JP3792248B1 - Soil infiltration water purification system - Google Patents
Soil infiltration water purification system Download PDFInfo
- Publication number
- JP3792248B1 JP3792248B1 JP2005200042A JP2005200042A JP3792248B1 JP 3792248 B1 JP3792248 B1 JP 3792248B1 JP 2005200042 A JP2005200042 A JP 2005200042A JP 2005200042 A JP2005200042 A JP 2005200042A JP 3792248 B1 JP3792248 B1 JP 3792248B1
- Authority
- JP
- Japan
- Prior art keywords
- soil
- water purification
- soil layer
- layer
- filter medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Treatment Of Biological Wastes In General (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
【課題】 土壌浸透浄化法において、土壌層内の空隙を確保し、土壌の透水性を維持することで、長期使用に耐える実用的な処理排水処理装置を提供する。
【解決手段】 土壌浸透式水質浄化装置1内に収容された土壌層2に、その上部から処理排水を散水させて浄化する。土壌層2は火山灰土壌等の土壌4を含有する。土壌層2の圧密を防止するため、複数の通路を有する中空骨格形状の成形ろ材5を土壌層中に混合させる。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a practical treatment wastewater treatment apparatus that can withstand long-term use by ensuring voids in a soil layer and maintaining soil permeability in a soil permeation purification method.
SOLUTION A treated wastewater is sprinkled from a top of a soil layer 2 accommodated in a soil infiltration type water purification device 1 for purification. The soil layer 2 contains soil 4 such as volcanic ash soil. In order to prevent consolidation of the soil layer 2, a hollow skeleton-shaped molded filter medium 5 having a plurality of passages is mixed into the soil layer.
[Selection] Figure 1
Description
本発明は、土壌浸透式水質浄化装置の土壌浸透浄化槽内に、水浄化機能を有する土壌、例えば、灰色土、黒色土、赤色土、黒ボク土、褐色森林土、鹿沼土、赤玉土、まさ土、軽石、シラス土等の火山灰系土壌層、粘土質土壌層、浄水汚泥の土壌層等を設け、畜産排水、工場排水、下水の二次処理排水や汚濁した河川水及び水路水等に含有するBODやリンを除去するための土壌浸透式水質浄化装置に関するものである。 The present invention provides a soil permeation purification tank of a soil permeation type water purification device, a soil having a water purification function, such as gray soil, black soil, red soil, black soil, brown forest soil, Kanuma soil, Akadama soil, Masa Established volcanic ash-based soil layer such as soil, pumice and shirasu soil, clay soil layer, soil layer of purified water sludge, etc. contained in livestock drainage, factory wastewater, secondary treatment wastewater, polluted river water and channel water, etc. The present invention relates to a soil infiltration type water purification device for removing BOD and phosphorus.
従来から処理排水を黒ボク土、赤玉土、鹿沼土など火山灰土壌に接触させて処理する土壌浸透浄化法において、土壌に生息する微生物によるBODの分解や土壌のリン吸着などによって浄化処理する方法が知られている。 Conventionally, in the soil infiltration purification method that treats treated wastewater by contacting it with volcanic ash soil such as black soil, akadama soil, and kanuma soil, there is a method for purification treatment by decomposition of BOD by microorganisms inhabiting soil or adsorption of soil phosphorus Are known.
これは、浸孔を設けたパイプなどを散水管としこの周りを礫層で囲んだもので、処理排水を浄化処理した処理水は地下に浸透させたり、槽内に土壌を充填したものにあっては槽の下部から排出するものである。この土壌浸透浄化法は、自然の機構をほぼそのまま利用できるので資源やエネルギーの節約を図れる、装置構造が簡単で済む、悪臭や害虫の発生がない、維持管理の手間が少なくそのコストも低くて済む等々の他の浄化方法にない多くの利点を持っている。 This is a pipe with an immersion hole, etc., surrounded by a gravel layer, and treated water that has been treated with purified wastewater is infiltrated into the basement or filled with soil in the tank. Is discharged from the bottom of the tank. This soil permeation purification method can use natural mechanisms almost as it is, so it can save resources and energy, the device structure is simple, there is no generation of bad odors and pests, and there is little maintenance and cost. It has many advantages over other purification methods such as ending.
しかしながら、この従来技術では、2つの点で問題があった。1つ目は、過大な負荷がかけられず、通常の通水負荷が50〜100L/m2・日であって、処理能力が低いことである。2つ目は、土壌層の目詰まりが起こり易いことである。そのため、大量の処理排水を処理するには広大な敷地面積を要し、さらに目詰まりを起こさせない様に処理排水を河川水等で希釈するなど、運転管理が難しいことである。 However, this conventional technique has problems in two respects. The first is that an excessive load is not applied, the normal water flow load is 50 to 100 L / m 2 · day, and the processing capacity is low. Second, clogging of the soil layer is likely to occur. For this reason, a large site area is required to treat a large amount of treated wastewater, and operation management is difficult such as diluting the treated wastewater with river water or the like so as not to cause clogging.
上記土壌浸透法の問題点を改善させた方法として、土壌湿潤処理方法や多段土壌式土壌浸透浄化方法がある。 As methods for improving the problems of the soil infiltration method, there are a soil wet treatment method and a multi-stage soil type soil infiltration purification method.
土壌湿潤処理方法としては、例えば、下部土壌層の上に処理排水拡散層が敷設され、この処理排水拡散層の中央上部に通水装置が配設され、この通水装置の周囲に上部土壌層が設置された構成のものが知られている(特許文献1)。単なる散水管で土壌層に湿潤するだけでは、処理排水を土壌全体に均一に拡散湿潤させることが困難であり、その湿潤が集中した部位の土壌に偏って目詰まりが発生するため、この特許文献1に示すものでは、処理排水が、処理排水拡散層から下部土壌層の上面全体に均一に拡散湿潤して浄化処理されることを狙っている。しかし、目詰まりを防止する点において、不十分であった。 As a soil wet treatment method, for example, a treated drainage diffusion layer is laid on the lower soil layer, and a water flow device is disposed at the upper center of the treated wastewater diffusion layer, and the upper soil layer is surrounded around the water flow device. The thing of the structure where this was installed is known (patent document 1). It is difficult to diffuse and wet the treated wastewater uniformly throughout the soil simply by wetting the soil layer with a simple water pipe, and clogging occurs in the soil where the wetness is concentrated. In what is shown in 1, the treated waste water is aimed to be diffused and wetted uniformly from the treated waste water diffusion layer to the entire upper surface of the lower soil layer and purified. However, it was insufficient in terms of preventing clogging.
また、多段土壌式土壌浸透浄化方法としては、砂利、ゼオライト、軽石、活性炭等の通水性粒体層と黒ボク土、赤土、まさ土、鹿沼土などの自然土壌からなる土壌含有層とが交互に積層したレンガ状の土壌層(多段土壌)とし、この土壌層の上部に処理すべき処理排水を散水させるようにしたものである(特許文献2、3)。 As a multi-stage soil type soil permeation purification method, water-permeable granular layers such as gravel, zeolite, pumice and activated carbon and soil-containing layers consisting of natural soil such as black soil, red soil, Masa soil and Kanuma soil are alternately used. Brick-like soil layer (multi-stage soil) laminated on the soil layer, and treated wastewater to be treated is sprinkled on the upper part of the soil layer (Patent Documents 2 and 3).
大部分の処理排水は水が浸透しやすい通水性粒体中を蛇行しながら流下し、一部は透水し難い土壌層を流下することで、処理排水と各層との接触時間は長くなり、微生物による浄化が良好となり、目詰まりの原因となる有機物は微生物分解を受け、土壌含有層の目詰まりが防止されることを狙ったものである。 Most of the treated wastewater flows while meandering through the water-permeable particles where water easily penetrates, and part of the treated wastewater flows through a soil layer that is difficult to permeate, so that the contact time between the treated wastewater and each layer becomes longer, and microorganisms It aims to prevent the clogging of the soil-containing layer, because the organic matter that causes the clogging is improved, and the organic matter that causes clogging is subjected to microbial decomposition.
この多段土壌法は、好気的な通水性粒体層と嫌気的な土壌含有層の分化を促進して、有機物、窒素、リンの除去能を向上させる特長を有するものであって、この多段式土壌浄化技術により、土壌浄化装置は、下水やし尿の一次、二次処理排水、生活雑排水などの処理排水、更には汚濁河川水などの用水を効率的かつ比較的高速に浄化できる装置として実用化されている。
しかしながら、この上記土壌湿潤処理方法や多段式土壌浄化方法においても、従来の土壌浸透浄化法に比べれば影響は少ないが、やはり土壌層での目詰まりの問題が発生する結果となっており、この目詰まり対策が強く望まれている。 However, even in the above-mentioned soil wet treatment method and multi-stage soil purification method, although there is less influence compared with the conventional soil infiltration purification method, it still results in the problem of clogging in the soil layer. Countermeasures against clogging are strongly desired.
以下、土壌浄化における目詰まりのメカニズムについて説明する。土壌層内で浄化が行われる場所は、大小さまざまな土粒子間の空隙内である。処理排水がこの空隙を浸透・通過して行く際に、土壌粒子表面にさまざまな無機物、有機物が保持され、ろ過・吸着・凝固等の物理化学的反応が行われる。主としてこの空隙内が微生物群の生活圏となって生物分解が行われ、処理排水を浄化処理することとなる。このことは、土壌層に一定の空隙が確保されないと浄化機能が維持できなくことを意味する。 Hereinafter, the mechanism of clogging in soil purification will be described. The place where purification takes place in the soil layer is in the voids between large and small soil particles. When the treated wastewater penetrates and passes through the voids, various inorganic and organic substances are retained on the surface of the soil particles, and physicochemical reactions such as filtration, adsorption, and solidification occur. This void mainly becomes the living area of the microorganism group, biodegradation is performed, and the treated wastewater is purified. This means that the purification function cannot be maintained unless a certain void is secured in the soil layer.
また、土壌層は経時的に土壌の圧密化が進み、土壌の透水係数は著しく低くなってしまい、目詰まりを招く。 In addition, the soil layer becomes more compacted over time, and the soil hydraulic conductivity becomes extremely low, leading to clogging.
本発明の課題は、現在その土壌層構造が問題になっている土壌浸透浄化法において、土壌層内の空隙を確保し、土壌の透水性を維持することで、長期使用に耐える実用的な水質浄化装置を提供することにある。 The object of the present invention is to provide a practical water quality that can withstand long-term use by ensuring voids in the soil layer and maintaining the water permeability of the soil in the soil permeation purification method in which the soil layer structure is currently a problem. It is to provide a purification device.
本発明は、上記に鑑み開発されたもので、即ち、水質浄化機能を有する土壌層が設けられた土壌浸透式水質浄化装置において、土壌層の閉塞、圧密防止及び空隙確保を図る成形ろ材を土壌層内に混合させることで、土壌層自体の透水性が維持でき、水質浄化機能を十分に発揮できることが判明して本発明に至った。 The present invention was developed in view of the above, that is, in a soil infiltration type water purification apparatus provided with a soil layer having a water purification function, a molded filter medium for blocking the soil layer, preventing compaction, and securing a void is used as the soil. By mixing in the layer, it was found that the water permeability of the soil layer itself can be maintained and the water purification function can be sufficiently exhibited, and the present invention has been achieved.
具体的には、請求項1に記載の発明は、土壌浸透式水質浄化装置内に収容された土壌層に、その上部から処理排水を散水させて浄化した後土壌層下部から排水するようにした土壌浸透式水質浄化装置において、上記土壌層は、粒径が50mm以下の土壌を含有し、さらに、複数の通路を有する中空骨格形状であって、プラスチック製の成形ろ材を土壌層中に混合させて土壌層の透水性を維持するようにしたことを特徴とする。 Specifically, in the invention according to claim 1, the soil layer accommodated in the soil infiltration water purification apparatus is drained from the lower part of the soil layer after being sprayed and purified by spraying treated wastewater from the upper part. In the soil infiltration water purification apparatus, the soil layer contains soil having a particle size of 50 mm or less, and further has a hollow skeleton shape having a plurality of passages, and a plastic molded filter medium is mixed into the soil layer. It is characterized by maintaining the water permeability of the soil layer .
請求項2に記載の発明は、請求項1に記載の土壌浸透式水質浄化装置において、プラスチック製成形ろ材が土壌層全体に混合配設され、土壌層全体の空隙を継続して確保するようにしたことを特徴とする。 The invention according to claim 2 is the soil infiltration type water purification apparatus according to claim 1, wherein the plastic molded filter medium is mixed and disposed in the entire soil layer, and the void in the entire soil layer is continuously secured. characterized in that it was.
請求項3に記載の発明は、請求項1又は2に記載の土壌浸透式水質浄化装置において、上記成形ろ材の外径が5〜20cmの範囲であって、成形ろ材の充填量が土壌層の容積比で10〜80%の範囲であることを特徴とする。 The invention described in claim 3 is the soil osmotic water purification device according to claim 1 or 2, in a range outside diameter of 5~20cm of the forming filter material, loading of forming shaped filter medium soil layer wherein the range der Rukoto of 10% to 80% by volume of.
請求項4に記載の発明は、請求項1ないし3のいずれか1に記載の土壌浸透式水質浄化装置において、上記成形ろ材は、土壌が内部に進入可能な中空球状または中空骨格塊状の形状からなり、外径が5〜20cmの範囲で、該成形ろ材の充填量が土壌層の容積比で10〜80%の範囲で、さらに土壌の充填量が土壌層の容積比で40〜90%の範囲であることを特徴とする。 A fourth aspect of the present invention is the soil infiltration water purification apparatus according to any one of the first to third aspects, wherein the molded filter medium has a hollow spherical shape or a hollow skeleton lump shape into which soil can enter. And the outer diameter is in the range of 5 to 20 cm, the filling amount of the shaped filter medium is in the range of 10 to 80% by the volume ratio of the soil layer, and the soil filling amount is 40 to 90% in the volume ratio of the soil layer. It is a range.
請求項5に記載の発明は、請求項1ないし4のいずれか1に記載の土壌浸透式水質浄化装置において、上記土壌層の透水係数が1×10-2cm/s〜1cm/s であることを特徴とする。 A fifth aspect of the present invention is the soil permeation type water purification apparatus according to any one of the first to fourth aspects, wherein the water permeability coefficient of the soil layer is 1 × 10 −2 cm / s to 1 cm / s 2. It is characterized by that.
請求項6に記載の発明は、請求項1ないし5のいずれか1に記載の土壌浸透式水質浄化装置において、上記成形ろ材には、複数の貫通孔が同一方向に開口して形成され、複数の貫通孔は補強リブで連結されていることを特徴とする。 The invention according to claim 6 is the soil permeation type water purification device according to any one of claims 1 to 5 , wherein the molded filter medium is formed with a plurality of through holes opened in the same direction , The plurality of through holes are connected by reinforcing ribs .
請求項7に記載の発明は、請求項1ないし5のいずれか1に記載の土壌浸透式水質浄化装置において、上記成形ろ材には、複数の貫通孔が開口して形成され、上記複数の貫通孔は補強リブで連結され、少なくとも一部の貫通孔は、その貫通孔を形成する壁部に開口部が形成され隣接する貫通孔に連通され、また一部の貫通孔は、貫通方向で途中まで同一径でその後開放されている形状となっていることを特徴とする。
A seventh aspect of the present invention is the soil infiltration water purification apparatus according to any one of the first to fifth aspects, wherein the molded filter medium is formed with a plurality of through holes, and the plurality of through holes The holes are connected by reinforcing ribs, and at least some of the through holes have openings formed in the wall portions forming the through holes and communicate with adjacent through holes, and some of the through holes are halfway in the penetration direction. It is characterized by having a shape that is open after that with the same diameter.
請求項8に記載の発明は、請求項1ないし7のいずれか1に記載の土壌浸透式水質浄化装置において、上記土壌浸透式水質浄化装置の上部位置に処理排水流入口が設けられ、その下部位置には、上記処理排水が浄化された処理水が排出される処理水排出口が設けられ、上記処理排水流入口と処理水排出口との間に土壌層を支持する支持体を備え、該支持体の下部に空気を供給する送気管を備えることを特徴とする。 The invention according to claim 8 is the soil infiltration type water purification device according to any one of claims 1 to 7 , wherein a treatment drainage inlet is provided at an upper position of the soil infiltration type water purification device, and a lower part thereof. In the position, a treated water discharge port for discharging treated water from which the treated waste water has been purified is provided, and a support for supporting a soil layer is provided between the treated waste water inlet and the treated water discharge port, An air supply pipe for supplying air to the lower part of the support is provided.
請求項9に記載の発明は、請求項8に記載の土壌浸透式水質浄化装置において、上記送気管には、外気温が低い時に空気の供給を停止させる制御手段を有することを特徴とする。 According to a ninth aspect of the present invention, in the soil infiltration water purification apparatus according to the eighth aspect , the air supply pipe has a control means for stopping the supply of air when the outside air temperature is low.
請求項1に記載の発明によれば、成形ろ材が土壌層の閉塞、圧密化を防止でき、土壌層全体に均一な空隙が確保され、処理排水が土壌層全体に均一に浸透することによって、処理排水と浄化能力を有する土壌との接触効率が高くなり、リン、BOD等の除去を効率よく行うことができる。 According to the invention described in claim 1, the molded filter medium can prevent the soil layer from being blocked and consolidated, a uniform void is ensured throughout the soil layer, and the treated wastewater penetrates uniformly throughout the soil layer. The contact efficiency between the treated waste water and the soil having the purification ability is increased, and phosphorus, BOD, and the like can be efficiently removed.
請求項2に記載の発明によれば、土壌層全体に均一な空隙が確保され、土壌層全体の透水性を維持でき、処理排水が土壌層全体に均一に浸透することによって、処理排水と土壌との接触効率が高くなり、BOD、COD、色度及びリン等の除去を効率よく行うことができる。 According to the invention described in claim 2, a uniform gap throughout the soil壌層is secured, to maintain the permeability of the whole soil layer, by the wastewater is uniformly penetrate the entire soil layer, and wastewater The contact efficiency with soil is increased, and removal of BOD, COD, chromaticity, phosphorus, and the like can be performed efficiently.
請求項3に記載の発明によれば、土壌層に所定量の成形ろ材と土壌を混成することによって、土壌層の透水性を維持できる。 According to invention of Claim 3, the water permeability of a soil layer is maintainable by hybridizing a predetermined amount of shaping | molding filter medium and soil to a soil layer.
請求項4に記載の発明によれば、土壌層に所定量の成形ろ材と土壌を混成することによって、土壌層の透水性を維持できる。 According to invention of Claim 4 , the water permeability of a soil layer is maintainable by hybridizing a predetermined amount of shaping | molding filter medium and soil to a soil layer.
請求項5に記載の発明によれば、処理排水を安定的に土壌層に流下させることができる。 According to invention of Claim 5 , a treated waste water can be stably flowed down to a soil layer.
請求項6に記載の発明によれば、成形ろ材が潰されることを防止し、且つ土壌が圧密化することが防止できるので、透水性を長期間に亘って維持できる。 According to the sixth aspect of the invention, the molded filter medium can be prevented from being crushed and the soil can be prevented from being consolidated, so that the water permeability can be maintained over a long period of time.
請求項7に記載の発明によれば、成形ろ材が潰されることを効果的に防止でき、且つ土壌が圧密化することが効果的に防止できるので、透水性をより長期間に亘って維持できる。 According to the seventh aspect of the present invention, the molded filter medium can be effectively prevented from being crushed and the soil can be effectively prevented from being consolidated, so that the water permeability can be maintained for a longer period of time. .
請求項8に記載の発明によれば、土壌層下部から土壌層全体に空気を供給することによって、土壌層を好気的条件にすることができる。 According to invention of Claim 8 , a soil layer can be made into an aerobic condition by supplying air to the whole soil layer from the soil layer lower part.
請求項9によれば、外気温度の低い冬場においても、外気による土壌層の温度の低下を防止し、土壌層での処理を四季を通じて年中、効果的に機能させることができる。 According to the ninth aspect , even in winter when the outside air temperature is low, the temperature of the soil layer can be prevented from lowering due to the outside air, and the treatment in the soil layer can be effectively functioned throughout the year through the four seasons.
(実施形態1)
実施形態1に係る土壌浸透式水質浄化装置1は、図1に示すように、土壌浸透式水質浄化装置1内に土壌層2が設けられ、この土壌層2を支持する通水性を有する支持体3が設けられている。土壌層2は土壌4を含有し、この土壌層2中にプラスチック製の成形ろ材5が混合して配設されている。土壌層2の上部に処理排水供給用の散水ノズル6が配設されている。支持体3の下部には、土壌層2を浸透した処理水を排出する排出管7が配設され、微生物に活性を与えるための空気を供給する送気管8が配設されている。9は送気用ポンプである。
(Embodiment 1)
As shown in FIG. 1, the soil permeation type water purification device 1 according to Embodiment 1 includes a soil layer 2 provided in the soil permeation type water purification device 1, and a water-permeable support that supports the soil layer 2. 3 is provided. The soil layer 2 contains soil 4, and a plastic molded filter medium 5 is mixed and disposed in the soil layer 2. A watering nozzle 6 for supplying treated wastewater is disposed above the soil layer 2. A discharge pipe 7 that discharges treated water that has permeated through the soil layer 2 is disposed below the support 3, and an air supply pipe 8 that supplies air for activating microorganisms is disposed. Reference numeral 9 denotes an air supply pump.
なお、本実施形態1では、支持体3の下部は空間としたが、例えばφ5〜20cm程度の礫等、通気性が損なわれないものであれば、充填してもよい。 In the first embodiment, the lower portion of the support 3 is a space, but may be filled as long as the air permeability is not impaired, such as gravel having a diameter of about 5 to 20 cm.
土壌4は、灰色土、黒色土、赤色土、黒ボク土、褐色森林土、鹿沼土、赤玉土、軽石、シラス土等の土壌の1種又は2種以上を混合した火山灰系の自然土壌に限らず、有機物除去能力等の水浄化機能を有する土壌であれば、花崗岩等の風化に伴って形成された砂やまさ土、さらにゼオライト等の天然物などでも使用可である。自然土壌としては、浄水処理場で発生する汚泥等も水浄化機能を有する土壌であり、この浄化汚泥からなる土壌も使用可能である。また、人工的に製造した土壌などでも使用可である。但し、人工的に製造した土壌は、製造コストがかかるが、火山灰土壌は自然の土壌であり、製造コストが安く、入手も容易であるメリットを有するので、火山灰土壌が好ましい。 Soil 4 is a volcanic ash-based natural soil in which one or more of soils such as gray soil, black soil, red soil, black soil, brown forest soil, Kanuma soil, Akadama soil, pumice stone, and shirasu soil are mixed. Not only, but also soil having a water purification function such as organic substance removal ability can be used with sand and masa soil formed with weathering of granite or the like, and natural products such as zeolite. As natural soil, sludge generated at a water treatment plant is also a soil having a water purification function, and soil made of this purified sludge can also be used. It can also be used on artificially produced soil. However, although artificially manufactured soil is expensive to manufacture, volcanic ash soil is natural soil, and since it has the merit of low manufacturing cost and easy availability, volcanic ash soil is preferable.
また、成形ろ材5は、土壌4と一緒に土壌浸透式水質浄化装置1内の支持体3の上に投入する。成形ろ材5の土壌4に対する割合は、土壌量に比べて少なければ圧密防止効果が発揮されず、逆に多いと土壌4の量が少なくなり、土壌層2内で土壌によって保持できるリン等の吸着量や生息する微生物の量が少なくなるため、成形ろ材5の量は土壌4の形状、種類や通水負荷を考慮して適切に定める必要があるが、成形ろ材5の充填量は土壌層の容積比で10〜80%の範囲が適当である。好ましくは、30〜60%が良い。 Further, the molded filter medium 5 is put together with the soil 4 onto the support 3 in the soil infiltration water purification device 1. If the ratio of the shaped filter medium 5 to the soil 4 is small compared to the amount of soil, the effect of preventing consolidation will not be exerted. Conversely, if the amount is large, the amount of the soil 4 will decrease and adsorption of phosphorus etc. that can be held by the soil in the soil layer 2 The amount of the shaped filter medium 5 needs to be appropriately determined in consideration of the shape, type, and water flow load of the soil 4 because the amount and the amount of microorganisms that inhabit are reduced. A range of 10 to 80% by volume ratio is appropriate. Preferably, 30 to 60% is good.
なお、土壌層2中の全体に成形ろ材を混合して配設したが、圧密化が起き易い土壌層2の下層のみに成形ろ材を混合することもできる。 In addition, although the shaping | molding filter medium was mixed and arrange | positioned in the whole in the soil layer 2, a shaping | molding filter medium can also be mixed only in the lower layer of the soil layer 2 where consolidation tends to occur.
また、土壌層に充填する土壌の充填量は土壌層の容積比で40〜90%の範囲とすることが好ましい。土壌が少な過ぎると、土壌層2内で土壌によって保持できるリン等の吸着量や生息する微生物の量が少なくなり、逆に土壌が多すぎると、空隙が少なくなり、透水性が低下するので、上記範囲とする。特に、成形ろ材5の空隙内部には、部分的に土壌が流れ込んでいても良いが、この成形ろ材5の内部は全て土壌で埋められるのではなく、空隙を確保することが必要であり、土壌2と成形ろ材5とは、空隙を確保して混合される。 Moreover, it is preferable to make the filling amount of the soil with which a soil layer is filled into the range of 40 to 90% by the volume ratio of a soil layer. If the amount of soil is too small, the amount of adsorption of phosphorus and the like that can be held by the soil in the soil layer 2 and the amount of microorganisms that live in the soil will decrease. Conversely, if there is too much soil, the voids will decrease and the water permeability will decrease. Within the above range. In particular, the soil may partially flow into the voids of the shaped filter medium 5, but the inside of the molded filter medium 5 is not completely filled with soil, but it is necessary to secure voids. 2 and the molded filter medium 5 are mixed while ensuring a gap.
上記空隙を確保するために、土壌2と成形ろ材5を混合して土壌層2を形成した際に、土壌層2の透水係数は1×10-2cm/s〜1cm/sの範囲とすることが好ましい。透水係数が小さいと空隙が少なく土壌の圧密化か起こり、透水係数が大きいと空隙が多くて、浄化機能が不足するので、上記範囲とする。 When the soil layer 2 is formed by mixing the soil 2 and the molded filter medium 5 in order to secure the voids, the water permeability coefficient of the soil layer 2 is in the range of 1 × 10 −2 cm / s to 1 cm / s. It is preferable. If the permeability coefficient is small, there will be less voids and consolidation of the soil will occur. If the permeability coefficient is large, there will be more voids and the purification function will be insufficient.
また、成形ろ材5には、土壌層2に混入した際に、土壌や水によって長期的に安定して潰れない強度を有すること、また、その内部を土壌や水が通流でき、受入れた土壌が圧密にならないことが必要であり、その形状、大きさ、強度、素材等は以下の通りである。 In addition, when the molded filter medium 5 is mixed into the soil layer 2, the molded filter medium 5 has a strength that will not be crushed stably for a long time by the soil or water. It is necessary that the material does not become compact, and its shape, size, strength, material, etc. are as follows.
成形ろ材の形状は、極端な棒状や板状は不適であって、中空球状または中空骨格塊状が好ましい。成形ろ材の大きさは、土壌粒径よりも小さければ圧密防止の効果は少なくなるが、本発明で用いる土壌粒径は、50mm以下であることから、土壌粒径より大きい5〜20cmの球状であることが好ましい。強度は、土壌層2に混合しても変形せず、水に対して脆くなく、砕けたりしない程度であれば十分である。素材は、ポリプロピレン、ナイロン、塩化ビニル、アクリル等の化学製プラスチックが好ましいが、微生物によって分解されにくいものであれば、特に限定しない。 The shape of the molded filter medium is not suitable for extreme rods or plates, and is preferably a hollow sphere or a hollow skeleton. If the size of the molded filter medium is smaller than the soil particle size, the effect of preventing compaction will be reduced, but the soil particle size used in the present invention is 50 mm or less, so it has a spherical shape of 5 to 20 cm larger than the soil particle size. Preferably there is. The strength is sufficient as long as it does not deform even when mixed with the soil layer 2, is not brittle to water, and does not break. The material is preferably a chemical plastic such as polypropylene, nylon, vinyl chloride, or acrylic, but is not particularly limited as long as it is difficult to be decomposed by microorganisms.
実施形態1で使用したプラスチック成形ろ材5は、図3に示すような構造であり、市販(関西化工株式会社:商品名「MSフィラ」)されているポリプロピレン製で直径約5cmの骨格球状成形ろ材である。 The plastic molded filter medium 5 used in Embodiment 1 has a structure as shown in FIG. 3, and is a commercially available (Kansai Kako Co., Ltd .: trade name “MS filler”) made of polypropylene and having a skeleton spherical molded filter medium having a diameter of about 5 cm. It is.
図3(a)、図3(b)、図3(c)は成形ろ材5の具体的な構造を示す。図3(a)、(b)は側面図、図3(c)は斜視図を示す。具体的な構造は、4つの貫通孔51a、51b、51c、51dが貫通孔を形成する壁部51によって90°間隔で形成され、上記4つの貫通孔51a、51b、51c、51dは同一方向に開口されており、対向する2個の貫通孔51a及び51cは貫通孔の一端から長手方向略半分まで同じ径で形成され、残り半分は開放されている。一方、貫通孔51b及び51dも、貫通孔の他端から長手方向略半分まで同じ径で形成され、残り半分は開放されている。これら4つの貫通孔51a〜51dを形成する壁部51は長手方向中間位置に設けられた鞍型の連結プレート52で連結され一体化されている。さらに、対向する2つの貫通孔51aと51cを形成する壁部51同士は補強リブ53で連結されている。同じく2つの貫通孔51bと51dとを形成する壁部51同士も補強リブ53で連結されている。また、貫通孔51a〜51dを形成する壁部51と連結プレート52とは補強リブ54で連結されている。これらの連結構造により、強度を確保され、土壌の圧密化を防止している。4つの貫通孔51a〜51d、連結プレート52及び補強リブ54には、開口部55が形成され、水の通流路が確保される。 FIGS. 3A, 3 </ b> B, and 3 </ b> C show a specific structure of the shaped filter medium 5. 3A and 3B are side views, and FIG. 3C is a perspective view. Specifically, the four through holes 51a, 51b, 51c, 51d are formed at intervals of 90 ° by the wall part 51 forming the through holes, and the four through holes 51a, 51b, 51c, 51d are in the same direction. The two through-holes 51a and 51c facing each other are formed with the same diameter from one end of the through-hole to approximately half in the longitudinal direction, and the other half are open. On the other hand, the through holes 51b and 51d are also formed with the same diameter from the other end of the through hole to approximately half in the longitudinal direction, and the remaining half is open. The wall portions 51 forming these four through holes 51a to 51d are connected and integrated by a bowl-shaped connecting plate 52 provided at an intermediate position in the longitudinal direction. Furthermore, the wall portions 51 that form the two opposing through holes 51 a and 51 c are connected by a reinforcing rib 53. Similarly, the wall portions 51 that form the two through holes 51 b and 51 d are also connected by the reinforcing rib 53. The wall 51 forming the through holes 51 a to 51 d and the connecting plate 52 are connected by a reinforcing rib 54. With these connection structures, strength is ensured and soil compaction is prevented. Openings 55 are formed in the four through holes 51a to 51d, the connecting plate 52, and the reinforcing rib 54, and a water passage is ensured.
この成形ろ材5では、貫通孔51a〜51dは基本的に同じ方向に向けて設けられており、通流抵抗を少なくしている。その上で、連結プレート52及び補強リブ53、54を設けて成形ろ材5の潰れを防止するとともに、貫通孔を形成する壁部51、連結プレート52、補強リブ54に開口部55が形成されることで、部分的に連通可能となっており、土壌と処理排水との接触効率を向上するようになっている。 In this molded filter medium 5, the through holes 51a to 51d are basically provided in the same direction to reduce the flow resistance. In addition, the connecting plate 52 and the reinforcing ribs 53 and 54 are provided to prevent the molded filter medium 5 from being crushed, and openings 55 are formed in the wall portion 51, the connecting plate 52, and the reinforcing rib 54 that form the through holes. In this way, it is possible to partially communicate, and the contact efficiency between the soil and the treated waste water is improved.
図2に、上記成形ろ材5を土壌4に混合した土壌層2の模式図を示す。この鞍形を組合わせた表面積が広く、空隙率の高い形状である成形ろ材5を土壌層2に混合することによって、土壌の一部が成形ろ材5内に混入されても、成形ろ材5が形状を維持でき、成形ろ材5内の土壌の圧密化が防止できるので、成形ろ材5内の空隙内も通り易くなっている。そのために、処理排水は、成形ろ材5間も、成形ろ材5内の空隙も通流し易く、均等に土壌層2に浸透することができる。土壌層の空隙確保によって、処理排水と土壌の接触効率は向上し、多量の微生物を土壌に保持でき、また、リン等の土壌への吸着など、土壌浸透式水質浄化法の水質浄化機能を高めることができる。 In FIG. 2, the schematic diagram of the soil layer 2 which mixed the said shaping | molding filter medium 5 with the soil 4 is shown. Even if a part of the soil is mixed in the molded filter medium 5 by mixing the molded filter medium 5 having a large surface area combined with this bowl shape and a shape with a high porosity into the soil layer 2, the molded filter medium 5 Since the shape can be maintained and the consolidation of the soil in the molded filter medium 5 can be prevented, it is easy to pass through the voids in the molded filter medium 5. Therefore, the treated waste water can easily flow through the formed filter medium 5 and through the voids in the formed filter medium 5 and can penetrate into the soil layer 2 evenly. By ensuring the voids in the soil layer, the contact efficiency between the treated wastewater and the soil can be improved, a large amount of microorganisms can be retained in the soil, and the water purification function of the soil infiltration water purification method such as adsorption of phosphorus etc. on the soil is enhanced. be able to.
(実施形態2)
実施形態2の係る土壌浸透式水質浄化装置11を図4により説明する。本実施形態2では、幅0.85m×長さ1.3m×高さ2.5mの規模の土壌浸透式水質浄化装置11を用いた。土壌浸透式水質浄化装置11内に支持体13を設置し、この支持体13上に土壌層12を設けた。土壌層12は、嵩容積で800Lの黒ボク土の土壌14に、図5に示す骨格球状成形ろ材15を土壌層12の容積比で40%混合し、層高さ1m(有効容積1.1m3)の土壌層2を構成した。土壌層12の上部に処理排水供給用の散水ノズル16が配設されている。支持体13の下部位置には、土壌層12を流下した処理水を排出する排出管17が配設され、微生物に活性を与えるための空気を供給する送気管18が配設されている。送気用ポンプは省略した。20は、外気温が低い時に送気管18からの送気を止める制御装置を示す。
(Embodiment 2)
The soil permeation type water purification apparatus 11 according to Embodiment 2 will be described with reference to FIG. In the second embodiment, the soil infiltration water purification device 11 having a scale of width 0.85 m × length 1.3 m × height 2.5 m is used. A support 13 was installed in the soil infiltration water purification device 11, and a soil layer 12 was provided on the support 13. The soil layer 12 has a bulk volume of 800 L of black soil 14 mixed with 40% of the skeletal spherical shaped filter medium 15 shown in FIG. 5 in a volume ratio of the soil layer 12, and a layer height of 1 m (effective volume 1.1 m). 3 ) Soil layer 2 was constructed. A watering nozzle 16 for supplying treated wastewater is disposed above the soil layer 12. A discharge pipe 17 that discharges treated water flowing down the soil layer 12 is disposed at a lower position of the support 13, and an air supply pipe 18 that supplies air for activating microorganisms is disposed. The air pump was omitted. Reference numeral 20 denotes a control device that stops air supply from the air supply pipe 18 when the outside air temperature is low.
この実施形態2で使用した成形ろ材15は、図5に示されるように、市販(関西化工:商品名「MSボール」)されているポリプロピレン製で直径15cmの骨格球状成形ろ材15である。図5(a)は成形ろ材の正面図、図5(b)は側面図、図5(c)は斜視図を示す。球体の中央に貫通孔251aが貫通孔を形成する壁部251によって形成され、貫通孔251aの周囲には、貫通孔251aと間隔を空けて、貫通孔251aと同方向に一方側から4つの貫通孔252a、252b、252c、252dが貫通孔を形成する壁部252によって90°間隔で形成されている。他方側からは4つの貫通孔252e、252f、252g、252hが貫通孔252e〜252hを形成する壁部252によって90°間隔で、一方の貫通孔252a〜252dの間に位置して形成されている。一方側の4つの貫通孔252a〜252dは貫通方向の略半分の位置まで同一径で形成され、その後は開放され、他方側の4つの貫通孔252e〜252hは、反対側から略半分の位置まで同一径で形成され、その後は開放されている。8個の貫通孔252a〜252hを形成する壁部252は隣接する貫通孔を形成する壁部252と補強リブ253で連結され、中央の貫通孔251aを形成する壁部251とも補強リブ254で連結されている。補強リブ253、254と貫通孔251a、252a〜252hで形成される空間に上記貫通孔252a〜252hが通流可能に連通している。貫通孔252a〜252hを形成する壁部252には開口部255が形成され、水の通流路が確保される。貫通孔252a〜252hを形成する壁部252の内壁には、補強用のブリッジ256が一体で形成されている。 As shown in FIG. 5, the shaped filter medium 15 used in the second embodiment is a skeletal spherical shaped filter medium 15 made of polypropylene and having a diameter of 15 cm, which is commercially available (Kansai Kako: trade name “MS Ball”). Fig.5 (a) is a front view of a shaping | molding filter medium, FIG.5 (b) is a side view, FIG.5 (c) shows a perspective view. A through-hole 251a is formed in the center of the sphere by a wall portion 251 forming a through-hole. Around the through-hole 251a, there are four through-holes from one side in the same direction as the through-hole 251a, spaced from the through-hole 251a. Holes 252a, 252b, 252c, and 252d are formed at intervals of 90 ° by wall portions 252 that form through holes. From the other side, four through holes 252e, 252f, 252g, and 252h are formed at intervals of 90 ° by wall portions 252 forming the through holes 252e to 252h, and are positioned between the one through holes 252a to 252d. . The four through holes 252a to 252d on one side are formed with the same diameter up to approximately half of the penetrating direction, and then opened, and the four through holes 252e to 252h on the other side extend from the opposite side to approximately half of the position. They are formed with the same diameter, and then open. The wall portion 252 forming the eight through holes 252a to 252h is connected to the wall portion 252 forming the adjacent through hole by the reinforcing rib 253, and connected to the wall portion 251 forming the central through hole 251a by the reinforcing rib 254. Has been. The through holes 252a to 252h communicate with the spaces formed by the reinforcing ribs 253 and 254 and the through holes 251a and 252a to 252h so as to allow flow therethrough. An opening 255 is formed in the wall portion 252 forming the through holes 252a to 252h, and a water passage is ensured. A reinforcing bridge 256 is integrally formed on the inner wall of the wall portion 252 forming the through holes 252a to 252h.
この成形ろ材15では、貫通孔251a及び252a〜252hは基本的に同じ方向に向けて設けられており、通流抵抗を少なくしている。その上で、補強リブ253、254を設けて成形ろ材15の潰れを防止するとともに、隣接する貫通孔とも部分的に連通可能となっており、土壌と処理排水との接触効率を向上するようになっている。 In this molded filter medium 15, the through holes 251a and 252a to 252h are basically provided in the same direction to reduce the flow resistance. In addition, the reinforcing ribs 253 and 254 are provided to prevent the molded filter medium 15 from being crushed, and the adjacent through-holes can be partially communicated to improve the contact efficiency between the soil and the treated waste water. It has become.
本実施形態2では、土壌浸透式水質浄化装置1を、処理排水を上部の散水ノズル16から流して長期間使用しても、土壌層12が圧密化することが無く、透水性は良好に維持できた。その結果、処理排水中のBODも大幅に低減でき、処理排水を浄化できた。本実施形態2では、土壌層に適正容量の成形ろ材15を混入することで、成形ろ材15の強度が十分であって潰れることが無く、その上、土壌の圧密化を防止できて、通流性を維持できることを示している。 In the second embodiment, even if the soil permeation type water purification device 1 is used for a long time by flowing treated wastewater from the upper watering nozzle 16, the soil layer 12 is not consolidated and the water permeability is maintained well. did it. As a result, BOD in the treated wastewater could be greatly reduced, and the treated wastewater could be purified. In the second embodiment, by mixing the appropriate amount of the shaped filter medium 15 into the soil layer, the strength of the formed filter medium 15 is sufficient and will not be crushed. It shows that sex can be maintained.
なお、実施形態2では、土壌浸透式水質浄化装置11が大きい容積であり、成形ろ材15も大きなものを使用した。しかし、成形ろ材は実施形態1のものを使用しても良く、両成形ろ材を混合して使用しても良い。 In the second embodiment, the soil infiltration water purification device 11 has a large volume, and the molded filter medium 15 is large. However, the molded filter medium may be the one of the first embodiment, or a mixture of both molded filter mediums.
本実施形態2の土壌浸透式水質浄化装置11では、ブロワ(図示せず)から送気管18を経由して土壌層12内に空気を供給する構成となっており、この空気の供給を、外気温によって停止させる制御手段20を備えている。これによって、外気温が下がる冬季において、外気からの空気の供給を停止して、土壌層12内の温度ないしは水温の低下を防止できる。このことによって、表1に示すように、土壌層12内に生息する微生物群の活性を維持させることができる。表1に「空気の供給なし」と「空気供給あり」の水温、溶存酸素(DO)の比較を示す。表1から分かるように、外気温が下がる冬季において、空気の供給を停止した土壌層12内の水温は、空気を供給した土壌層12と比べて高くすることができた。なお、本実施形態2では、空気の供給を完全に停止しても、溶存酸素は著しく低下しなかったが、溶存酸素が十分に確保できない場合や土壌層12内の温度や水温が著しく低下しない場合は、空気の供給は特に停止しなくてもよい。 In the soil infiltration type water purification device 11 of Embodiment 2, air is supplied into the soil layer 12 from a blower (not shown) via the air pipe 18. Control means 20 is provided to stop according to the temperature. Thereby, in the winter season when the outside air temperature decreases, the supply of air from the outside air can be stopped to prevent the temperature in the soil layer 12 or the water temperature from decreasing. By this, as shown in Table 1, the activity of the microorganism group which inhabits in the soil layer 12 can be maintained. Table 1 shows a comparison of water temperature and dissolved oxygen (DO) between “without air supply” and “with air supply”. As can be seen from Table 1, the water temperature in the soil layer 12 from which the supply of air was stopped was higher than that in the soil layer 12 to which the air was supplied in the winter when the outside air temperature decreases. In addition, in this Embodiment 2, even if supply of air was stopped completely, dissolved oxygen did not fall remarkably, but when dissolved oxygen cannot fully be secured or the temperature and water temperature in the soil layer 12 do not fall remarkably. In this case, the air supply does not have to be stopped.
この制御手段20は、外気温を検出して、自動で空気の供給を停止するように制御しても良く、また、手動で例えば送気管18に設けた開閉バルブ等を開閉するようにしても良い。外気温度は直接感知することもできるし、外気温に代わって、四季(冬期)の寒い時期を検出して、制御装置20を制御するようにしても良い。 The control means 20 may detect the outside air temperature and control to automatically stop the supply of air, or may manually open and close an open / close valve provided on the air supply pipe 18, for example. good. The outside air temperature can be directly sensed, or the control device 20 may be controlled by detecting the cold time of the four seasons (winter) instead of the outside air temperature.
次に、実施形態1及び実施形態2について、比較例1及び比較例2とともに、透水性能や浄化性能を実験した結果について説明する。 Next, with respect to Embodiment 1 and Embodiment 2, together with Comparative Example 1 and Comparative Example 2, the results of experiments on water permeation performance and purification performance will be described.
(実施例1)
図1に示す土壌浸透式水質浄化装置1として、直径15cm、高さ50cmの規模の土壌浸透式水質浄化装置1を使用した。この土壌浸透式水質浄化装置1において、土壌層2の支持体3上に、黒ボク土の土壌4に、図3に示すポリプロピレン製で直径約5cmの骨格球状成形ろ材を土壌層2の容積比で40%混合し、層高さ30cm(有効容積5.3L)の土壌層2を構成した(骨格球状成形ろ材を32個、黒ボク土を3.5L充填)。また、土壌4の充填量は土壌層の容積比で66%であった。
Example 1
As the soil permeation type water purification device 1 shown in FIG. 1, the soil permeation type water purification device 1 having a diameter of 15 cm and a height of 50 cm was used. In this soil permeation type water purification device 1, the volume ratio of the soil layer 2 to the skeleton spherical shaped filter medium made of polypropylene shown in FIG. To make a soil layer 2 having a layer height of 30 cm (effective volume 5.3 L) (32 skeletal spherical shaped filter media and 3.5 L filled with black soil). Moreover, the filling amount of the soil 4 was 66% in terms of the volume ratio of the soil layer.
土壌層2には、まず支持体3の上に成形ろ材5を自然落下により投入して、次に黒ボク土を成形ろ材5が隠れるまで塗す(まぶす)ように投入した。これらの操作を繰り返しながら、土壌層2は、土壌4と成形ろ材5を混成した土壌層2を形成した。 In the soil layer 2, the molded filter medium 5 was first dropped onto the support 3 by natural dropping, and then black soil was applied (sprayed) until the molded filter medium 5 was hidden. While repeating these operations, the soil layer 2 formed the soil layer 2 in which the soil 4 and the molded filter medium 5 were mixed.
なお、ろ材の容積比及び土壌の容積比は、それぞれ次式で算定した。
(比較例1)
なお、比較例1として、図1と同じ大きさ・形状の土壌浸透式水質浄化装置1の支持体3上に、同じ黒ボク土のみで層高さ30cm(有効容積5.3L)の土壌層2を構成した(図6参照)。この図6では、図1と同様なものについては同じ符号を付して説明を省略する。
(Comparative Example 1)
As Comparative Example 1, a soil layer having a layer height of 30 cm (effective volume 5.3 L) is formed on the support 3 of the soil infiltration water purification device 1 having the same size and shape as FIG. 2 (see FIG. 6). In FIG. 6, the same components as those in FIG.
上記実施例1と比較例1とで、水の透水状態を実験して、比較した。なお、この実験では処理排水を畜産排水の二次処理排水とし、表2に処理排水性状を示すものを使用した。 In Example 1 and Comparative Example 1, the water permeation state was tested and compared. In this experiment, treated wastewater was used as secondary wastewater for livestock wastewater, and those having the properties of treated wastewater shown in Table 2 were used.
実験では、処理排水を、通水負荷1.5m3/m2・日として、実施例1と比較例1の土壌浸透式水質浄化装置1の土壌層2の上部より供給しながら土壌層2に浸透させ、土壌層2の下部より排出した。また、土壌層2内の微生物を活性させるため、各々浄化槽の下部の送気管8から空気を送気した。試験期間中、水温は20〜25℃の範囲内であった。 In the experiment, treated wastewater is supplied to the soil layer 2 while being supplied from the upper part of the soil layer 2 of the soil infiltration water purification device 1 of Example 1 and Comparative Example 1 with a water flow load of 1.5 m 3 / m 2 · day. Infiltrated and discharged from the bottom of the soil layer 2. Moreover, in order to activate the microorganisms in the soil layer 2, air was supplied from the air supply pipe 8 at the bottom of each septic tank. During the test period, the water temperature was in the range of 20-25 ° C.
なお、本発明での通水負荷とは、通水量又は処理水量を土壌槽の開口面積で除したものである。 In addition, the water flow load in the present invention is obtained by dividing the water flow amount or the treated water amount by the opening area of the soil tank.
両例とも、処理排水を10日間、連続通水し、各通水開始時、終了時に各土壌浸透式水質浄化装置1の土壌層2の閉塞や圧密状況を知るため、変水位透水試験法に基づいて室内試験を行って各土壌層2の透水係数を求めた。この結果を表3に示す。 In both cases, treated wastewater is continuously passed for 10 days, and the water level permeability test method is used to know the blockage and compaction of the soil layer 2 of each soil infiltration water purification device 1 at the start and end of each run. Based on the laboratory test, the hydraulic conductivity of each soil layer 2 was determined. The results are shown in Table 3.
表3の結果から土壌4に骨格球状成形ろ材5を混合した本実施例1の土壌層2の透水係数は、通水開始時の透水係数で0.14と高く、黒ボク土のみの土壌4からなる比較例1の土壌層2の透水係数よりもかなり大きい。また、通水から10日間後の透水係数も0.10と高いことから、土壌の圧密化を防止しつつ、目詰まりし難い土壌構造であることが明らかになった。 From the results of Table 3, the permeability coefficient of the soil layer 2 of Example 1 in which the skeleton spherical shaped filter medium 5 is mixed with the soil 4 is as high as 0.14 at the start of water flow, and the soil 4 with only black soil. It is considerably larger than the hydraulic conductivity of the soil layer 2 of Comparative Example 1 consisting of Moreover, since the hydraulic conductivity after 10 days from the water flow is as high as 0.10, it was revealed that the soil structure is difficult to clog while preventing the consolidation of the soil.
一方、黒ボク土のみを充填した土壌層2からなる比較例1では、通水開始時の透水係数は、2.2×10-3 cm/sであったが、10日後の通水終了後の透水係数は、さらに低下した。これは、処理排水の流入によって土壌粒間にSS分や汚泥が蓄積され、さらに土壌自身の圧密化が進み、黒ボク土の土壌層は土壌浸透し難くなり、透水係数をさらに低下させたことによるものである。 On the other hand, in Comparative Example 1 consisting of the soil layer 2 filled with only black soil, the permeability coefficient at the start of water passage was 2.2 × 10 −3 cm / s, but after the end of water flow after 10 days. The hydraulic conductivity of the water further decreased. This is because SS and sludge were accumulated between the soil grains due to the inflow of treated wastewater, and the soil itself became more compacted, making it difficult for the soil layer of Kuroboku soil to permeate the soil and further reducing the hydraulic conductivity. Is due to.
(実施例2)
実施例2は、実施形態2に示される土壌浸透式水質浄化装置1を使用して実験した。図4は、幅0.85m×長さ1.3m×高さ2.5mの規模の土壌浸透式水質浄化装置11において、土壌層12の支持体13上に、嵩容積で800Lの黒ボク土の土壌14に、直径15cmの骨格球状成形ろ材15を土壌層12の容積比で40%混合し、層高さ1m(有効容積1.1m3)の土壌層12を構成した(骨格球状成形ろ材を250個、黒ボク土を800L充填)。また、土壌4の充填量は土壌層の容積比で73%であった。
(Example 2)
In Example 2, an experiment was performed using the soil infiltration water purification device 1 shown in the second embodiment. FIG. 4 shows a black soil with a bulk volume of 800 L on a support 13 of a soil layer 12 in a soil infiltration water purification device 11 having a scale of width 0.85 m × length 1.3 m × height 2.5 m. The soil layer 12 having a layer height of 1 m (effective volume 1.1 m 3 ) was formed by mixing a skeletal spherical shaped filter medium 15 having a diameter of 15 cm with a volume ratio of the soil layer 12 to the soil 14 of the above structure (skeletal spherical molded filter medium) 250 pieces and 800L of black soil is filled). Moreover, the filling amount of the soil 4 was 73% in terms of the volume ratio of the soil layer.
なお、本実施例2では、実施例1の[式1]、[式2]と同様にして、ろ材の容積比及び土壌の容積比を算定した。 In Example 2, the volume ratio of the filter medium and the volume ratio of the soil were calculated in the same manner as [Formula 1] and [Formula 2] of Example 1.
本実施例2では、土壌浸透式水質浄化装置11の槽底部から土壌層12内に空気を供給する送気管18を設置し、120L/minで送気した。土壌層12の底部より送気することで、土壌層12全体に空気を供給でき、高度な好気的条件を維持できる。土壌層12内の微生物を活性させるため、各々土壌浸透式水質浄化装置11内に送気管18から空気を送気した。 In the present Example 2, the air supply pipe 18 which supplies air in the soil layer 12 from the tank bottom part of the soil permeation type | formula water purification apparatus 11 was installed, and air was supplied at 120 L / min. By supplying air from the bottom of the soil layer 12, air can be supplied to the entire soil layer 12, and high aerobic conditions can be maintained. In order to activate the microorganisms in the soil layer 12, air was supplied from the air supply pipe 18 into the soil infiltration water purification device 11.
本実施例2では、処理排水をポンプ(図示せず)で圧送し散水ノズル16又は複数の散水孔を有する散水管を経由して散水したが、処理排水を上方から均一に散水または滴下し得る散水方法であれば、上記散水ノズルに特に限定しない。 In the second embodiment, the treated wastewater is pumped with a pump (not shown) and sprinkled through the watering nozzle 16 or a watering pipe having a plurality of watering holes, but the treated wastewater can be uniformly sprinkled or dropped from above. If it is a watering method, it will not specifically limit to the said watering nozzle.
(比較例2)
比較例2として、図7に示す土壌浸透式水質浄化装置31を使用した。図3と同じ大きさ・形状の土壌浸透式水質浄化装置31の支持体33上に、通水性粒体層35と土壌含有層34とが交互に積層したレンガ状の土壌層(多段土壌)で層高さ1m(有効容積1.1m3)の土壌層32を構成した。比較例2では、通水性粒体層35には粒径1〜3mmのゼオライト又は軽石を充填し、土壌含有層34には、黒ボク土を主体に粉末状木炭、おがくず及び金属鉄粒子を混合した。散水ノズル36を土壌層32の上部に設置し、支持体33の下部に排出管37を設置した。土壌層32内の微生物を活性させるため、空気を積層土壌層中に供給する送気管38を通水性粒体層35中に挿入し、土壌浸透式水質浄化装置31に送気管38から空気を送気した。
(Comparative Example 2)
As Comparative Example 2, a soil infiltration water purification device 31 shown in FIG. 7 was used. A brick-like soil layer (multi-stage soil) in which a water-permeable particle layer 35 and a soil-containing layer 34 are alternately stacked on a support 33 of a soil infiltration water purification device 31 having the same size and shape as FIG. A soil layer 32 having a layer height of 1 m (effective volume 1.1 m 3 ) was formed. In Comparative Example 2, the water-permeable particle layer 35 is filled with zeolite or pumice having a particle size of 1 to 3 mm, and the soil-containing layer 34 is mixed with powdered charcoal, sawdust, and metallic iron particles mainly composed of black mycelium. did. A watering nozzle 36 was installed above the soil layer 32, and a discharge pipe 37 was installed below the support 33. In order to activate microorganisms in the soil layer 32, an air pipe 38 that supplies air into the laminated soil layer is inserted into the water-based granular layer 35, and air is sent from the air pipe 38 to the soil infiltration water purification device 31. I worried.
実験では、処理排水を実施例1と同様に表1に示す処理排水を使用した。 In the experiment, treated wastewater as shown in Table 1 was used as in Example 1.
処理排水は、通水負荷2m3/m2・日として、実施例2では土壌浸透式水質浄化装置11の土壌層12の上部の散水ノズル16から供給しながら土壌層12に浸透させ、土壌層12の下部の排出管17より排出させた。同様に、比較例2では土壌浸透式水質浄化装置31の土壌層32の上部の散水ノズル36より、同じ処理排水を供給しながら土壌層32に浸透させ、土壌層32の下部より排出させた。 In the second embodiment, the treated wastewater is infiltrated into the soil layer 12 while being supplied from the watering nozzle 16 above the soil layer 12 of the soil infiltration water purification device 11 as a water flow load of 2 m 3 / m 2 · day. 12 was discharged from the lower discharge pipe 17. Similarly, in Comparative Example 2, the same treated wastewater was supplied from the watering nozzle 36 at the upper part of the soil layer 32 of the soil infiltration type water purification device 31 to the soil layer 32 and discharged from the lower part of the soil layer 32.
試験期間中、気温は3〜25℃、水温は4〜20℃の範囲内であった。 During the test period, the air temperature was in the range of 3-25 ° C and the water temperature was in the range of 4-20 ° C.
両例とも、処理排水を約6ヶ月間、連続通水して水質浄化試験した結果を表4に示す。
本実施例2においては、表4から分かるように、主な測定項目をあげると、通水開始から6ヶ月後の処理水におけるリンの平均除去率は、実施例2で81%、比較例2で28.6%、BODの平均除去率は実施例2で79.7%、比較例2で47.5%、色度の平均除去率は、実施例2で40.7%、比較例2で22.2%であった。
In both cases, Table 4 shows the results of water purification tests by continuously passing treated wastewater for about 6 months.
In this Example 2, as can be seen from Table 4, when the main measurement items are given, the average removal rate of phosphorus in the treated water 6 months after the start of water flow is 81% in Example 2, and Comparative Example 2 28.6%, the average removal rate of BOD is 79.7% in Example 2, 47.5% in Comparative Example 2, and the average removal rate of chromaticity is 40.7% in Example 2, Comparative Example 2 It was 22.2%.
実施例2の成形ろ材15を混合した土壌層12全体の透水係数は、通水開始時では0.2cm/sであった。また、通水開始時から6ヶ月経過しても、透水係数は0.18cm/sであり、ほとんど低下せず、土壌層12の閉塞、圧密化は生じず、土壌14と処理排水との接触効率は確保され、その結果、リン、BOD、色度等の除去率は高くなった。 The water permeability coefficient of the entire soil layer 12 mixed with the shaped filter medium 15 of Example 2 was 0.2 cm / s at the start of water flow. Moreover, even if 6 months have passed since the start of water flow, the water permeability coefficient is 0.18 cm / s, which hardly decreases, the soil layer 12 is not blocked and consolidated, and the soil 14 is in contact with the treated waste water. Efficiency was ensured, and as a result, the removal rate of phosphorus, BOD, chromaticity and the like was high.
それに対して、比較例2では、土壌層32の全体の透水係数は、通水開始時では4×10-2 cm/sを確保できるが、通水から6ヶ月経過した場合の通水性粒体層35の透水係数は、0.8cm/sと高いものの、土壌含有層34の透水係数は、1.2×10-3 cm/sであった。通水性粒体層35と土壌含有層34の透水係数が大きく異なるので、図8に示すように、同一平面状の積層土壌層においては、通水性粒体層35と土壌含有層34の透水係数に差があったため、処理排水は土壌含有層34にはほとんど浸透せず、通水性粒体層35にその大部分が流下した。 On the other hand, in Comparative Example 2, the water permeability coefficient of the soil layer 32 as a whole can be 4 × 10 −2 cm / s at the start of water flow, but water permeable particles when 6 months have passed since the water flow. Although the hydraulic conductivity of the layer 35 was as high as 0.8 cm / s, the hydraulic conductivity of the soil-containing layer 34 was 1.2 × 10 −3 cm / s. Since the water permeability coefficient of the water-permeable particle layer 35 and the soil-containing layer 34 is greatly different, as shown in FIG. 8, the water permeability coefficient of the water-permeable particle layer 35 and the soil-containing layer 34 in the same planar laminated soil layer. Therefore, the treated wastewater hardly penetrated into the soil-containing layer 34, and most of it flowed down to the water-permeable particle layer 35.
この結果、表4に示すように、処理排水中の汚濁物質除去に最も寄与する土壌含有層34に処理排水が接触浸透しなかったため、比較例2のBOD、リン、色度等の除去率は低くなった。 As a result, as shown in Table 4, since the treated wastewater did not permeate into the soil-containing layer 34 that contributes most to the removal of pollutants in the treated wastewater, the removal rate of BOD, phosphorus, chromaticity, etc. in Comparative Example 2 was It became low.
本実施例2で用いた処理排水は、畜産排水に由来する処理排水であるため、処理排水中に色度成分、DOC等、難分解性有機物を含有しており、COD等の除去率は低かったが、場合によれば、土壌浸透浄化装置11の後段に難分解性有機物を除去する活性炭等を充填した多孔質吸着処理槽を設置してもよい。 Since the treated wastewater used in Example 2 is treated wastewater derived from livestock wastewater, the treated wastewater contains refractory organic substances such as chromaticity components and DOC, and the removal rate of COD and the like is low. However, depending on the case, you may install the porous adsorption processing tank filled with the activated carbon etc. which remove a hardly decomposable organic substance in the back | latter stage of the soil infiltration purification apparatus 11. FIG.
また、実施形態1、2では、散水ノズル6、16の散水によって、土壌層2、12の上部の土壌4、14が土壌層2、12の下部に流出することはなかったが、土壌の流出防止のために散水ノズル等を用いて、土壌層2、12の上部全体に散水した方が好ましい。 Moreover, in Embodiment 1, 2, although the water 4 and 14 of the upper part of the soil layers 2 and 12 did not flow out to the lower part of the soil layers 2 and 12 by watering of the water spray nozzles 6 and 16, the outflow of soil For prevention, it is preferable to spray water over the entire upper part of the soil layers 2 and 12 using a watering nozzle or the like.
また、実施形態1では、通水負荷1.5m3/m2・日とし、実施形態2では、通水負荷1.2m3/m2・日としたが、土壌と処理排水の接触時間を十分確保するためには、通水負荷を10m3/m2・日以下にすることが好ましい。 In the first embodiment, the water load is 1.5 m 3 / m 2 · day, and in the second embodiment, the water load is 1.2 m 3 / m 2 · day. In order to ensure sufficient, it is preferable to set the water flow load to 10 m 3 / m 2 · day or less.
さらに、実施形態1、2では土壌層2、12を支持する支持体3、13の下部は、充填物のない空間としたが、φ5〜20cm程度の礫等を充填してもよい。 Furthermore, although the lower part of the support bodies 3 and 13 which support the soil layers 2 and 12 was made into the space without a filling in Embodiment 1, 2, you may be filled with gravel etc. of about φ5-20cm.
以上で明らかなように、本発明によれば、土壌層に成形ろ材を混合して構成し、土壌の閉塞、圧密防止が可能であり、土壌層の空隙確保によって、処理排水と土壌の接触効率は向上し、多量の微生物を土壌に保持でき、リン等の土壌への吸着など、土壌浸透浄化法の水質浄化機能を高めることができる。 As is apparent from the above, according to the present invention, the soil layer is mixed with a molded filter medium, and soil blockage and compaction can be prevented. Can improve the water purification function of the soil permeation purification method, such as adsorption of phosphorus and the like onto the soil.
1 土壌浸透式水質浄化装置
2 土壌層
3 支持体
4 土壌
5 成形ろ材
6 散水ノズル
7 排出管
8 送気管
DESCRIPTION OF SYMBOLS 1 Soil osmosis | permeation type water purification apparatus 2 Soil layer 3 Support body 4 Soil 5 Molded filter medium 6 Watering nozzle 7 Drain pipe 8 Air supply pipe
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005200042A JP3792248B1 (en) | 2005-07-08 | 2005-07-08 | Soil infiltration water purification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005200042A JP3792248B1 (en) | 2005-07-08 | 2005-07-08 | Soil infiltration water purification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP3792248B1 true JP3792248B1 (en) | 2006-07-05 |
JP2007014896A JP2007014896A (en) | 2007-01-25 |
Family
ID=36739864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005200042A Expired - Fee Related JP3792248B1 (en) | 2005-07-08 | 2005-07-08 | Soil infiltration water purification system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3792248B1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57177595U (en) * | 1981-05-06 | 1982-11-10 | ||
JPS62118592U (en) * | 1985-09-18 | 1987-07-28 | ||
JPH11226589A (en) * | 1998-02-12 | 1999-08-24 | Niimi:Kk | Sewage treatment method using steel empty cans as contact filter material and apparatus therefor |
JP2001347283A (en) * | 2000-06-07 | 2001-12-18 | Hiroshi Sudo | Drain soil treatment unit and apparatus |
JP2003033112A (en) * | 2001-05-14 | 2003-02-04 | Ohbayashi Corp | Rooftop-greening system |
-
2005
- 2005-07-08 JP JP2005200042A patent/JP3792248B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007014896A (en) | 2007-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104761057B (en) | A kind of charcoal modularity composite vertical current artificial wetland system | |
Brix et al. | The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines | |
US8771515B2 (en) | Horizontal flow biofilter system and method of use thereof | |
US5980739A (en) | Wastewater treatment method and apparatus | |
US6153094A (en) | Wastewater treatment method and apparatus | |
CN104098231A (en) | Immobilized microorganism constructed wetland system | |
CN201762212U (en) | Wastewater disposal system for artificial wetlands | |
CN204151131U (en) | A kind of Anti-plugging biological aerated filter | |
CN107364973B (en) | Sewage treatment system, application thereof and sewage treatment method | |
CN104085998A (en) | Constructed wetland system capable of reinforcing microbial actions | |
CN212640065U (en) | Vertical rural domestic sewage treatment equipment | |
CN109437393B (en) | High-load ecological ground sewage filtering treatment method | |
CN211394183U (en) | Vertical flow-baffling anti-blocking ecological filter dam of non-flood-running river | |
CN107352655A (en) | A kind of biological bed system for handling organic sewage | |
AU2018352471B2 (en) | A septic effluent treatment vessel | |
CN106904792A (en) | For the artificial marsh sewage treatment system in city suburbs montane park | |
CN104085995B (en) | A kind of artificial wet land system for having an insulation effect | |
CN207192930U (en) | A kind of device that black-odor riverway is administered using intensive aeration artificial swamp coupling technique dystopy | |
JP3792248B1 (en) | Soil infiltration water purification system | |
CN104085993A (en) | Artificial wetland device | |
CN205442977U (en) | Domestic sewage filtration combination processing system | |
JP2002239572A (en) | Layered soil type river water cleaning apparatus | |
CN100586880C (en) | High concentration organic wastewater processing system | |
CN101172734A (en) | Eutrophic water process technique | |
CN104086059A (en) | Constructed wetland system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060404 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |