JP3792564B2 - Radiant heater and method of manufacturing reflector for radiant heater - Google Patents

Radiant heater and method of manufacturing reflector for radiant heater Download PDF

Info

Publication number
JP3792564B2
JP3792564B2 JP2001350061A JP2001350061A JP3792564B2 JP 3792564 B2 JP3792564 B2 JP 3792564B2 JP 2001350061 A JP2001350061 A JP 2001350061A JP 2001350061 A JP2001350061 A JP 2001350061A JP 3792564 B2 JP3792564 B2 JP 3792564B2
Authority
JP
Japan
Prior art keywords
heat source
reflector
divided
heated
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001350061A
Other languages
Japanese (ja)
Other versions
JP2003148748A (en
Inventor
正四 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSEI OVAL CO., LTD.
Original Assignee
NISSEI OVAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSEI OVAL CO., LTD. filed Critical NISSEI OVAL CO., LTD.
Priority to JP2001350061A priority Critical patent/JP3792564B2/en
Publication of JP2003148748A publication Critical patent/JP2003148748A/en
Application granted granted Critical
Publication of JP3792564B2 publication Critical patent/JP3792564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば暖房機、乾燥装置、検査装置、融雪装置などに用いて有効な赤外線加熱装置の技術分野で利用されるものであって、具体的には、放射暖房機用の反射笠(以下反射板と云う)の製作方法に関するものである。
【0002】
【従来の技術】
図8は、従来の赤外線を用いた放射暖房機であるスポットヒータの各種の例を示す。図8(A)においてSAは断面が半楕円状の熱反射板、EAは熱反射板内に配置された熱源、FLは被加熱対象物、Dは被加熱対象物の被加熱領域である。図8(B)においてSBは断面が半楕円状部と円筒形状部からなる熱反射板、図8(C)においてSCは断面が半楕円状部と逆台形円筒状部からなる反射板であって、被加熱領域Dが一定の場合は、熱源EAと被加熱対象物FLの距離が離れるに従って、反射板SCの長さを上下に長くする必要があった。
また、従来のスポットヒータでは、図9に示すように熱源EAが反射板STの頂点部から間隔Lの分だけ離れているため、反射板の外形が大きくなる問題があった。更に、図10に示すように熱源EAが棒状ヒータで、反射板STが断面半円形状の略逆樋形状であり、ヒータ軸直角方向の熱線放射の拡散は抑えられるが、ヒータ軸方向の熱放射の拡散は無制限と成る問題があった。また図11に示すように、反射板STの形状が赤外線を反射して正面方向には出すが、その一部のみを被加熱領域に収束させるだけで、不要な領域に迄赤外線を拡散させて、しかも被加熱面での放射強度が不均一になる問題もあった。
【0003】
【発明が解決しようとする課題】
従って、従来のスポットヒータには、赤外線の拡散が大きく、被加熱面での放射強度が小さくて、スポット暖房機としての有効性が非常に薄いものになり、不要な領域に赤外線を飛ばすため、エネルギーの無駄使いとなる。被加熱面での赤外線強度(放射強度)が不均一であり、熱反射板は半楕円状部と円筒状部からなり、同じ放射領域Dを得るためには、熱源と被加熱対象物の距離が離れるに従い、順次、外形寸法が大きくなってしまう。図11に示すスポットヒータでは、放射領域(拡散領域)が広くなり、放射強度分布HAが、反射板STの真下部分が強く、周辺部に近づくにつれて次第に弱くなってしまって、暖房機真下近傍だけが充分な強度となってしまう。と言った各種の問題があった。更に、従来のスポット暖房機に使用している反射板では、側方および上方に放射される赤外線の20%近くの量が、被加熱面側に放射されない形状になっている。また、従来の暖房機では、暖房機の赤外線分布状況を解析的に捕らえることが非常に困難である。と言った問題も備えていた。
【0004】
本発明は上述の問題点に鑑みてなされたもので、その目的は、熱源から放射された赤外線を意図された領域に収束させることが出来ると共に、赤外線が被加熱対象物に均一に照射され、被加熱面に放射強度が均一に分布するようにした放射暖房機と、放射暖房機用反射板の製作方法を提供することである。
【0005】
【課題を解決するための手段】
上述の目的を達成するために、本発明の請求項1に係る放射暖房機は、赤外線を発生する熱放射面を半球状に形成した熱源と、該熱源から放射される赤外線の少くとも一部を反射する反射板からなり、前記熱源から放射される赤外線によって被加熱面領域を加熱する放射暖房機であって、上記の反射板を、上記熱源に近接した部位から、熱源から放射された赤外線の全てを外部に放出する形状に造る一方、上記被加熱面領域をn分割して、n分割された個々の領域を負担する熱源面積割合を等しく構成し、且つ、上記反射板の全体を軸対称に構成している。
【0006】
その結果、本発明に係る放射暖房機では、反射板を熱源に近接した点から形成することにより、反射板を小さくまとめることを可能にする一方、熱源から放射された赤外線の全てを外部に放出する形状で反射板を設計することにより、反射板内に於ける過度の温度上昇を防止し、また、被加熱面(領域)をn分割して各領域を負担する熱源面積を等しくすることにより、均一な放射強度を得ることができ、更に、反射板を軸対称にすることにより、赤外線の不要域への拡散を抑えることを可能にしている。
【0007】
また、本発明の請求項2に係る放射暖房機用反射板の製作方法は、被加熱面領域を明確にし、同時に被加熱面領域内では、均一な放射強度を得る目的で、被加熱面領域の単位面積当りの熱源の負担面積を同じとする理論を展開したものであって、具体的には、前述した放射暖房機に用いる反射板の製作方法であって、前記熱源の表面積をn分割して、n分割された熱源帯を求める工程と、前記熱源から前記被加熱面領域に直接放射される直接照射領域を求め、該被加熱領域面積を同芯円状に分割し、且つ、該熱源の直接放射領域を被加熱面分割に応じて分割して直接放射面積割合を求める工程と、前記直接放射面積割合と前記分割熱源帯より、前記熱源から前記反射板によって反射されるべき間接放射面積割合を求める工程と、前記直接放射面積割合と間接放射面積割合を基に間接照射用反射板の各曲率半径を求め、該各曲率半径を基に前記反射板の形状を求める工程、から成ることを特徴としている。
【0008】
また、本発明の請求項3に係る発明は、前記請求項2に記載の放射暖房用反射板の製作方法において、前記n分割された熱源帯を求める工程が、熱源が半球体であって、該半球体の半径をn分割することによって、n等分割された個々の被加熱面領域を負担する熱源分割領域を求めることを特徴としている。
【0009】
また、本発明の請求項4に係る発明は、前記請求項2に記載の放射暖房用反射板の製作方法において、前記直接放射面積割合が、所定の高さに配置された熱源から赤外線が放射される所望の被加熱領域面積を同芯円状に分割し、前記熱源の直接放射領域を被加熱面の分割に応じて分割された面積であることを特徴としている。
【0010】
また、本発明の請求項5に係る発明は、前記請求項2に記載の放射暖房用反射板の製作方法において、前記間接放射面積割合が、前記n分割された熱源の分割熱源帯と前記直接放射面積割合より求められ、前記熱源の半球状体中心部から間接放射面積割合を基に分割する工程によって構成されていることを特徴としている。
【0011】
更に、本発明の請求項6に係る発明は、前記請求項2に記載の放射暖房用反射板の製作方法において、前記反射板の形状を求める工程が、前記各曲率半径を連続した形状として反射板の形状を求める工程によって構成されていることを特徴としている。
【0012】
その結果、上記本発明に係る製作方法によって製作された反射板によれば、熱源から放射された赤外線を被加熱面領域に対して収束し、且つ、放射強度を均一に分布するように放射することを可能にする。
【0013】
【発明の実施の形態】
以下に本発明の実施例による加熱装置である放射暖房機と放射暖房機用反射板の製作方法について、図1から図4を参照しながら説明する。
【0014】
図1は本発明の第1実施例による放射暖房機を示す。この放射暖房機は熱源と被加熱対象物からの距離が比較的短い場合に適用されるものである。図1において、10は反射板(反射笠)、11はカバー(上蓋)であって、この反射板10は底面に開口部12を有する。20は反射板10内に配置された熱源で、反射板10のカバー11に配置された熱放射面を半球状に形成した熱放射体であって、これ等の反射板10と熱放射体である熱源20によって本発明の放射暖房機が構成される。30は被加熱対象物(被加熱面領域)、Dは被加熱対象物30の被加熱面から所定の高さの位置に設けられた熱源20から、赤外線が放射される被加熱面領域幅である被加熱面直径を示す。D0は被加熱面中心点、D1,D2,D3,D4は、それぞれ、被加熱面面積を同芯円状に分割した分割点である。
尚、図1と後述する図4に於いて、符号XL及びYLで夫々全体的に示したものは、同じく符号X及びYの部分に表示されている数値(実寸法)を拡大して示したものであって、これ等の数値はいずれも実施の一例であることは勿論である。
【0015】
本発明の第1実施例による放射暖房機の反射板10は、図1から図3に示すようにして製作される。即ち、図2に示すように、所定の高さに配置された反射板10と熱源20から赤外線T1が放射される所望の被加熱領域面積を同芯円状にn等分し、それぞれの直径Di(D1,D2,D3,D4)を求める。
【数式1】

Figure 0003792564
但し、nは分割数を示し、i=1〜nとする。
上記の式(1)に於いてn値を大きくとる程、放射強度の均一性が得られる。
【0016】
次に、図3に示すように、熱放射体である半球状熱源20の放射熱源面積の分割を行う。半球熱源体の表面積をn分割するには、熱源20の半径rをn分割する。n分割された各円帯の表面積は等しくなり放射される赤外線量も等しいと考えることができる。また、n分割された被加熱面領域30の各円帯を負担する熱源20の面積は、n分割された各円帯熱源表面積とすることで、均一放射強度が得られる。
【0017】
次に、熱源20のn分割された各熱源分割帯の直接放射面積割合hiを求める。即ち、図1に示すように半球熱源面積の中心0と、被加熱面領域30の中心D0点及びn分割直径点Di(i=1〜n)とを結ぶ各線と、熱源半径との交点をri(i=0〜n)とする。次いで、被加熱面領域30の各分割領域ごとの熱源球体の直接放射面積割合hi(i=1〜n)を求める。
更に、熱源20の間接放射面積割合hi′を求める。被加熱面領域30の各分割領域ごと間接放射面積割合hi′は、
hi′=(r/n)−hi … (2)
により求められる。上式はhi+hi′=(r/n)と一定になり、熱源20の直接放射面積割合hiと熱源の間接放射面積割合hi′との和hi+hi′の各円帯から放射された赤外線を被加熱面領域30の各分割領域に照射する。
【0018】
次に、間接放射領域の半球状熱源を球体中心を含む底辺より被加熱面領域30側に向かって間接放射面積割合hi′〜hn′により分割する。更に、間接放射面積割合hi′分割線と熱源外径との交点をri′(r0′〜rn′)とする。
【0019】
最後に、図1に示すように、曲率半径R1〜R4が連続した反射板10の形状を求める。即ち、熱源20上の1点r0′からの赤外線(垂線)が反射して、被加熱面領域30の中心点D0に到達し、r1′からの赤外線(垂線)が暖房域D1点に到達する反射板10の曲率半径R1を求める。
【0020】
同様にして、曲率半径R2〜R4を求める。即ち、分割点r1′の赤外線が分割点D1に到達し、分割点r2′の赤外線が分割点D2に到達する曲率半径R2を求める。次いで、分割点r2′の赤外線が分割点D2に到達し、分割点r3′の赤外線が分割点D3に到達する曲率半径R3を求め、分割点r3′の赤外線が分割点D3に到達し、分割点r4′の赤外線が分割点D4に到達する曲率半径R4を求める。曲率半径R1〜R4を連続した形状として反射板10の形状を求める。かくして求められた反射板10は、熱源表面r0′〜r4′の領域から放射される赤外線を、被加熱面領域30の中心点D0から外周端D4域に照射することを意味する。
【0021】
図4は、本発明の第2実施例による放射暖房機を示すもので、第1図から第3図に示す部分と同一または相当部分には同一の符号が付されている。第2実施例の放射暖房機は被加熱面30と熱源20との距離が比較的に長い場合に適用されるものである。
【0022】
図4に示すように、第2実施例の暖房機において、10は断面が半楕円状部10aと、この半楕円状部10aに連なる円筒部10bからなり、半楕円状部10aの頂点部にカバー11(上蓋)を有する反射板、20は反射板10内に配置された熱源である半球状の熱放射体であって、反射板10と熱放射体20によって熱放射暖房機が構成される。図1の放射暖房機と同様にして、所定の高さに配置された反射板10と熱源20から赤外線T1が放射される所望の被加熱領域面Dを同芯円状にn等分(D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,Dn)に分割する。
【0023】
本発明の第2実施例による放射暖房機の反射板10は、図1から図3に示す第1実施例の放射暖房機と同様にして、所定の高さに配置された熱源20から赤外線T1が放射される所望の被加熱面領域幅Dの面積を同芯円状にn等分し、それぞれの直径を求める。
【0024】
さらに、放射熱源面積の分割を行う。半球熱源体の表面をn分割するには、熱源20の半径をn分割すればよい。n分割された各円帯の面積は等しくなり、各円帯から放出される赤外線量も等しいと考えることができる。n等分された被加熱面の各円帯を負担する熱源面積は、n等分された各円帯熱源表面積とすることで均一放射強度が得られる。
【0025】
次に、熱源20の直接放射面積割合hiを求める。即ち、半球熱源面積の中心0と被加熱面のD0点とn等分分割直径Di(i=1〜n)とを結ぶ線と熱源半径との交点をri(i=0〜n)とする。被加熱面領域30の各分割領域ごとの熱源球体の直接放射面積割合hi(i=1〜n)が求まる。
【0026】
次いで、熱源20の間接放射面積割合hi′を前述したh i ′=(r/n)−hiから求める。
熱源20の直接放射面積割合hiと熱源の間接放射面積割合h′の和(hi+hi)は一定となり、hi+hi′の各円帯から放射された赤外線を被加熱面の各分割領域に照射するようにする。
間接放射領域の半球状熱源を球体中心を含む底辺より被加熱面側に向かってhi′〜hn′に分割する。
【0027】
最後に反射板10の形状を求める。曲率半径R1〜R10が連続した反射板形状を求める。熱源20上の1点r0′からの赤外線垂線が反射して、被加熱領域の中心点D0に到達し、同時に分割点r1′からの赤外線が被加熱領域分割点D1に到達する反射板形状(半径)R1を求める。同様にして、反射板形状(半径)寸法R2〜R10を求める。分割点r1′の赤外線が分割点D1に到達し、分割点r2′の赤外線が分割点D2に到達する曲率半径R2を求める。分割点r2′の赤外線が分割点D2に到達し、分割点r3′の赤外線が分割点D3に到達する曲率半径R3を求め、以下繰り返して、 10 の赤外線が分割点D10に到達する曲率半径R10を求める。次いで、曲率半径R1〜R10を連続した形状として反射板10の形状を求める。かくして求められた反射板10は熱源表面r0′からr10′の領域から放射される赤外線を、被暖房領域の中心点D0から外周端D10域に照射することを意味する。
【0028】
また、本発明によれば、図5(A)に示す連続した曲率半径を有する断面半楕円形状にして開口端部12が円形の反射板10に代えて、図5(B)に示す開口端部12が四角形にした四角形の筒体のものでも良く、また図5(C)に示すように開口端部12が六角形のような多角形の筒体であっても良い。
【0029】
さらに、本発明によれば、図6(A)に示すように反射板10の形状が中空楕円体であって、熱源20が半球状のものに代って、図6(B)並びに(C)に示すように反射板10の頂点部から離れた半球状熱源20c或は20dのものであっても良い。
【0030】
また、本発明によれば、図7に示す連続した曲率半径を有する断面半楕円形状の反射板10に代えて、直線形状を組合せた多角形の反射板10cであってもよい。
【0031】
本発明によれば、放射暖房機の取付けが照明の取付け感覚で施行できると共に、赤外線の不要領域への拡散を抑えることにより、必要入力を従来の放射暖房機の1/3〜1/5程度で実現できる。本発明によって製作された放射暖房機の考えられる用途としては、厳寒屋外での部分暖房(飛行機エンジン屋外整備)、融雪(歩道、鉄道分岐ポイント、交差点)、コンクリート内面剥離非破壊検査、各種乾燥放射暖房機、各種スポット暖房機、老人ケアセンター浴室などがある。
【0032】
尚、本発明では反射板の全体を軸対称に構成したスポット型に形成したものについてのみ説明しているが、同様の製作方法によって、全体を横に長い断面略U字型の樋形状に造って、細長い暖房機として展開することも可能である。
【0033】
【発明の効果】
以上説明したように、本発明に係る放射暖房機及び放射暖房機用反射板の製作方法によれば、熱源から放射された熱源放射線を意図された領域に収束させることができ、赤外線が被加熱対象物に均一に照射され、被加熱面に放射強度が均一に分布するようにした小型で而かも高効率、省エネルギ−的な放射暖房機と、その反射板を提供することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例による放射暖房機の製作図。
【図2】 本発明の第1実施例による放射暖房機用反射板の製作工程図。
【図3】 本発明の第1実施例による放射暖房機用反射板の製作工程図。
【図4】 本発明の第2実施例による放射暖房機用反射板の製作工程図。
【図5】 本発明を適用できる放射暖房機用反射板の概略図。
【図6】 本発明を適用できる放射暖房機用熱源の概略図。
【図7】 本発明を適用できる放射暖房機用反射板の概略図。
【図8】 従来の放射暖房機の各種形態を示す概略図。
【図9】 従来の放射暖房機の他の例を示す概略図。
【図10】 従来の放射暖房機を用いた一例を示す説明図。
【図11】 従来の放射暖房機の熱放射強度分布を示す特性図。
【符号の説明】
10 反射板
20 熱源(熱放射体)
30 被加熱対象物(被加熱面領域)[0001]
BACKGROUND OF THE INVENTION
The present invention is used in the technical field of an infrared heating device effective for use in, for example, a heater, a drying device, an inspection device, a snow melting device, and the like. The present invention relates to a manufacturing method of a reflector.
[0002]
[Prior art]
FIG. 8 shows various examples of a spot heater which is a conventional radiant heater using infrared rays. In FIG. 8A, SA is a heat reflecting plate having a semi-elliptical cross section, EA is a heat source arranged in the heat reflecting plate, FL is an object to be heated, and D is an area to be heated of the object to be heated. In FIG. 8B, SB is a heat reflecting plate having a semi-elliptical portion and a cylindrical portion in cross section, and SC in FIG. 8C is a reflecting plate having a semi-elliptical portion and an inverted trapezoidal cylindrical portion in cross section. When the heated area D is constant, it is necessary to increase the length of the reflector SC vertically as the distance between the heat source EA and the heated object FL increases.
Further, in the conventional spot heater, as shown in FIG. 9, the heat source EA is separated from the apex portion of the reflector plate ST by the distance L, so that there is a problem that the outer shape of the reflector plate becomes large. Further, in the heat source EA rod-shaped heater 10, the reflecting plate ST is Ri substantially inverted gutter shape der semi-circular cross section, diffusion of heat ray radiation heater axis perpendicular but is suppressed, the heater axis The problem was that the diffusion of thermal radiation was unlimited. Further, as shown in FIG. 11, the shape of the reflector ST reflects infrared rays and emits them in the front direction, but only a part of them is converged on the heated region D , and the infrared rays are diffused to unnecessary regions. In addition, there is a problem that the radiation intensity on the surface to be heated becomes non-uniform.
[0003]
[Problems to be solved by the invention]
Therefore, the conventional spot heaters, infrared diffusion is large, a small radiation intensity on the heated surface, Ri Do those very thin effectiveness as a spot heater, to fly the infrared unwanted areas , Waste energy. Infrared intensity (radiant intensity) on the surface to be heated is non-uniform, the heat reflecting plate is composed of a semi-elliptical part and a substantially cylindrical part, and in order to obtain the same radiation region D, the heat source and the object to be heated are As the distance increases, the outer dimensions gradually increase. In the spot heater shown in FIG. 11, the radiation area (diffusion area) is widened, and the radiation intensity distribution HA is strong in the portion directly below the reflector ST and gradually weakens as it approaches the peripheral portion. Becomes sufficient strength. There were various problems. Furthermore, the reflector used in the conventional spot heater has a shape in which nearly 20% of the infrared rays radiated sideways and upward are not radiated to the heated surface side. Moreover, in the conventional heater, it is very difficult to analytically capture the infrared distribution state of the heater. There was also a problem that said.
[0004]
The present invention has been made in view of the above-mentioned problems, and its purpose is to allow the infrared ray emitted from the heat source to converge on the intended region, and to uniformly irradiate the object to be heated with the infrared ray, It is to provide a radiant heater in which the radiant intensity is uniformly distributed on the surface to be heated, and a method of manufacturing a reflector for the radiant heater.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a radiant heater according to claim 1 of the present invention includes a heat source in which a heat radiation surface for generating infrared rays is formed in a hemispherical shape, and at least a part of infrared rays emitted from the heat source. A radiant heater that heats a heated surface area by infrared rays radiated from the heat source, and the infrared rays radiated from the heat source from a portion close to the heat source. while making all the shapes that emit to the outside, the heated surface area is divided n like, equal configure a heat source area ratio to bear n such divided individual regions, and the whole of the reflective plate Are configured to be axisymmetric.
[0006]
As a result, in the radiant heater according to the present invention, by forming the reflector plate from a point close to the heat source, the reflector plate can be made small, while all the infrared rays radiated from the heat source are emitted to the outside. By designing the reflector in a shape to prevent excessive temperature rise in the reflector, the heated surface (area) is divided into n equal parts to equalize the heat source area for each area. Thus, uniform radiation intensity can be obtained, and further, by making the reflector plate axially symmetric, it is possible to suppress diffusion of infrared rays into unnecessary areas.
[0007]
Moreover, the manufacturing method of the reflector for radiant heaters according to claim 2 of the present invention makes the surface area to be heated clear, and at the same time, in the surface area to be heated, to obtain uniform radiation intensity, In which the burden area of the heat source per unit area is the same, specifically, a method of manufacturing the reflector used in the radiant heater described above, wherein the surface area of the heat source is n, etc. divided and, a step of determining the n and the like divided heat source zone, obtains a direct irradiated region which is directly radiated to the heated surface area from the heat source, dividing n such a the heated region area concentrically circular And a step of obtaining a direct radiation area ratio by dividing the direct radiation area of the heat source into n according to the surface to be heated, and the reflecting plate from the heat source from the direct radiation area ratio and the divided heat source zone. Determining an indirect radiation area ratio to be reflected; Seeking the radius of curvature of the indirect illumination reflector based on serial direct radiation area ratio and the indirect radiation area ratio, it is characterized by comprising the step, for determining the shape of the reflector based on respective radii of curvature.
[0008]
Moreover, the invention which concerns on Claim 3 of this invention is a manufacturing method of the reflector for radiant heating of Claim 2. WHEREIN: The process of calculating | requiring the said n equal division | segmentation heat source zone | band WHEREIN: A heat source is a hemisphere. In addition, by dividing the radius of the hemisphere into n equal parts, a heat source divided area that bears each heated surface area divided into n parts is obtained.
[0009]
Further, the invention according to claim 4 of the present invention is the method of manufacturing the reflector for radiant heating according to claim 2, wherein the direct radiation area ratio radiates infrared rays from a heat source arranged at a predetermined height. It desired the heated region area divided n such coaxially circular which is is characterized by the direct radiation area of the heat source is the area which is divided into n depending on the division of the heated surface.
[0010]
The invention according to claim 5 of the present invention is the method for manufacturing a reflector for radiant heating according to claim 2, wherein the indirect radiation area ratio is divided into n equal parts of the divided heat source band of the heat source and the It is calculated | required from the direct radiation area ratio, and is comprised by the process divided | segmented based on the indirect radiation area ratio from the hemispherical center part of the said heat source.
[0011]
Further, the invention according to claim 6 of the present invention is the method of manufacturing the reflector for radiant heating according to claim 2, wherein the step of obtaining the shape of the reflector reflects the respective radii of curvature as a continuous shape. It is characterized by comprising a step of obtaining the shape of the plate.
[0012]
As a result, according to the reflector manufactured by the manufacturing method according to the present invention, the infrared rays emitted from the heat source are converged on the heated surface area and radiated so that the radiation intensity is uniformly distributed. Make it possible.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for manufacturing a radiant heater and a reflector for a radiant heater, which are heating devices according to embodiments of the present invention, will be described with reference to FIGS.
[0014]
FIG. 1 shows a radiant heater according to a first embodiment of the present invention. This radiant heater is applied when the distance between the heat source and the object to be heated is relatively short. In FIG. 1, 10 is a reflector (reflective shade), 11 is a cover (upper lid), and this reflector 10 has an opening 12 on the bottom surface. Reference numeral 20 denotes a heat source disposed in the reflector 10, which is a heat radiator in which the heat radiation surface disposed in the cover 11 of the reflector 10 is formed in a hemispherical shape, and these reflector 10 and the heat radiator. A certain heat source 20 constitutes the radiant heater of the present invention. 30 is an object to be heated (heated surface area), and D is a width of the heated surface area where infrared rays are radiated from the heat source 20 provided at a predetermined height from the heated surface of the heated object 30. A certain heated surface diameter is shown. D0 is heated surface center point, D1, D2, D3, D4 are each divided points obtained by dividing n such a heated surface area concentric circle.
In FIG. 1 and FIG. 4 to be described later, what are generally indicated by reference signs XL and YL are enlarged numerical values (actual dimensions) displayed in the same reference numerals X and Y portions. Of course, these numerical values are examples of implementation.
[0015]
The reflector 10 of the radiant heater according to the first embodiment of the present invention is manufactured as shown in FIGS. That is, as shown in FIG. 2, a desired area to be heated where infrared rays T1 are radiated from the reflector 10 and the heat source 20 arranged at a predetermined height is divided into n concentric circles , and each diameter is divided. Di (D1, D2, D3, D4) is obtained.
[Formula 1]
Figure 0003792564
However, n indicates the number of divisions, and i = 1 to n.
In the above formula (1), the larger the n value, the more uniform the radiation intensity.
[0016]
Next, as shown in FIG. 3, the radiant heat source area of the hemispherical heat source 20 that is a heat radiator is divided. In order to divide the surface area of the hemispherical heat source into n, the radius r of the heat source 20 is divided into n equal parts. It can be considered that the surface areas of the n equal- divided circular bands are equal and the amount of infrared rays emitted is also equal. The area of heat source 20 to bear each circle zone of the heated surface region 30 divided n, etc., by the respective circular band heat source surface area divided n like, uniform radiation intensity is obtained.
[0017]
Next, the direct radiation area ratio hi of each heat source division zone divided into n equal parts of the heat source 20 is obtained. That is, the center 0 of the hemisphere heat source area as shown in FIG. 1, and each line connecting the center D0 crossing and n equipartition diameter point Di of the heated surface area 30 (i = 1~n), intersection of the heat source radius Is ri (i = 0 to n). Next, the direct radiation area ratio hi (i = 1 to n) of the heat source sphere for each divided region of the heated surface region 30 is obtained .
Further, the indirect radiation area ratio hi ′ of the heat source 20 is obtained. The indirect radiation area ratio hi ′ for each divided region of the heated surface region 30 is:
hi '= (r / n) -hi (2)
Is required. Above equation hi + hi '= a becomes constant (r / n), direct radiation area ratio hi and indirect radiation area ratio hi the same heat source of the heat source 20' the infrared rays emitted from the respective circular bands of the sum hi + hi 'with Irradiate each divided region of the heating surface region 30.
[0018]
Next, a hemispherical heat source of the indirect emission region more divided into indirect radiation area ratio Hi'~hn 'towards more base containing sphere centered on the heated surface area 30 side. Further, let ri '(r0' to rn ') be the intersection of the indirect radiation area ratio hi' dividing line and the heat source outer diameter.
[0019]
Finally, as shown in FIG. 1, the shape of the reflecting plate 10 having continuous curvature radii R1 to R4 is obtained. That is, one point r0 on the heat source 20 'infrared from (perpendicular) to reflections, reaches the center point D0 of the heated surface region 30, r1' reaches the infrared (perpendicular) of the heating zone D 1 point from A radius of curvature R1 of the reflecting plate 10 is obtained.
[0020]
Similarly, the curvature radii R2 to R4 are obtained. That is, dividing points r1 'infrared reaches the dividing points D 1, division points r2' infrared seek radius of curvature R2 that reaches the dividing point D 2. Then, division points r2 'infrared reaches the dividing point D 2, the dividing points r3' determined radius of curvature R3 which infrared reaches division points D 3, the infrared division points r3 'reaches the dividing points D 3 and, determining the radius of curvature R4 of infrared dividing point r4 'reaches the dividing point D 4. The shape of the reflecting plate 10 is obtained with the curvature radii R1 to R4 as a continuous shape. Thus the reflecting plate 10 obtained in the infrared rays emitted from the region of the heat source surface R0'~r4 ', it means that irradiating the outer peripheral end D 4 range from the center point D0 of the heated surface region 30.
[0021]
FIG. 4 shows a radiant heater according to a second embodiment of the present invention, in which the same or corresponding parts as those shown in FIGS. 1 to 3 are denoted by the same reference numerals. The radiant heater of the second embodiment is applied when the distance between the heated surface 30 and the heat source 20 is relatively long.
[0022]
As shown in FIG. 4, in the heater of the second embodiment, the cross section 10 includes a semi-elliptical part 10a and a cylindrical part 10b continuous to the semi-elliptical part 10a. A reflection plate 20 having a cover 11 (upper lid), 20 is a hemispherical heat radiator that is a heat source disposed in the reflection plate 10, and the reflection plate 10 and the heat radiator 20 constitute a heat radiation heater. . In the same manner as in the radiant heater of FIG. 1, a desired heated area surface D from which the infrared rays T1 are radiated from the reflector 10 and the heat source 20 arranged at a predetermined height is divided into n equal parts (D1 , D2, D3, D4, D5, D6, D7, D8, D9, D10, Dn).
[0023]
The reflector 10 of the radiant heater according to the second embodiment of the present invention is similar to the radiant heater according to the first embodiment shown in FIGS. 1 to 3, and receives infrared rays T1 from the heat source 20 arranged at a predetermined height. Is divided into n concentric circles to obtain the diameter of each of the desired heated surface area widths D from which the light is emitted.
[0024]
Furthermore, the radiant heat source area is divided. In order to divide the surface of the hemispherical heat source into n, the radius of the heat source 20 may be divided into n equal parts. It can be considered that the areas of each of the n equal- divided circular bands are equal, and the amount of infrared rays emitted from each circular band is also equal. heat source area to bear the respective circular bands of n equally divided heated surface is uniform radiation intensity is obtained by a respective circular band heat source surface area which is divided into n equal parts split.
[0025]
Next, the direct radiation area ratio hi of the heat source 20 is obtained. That is, the intersection of the heat source radius and the line connecting the center 0 of the hemispherical heat source area, the point D0 of the heated surface, and the n equally divided diameter point Di (i = 1 to n) and ri (i = 0 to n) To do. The direct radiation area ratio hi (i = 1 to n) of the heat source sphere for each divided region of the heated surface region 30 is obtained.
[0026]
Then, 'h i described above the' indirect radiation area ratio hi of the heat source 20 = determined from the (r / n) -hi.
The sum (hi + hi) of the direct radiation area ratio hi of the heat source 20 and the indirect radiation area ratio h 'of the same heat source is constant, so that the infrared rays radiated from the circular bands of hi + hi' are irradiated to each divided region of the heated surface. To.
The hemispherical heat source in the indirect radiation region is divided into hi ′ to hn ′ from the bottom including the center of the sphere toward the surface to be heated.
[0027]
Finally, the shape of the reflector 10 is obtained. A reflector shape in which the radii of curvature R1 to R10 are continuous is obtained. 1 point r0 on the heat source 20 reflector shape 'infrared perpendicular from is reflected to reach the center point D0 of the heated area, at the same time dividing points r1' infrared rays from reaches the heated area dividing points D 1 (Radius) R1 is obtained. Similarly, reflector shape (radius) dimensions R2 to R10 are obtained. Division point r1 'infrared reaches the dividing points D 1, division points r2' infrared seek radius of curvature R2 that reaches the dividing point D 2. Dividing points r2 'infrared reaches the dividing point D 2, the dividing points r3' infrared is determined radius of curvature R3 which reaches the dividing points D 3, repeated below, the infrared division point D 10 of r 10 ' Find the radius of curvature R10 to reach. Next, the shape of the reflecting plate 10 is obtained with the curvature radii R1 to R10 as a continuous shape. Thus the reflecting plate 10 obtained is meant to irradiate the infrared rays emitted from the region 'to r10' heat source surface r0, the outer peripheral end D 10 range from the center point D0 of the heating region.
[0028]
Further, according to the present invention, with FIG open end 12 in the cross-sectional semi-elliptical shape having a continuous curvature radius shown in (A) is in place of the reflecting plate 10 of a circular, open end shown in FIG. 5 (B) The portion 12 may be a quadrangular cylinder, or the opening end 12 may be a polygonal cylinder such as a hexagon as shown in FIG.
[0029]
Furthermore, according to the present invention, as shown in FIG. 6 (A), the shape of the reflecting plate 10 is a hollow ellipsoid, and the heat source 20 is replaced with a hemispherical shape. The hemispherical heat source 20c or 20d separated from the apex of the reflector 10 may be used as shown in FIG.
[0030]
Further, according to the present invention, instead of the semi-elliptical reflecting plate 10 having a continuous radius of curvature shown in FIG. 7, a polygonal reflecting plate 10c combined with a linear shape may be used.
[0031]
According to the present invention, the installation of a radiant heater can be implemented as if it were an installation of lighting, and the required input is reduced to about 1/3 to 1/5 that of a conventional radiant heater by suppressing the diffusion of infrared rays into unnecessary areas. Can be realized. Possible applications of the radiant heater manufactured according to the present invention include partial heating in severe cold outdoors (airplane engine outdoor maintenance), snow melting (sidewalks, railway branching points, intersections), non-destructive inspection of concrete inner surfaces, and various dry radiation. There are a heater, various spot heaters, a bathroom for the elderly care center and so on.
[0032]
In the present invention, only the spot-shaped plate that is configured to be symmetrical with respect to the entirety of the reflector is described. However, by the same manufacturing method, the entire reflector is formed into a substantially U-shaped saddle shape having a horizontally long cross section. It can also be deployed as an elongated heater.
[0033]
【The invention's effect】
As described above, according to the manufacturing method of the radiant heater and the reflector for the radiant heater according to the present invention, the heat source radiation radiated from the heat source can be converged to the intended region, and the infrared rays are heated. It is possible to provide a small, yet highly efficient, energy-saving radiant heater that irradiates a target object uniformly and has a radiant intensity uniformly distributed on a surface to be heated, and a reflector thereof.
[Brief description of the drawings]
FIG. 1 is a manufacturing diagram of a radiant heater according to a first embodiment of the present invention.
FIG. 2 is a manufacturing process diagram of a reflector for a radiant heater according to the first embodiment of the present invention.
FIG. 3 is a manufacturing process diagram of a reflector for a radiant heater according to the first embodiment of the present invention.
FIG. 4 is a manufacturing process diagram of a reflector for a radiant heater according to a second embodiment of the present invention.
FIG. 5 is a schematic view of a reflector for a radiant heater to which the present invention can be applied.
FIG. 6 is a schematic view of a heat source for a radiant heater to which the present invention can be applied.
FIG. 7 is a schematic view of a reflector for a radiant heater to which the present invention can be applied.
FIG. 8 is a schematic view showing various forms of a conventional radiant heater.
FIG. 9 is a schematic view showing another example of a conventional radiant heater.
FIG. 10 is an explanatory diagram showing an example using a conventional radiant heater.
FIG. 11 is a characteristic diagram showing a thermal radiation intensity distribution of a conventional radiant heater.
[Explanation of symbols]
10 reflector 20 heat source (heat radiator)
30 Object to be heated (area to be heated)

Claims (6)

赤外線を発生する熱放射面を半球状に形成した熱源と、該熱源から放射される赤外線の少くとも一部を反射する反射板からなり、前記熱源から放射される赤外線によって被加熱面領域を加熱する放射暖房機であって、
上記の反射板を、上記熱源に近接した部位から、熱源から放射された赤外線の全てを外部に放出する形状に造る一方、上記被加熱面領域をn分割して、n分割された個々の領域を負担する熱源面積割合を等しく構成し、且つ、上記反射板の全体を軸対称に構成したことを特徴とする放射暖房機。
It consists of a heat source in which a heat radiation surface for generating infrared rays is formed in a hemispherical shape and a reflector that reflects at least part of the infrared rays emitted from the heat source, and heats the surface to be heated by infrared rays emitted from the heat source. A radiant heating machine,
The reflector is formed into a shape that emits all of the infrared rays emitted from the heat source from a portion close to the heat source to the outside, while the surface area to be heated is divided into n equal parts and divided into n equal parts. A radiant heater characterized in that the heat source area ratio that bears the region is configured to be equal, and the entire reflection plate is configured to be axially symmetric.
赤外線を発生する熱放射面を半球状に形成した熱源と、該熱源から放射される赤外線の少くとも一部を反射する反射板からなり、前記熱源から放射される赤外線によって被加熱面領域を加熱する放射暖房機に用いる反射板の製作方法であって、
前記熱源の表面積をn分割して、n分割された熱源帯を求める工程と、
前記熱源から前記被加熱面領域に直接放射される直接照射領域を求め、該被加熱領域面積を同芯円状に分割し、且つ、該熱源の直接放射領域を被加熱面分割に応じて分割して直接放射面積割合を求める工程と、
前記直接放射面積割合と前記分割熱源帯より、前記熱源から前記反射板によって反射されるべき間接放射面積割合を求める工程と、
前記直接放射面積割合と間接放射面積割合を基に間接照射用反射板の各曲率半径を求め、該各曲率半径を基に前記反射板の形状を求める工程、
から成ることを特徴とする放射暖房機用反射板の製作方法。
It consists of a heat source in which a heat radiation surface for generating infrared rays is formed in a hemispherical shape and a reflector that reflects at least part of the infrared rays emitted from the heat source, and heats the surface to be heated by infrared rays emitted from the heat source. A method of manufacturing a reflector used in a radiant heater,
Dividing the surface area of the heat source into n equal parts to obtain a heat source band divided into n equal parts;
Seeking a direct irradiated region which is directly radiated to the heated surface area from the heat source, the the heated region area divided n such coaxially circular, and, according to direct radiation area of the heat source to the heated surface divided A step of directly dividing n to obtain a direct radiation area ratio;
From the direct radiation area ratio and the divided heat source zone, obtaining an indirect radiation area ratio to be reflected by the reflector from the heat source;
Obtaining each curvature radius of the reflector for indirect irradiation based on the direct radiation area ratio and the indirect radiation area ratio, and determining the shape of the reflector based on the curvature radius;
A manufacturing method of a reflector for a radiant heater, comprising:
前記n分割された熱源帯を求める工程が、熱源が半球体であって、該半球体の半径をn分割することによって、n等分割された個々の領域を負担する熱源分割領域を求めることを特徴とする請求項2に記載の放射暖房機用反射板の製作方法。The step of obtaining the n equal- divided heat source band is to obtain a heat source divided region that bears each of the n equally divided regions by dividing the radius of the hemisphere into n equal parts. The manufacturing method of the reflecting plate for radiant heaters of Claim 2 characterized by the above-mentioned. 前記直接放射面積割合が、所定の高さに配置された熱源から赤外線が放射される所望の被加熱領域面積を同芯円状に分割し、前記熱源の直接放射領域を被加熱面の分割に応じて分割された面積であることを特徴とする請求項2に記載の放射暖房機用反射板の製作方法。The direct radiation area ratio is divided into n equal parts in a concentric circle to a desired heated area where infrared rays are radiated from a heat source arranged at a predetermined height, and the direct radiation area of the heat source is 3. The method for manufacturing a reflector for a radiant heater according to claim 2, wherein the area is divided into n according to the division. 前記間接放射面積割合が、前記n分割された熱源の分割熱源帯と前記直接放射面積割合より求められ、前記熱源の半球状体中心部から間接放射面積割合を基に分割する工程によって構成されていることを特徴とする請求項2に記載の放射暖房機用反射板の製作方法。The indirect radiation area ratio is obtained from the divided heat source zone of the heat source divided into n equal parts and the direct radiation area ratio, and is configured by dividing the indirect radiation area ratio from the center of the hemispherical body of the heat source. The manufacturing method of the reflecting plate for radiant heating machines of Claim 2 characterized by the above-mentioned. 前記反射板の形状を求める工程が、前記各曲率半径を連続した形状として反射板の形状を求める工程によって構成されていることを特徴とする請求項2に記載の放射暖房機用反射板の製作方法。  The process of obtaining the shape of the reflector plate is configured by the step of obtaining the shape of the reflector plate with the respective radii of curvature being continuous, and manufacturing the reflector plate for a radiant heater according to claim 2. Method.
JP2001350061A 2001-11-15 2001-11-15 Radiant heater and method of manufacturing reflector for radiant heater Expired - Fee Related JP3792564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350061A JP3792564B2 (en) 2001-11-15 2001-11-15 Radiant heater and method of manufacturing reflector for radiant heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350061A JP3792564B2 (en) 2001-11-15 2001-11-15 Radiant heater and method of manufacturing reflector for radiant heater

Publications (2)

Publication Number Publication Date
JP2003148748A JP2003148748A (en) 2003-05-21
JP3792564B2 true JP3792564B2 (en) 2006-07-05

Family

ID=19162641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350061A Expired - Fee Related JP3792564B2 (en) 2001-11-15 2001-11-15 Radiant heater and method of manufacturing reflector for radiant heater

Country Status (1)

Country Link
JP (1) JP3792564B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9742593B2 (en) 2015-12-16 2017-08-22 Kumu Networks, Inc. Systems and methods for adaptively-tuned digital self-interference cancellation
US10103774B1 (en) 2017-03-27 2018-10-16 Kumu Networks, Inc. Systems and methods for intelligently-tuned digital self-interference cancellation
CN111771345B (en) 2018-02-27 2021-08-31 库姆网络公司 System and method for configurable hybrid self-interference cancellation
US10868661B2 (en) 2019-03-14 2020-12-15 Kumu Networks, Inc. Systems and methods for efficiently-transformed digital self-interference cancellation

Also Published As

Publication number Publication date
JP2003148748A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
CA2641343C (en) Combined radiator and lighting assembly
US7212735B2 (en) Infrared ray lamp, heating apparatus using the same, method for manufacturing a heating element, and method for manufacturing an infrared ray lamp
JP3792564B2 (en) Radiant heater and method of manufacturing reflector for radiant heater
WO2014118724A2 (en) Infrared furnace, infrared heating method and steel plate manufactured by using the same
US7278418B2 (en) Radiant heat deflector assembly
US1926473A (en) Heating stove
JP2016516616A (en) Heating system for PET preform
CA2776393C (en) Combined radiator and remote control and switch apparatus and lighting assembly
NL1029363C2 (en) Reflector heat bulb with uniform radiation.
US20070199564A1 (en) Heater for use in an agricultural house
US2363374A (en) Lamp shade
JP2002147766A (en) Electric radiation heater
JP2958888B1 (en) Improved structure of far infrared heater
KR200350610Y1 (en) Far infrared ray irradiating tube type heater having fins
JP6926437B2 (en) Heating device
SU1455394A1 (en) Ir electric heater
JPH0588086A (en) Involute type reflecting plate
KR101109135B1 (en) Far infrared ray irradiating tube type heater
US20200359591A1 (en) System and method for heating animals
RU2326529C2 (en) Method of local heating using gas ir-burners in domestic animal and poultry growing technologies
JP2023068879A (en) Snow-melting apparatus
JPH0221725Y2 (en)
US20030141290A1 (en) Lightwave oven with elliptical-parabolic lamp reflector
JP2020136255A (en) Reflection efficiency improvement type reflection plate structure
KR20220106388A (en) air-conditioning and heating equipment by the far infrared ray radiation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees