Sodium methoxide (0.33 g) was added to a solution of the product obtained above (0.64 g) in THF (20 mL) and refluxed for 3 hours. THF was distilled off and the residue was partitioned between ethyl acetate and water. The ethyl acetate layer was separated, and the aqueous layer was extracted with ethyl acetate. The collected extract was dried over magnesium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (1: 1)) to give 2-chloro-4- (2-oxo-1-pyrrolidinyl) benzoic acid methyl ester. ESMS: m / z 254 (MH+).
3) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 240 (MH+).
[0388]
Reference Example 31: 2-chloro-4- (1-pyrrolyl) benzoic acid
1) A mixture of 4-amino-2-chlorobenzoic acid methyl ester (0.46 g) and 2,5-dimethoxytetrahydrofuran (0.33 mL) in acetic acid (16 mL) was heated to reflux for 2 hours. The mixture was cooled to room temperature, diluted with water and extracted with ethyl acetate. The extract was washed with saturated sodium bicarbonate and brine, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (5: 1)) to give 2-chloro-4- (1-pyrrolyl) benzoic acid methyl ester (0.48 g). ESMS: m / z 236 (MH+).
2) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 220 (M-H)-.
[0389]
Reference Example 32: 2-Chloro-4- (2-trifluoroacetyl-1-pyrrolyl) benzoic acid
1) Trifluoroacetic anhydride (0.55 mL) was added to a solution of 2-chloro-4- (1-pyrrolyl) benzoic acid methyl ester (0.3 g) in methylene chloride (5 mL), and the mixture was stirred at room temperature for 4 hours. The mixture was diluted with methylene chloride and the mixture was stirred with saturated sodium bicarbonate solution for 30 minutes. The organic layer was separated, washed with brine, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (5: 1)) to give 2-chloro-4- (2-trifluoroacetyl-1-pyrrolyl) benzoic acid methyl ester (0.4 g). ) ESMS: m / z 330 (M-1).
2) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 318 (MH+).
[0390]
Reference Example 33: 2-chloro-4- (2,5-dichloro-1-pyrrolyl) benzoic acid
1) N-chlorosuccinimide (0.56 g) was added to a solution of 2-chloro-4- (1-pyrrolyl) benzoic acid methyl ester (0.5 g) in ice-cooled THF (7 mL) under nitrogen. The mixture was warmed to room temperature and stirred overnight. THF was removed and the residue was treated with diethyl ether and filtered. The filtrate was evaporated and the residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (10: 1)) to give 2-chloro-4- (2,5-dichloro-1-pyrrolyl) benzoic acid. The methyl ester (0.61 g) was obtained. ESMS: m / z 306 (MH+).
2) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 290 (MH+).
[0390]
Reference Example 34: 2-chloro-4- (2-formyl-1-pyrrolyl) benzoic acid
1) A solution of DMF (0.1 mL) in methylene chloride (2 mL) was added dropwise at −30 ° C. under nitrogen to a solution of oxalyl chloride (0.2 mL) in methylene chloride (16 mL). The mixture was stirred for 15 minutes and a solution of 2-chloro-4- (1-pyrrolyl) benzoic acid methyl ester (0.5 g) in DMF (4 mL) was added. The mixture was stirred at the same temperature for 3 hours and allowed to warm to room temperature. The mixture was stirred overnight and evaporated. The residue was partitioned between ethyl acetate and 0.2M sodium acetate. The ethyl acetate layer was separated and the aqueous layer was extracted with ethyl acetate. The collected ethyl acetate layers were washed with brine, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (3: 1)) to give 2-chloro-4- (2-formyl-1-pyrrolyl) benzoic acid methyl ester (0.41 g). Obtained. ESMS: m / z 264 (MH+).
2) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 248 (M-H)-.
[0392]
Reference Example 35: 2-Chloro-4- [N-methyl-N- (methylsulfonyl) amino] benzoic acid
1) A solution of di-t-butyl dicarbonate (1.39 g) in dioxane (15 mL) was added to a solution of 4-amino-2-chlorobenzoic acid (1.0 g) in ice-cooled 1N sodium hydroxide (12.8 mL). It was dripped in. The mixture was allowed to warm to room temperature and stirred overnight. Dioxane was removed and the aqueous solution was extracted with diethyl ether. The aqueous solution was acidified with 1N hydrochloric acid to pH 2 or lower. The precipitated solid was collected by filtration, washed with 1N hydrochloric acid and water, and dried in vacuo to give 4- (t-butoxycarbonylamino) -2-chlorobenzoic acid (1.13 g). ESMS: m / z 294 (MH+).
2) Sodium methoxide (0.16 g) was added to a solution of the product obtained above (0.36 g) in DMF (10 mL) under nitrogen. The mixture was cooled to 0 ° C. and methyl iodide (0.5 mL) was added. The mixture was stirred overnight at room temperature. Sodium methoxide (0.14 g) and methyl iodide (0.55 mL) were added, and the mixture was further stirred for 6 hours. THF was removed and the residue was partitioned between ethyl acetate and water. The ethyl acetate layer was separated and the aqueous layer was extracted with ethyl acetate. The collected ethyl acetate layers were washed with brine, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (1: 1)) to give 2-chloro-4- [N-methyl-N- (t-butoxycarbonyl) amino] benzoic acid methyl ester. (0.38 g) was obtained. ESMS: m / z 322 (M + Na)+.
3) A methylene chloride (10 mL) solution of the product obtained above was treated with TFA (5 mL) for 2 hours. The mixture was evaporated and the residue was dissolved in ethyl acetate. The ethyl acetate solution was washed successively with 10% sodium carbonate and brine, dried over magnesium sulfate and filtered to give 2-chloro-4- (methylamino) benzoic acid methyl ester (0.25 g). ESMS: m / z 200 (MH+).
4) Methanesulfonyl chloride (0.2 mL) was added to a solution of the product obtained above (0.25 g) and pyridine (0.2 mL) in methylene chloride (20 mL) under nitrogen and heated at 40 ° C. for 4 hours. Pyridine (0.2 mL) and methanesulfonyl chloride (0.2 mL) were added and the mixture was heated for 2 hours. The mixture was diluted with methylene chloride, washed with 1N hydrochloric acid and water, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, hexane / ethyl acetate (3: 1 to 1: 1)) to give 2-chloro-4- [N-methyl-N- (methanesulfonyl) amino] benzoic acid. The methyl ester (0.26 g) was obtained. ESMS: m / z 278 (MH+).
5) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 264 (MH+).
[0393]
Reference Example 36: 2-Chloro-4-thioureidobenzoic acid
1) Benzoyl thiocyanate was generated by refluxing a solution of benzoyl chloride (0.31 mL) and ammonium thiocyanate (0.20 g) in acetone (15 mL) for 30 minutes. To this solution was added 4-amino-2-chlorobenzoic acid methyl ester (0.5 g) in acetonitrile (10 mL), and the mixture was refluxed for 5 hours. The solvent was removed and the residue was partitioned between methylene chloride and water. The organic layer was separated, washed with brine, dried and evaporated. The residue was purified by column chromatography to give 2-chloro-4- (3-benzoylthioureido) benzoic acid methyl ester (0.71 g). ESMS: m / z 349 (MH+).
2) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 231 (MH+).
[0394]
Reference Example 37: 2,6-dichloro-4-phenylbenzoic acid
1) A solution of 2,6-dichloro-4-bromobenzoic acid methyl ester (0.55 g) in THF (10 mL) was added to benzeneboronic acid (1.30 g), Pd (PPhThree)Four(0.16 g) and 2M sodium carbonate (5 mL) were added. The mixture was refluxed for 4 hours under nitrogen. After cooling, the mixture was diluted with ethyl acetate and washed with water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel preparative TLC (eluent, hexane to ethyl acetate / hexane (1: 1)) to give 2,6-dichloro-4-phenylbenzoic acid methyl ester (0.57 g). ESMS: m / z 281 (MH+).
2) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 267 (MH+), 265 (M-H)-.
[0395]
Reference Example 38: 2,6-dichloro-4- [2- (N-methyl) pyrrolyl] benzoic acid (J. Med. Chem., 41, 2019 (1998))
1) Except that 2,6-dichloro-4- [2- (Nt-butoxycarbonyl) pyrrolyl] benzoic acid methyl ester is replaced with benzeneboronic acid instead of 2- (Nt-butoxycarbonyl) pyrroleboronic acid. And obtained in the same manner as in Reference Example 37-1).
2) TFA (5 mL) was added to a solution of the product obtained above in methylene chloride (5 mL). After 2 hours under nitrogen, the mixture is diluted with methylene chloride, washed with water and brine, dried over sodium sulfate, filtered and concentrated to methyl 2,6-dichloro-4- (2-pyrrolyl) benzoate. An ester was obtained.
3) Sodium hydride (0.07 g) and methyl iodide (0.14 mL) were added to a solution of the product obtained above (0.20 g) in THF (5 mL). After stirring at room temperature for 2 hours, the mixture was diluted with ethyl acetate and washed with water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel preparative TLC (eluent, ethyl acetate / hexane (1:10)) to give 2,6-dichloro-4- [2- (N-methyl) pyrrolyl] benzoic acid methyl ester (0 0.088 g) was obtained.
4) The product obtained above was hydrolyzed with LiOH to give the title compound.
[0396]
Reference Example 39: 3-Bromo-2,6-dichlorobenzoic acid
1) To a solution of 2,6-dichloro-4-aminobenzoic acid methyl ester (2.80 g) in methylene chloride (20 mL) at −10 ° C. was added a solution of tetrabutylammonium tribromide (6.94 g) in methylene chloride (30 mL). It was dripped at -10 ° C. After 2 hours, the mixture was warmed to room temperature, washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1: 4)) to give 2,6-dichloro-3-bromo-4-aminobenzoic acid methyl ester (2.99 g). . ESMS: m / z 298 (MH+).
2) Sodium nitrite (0.73 g) was added to a 0 ° C. sulfuric acid (10 mL) and water (20 mL) solution of the product obtained above (2.99 g). After 15 minutes, mix the mixture with HThreePO2Was processed. After 60 minutes, the mixture was extracted with ethyl acetate. The extract was washed with saturated sodium bicarbonate and brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluent, hexane to ethyl acetate / hexane (1:10)) to obtain 2,6-dichloro-3-bromobenzoic acid methyl ester (2.11 g). ESMS: m / z 282 (MH+).
3) The product obtained above was hydrolyzed with LiOH to give the title compound. ESMS: m / z 268 (MH+) And 266 (M-―1).
[0397]
Reference Example 40: 2-chloro-4- (t-butoxycarbonyl) benzoic acid
1) 3-Chloro-4-methoxycarbonylbenzoic acid (0.24 g) was dissolved in DMF (2.5 mL) under nitrogen, then CDI (0.36 g) was added and the resulting mixture was stirred at 40 ° C. for 2 hours. Stir. t-Butanol (0.54 mL) and DBU (0.33 mL) were added, and the mixture was stirred at 40 ° C. for 2 days. The mixture was evaporated and the residue was dissolved in ethyl acetate, washed with 1N hydrochloric acid and saturated sodium bicarbonate solution, dried over magnesium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluent, toluene) to give 2-chloro-4- (t-butoxycarbonyl) benzoic acid methyl ester (216 mg).
2) The product obtained above was hydrolyzed with LiOH to give the title compound.
[0398]
Reference Example 41: 4- (N, N-dimethylsulfamoyl) amino-2-chlorobenzoic acid
1) Pyridine (0.4 mL) was added to a solution of methyl 4-amino-2-chlorobenzoate (0.3 g) in methylene chloride (10 mL) at 0 ° C. under nitrogen. N, N-dimethylsulfamoyl chloride (0.21 mL) was added and the mixture was stirred at room temperature for 16 hours and refluxed for 5 hours. DMAP (0.4 g) was added and the mixture was stirred for 3 hours. The mixture was diluted with 100 mL of methylene chloride, washed sequentially with 1N hydrochloric acid, brine, saturated sodium bicarbonate solution and brine, dried and evaporated. The residue was purified by silica gel flash column chromatography (eluent, ethyl acetate / hexane (1: 3)) to give methyl 4- (N, N-dimethylsulfamoyl) amino-2-chlorobenzoate (0.31 g). ) ESMS: m / z 293 (MH+).
2) The product obtained above was hydrolyzed with LiOH in the same manner as in Production Example 1-5) to give the title compound. ESMS: m / z 279 (MH+).
[0399]
Reference Example 42: Trimethyl- (2-cyano-3-thienyl) tin
3-Bromothiophene-2-carbonitrile (385 mg), hexamethyl ditin (615 mg) and Pd (PPhThree)FourA mixture of (116 mg) in toluene (8 mL) was stirred at 130 ° C. under nitrogen for 16 hours. The organic layer was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (eluent, ethyl acetate / hexane (1:20)) to obtain the title compound (406 mg).
[0400]
Reference Example 43: 2,6-di (methoxymethoxy) benzeneboronic acid
1) DIEA (26 mL) and methoxymethoxy chloride (8.20 mL) were added to a suspension of resorcinol (3.65 g) in methylene chloride (40 mL) at 0 ° C. under nitrogen. The mixture was stirred at the same temperature for 10 minutes and at room temperature for 16 hours. DIEA (13 mL) and methoxymethoxy chloride (4 mL) were added to the mixture and stirred for 1 hour. The mixture was added to water and extracted with chloroform. The extract was dried over magnesium sulfate and evaporated, and the residue was purified by silica gel flash column chromatography (eluent, ethyl acetate in 15% hexane) to give 1,3-di (methoxymethoxy) benzene (2.44 g). Got.
2) The product obtained above was treated in the same manner as in Production Example 7-1) to give the title compound.
[0401]
RPMI-CS-1 cell adhesion test:
The following tests demonstrated the effect of the compounds of the present invention in inhibiting α4-mediated cell adhesion in a typical in vitro system. This test measures the adhesion interaction of the B cell line RPMI known to express α4β7 to another spliced region of fibronectin called CS-1 in the presence of the compounds of the present invention ( Yale et al., J. Immunol., 153: 517-528 (1994)). Test compounds were added to RPMI cells in increasing concentrations, then the cell-compound mixture was added to CS-1 coated microwells. Plates were incubated, washed and the percentage of bound cells was quantified. This test directly demonstrates the cell adhesion inhibitory activity and adhesion regulating activity of the compounds of the present invention.
[0402]
RPMI-CS-1 test:
CS-1-derived peptide, CLHPGEILVPST, and a control peptide with altered sequence, CLHGPIELVSDPT, were synthesized on a Beckman 990 synthesizer using the t-Boc method. Peptides were immobilized on microplates using 3- (2-pyridyldithio) propionic acid N-hydroxysuccinimide ester (SPDP) as a heterogeneous bivalent crosslinker (Pierre Schbacher et al., Proc. Natl. Acad. Sci. USA, 80: 1224-1227 (1983)). The microplate was coated with 20 μg / mL human serum albumin (HSA) at room temperature for 2 hours, washed once with PBS, and derivatized with 10 μg / mL SPDP for 1 hour. After washing, 100 μl of freshly dissolved 100 μg / mL cysteine-containing peptide solution was added to each well and allowed to crosslink overnight at 4 ° C. Unbound peptide was removed from the plate by washing with PBS. In order to block unreacted sites, the plate was coated with 100 μl of a 2.5 mg / mL PBS solution of BSA at 37 ° C. for 1 hour. RPMI cells in 0.25% ovarian albumin-added Dulbecco's modified Eagle's medium (DMEM) solution (2.5 × 10 56100 μl of cells / mL) was added to the peptide coated plate and incubated at 37 ° C. for 1 hour. Following this incubation, the plates were washed three times with PBS using an EL404 plate washer and the number of adherent cells was quantified by measuring the enzymatic activity of endogenous N-acetyl-hexosaminidase (Landegren, J. Immunol Methods., 67: 379-388 (1984)). For this purpose, the enzyme substrate p-nitrophenyl-N-acetyl-β-D-glucose aminide was dissolved in 0.1 M citrate buffer pH 5 at a concentration of 7.5 mM and an equal volume of 0.5% Triton X100. Mixed with. 50 μl of substrate solution was added to the plate and the plate was incubated at 37 ° C. for 60 minutes. The reaction was stopped by adding 100 μl of 50 mM glycine, 5 mM EDTA buffer pH 10.4. The amount of p-nitrophenol released was measured by reading the optical density at 405 nm with a vertical path spectrophotometer equipped with a measuring appendage (VMAX Kinetic Microplate Reader, MOLECULAR DEVICES, Menlo Park, California). This method is a modification of a previously published method (Kardarelli et al., J. Biol. Chem., 269: 18668-18673 (1994)).
In this test, IC50The value range (μM) is indicated by A, B, C and D. These ranges are as follows.
D> 5 ≧ C> 1 ≧ B> 0.3 ≧ A
Tables 33-48 below show ICs in selected RPMI-CS-1 tests for selected compounds of the present invention.50Indicates the value. The range is as described above.
[0403]
[Table 33]
Figure 0003795305
[0404]
[Table 34]
Figure 0003795305
[0405]
[Table 35]
Figure 0003795305
[0406]
[Table 36]
Figure 0003795305
[0407]
[Table 37]
Figure 0003795305
[0408]
[Table 38]
Figure 0003795305
[0409]
[Table 39]
Figure 0003795305
[0410]
[Table 40]
Figure 0003795305
[0411]
[Table 41]
Figure 0003795305
[0412]
[Table 42]
Figure 0003795305
[0413]
[Table 43]
Figure 0003795305
[0414]
[Table 44]
Figure 0003795305
[0415]
[Table 45]
Figure 0003795305
[0416]
[Table 46]
Figure 0003795305
[0417]
[Table 47]
Figure 0003795305
[0418]
[Table 48]
Figure 0003795305
[0419]
【The invention's effect】
The pharmaceutical composition of the present invention is used for diseases associated with α4-mediated cell adhesion, such as asthma, diabetes, rheumatoid arthritis, inflammatory bowel disease, and leukocytes of the gastrointestinal tract and other epithelial tissues (eg, skin, urethra, bronchi, joint synovium). It is useful for the treatment of other diseases involving infiltration.

Claims (20)

有効成分として式(I):
Figure 0003795305
(式中、R、RおよびRは下記の群から選ばれる基、
a)水素原子、
b)ハロゲン原子、
c)ハロゲン原子で置換されていてもよい低級アルコキシ基、
d)ニトロ基、
e)1)低級アルキル基、2)低級アルカノイル基、3)ハロゲノベンゾイル基、4)低級アルコキシカルボニル基、5)ハロゲン原子で置換されていてもよい低級アルカンスルホニル基、6)低級アルキル基、トリハロゲノ低級アルキル基、ハロゲン原子または低級アルコキシ基で置換されていてもよいベンゼンスルホニル基、7)チオフェンスルホニル基、8)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、9)低級アルキル基、フェニル基、またはフェニル低級アルキル基で置換されていてもよいチオカルバモイル基、10)チアゾリニル基、および11)低級アルキル基で置換されていてもよいスルファモイル基から選ばれる1〜2個の基で置換されていてもよいアミノ基、
f)カルボキシル基、
g)低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
h)低級アルコキシカルボニル基、
i)シアノ基、
j)低級アルキルチオ基、
k)低級アルカンスルホニル基、
l)スルファモイル基、
m)フェニル基、
n)オキソ基で置換されていてもよいピロリジニル基、
o)1)ハロゲン原子で置換されていてもよい低級アルカノイル基、2)ハロゲン原子、3)ホルミル基、および4)水酸基で置換されていてもよい低級アルキル基から選ばれる基で置換されていてもよいピロリル基、
p)チエニル基、
q)低級アルキル基で置換されていてもよいイソキサゾリル基、
r)チアゾリル基、
s)ピラゾリル基、
t)ピラジニル基、
u)ピリジル基、および
v)水酸基、
Rは下記の群から選ばれる基、
1)ハロゲン原子、
2)ニトロ基、
3)ホルミル基、
4)水酸基、
5)カルボキシル基、
6)i)カルボキシル基、またはそのアミドまたはエステル、ii)水酸基、iii) シアノ基、iv)ハロゲン原子、v)低級アルキル基で置換されていてもよいアミノ基、vi)ピリジル基、vii)低級アルキル基で置換されていてもよいチアゾリル基、viii)低級アルキル基で置換されていてもよいイソキサゾリル基、ix)低級アルキル基で置換されていてもよいピペリジル基、x)低級アルキル基で置換されていてもよいピロリジニル基、xi)ハロゲン原子で置換されていてもよいフェニル基、xii)フリル基、xiii)チエニル基、およびxiv)低級アルコキシ基から選ばれる基で置換されていてもよい低級アルコキシ基、
7)i)ハロゲン原子、ii)水酸基、iii)カルボキシル基、またはそのアミドまたはエステル、iv)低級アルコキシ基、v)低級アルキル基、ヒドロキシ低級アルキル基、低級アルキルアミノ低級アルキル基、フェニル低級アルキル基、フェニル基およびピリジル基から選ばれる1〜2個の基で置換されていてもよいアミノ基、vi)低級アルキレンジオキシ基、オキソ基または水酸基で置換されていてもよいピペリジニル基、vii)低級アルキル基で置換されていてもよいモルホリノ基、viii)酸化されていてもよいチオモルホリノ基、ix)低級アルキル基、ヒドロキシ低級アルキル基、低級アルカノイル基またはフェニル低級アルキル基で置換されていてもよいピペラジニル基、x)オキソ基で置換されていてもよいピロリジニル基、およびxi)低級アルキル基およびオキソ基から選ばれる1〜3個の基で置換されていてもよいイミダゾリジニル基から選ばれる基で置換されていてもよい低級アルキル基、
8)カルボキシル基、またはそのアミドまたはエステルで置換されていてもよい低級アルケニル基、
9)i)フェニル基、ii)低級アルコキシカルボニル基、iii)低級アルカンスルホニル基、iv)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、v)低級アルカノイル基、vi)低級アルキル基、vii)低級アルケニル基、およびviii)低級アルキル基で置換されていてもよいチオカルバモイル基から選ばれる基で置換されていてもよいアミノ基、
10)低級アルキル基、ヒドロキシ低級アルキル基、モルホリノ低級アルキル基、フェニル低級アルキル基または低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
11)i)低級アルキル基、ii)ベンゾイル基、iii)低級アルコキシカルボニル基およびiv)低級アルカノイル基から選ばれる基で置換されていてもよいスルファモイル基、
12)低級アルケニルオキシ基、
13)低級アルキル基で置換されていてもよいピペラジニルカルボニル基、
14)低級アルカノイル基、
15)シアノ基、
16)低級アルキルチオ基、
17)低級アルカンスルホニル基、
18)低級アルキルスルフィニル基、および
19)水素原子
で示される化合物、その低級アルキルエステルまたはその薬理学的に許容される塩を含有することを特徴とする医薬組成物。
Formula (I) as an active ingredient:
Figure 0003795305
Wherein R 1 , R 2 and R 3 are groups selected from the following group,
a) a hydrogen atom,
b) a halogen atom,
c) a lower alkoxy group which may be substituted with a halogen atom,
d) a nitro group,
e) 1) lower alkyl group, 2) lower alkanoyl group, 3) halogenobenzoyl group, 4) lower alkoxycarbonyl group, 5) lower alkanesulfonyl group optionally substituted with halogen atom, 6) lower alkyl group, trihalogeno A lower alkyl group, a benzenesulfonyl group optionally substituted with a halogen atom or a lower alkoxy group, 7) a thiophenesulfonyl group, 8) a carbamoyl group optionally substituted with a lower alkyl group or a lower alkylphenyl group, 9) lower 1 to 2 selected from an alkyl group, a phenyl group, or a thiocarbamoyl group optionally substituted with a phenyl lower alkyl group, 10) a thiazolinyl group, and 11) a sulfamoyl group optionally substituted with a lower alkyl group An amino group optionally substituted by a group,
f) a carboxyl group,
g) a carbamoyl group optionally substituted by a lower alkanesulfonyl group,
h) a lower alkoxycarbonyl group,
i) a cyano group,
j) a lower alkylthio group,
k) a lower alkanesulfonyl group,
l) a sulfamoyl group,
m) a phenyl group,
n) a pyrrolidinyl group optionally substituted by an oxo group,
o) 1) a lower alkanoyl group optionally substituted with a halogen atom, 2) a halogen atom, 3) a formyl group, and 4) a group selected from a lower alkyl group optionally substituted with a hydroxyl group. A good pyrrolyl group,
p) a thienyl group,
q) an isoxazolyl group optionally substituted by a lower alkyl group,
r) a thiazolyl group,
s) a pyrazolyl group,
t) a pyrazinyl group,
u) a pyridyl group, and v) a hydroxyl group,
R is a group selected from the following group,
1) a halogen atom,
2) Nitro group,
3) formyl group,
4) hydroxyl group,
5) carboxyl group,
6) i) carboxyl group, or amide or ester thereof, ii) hydroxyl group, iii) cyano group, iv) halogen atom, v) amino group optionally substituted with lower alkyl group, vi) pyridyl group, vii) lower A thiazolyl group optionally substituted with an alkyl group, viii) an isoxazolyl group optionally substituted with a lower alkyl group, ix) a piperidyl group optionally substituted with a lower alkyl group, and x) substituted with a lower alkyl group. An optionally substituted pyrrolidinyl group, xi) a phenyl group optionally substituted with a halogen atom, xii) a furyl group, xiii) a thienyl group, and xiv) a lower alkoxy optionally substituted with a group selected from lower alkoxy groups Group,
7) i) halogen atom, ii) hydroxyl group, iii) carboxyl group or amide or ester thereof, iv) lower alkoxy group, v) lower alkyl group, hydroxy lower alkyl group, lower alkylamino lower alkyl group, phenyl lower alkyl group , An amino group optionally substituted with one or two groups selected from a phenyl group and a pyridyl group, vi) a piperidinyl group optionally substituted with a lower alkylenedioxy group, an oxo group or a hydroxyl group, vii) a lower group A morpholino group optionally substituted with an alkyl group, viii) an optionally oxidized thiomorpholino group, ix) a lower alkyl group, a hydroxy lower alkyl group, a lower alkanoyl group or a phenyl lower alkyl group. Piperazinyl group, x) a pipe optionally substituted with an oxo group Lysinyl group, and xi) a lower alkyl group and 1 to 3 substituents which may be substituted with a group which may be selected from a good imidazolidinyl group optionally lower alkyl group with a group selected from oxo group,
8) a lower alkenyl group optionally substituted with a carboxyl group, or an amide or ester thereof,
9) i) phenyl group, ii) lower alkoxycarbonyl group, iii) lower alkanesulfonyl group, iv) carbamoyl group optionally substituted with lower alkyl group or lower alkylphenyl group, v) lower alkanoyl group, vi) lower An alkyl group, vii) a lower alkenyl group, and viii) an amino group optionally substituted with a group selected from a thiocarbamoyl group optionally substituted with a lower alkyl group,
10) a carbamoyl group optionally substituted with a lower alkyl group, a hydroxy lower alkyl group, a morpholino lower alkyl group, a phenyl lower alkyl group or a lower alkanesulfonyl group,
11) i) a lower alkyl group, ii) a benzoyl group, iii) a lower alkoxycarbonyl group, and iv) a sulfamoyl group optionally substituted with a group selected from a lower alkanoyl group,
12) a lower alkenyloxy group,
13) a piperazinylcarbonyl group optionally substituted by a lower alkyl group,
14) a lower alkanoyl group,
15) a cyano group,
16) a lower alkylthio group,
17) a lower alkanesulfonyl group,
18) A pharmaceutical composition comprising a lower alkylsulfinyl group, and 19) a compound represented by a hydrogen atom, a lower alkyl ester thereof, or a pharmaceutically acceptable salt thereof.
化学式が式(I−A):
Figure 0003795305
(式中、記号は前記と同じである)
である、請求項1記載の医薬組成物。
The chemical formula is formula (IA):
Figure 0003795305
(Wherein the symbols are the same as above)
The pharmaceutical composition according to claim 1, wherein
化学式が式(I−B):
Figure 0003795305
(式中、記号は請求項1と同じである)
である、請求項1記載の医薬組成物。
The chemical formula is formula (IB):
Figure 0003795305
(Wherein the symbols are the same as in claim 1)
The pharmaceutical composition according to claim 1, wherein
が下記の群から選ばれる基;
a)水素原子、
b)ハロゲン原子、
c)低級アルコキシ基、
d)ニトロ基、
e)1)低級アルキル基、2)低級アルカノイル基、3)低級アルコキシカルボニル基、4)ハロゲン原子で置換されていてもよい低級アルカンスルホニル基、5)低級アルキル基、トリハロゲノ低級アルキル基、ハロゲン原子または低級アルコキシ基で置換されていてもよいベンゼンスルホニル基、6)チオフェンスルホニル基、7)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、8)低級アルキル基で置換されていてもよいチオカルバモイル基、および9)低級アルキル基で置換されていてもよいスルファモイル基から選ばれる基で置換されていてもよいアミノ基、
f)カルボキシル基、
g)低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
h)低級アルカンスルホニル基、
i)スルファモイル基、
j)フェニル基、
k)オキソ基で置換されていてもよいピロリジニル基、
l)低級アルキル基で置換されていてもよいピロリル基、
m)チエニル基、
n)低級アルキル基で置換されていてもよいイソキサゾリル基、
o)チアゾリル基、
p)ピラゾリル基、
q)ピラジニル基、
r)ピリジル基、および
s)水酸基、
が水素原子またはハロゲン原子;
が水素原子またはハロゲン原子;
Rが下記群から選ばれる基:
a)ハロゲン原子、
b)ホルミル基、
c)水酸基、
d)1)カルボキシル基、2)水酸基、3)シアノ基、4)ハロゲン原子、5)低級アルキル基で置換されていてもよいアミノ基、6)ピリジル基、7)フェニル基、8)チエニル基、または9)低級アルコキシ基で置換されていてもよい低級アルコキシ基、
e)1)低級アルキル基、ヒドロキシ低級アルキル基、低級アルキルアミノ低級アルキル基またはフェニル基で置換されていてもよいアミノ基、2)低級アルキレンジオキシ基で置換されていてもよいピペリジニル基、3)低級アルキル基で置換されていてもよいモルホリノ基、4)硫黄原子が酸化されていてもよいチオモルホリノ基、5)低級アルキル基、ヒドロキシ低級アルキル基、低級アルカノイル基またはフェニル低級アルキル基で置換されていてもよいピペラジニル基、6)オキソ基で置換されていてもよいピロリジニル基、または7)低級アルキル基およびオキソ基から選ばれる1〜3個の基で置換されていてもよいイミダゾリジニル基で置換されていてもよい低級アルキル基、
f)1)低級アルコキシカルボニル基、2)低級アルカンスルホニル基、3)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、4)低級アルカノイル基、5)低級アルキル基、6)低級アルケニル基、または7)低級アルキル基で置換されていてもよいチオカルバモイル基で置換されていてもよいアミノ基、
g)1)低級アルキル基、2)ヒドロキシ低級アルキル基、3)モルホリノ低級アルキル基、4)フェニル低級アルキル基、または5)低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
h)低級アルキル基で置換されていてもよいスルファモイル基、
i)低級アルケニルオキシ基、
j)シアノ基、
k)低級アルキルチオ基、
l)低級アルカンスルホニル基、および
m)水素原子;
である請求項1または3記載の医薬組成物。
A group in which R 1 is selected from the following group;
a) a hydrogen atom,
b) a halogen atom,
c) a lower alkoxy group,
d) a nitro group,
e) 1) a lower alkyl group, 2) a lower alkanoyl group, 3) a lower alkoxycarbonyl group, 4) a lower alkanesulfonyl group optionally substituted with a halogen atom, 5) a lower alkyl group, a trihalogeno lower alkyl group, a halogen atom Or a benzenesulfonyl group optionally substituted with a lower alkoxy group, 6) a thiophenesulfonyl group, 7) a carbamoyl group optionally substituted with a lower alkyl group or a lower alkylphenyl group, and 8) substituted with a lower alkyl group. An optionally substituted thiocarbamoyl group, and 9) an amino group optionally substituted with a group selected from a sulfamoyl group optionally substituted with a lower alkyl group,
f) a carboxyl group,
g) a carbamoyl group optionally substituted by a lower alkanesulfonyl group,
h) a lower alkanesulfonyl group,
i) a sulfamoyl group,
j) a phenyl group,
k) a pyrrolidinyl group optionally substituted by an oxo group,
l) a pyrrolyl group optionally substituted by a lower alkyl group,
m) a thienyl group,
n) an isoxazolyl group optionally substituted by a lower alkyl group,
o) a thiazolyl group,
p) a pyrazolyl group,
q) a pyrazinyl group,
r) a pyridyl group, and s) a hydroxyl group,
R 2 is a hydrogen atom or a halogen atom;
R 3 is a hydrogen atom or a halogen atom;
R is a group selected from the following group:
a) a halogen atom,
b) a formyl group,
c) a hydroxyl group,
d) 1) carboxyl group, 2) hydroxyl group, 3) cyano group, 4) halogen atom, 5) amino group optionally substituted with lower alkyl group, 6) pyridyl group, 7) phenyl group, 8) thienyl group Or 9) a lower alkoxy group which may be substituted with a lower alkoxy group,
e) 1) an amino group optionally substituted with a lower alkyl group, a hydroxy lower alkyl group, a lower alkylamino lower alkyl group or a phenyl group, 2) a piperidinyl group optionally substituted with a lower alkylenedioxy group, 3 ) A morpholino group optionally substituted with a lower alkyl group, 4) a thiomorpholino group optionally substituted with a sulfur atom, 5) substituted with a lower alkyl group, a hydroxy lower alkyl group, a lower alkanoyl group or a phenyl lower alkyl group. An optionally substituted piperazinyl group, 6) a pyrrolidinyl group optionally substituted by an oxo group, or 7) an imidazolidinyl group optionally substituted by 1 to 3 groups selected from a lower alkyl group and an oxo group An optionally substituted lower alkyl group,
f) 1) a lower alkoxycarbonyl group, 2) a lower alkanesulfonyl group, 3) a carbamoyl group optionally substituted by a lower alkyl group or a lower alkylphenyl group, 4) a lower alkanoyl group, 5) a lower alkyl group, 6) A lower alkenyl group, or 7) an amino group optionally substituted with a thiocarbamoyl group optionally substituted with a lower alkyl group,
g) 1) a lower alkyl group, 2) a hydroxy lower alkyl group, 3) a morpholino lower alkyl group, 4) a phenyl lower alkyl group, or 5) a carbamoyl group optionally substituted by a lower alkanesulfonyl group,
h) a sulfamoyl group optionally substituted by a lower alkyl group,
i) a lower alkenyloxy group,
j) a cyano group,
k) a lower alkylthio group,
l) a lower alkanesulfonyl group, and m) a hydrogen atom;
The pharmaceutical composition according to claim 1 or 3.
が1)水素原子、2)ハロゲン原子、3)低級アルカノイルアミノ基、4)低級アルコキシカルボニルアミノ基、5)ハロゲン原子で置換されていてもよい低級アルカンスルホニルアミノ基、6)低級アルキル基、トリハロゲノ低級アルキル基、ハロゲン原子または低級アルコキシ基で置換されていてもよいベンゼンスルホニルアミノ基、7)チオフェンスルホニルアミノ基、8)低級アルキル基または低級アルキルフェニル基で置換されていてもよいウレイド基、9)低級アルキルチオウレイド基、または10)低級アルキルスルファモイルアミノ基;
がハロゲン原子;
が水素原子またはハロゲン原子;
Rが1)低級アルコキシ基、2)低級アルキルアミノ基、ヒドロキシ低級アルキルアミノ基、低級アルキルアミノ低級アルキルアミノ基、ピペリジニル基、低級アルキルピペリジニル基、モルホリノ基、低級アルキルモルホリノ基、チオモルホリノ基、ピペラジニル基、低級アルキルピペラジニル基、低級アルカノイルピペラジニル基、およびピロリジニル基から選ばれる1〜3個の基で置換されていてもよい低級アルキル基、3)低級アルキル基で置換されていてもよいスルファモイル基、4)低級アルキル基で置換されていてもよいカルバモイル基、および5)水素原子から選ばれる基、
である請求項1または3記載の医薬組成物。
R 1 is 1) a hydrogen atom, 2) a halogen atom, 3) a lower alkanoylamino group, 4) a lower alkoxycarbonylamino group, 5) a lower alkanesulfonylamino group optionally substituted with a halogen atom, and 6) a lower alkyl group. , A trihalogeno lower alkyl group, a benzenesulfonylamino group optionally substituted with a halogen atom or a lower alkoxy group, 7) a thiophenesulfonylamino group, 8) a ureido group optionally substituted with a lower alkyl group or a lower alkylphenyl group 9) a lower alkylthioureido group, or 10) a lower alkylsulfamoylamino group;
R 2 is a halogen atom;
R 3 is a hydrogen atom or a halogen atom;
R is 1) lower alkoxy group, 2) lower alkylamino group, hydroxy lower alkylamino group, lower alkylamino lower alkylamino group, piperidinyl group, lower alkylpiperidinyl group, morpholino group, lower alkylmorpholino group, thiomorpholino group , A piperazinyl group, a lower alkyl piperazinyl group, a lower alkanoyl piperazinyl group, and a lower alkyl group which may be substituted with 1 to 3 groups selected from a pyrrolidinyl group, 3) substituted with a lower alkyl group An optionally substituted sulfamoyl group, 4) a carbamoyl group optionally substituted with a lower alkyl group, and 5) a group selected from a hydrogen atom,
The pharmaceutical composition according to claim 1 or 3.
が水素原子、Rがハロゲン原子、およびRが水素原子、4−[N,N−ジ低級アルキルアミノ]低級アルキル基、4−(4−低級アルキル−1−ピペラジニル)低級アルキル基、4−(1−ピペリジニル)低級アルキル基、4−N,N−ジ(低級アルキル)カルバモイル基または4−(モルホリノ)低級アルキル基、である請求項5記載の医薬組成物。R 1 is a hydrogen atom, R 3 is a halogen atom, and R is a hydrogen atom, a 4- [N, N-dilower alkylamino] lower alkyl group, a 4- (4-lower alkyl-1-piperazinyl) lower alkyl group, The pharmaceutical composition according to claim 5, which is a 4- (1-piperidinyl) lower alkyl group, a 4-N, N-di (lower alkyl) carbamoyl group or a 4- (morpholino) lower alkyl group. 有効成分として下記の化合物、その低級アルキルエステル、または製薬学的に許容される塩を含有する医薬組成物。
N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(1−ピペリジノメチル)フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(4−メチルピペラジニル)メチル]フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(モルホリノメチル)フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(N,N−ジメチルアミノ)メチル]フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(N,N−ジメチルカルバモイル)フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロ−4−ヒドロキシベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジフルオロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−(2,4,6−トリメトキシフェニル)−L−フェニルアラニン;
N−[2,6−ジクロロ−4−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;または
N−[2,6−ジクロロ−4−[(2−チエニルスルホニル)アミノ]ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン。
A pharmaceutical composition comprising the following compound, a lower alkyl ester thereof, or a pharmaceutically acceptable salt as an active ingredient.
N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (1-piperidinomethyl) phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(4-methylpiperazinyl) methyl] phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (morpholinomethyl) phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(N, N-dimethylamino) methyl] phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (N, N-dimethylcarbamoyl) phenyl] -L-phenylalanine;
N- (2,6-dichloro-4-hydroxybenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-difluorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- (2,4,6-trimethoxyphenyl) -L-phenylalanine;
N- [2,6-dichloro-4-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine; or N- [2,6-dichloro-4- [ (2-Thienylsulfonyl) amino] benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine.
有効成分として式(I):
Figure 0003795305
(式中、記号は請求項1と同じである。)
で示される化合物、その低級アルキルエステルまたはその薬理学的に許容される塩を含有することを特徴とする、α4介在細胞接着による病態の治療または予防用医薬組成物。
Formula (I) as an active ingredient:
Figure 0003795305
(Wherein the symbols are the same as in claim 1)
A pharmaceutical composition for treating or preventing a disease state caused by α4-mediated cell adhesion, comprising a compound represented by the formula: a lower alkyl ester thereof or a pharmacologically acceptable salt thereof.
化学式が式(I−A):
Figure 0003795305
(式中、記号は請求項1と同じである)
である、請求項8記載の医薬組成物。
The chemical formula is formula (IA):
Figure 0003795305
(Wherein the symbols are the same as in claim 1)
The pharmaceutical composition according to claim 8, wherein
化学式が式(I−B):
Figure 0003795305
(式中、記号は請求項1と同じである)
である、請求項8記載の医薬組成物。
The chemical formula is formula (IB):
Figure 0003795305
(Wherein the symbols are the same as in claim 1)
The pharmaceutical composition according to claim 8, wherein
が下記の群から選ばれる基;
a)水素原子、
b)ハロゲン原子、
c)低級アルコキシ基、
d)ニトロ基、
e)1)低級アルキル基、2)低級アルカノイル基、3)低級アルコキシカルボニル基、4)ハロゲン原子で置換されていてもよい低級アルカンスルホニル基、5)低級アルキル基、トリハロゲノ低級アルキル基、ハロゲン原子または低級アルコキシ基で置換されていてもよいベンゼンスルホニル基、6)チオフェンスルホニル基、7)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、8)低級アルキル基で置換されていてもよいチオカルバモイル基、および9)低級アルキル基で置換されていてもよいスルファモイル基から選ばれる基で置換されていてもよいアミノ基、
f)カルボキシル基、
g)低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
h)低級アルカンスルホニル基、
i)スルファモイル基、
j)フェニル基、
k)オキソ基で置換されていてもよいピロリジニル基、
l)低級アルキル基で置換されていてもよいピロリル基、
m)チエニル基、
n)低級アルキル基で置換されていてもよいイソキサゾリル基、
o)チアゾリル基、
p)ピラゾリル基、
q)ピラジニル基、
r)ピリジル基、および
s)水酸基、
が水素原子またはハロゲン原子;
が水素原子またはハロゲン原子;
Rが下記群から選ばれる基:
a)ハロゲン原子、
b)ホルミル基、
c)水酸基、
d)1)カルボキシル基、2)水酸基、3)シアノ基、4)ハロゲン原子、5)低級アルキル基で置換されていてもよいアミノ基、6)ピリジル基、7)フェニル基、8)チエニル基、または9)低級アルコキシ基で置換されていてもよい低級アルコキシ基、
e)1)低級アルキル基、ヒドロキシ低級アルキル基、低級アルキルアミノ低級アルキル基またはフェニル基で置換されていてもよいアミノ基、2)低級アルキレンジオキシ基で置換されていてもよいピペリジニル基、3)低級アルキル基で置換されていてもよいモルホリノ基、4)硫黄原子が酸化されていてもよいチオモルホリノ基、5)低級アルキル基、ヒドロキシ低級アルキル基、低級アルカノイル基またはフェニル低級アルキル基で置換されていてもよいピペラジニル基、6)オキソ基で置換されていてもよいピロリジニル基、または7)低級アルキル基およびオキソ基から選ばれる1〜3個の基で置換されていてもよいイミダゾリジニル基で置換されていてもよい低級アルキル基、
f)1)低級アルコキシカルボニル基、2)低級アルカンスルホニル基、3)低級アルキル基または低級アルキルフェニル基で置換されていてもよいカルバモイル基、4)低級アルカノイル基、5)低級アルキル基、6)低級アルケニル基、または7)低級アルキル基で置換されていてもよいチオカルバモイル基で置換されていてもよいアミノ基、
g)1)低級アルキル基、2)ヒドロキシ低級アルキル基、3)モルホリノ低級アルキル基、4)フェニル低級アルキル基、または5)低級アルカンスルホニル基で置換されていてもよいカルバモイル基、
h)低級アルキル基で置換されていてもよいスルファモイル基、
i)低級アルケニルオキシ基、
j)シアノ基、
k)低級アルキルチオ基、
l)低級アルカンスルホニル基、および
m)水素原子;
である請求項8または10記載の医薬組成物。
A group in which R 1 is selected from the following group;
a) a hydrogen atom,
b) a halogen atom,
c) a lower alkoxy group,
d) a nitro group,
e) 1) a lower alkyl group, 2) a lower alkanoyl group, 3) a lower alkoxycarbonyl group, 4) a lower alkanesulfonyl group optionally substituted with a halogen atom, 5) a lower alkyl group, a trihalogeno lower alkyl group, a halogen atom Or a benzenesulfonyl group optionally substituted with a lower alkoxy group, 6) a thiophenesulfonyl group, 7) a carbamoyl group optionally substituted with a lower alkyl group or a lower alkylphenyl group, and 8) substituted with a lower alkyl group. An optionally substituted thiocarbamoyl group, and 9) an amino group optionally substituted with a group selected from a sulfamoyl group optionally substituted with a lower alkyl group,
f) a carboxyl group,
g) a carbamoyl group optionally substituted by a lower alkanesulfonyl group,
h) a lower alkanesulfonyl group,
i) a sulfamoyl group,
j) a phenyl group,
k) a pyrrolidinyl group optionally substituted by an oxo group,
l) a pyrrolyl group optionally substituted by a lower alkyl group,
m) a thienyl group,
n) an isoxazolyl group optionally substituted by a lower alkyl group,
o) a thiazolyl group,
p) a pyrazolyl group,
q) a pyrazinyl group,
r) a pyridyl group, and s) a hydroxyl group,
R 2 is a hydrogen atom or a halogen atom;
R 3 is a hydrogen atom or a halogen atom;
R is a group selected from the following group:
a) a halogen atom,
b) a formyl group,
c) a hydroxyl group,
d) 1) carboxyl group, 2) hydroxyl group, 3) cyano group, 4) halogen atom, 5) amino group optionally substituted with lower alkyl group, 6) pyridyl group, 7) phenyl group, 8) thienyl group Or 9) a lower alkoxy group which may be substituted with a lower alkoxy group,
e) 1) an amino group optionally substituted with a lower alkyl group, a hydroxy lower alkyl group, a lower alkylamino lower alkyl group or a phenyl group, 2) a piperidinyl group optionally substituted with a lower alkylenedioxy group, 3 ) A morpholino group optionally substituted with a lower alkyl group, 4) a thiomorpholino group optionally substituted with a sulfur atom, 5) substituted with a lower alkyl group, a hydroxy lower alkyl group, a lower alkanoyl group or a phenyl lower alkyl group. An optionally substituted piperazinyl group, 6) a pyrrolidinyl group optionally substituted by an oxo group, or 7) an imidazolidinyl group optionally substituted by 1 to 3 groups selected from a lower alkyl group and an oxo group An optionally substituted lower alkyl group,
f) 1) a lower alkoxycarbonyl group, 2) a lower alkanesulfonyl group, 3) a carbamoyl group optionally substituted by a lower alkyl group or a lower alkylphenyl group, 4) a lower alkanoyl group, 5) a lower alkyl group, 6) A lower alkenyl group, or 7) an amino group optionally substituted with a thiocarbamoyl group optionally substituted with a lower alkyl group,
g) 1) a lower alkyl group, 2) a hydroxy lower alkyl group, 3) a morpholino lower alkyl group, 4) a phenyl lower alkyl group, or 5) a carbamoyl group optionally substituted by a lower alkanesulfonyl group,
h) a sulfamoyl group optionally substituted by a lower alkyl group,
i) a lower alkenyloxy group,
j) a cyano group,
k) a lower alkylthio group,
l) a lower alkanesulfonyl group, and m) a hydrogen atom;
The pharmaceutical composition according to claim 8 or 10.
が1)水素原子、2)ハロゲン原子、3)低級アルカノイルアミノ基、4)低級アルコキシカルボニルアミノ基、5)ハロゲン原子で置換されていてもよい低級アルカンスルホニルアミノ基、6)低級アルキル基、トリハロゲノ低級アルキル基、ハロゲン原子または低級アルコキシ基で置換されていてもよいベンゼンスルホニルアミノ基、7)チオフェンスルホニルアミノ基、8)低級アルキル基または低級アルキルフェニル基で置換されていてもよいウレイド基、9)低級アルキルチオウレイド基、または10)低級アルキルスルファモイルアミノ基;
がハロゲン原子;
が水素原子またはハロゲン原子;
Rが1)低級アルコキシ基、2)低級アルキルアミノ基、ヒドロキシ低級アルキルアミノ基、低級アルキルアミノ低級アルキルアミノ基、ピペリジニル基、低級アルキルピペリジニル基、モルホリノ基、低級アルキルモルホリノ基、チオモルホリノ基、ピペラジニル基、低級アルキルピペラジニル基、低級アルカノイルピペラジニル基、およびピロリジニル基から選ばれる1〜3個の基で置換されていてもよい低級アルキル基、3)低級アルキル基で置換されていてもよいスルファモイル基、4)低級アルキル基で置換されていてもよいカルバモイル基、および5)水素原子から選ばれる基、
である請求項8または10記載の医薬組成物。
R 1 is 1) a hydrogen atom, 2) a halogen atom, 3) a lower alkanoylamino group, 4) a lower alkoxycarbonylamino group, 5) a lower alkanesulfonylamino group optionally substituted with a halogen atom, and 6) a lower alkyl group. , A trihalogeno lower alkyl group, a benzenesulfonylamino group optionally substituted with a halogen atom or a lower alkoxy group, 7) a thiophenesulfonylamino group, 8) a ureido group optionally substituted with a lower alkyl group or a lower alkylphenyl group 9) a lower alkylthioureido group, or 10) a lower alkylsulfamoylamino group;
R 2 is a halogen atom;
R 3 is a hydrogen atom or a halogen atom;
R is 1) lower alkoxy group, 2) lower alkylamino group, hydroxy lower alkylamino group, lower alkylamino lower alkylamino group, piperidinyl group, lower alkylpiperidinyl group, morpholino group, lower alkylmorpholino group, thiomorpholino group , A piperazinyl group, a lower alkyl piperazinyl group, a lower alkanoyl piperazinyl group, and a lower alkyl group which may be substituted with 1 to 3 groups selected from a pyrrolidinyl group, 3) substituted with a lower alkyl group An optionally substituted sulfamoyl group, 4) a carbamoyl group optionally substituted with a lower alkyl group, and 5) a group selected from a hydrogen atom,
The pharmaceutical composition according to claim 8 or 10.
が水素原子、Rがハロゲン原子、およびRが水素原子、4−[N,N−ジ低級アルキルアミノ]低級アルキル基、4−(4−低級アルキル−1−ピペラジニル)低級アルキル基、4−(1−ピペリジニル)低級アルキル基、4−[N,N−ジ(低級アルキル)]カルバモイル基または4−(モルホリノ)低級アルキル基、である請求項12記載の医薬組成物。R 1 is a hydrogen atom, R 3 is a halogen atom, and R is a hydrogen atom, a 4- [N, N-dilower alkylamino] lower alkyl group, a 4- (4-lower alkyl-1-piperazinyl) lower alkyl group, The pharmaceutical composition according to claim 12, which is a 4- (1-piperidinyl) lower alkyl group, a 4- [N, N-di (lower alkyl)] carbamoyl group or a 4- (morpholino) lower alkyl group. 有効成分として下記の化合物、その低級アルキルエステル、または製薬学的に許容される塩を含有するα4介在細胞接着による病態の治療または予防用医薬組成物。
N−(2,6−ジクロロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(1−ピペリジノメチル)フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(4−メチルピペラジニル)メチル]フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(モルホリノメチル)フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−[(N,N−ジメチルアミノ)メチル]フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−[2,6−ジメトキシ−4−(N,N−ジメチルカルバモイル)フェニル]−L−フェニルアラニン;
N−(2,6−ジクロロ−4−ヒドロキシベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジフルオロベンゾイル)−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;
N−(2,6−ジクロロベンゾイル)−4−(2,4,6−トリメトキシフェニル)−L−フェニルアラニン;
N−[2,6−ジクロロ−4−[(トリフルオロメタンスルホニル)アミノ]ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン;または
N−[2,6−ジクロロ−4−[(2−チエニルスルホニル)アミノ]ベンゾイル]−4−(2,6−ジメトキシフェニル)−L−フェニルアラニン。
A pharmaceutical composition for treating or preventing a disease state caused by α4-mediated cell adhesion, which comprises the following compound, a lower alkyl ester thereof, or a pharmaceutically acceptable salt as an active ingredient.
N- (2,6-dichlorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (1-piperidinomethyl) phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(4-methylpiperazinyl) methyl] phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (morpholinomethyl) phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4-[(N, N-dimethylamino) methyl] phenyl] -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- [2,6-dimethoxy-4- (N, N-dimethylcarbamoyl) phenyl] -L-phenylalanine;
N- (2,6-dichloro-4-hydroxybenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-difluorobenzoyl) -4- (2,6-dimethoxyphenyl) -L-phenylalanine;
N- (2,6-dichlorobenzoyl) -4- (2,4,6-trimethoxyphenyl) -L-phenylalanine;
N- [2,6-dichloro-4-[(trifluoromethanesulfonyl) amino] benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine; or N- [2,6-dichloro-4- [ (2-Thienylsulfonyl) amino] benzoyl] -4- (2,6-dimethoxyphenyl) -L-phenylalanine.
α4介在細胞接着による病態が、組織における白血球浸潤を伴う病態である請求項8から14のいずれか1項に記載の医薬組成物。  The pharmaceutical composition according to any one of claims 8 to 14, wherein the pathological condition caused by α4-mediated cell adhesion is a pathological condition involving leukocyte infiltration in a tissue. 組織における白血球浸潤を伴う病態が、上皮組織、肺、血管、心臓、神経組織、または移植された器官における白血球浸潤を伴う病態である請求項15記載の医薬組成物。  16. The pharmaceutical composition according to claim 15, wherein the pathological condition involving leukocyte infiltration in the tissue is a pathological condition involving leukocyte infiltration in epithelial tissue, lung, blood vessel, heart, nerve tissue, or transplanted organ. 上皮組織における白血球浸潤を伴う病態が、胃腸管、皮膚、尿道、気管、または関節滑膜における白血球浸潤を伴う病態である請求項16記載の医薬組成物。  The pharmaceutical composition according to claim 16, wherein the pathological condition involving leukocyte infiltration in epithelial tissue is a pathological condition involving leukocyte infiltration in the gastrointestinal tract, skin, urethra, trachea, or joint synovium. 移植された器官における白血球浸潤を伴う病態が、移植された腎臓、肝臓、膵臓、または心臓における白血球浸潤を伴う病態である請求項16記載の医薬組成物。  17. The pharmaceutical composition according to claim 16, wherein the pathological condition involving leukocyte infiltration in the transplanted organ is a pathological condition involving leukocyte infiltration in the transplanted kidney, liver, pancreas, or heart. 組織における白血球浸潤を伴う病態が関節リウマチ、喘息、乾癬、皮膚炎症疾患、糖尿病、多発性硬化症、全身性エリテマトーデス(SLE)、炎症性腸疾患または移植片対宿主疾患である請求項15記載の医薬組成物。  16. The disease state involving leukocyte infiltration in a tissue is rheumatoid arthritis, asthma, psoriasis, skin inflammatory disease, diabetes, multiple sclerosis, systemic lupus erythematosus (SLE), inflammatory bowel disease or graft-versus-host disease. Pharmaceutical composition. 皮膚炎症疾患が湿疹、接触皮膚炎、またはアトピー性皮膚炎であり、炎症性腸疾患が潰瘍性大腸炎またはクローン病である請求項19記載の医薬組成物。  The pharmaceutical composition according to claim 19, wherein the skin inflammatory disease is eczema, contact dermatitis, or atopic dermatitis, and the inflammatory bowel disease is ulcerative colitis or Crohn's disease.
JP2000216898A 1999-07-19 2000-07-18 Pharmaceutical composition Expired - Fee Related JP3795305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216898A JP3795305B2 (en) 1999-07-19 2000-07-18 Pharmaceutical composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-204581 1999-07-19
JP20458199 1999-07-19
JP2000216898A JP3795305B2 (en) 1999-07-19 2000-07-18 Pharmaceutical composition

Publications (2)

Publication Number Publication Date
JP2001089368A JP2001089368A (en) 2001-04-03
JP3795305B2 true JP3795305B2 (en) 2006-07-12

Family

ID=26514543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216898A Expired - Fee Related JP3795305B2 (en) 1999-07-19 2000-07-18 Pharmaceutical composition

Country Status (1)

Country Link
JP (1) JP3795305B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1214292E (en) * 1999-09-24 2007-09-14 Genentech Inc Tyrosine derivatives
TWI312347B (en) 2001-02-08 2009-07-21 Eisai R&D Man Co Ltd Bicyclic nitrogen-containing condensed ring compounds
US7091215B2 (en) 2001-04-27 2006-08-15 Eisai Co., Ltd. Pyrazolo[1,5-a]pyridines and medicines containing the same
DE60336986D1 (en) 2002-03-05 2011-06-16 Sumitomo Chemical Co PROCESS FOR THE PRODUCTION OF BIARYL COMPOUNDS
GB0205170D0 (en) 2002-03-06 2002-04-17 Astrazeneca Ab Chemical compounds
GB0205165D0 (en) 2002-03-06 2002-04-17 Astrazeneca Ab Chemical compounds
GB0205162D0 (en) 2002-03-06 2002-04-17 Astrazeneca Ab Chemical compounds
GB0205166D0 (en) 2002-03-06 2002-04-17 Astrazeneca Ab Chemical compounds
GB0205175D0 (en) 2002-03-06 2002-04-17 Astrazeneca Ab Chemical compounds
GB0205176D0 (en) 2002-03-06 2002-04-17 Astrazeneca Ab Chemical compounds
WO2004014844A2 (en) 2002-08-09 2004-02-19 Transtech Pharma, Inc. Aryl and heteroaryl compounds and methods to modulate coagulation
US7176216B2 (en) 2002-10-22 2007-02-13 Eisai Co., Ltd. 7-phenylpyrazolopyridine compounds
EP1555265B1 (en) 2002-10-22 2009-03-25 Eisai R&D Management Co., Ltd. 7-phenyl pyrazolopyridine compounds
US7241803B2 (en) * 2002-11-21 2007-07-10 New York Blood Center Compounds for inhibition of HIV infection by blocking HIV entry
AU2004263508A1 (en) 2003-08-08 2005-02-17 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions, and methods of use
US7208601B2 (en) 2003-08-08 2007-04-24 Mjalli Adnan M M Aryl and heteroaryl compounds, compositions, and methods of use
US7459472B2 (en) 2003-08-08 2008-12-02 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions, and methods of use
JP4743659B2 (en) 2003-12-22 2011-08-10 味の素株式会社 New phenylalanine derivatives
US7618981B2 (en) * 2004-05-06 2009-11-17 Cytokinetics, Inc. Imidazopyridinyl-benzamide anti-cancer agents
AU2006337137B2 (en) 2005-12-29 2012-06-14 Tersera Therapeutics Llc Multicyclic amino acid derivatives and methods of their use
JP5209183B2 (en) * 2006-04-28 2013-06-12 東ソー・ファインケム株式会社 Method for producing 2-cyanophenylboronic acid or ester thereof with reduced impurities
JP4654325B2 (en) 2008-04-15 2011-03-16 エーザイ・アール・アンド・ディー・マネジメント株式会社 3-phenylpyrazolo [5,1-b] thiazole compound
AR078521A1 (en) 2009-10-08 2011-11-16 Eisai R&D Man Co Ltd PIRAZOLOTIAZOL COMPOUND
MX370666B (en) * 2013-06-11 2019-12-19 Celgene Int Ii Sarl Novel glp-1 receptor modulators.
HUE045546T2 (en) 2015-06-03 2020-01-28 Bristol Myers Squibb Co 4-hydroxy-3-(heteroaryl)pyridine-2-one apj agonists for use in the treatment of cardiovascular disorders
US11174256B2 (en) 2018-10-30 2021-11-16 Gilead Sciences, Inc. Imidazopyridine derivatives
AU2019373245C1 (en) 2018-10-30 2022-10-27 Gilead Sciences, Inc. Compounds for inhibition of alpha 4β7 integrin
CR20210213A (en) 2018-10-30 2021-06-24 Gilead Sciences Inc Quinoline derivatives as alpha4beta7 integrin inhibitors
JP7189368B2 (en) 2018-10-30 2022-12-13 ギリアード サイエンシーズ, インコーポレイテッド Compounds for inhibition of alpha4beta7 integrin
AU2020329207B2 (en) 2019-08-14 2024-02-29 Gilead Sciences, Inc. Compounds for inhibition of alpha 4 beta 7 integrin
CN115975224B (en) * 2023-03-16 2023-08-08 四川大学 pH/ROS double-response tissue adhesion carrier hydrogel and preparation method and application thereof

Also Published As

Publication number Publication date
JP2001089368A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP3634749B2 (en) α4-mediated cell adhesion inhibitor
JP3795305B2 (en) Pharmaceutical composition
KR100528049B1 (en) Inhibitors of α4 mediated cell adhesion
US6423728B1 (en) Heterocyclic thioamide derivatives
JP3555876B2 (en) N-aroylphenylalanine derivative
SK14922003A3 (en) Modulators of peroxisome proliferator-activated receptors (PPAR)
CA2672601A1 (en) Polycyclic acid compounds useful as crth2 antagonists and antiallergic agents
WO2008053913A1 (en) Sulfonylurea derivative capable of selectively inhibiting mmp-13
MX2014003229A (en) Guanidinobenzoic acid compound.
US7220864B2 (en) Dihydronaphthalene derivative compounds and agent comprising the derivative as active ingredient
US7241784B2 (en) Carboxylic acid derivative and a pharmaceutical composition containing the derivative as active ingredient
EP1283825B1 (en) N-substituted peptidyl nitriles as cysteine cathepsin inhibitors
MXPA00007138A (en) INHIBITORS OF&amp;agr;4 MEDIATED CELL ADHESION
JP2004161634A (en) New pyrazole compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees