JP3791363B2 - Lightening of heavy oil - Google Patents

Lightening of heavy oil Download PDF

Info

Publication number
JP3791363B2
JP3791363B2 JP2001238582A JP2001238582A JP3791363B2 JP 3791363 B2 JP3791363 B2 JP 3791363B2 JP 2001238582 A JP2001238582 A JP 2001238582A JP 2001238582 A JP2001238582 A JP 2001238582A JP 3791363 B2 JP3791363 B2 JP 3791363B2
Authority
JP
Japan
Prior art keywords
oil
supercritical water
heavy
residual oil
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001238582A
Other languages
Japanese (ja)
Other versions
JP2003049180A (en
Inventor
知彦 宮本
信幸 穂刈
宏和 高橋
浩美 小泉
明典 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001238582A priority Critical patent/JP3791363B2/en
Publication of JP2003049180A publication Critical patent/JP2003049180A/en
Application granted granted Critical
Publication of JP3791363B2 publication Critical patent/JP3791363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は重質油等の炭化水素を超臨界水と反応させ、重質油の軽質化,重質油中の金属分の除去を行う方法に関する。また、得られた軽質油と超臨界水の混合燃料で高効率なコンバインドサイクル等の発電を達成する方法に関する。
【0002】
【従来の技術】
高粘度で硫黄,重金属を多く含む重質油は高効率発電燃料として適さないので、これを軽質化,脱硫黄,脱金属し有用なエネルギ源に変換する方法が特開平11−80750号公報,特開2000−109850号公報および特開2000−109851号公報等にて提案されている。
【0003】
これら公報に記載の方法はいずれも基本構成として、超臨界水と重質油、あるいはNa等のアルカリ添加水と重質油を20MPa以上,400℃程度(水の超臨点:374℃,22.1MPa )の反応条件下で熱分解,加水分解をおこさせる反応工程,生成した反応物を減圧する減圧工程,減圧後の生成物を冷却しガス,軽質油,残査物,水等に分離する分離工程から成り立っている。これら構成では、最終の形態が低圧の燃料気体と燃料液体(軽質油,残査油)であり、得られた気体および軽質油燃料を高効率なコンバインドサイクル発電のガスタービン燃焼器で利用する場合に、ガス燃料を圧縮するためのガス圧縮機が必要、燃焼器にはガスと油を供給するため、ガスと油を同時燃焼するための装置が必要となる。
【0004】
また、超臨界反応工程では熱分解,加水分解の他に超臨界水による溶解作用により、生成した軽質油は超臨界水に完全溶解している(水分子と軽質油分子とが数100Åのクラスタを形成したガス状態)ため、分離工程での冷却により極微細な油滴と水滴が混合状態で生成し(油と水が乳化した状態)、軽質油と水の分離が容易ではない。
【0005】
【発明が解決しようとする課題】
本発明は、超臨界水と重質油を反応条件の異なる複数の工程で接触反応させ、重質油を軽質化,脱金属して燃焼性の良い高圧の軽質燃料ガスを製造し、ガスタービン燃料として利用する場合にもガス圧縮機を必要としない、また、軽質油と水を分離する分離工程を必要としない、簡便で高効率な重質油の改質方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決するため、以下の手段を採用した。
【0007】
第一の発明は、重質油を効率良く改質するために、超臨界水と重質油とを接触させて超臨界水に軽質留分を溶解するとともに溶解不能な重質分(残油分)を分離することのできる溶解・分離工程と分離した残油分を更に超臨界水と接触させ改質する残油分改質工程からなる2段階の工程を採用している。
【0008】
一般に、超臨界水あるいは高圧の熱水は、無極性ガス,炭化水素ガス(メタン,エタン,プロパン等),常温常圧で液体となる油等を、かなりの程度あるいは完全に溶解する溶解作用、および油が超臨界水中の水素イオン,水酸化イオンと反応して分解する加水分解作用を有する。しかし、これら溶解,加水分解作用は超臨界水の(1)温度、(2)圧力、(3)分圧、(4)接触時間、(5)溶質(超臨界水に溶解される物質)等により大きく変化する。
【0009】
第一の発明は、超臨界水による重質油(V分が1ppm 以下)の改質において、上記の作用を最大限に利用するためになされたもので、まず溶解・分離工程で超臨界水と重質油を320℃,22.1MPa 以上、好ましくは本発明を適用する発電プラントで発生する400〜539℃,25MPa程度の超臨界水と最高で350℃にまで加熱した25MPa程度の重質油((超臨界水量/重質油量)=0.25 〜2)を溶解・分離反応装置に導入し、該反応装置で加水分解によりH2,CO,CO2,CH4,C26,C24,C38,C36,C410,C48等のガスやC5〜C20程度の軽質留分を生成させると同時にこれらの生成物を超臨界水に完全溶解させ水分子とガス分子,水分子と軽質油分子からなるクラスタを生成させる。クラスタと超臨界水の混合物は該温度,圧力で燃焼器へと送りガスタービン用燃料とする。一方、加水分解できなかった数%の未反応物や重縮合物は(以降はこれらを残油分と総称)、これ以上溶解・分離工程に滞留させてもこの反応条件下では更なる軽質化反応が進まないので、溶融・分離工程から抜き出し、改質工程に送る。
【0010】
改質工程には、残油分量に対して1〜4倍程度の超臨界水、好ましくは539〜593℃,23〜25MPa程度の超臨界水を供給し残油分と接触させて、より過酷な条件で加水分解させる。これにより、生成した軽質油分子は超臨界水とクラスタを形成、クラスタ及び超臨界水の混合物は該温度,圧力で燃焼器へと送りガスタービン用燃料とする。なお、重質油の種類によっては改質工程でも改質できない物質、あるいは無機物等が残るので、これらは改質器底部から排出し、別途処理する。
【0011】
該改質工程では残油分の分解反応を促進するため、アルカリ金属を添加すること、分解触媒等を充填することも可能である。また、重質油の種類により(例えばA重油,B重油,C重油,減圧残油,オリマルジョン,オイルサンド,オイルシェルおよび廃油等)溶解・分離工程,改質工程での最適温度,圧力,水蒸気分圧は異なるので、本発明での温度,圧力,水蒸気分圧は限定されるものではない。重要なのは溶解・分離工程と改質工程に区分けし、溶解・分離工程では脂肪族系,芳香族系の比較的軽質化し易い炭化水素を超臨界水で加水分解しクラスタを生成すること、改質工程では重合度の高い残油分をフレッシュな、より高温の超臨界水で、充分な接触時間をかけて改質しクラスタを生成することである。各工程で生成されたクラスタと超臨界水の混合物(ガス状でこれを改質燃料と総称する)は高温高圧のまま、ガスタービンの燃焼器に導き、燃料とするので、従来法に比べ、ガスの圧縮機が不要,油水分離器が不要となる。また2段階による改質法は、従来法の一段階改質に比べ、溶媒の物質変化に対応して最適な温度,水蒸気分圧,接触時間を取り得るため重質油を効率良く改質できる。
【0012】
第二の発明は、重質油中にバナジウム(V)等の重金属分を多く含む場合の重質油の高効率改質およびV除去に関するもので、超臨界水と重質油を接触させて超臨界水に軽質留分を溶解するとともに溶解不能な重質分(残油分)を分離する溶解・分離工程と分離した残油分を更に超臨界水と接触させ改質する残油分改質工程と残油分改質工程から抜き出した残査分を燃焼処理し、バナジウム化合物を除去する酸化工程の手段を採用している。
【0013】
重質油中にはバナジウム(V)等の重金属類が重合度の高い高分子中にポリフイリンの形で含まれており、超臨界水との接触反応のみではガスや軽質油側には移動せず、重合度の高い高分子中に残留する。第二の発明では溶解・分離工程,残油分改質工程は第一の発明と基本作用は同じであるが、V等の重金属類を積極的に反応除去するための酸化工程の手段を採用している。
【0014】
酸化工程にはカルシウム化合物,マグネシウム化合物,ドロマイト等を充填しておき、改質工程から抜き出した残査油と系外からの空気等の酸化剤を供給して残査油を燃焼させる。燃焼で重質油はCO2,H2Oになると供に重金属類は酸化し金属酸化物となる。例えばVはV25になる。V25は充填物と反応し、CaO・V25(融点618℃),MgO・V25(融点671℃)等の化合物となり充填物に捕捉される。
【0015】
酸化工程での温度は450℃〜900℃程度、好ましくはV25と充填物の化合物である物質の融点を超えない温度で燃焼する。例えばCaO・V25(融点618℃)では600℃、MgO・V25(融点671℃)では650℃程度で運転できるように空気等の酸化剤量を調節して供給する。圧力は充填物の出し入れを容易にするため、燃焼空気の供給動力費を低減するために1〜2気圧程度が好ましい。充填物形状は0.1 〜2mm程度に破砕された粒子状とすることで充填,排出時の取り扱いが容易になる。また、酸化装置内での粒子の層状態は固定相,移動層,流動層が好ましい。
【0016】
なお、充填剤は処理する重質油性状により選択されるもので、硫黄,重金属を多く含む残査油を処理する場合にはカルシウム系の化合物である、石灰石,ドロマト等を選択し、酸化装置の下部温度を850℃、上部温度を600℃程度にすれば燃焼時に発生するSO2 ガスは下部で石灰石と反応しCaSO4 となって固定されると供にV25は上部でCaO・V25(融点618℃)となり固定される。すなわち、重金属酸化物のみならず硫黄酸化物も除去できる。重金属分を主体に除去する場合には充填物にFe系酸化物,Mg系酸化物,Ni系酸化物を使用し、Fe23・V25(融点860℃),MgO・V25(融点671℃),2NiO・V25(融点900℃)としても固定できる。V,Sを固定した粒子は酸化工程から排出しVの回収に利用する。
【0017】
第三の発明は、第一の発明および第二の発明において、残油分の改質工程には新たな超臨界水を供給し水蒸気分圧を高めるとともに、改質工程の温度を溶解工程よりも高めることで、より過酷な条件で加水分解をさせるものである。
【0018】
第四の発明は、第二の発明における酸化工程の圧力を溶解・分離工程,残油分改質工程の圧力より低くし、好ましくは1〜2気圧程度で運転することにより充填物の出し入れを容易にする、燃焼空気の供給動力費を低減するためのものである。
【0019】
第五の発明は、第一の発明あるいは第二の発明で得られた改質油(油分を溶解した超臨界水)を燃料とした発電で高効率発電を達成するためのものである。
【0020】
【発明の実施の形態】
以下、添付図を用いて本発明の実施の形態を説明する。
【0021】
実施例1
図1は重質油(C重油と廃油の混合油,C15以上の留分を持つ混合油,V含有量20ppm )を用いた軽質化方法である。本システムは重質油,超臨界水の供給系,溶解・分離工程1,改質工程2、および各工程を接続する配管から構成される。重質油はタンクで50℃に加熱、これをポンプにより24g/分で輸送しながら管外ヒータにより350℃に加熱して、溶解・分離工程1に供給する。水はポンプにより24g/分で輸送しながら管外ヒータにより450℃に加熱し、超臨界水として溶解・分離工程1に供給する。溶解・分離工程は390℃−25MPaに保ち液基準の空間速度10h-1で重質油を超臨界処理して、クラスタと超臨界水の混合ガスからなる改質燃料を生成させる。改質燃料は改質燃料抜き出し管3,圧力調節バルブ4を介してガスタービン燃焼器に供給する。一方、溶解・分離工程1で溶解されなかった残油分は0.8g/分 で残油分抜き出し管5,残油分抜き出しバルブ6を介して、改質工程2に供給する。改質工程2には超臨界水供給管7から550℃−25MPaの超臨界水を1.6g/分 で供給し、該改質工程2を450℃−25MPaに保ち、液基準の空間速度2h-1で残油分を反応させて、改質燃料を生成、改質燃料は改質燃料管8により、溶解・分離工程に戻す。以上の操作で生成した改質燃料を減圧冷却後採取し、その組成を調べた。常温でのガス状物はH2,CO,CO2,C1〜C4、軽質油分はC5以上の留分で油分中のVは0.8ppmであった。水蒸気を含む改質燃料としての発熱量は4500kcal/kgであった。また、超臨界水量/重質油量=0.25〜2 と変化させた場合(液基準の空間速度は同じにして)でも軽質油分中のVは0.8ppmであった。
【0022】
実施例2
図2は重質油として減圧残査油(常圧下での初留点が375℃以上の留分、V含有量150ppm )を用いた軽質化方法である。本システムは高圧の重質油,超臨界水の供給系,溶解・分離工程1,改質工程2および常圧の酸化工程20,熱回収器21,脱塵器22、ならびに各工程を接続する配管から構成される。重質油はタンクで120℃に加熱、これをポンプにより24g/分で輸送しながら管外ヒータにより370℃に加熱して、溶解・分離工程1に供給する。水はポンプにより24g/分で輸送しながら管外ヒータにより450℃に加熱し、超臨界水として溶解・分離工程1に供給する。溶解・分離工程は390℃−25MPaに保ち液基準の空間速度10h-1で重質油を超臨界処理して、クラスタと超臨界水の混合ガスからなる改質燃料を生成させる。改質燃料は改質燃料抜き出し管3,圧力調節バルブ4を介してガスタービン燃焼器に供給する。一方、溶解・分離工程1で溶解されなかった残油分は5g/分で残油分抜き出し管5,残油分抜き出しバルブ6を介して、改質工程2に供給する。改質工程2には超臨界水供給管7から550℃−25MPaの超臨界水を20g/分で供給し、該改質工程2を450℃−25MPaに保ち、液基準の空間速度2h-1で残油分を反応させて、改質燃料を生成、改質燃料は改質燃料管8により、溶解・分離工程に戻す。一方、改質工程2で改質されなっかた残査油は残査油排出管9,残査油排出バルブ23を介して2g/分で常圧の酸化工程20に送る。酸化工程には充填剤供給管27を介して平均粒子径0.5mm の石灰石が充填されている(充填剤は充填剤排出管28により排出される)。また、酸化工程20には系外から酸化剤供給管24を介して空気が64g/分で供給され、残査油は600℃で燃焼される。燃焼により、残査油中のC,H,SはCO2,H2O,SO2 になり、残査油中に含まれるV金属はV25となる。SO2 ,V25は充填物と反応しCaSO4 ,CaO・V25となり固体充填物上に化学吸着される。燃焼排ガスは排出管25を経て熱回収器21で120℃程度に冷却された後、脱塵器22で同伴微粒子を分離後、配管26から放出される。酸化工程20では重質油中に含まれるVの99.4% ,Sの58%が化学吸着した。
【0023】
実施例3
実施例2の装置において、酸化工程での充填剤に平均粒子径0.5mm のドロマイトを用い、実施例2の条件で改質した。圧力調節バルブ4から排出した改質燃料は66g/分で、C5以上の液体留分中のVは1ppm 以下であった。酸化工程20に充填したドロマイトには重質油中に含まれるVの99.3% ,Sの63%が吸着していた。VはMgO・V25,CaO・V25となり固体充填物上に付着していた。
【0024】
実施例4
実施例2の装置において、改質工程には重質油中のSに対して等モル量のNaOHを供給し実施例2の条件で改質した。圧力調節バルブ4から排出した改質燃料は66g/分で、C5以上の液体留分中のVは1ppm 以下であった。酸化工程20に充填した石灰石には重質油中に含まれるVの99.3% ,Sの83%が吸着していた。VはCaO・V25となり固体充填物上に付着していた。
【0025】
実施例5
図3は重質油の軽質化燃料を用いた高効率発電システムである。
【0026】
溶解・分離工程1,改質工程2および常圧の酸化工程20,燃焼器31,ガスタービン32,空気圧縮機33,排熱回収器34,環境装置35(脱硝,脱硫,脱塵),蒸気タービン36等から構成される。溶解・分離工程1,改質工程2で生成した改質燃料は改質燃料抜き出し管3,圧力調節バルブ4,燃料供給管37を介してガスタービン燃焼器31に供給する。燃焼器31では空気圧縮機33からの空気を導管38から受け入れて改質燃料を燃焼する。燃焼ガスはガスタービン32を駆動,発電に利用された後、排熱回収器34に送られる。排熱回収器34には伝熱管39を設置、これに連結される給水ポンプ40,蒸気タービン36等からなる発電系で排熱回収により発電する。排熱回収器34を出た排ガスは環境装置35で浄化され系外に放出される。一方、酸化工程20で発生した燃焼排ガスは排出管25,配管26を経て排熱回収器34に送り、該排熱回収器で熱回収される。
【0027】
本システムでは重質油の加熱,超臨界水の発生方法は記載していないが、排熱回収器34内に重質油加熱用の伝熱管,超臨界水発生用の伝熱管を設置することで、それらは達成できる。
【0028】
【発明の効果】
本発明によれば、重質油から脱金属された軽質油燃料が製造できるので、ガスタービン燃料として利用する場合にガス圧縮機が不要,軽質油と水を分離する分離工程が不要で、高効率な発電システムが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態の構成を示す概略図。
【図2】本発明に係る別の実施形態の構成を示す概略図。
【図3】本発明になる発電システムの概略図。
【符号の説明】
1…溶解・分離工程、2…改質工程、3…改質燃料抜き出し管、4…圧力調節バルブ、5…残油分抜き出し管、6…残油分抜き出しバルブ、7…超臨界水供給管、8…改質燃料管、9…残査油排出管、20…酸化工程、21…熱回収器、22…脱塵器、23…残査油排出バルブ、24…酸化剤供給管、25…排出管、26…配管、31…燃焼器、32…ガスタービン、33…空気圧縮機、34…排熱回収器、35…環境装置、36…蒸気タービン、37…燃料供給管、38…導管、39…伝熱管、40…給水ポンプ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of reacting a hydrocarbon such as heavy oil with supercritical water to lighten the heavy oil and remove a metal content in the heavy oil. The present invention also relates to a method for achieving power generation such as a highly efficient combined cycle with the obtained light oil and supercritical water mixed fuel.
[0002]
[Prior art]
Since heavy oils with high viscosity and high sulfur and heavy metals are not suitable as high-efficiency power generation fuels, a method for converting them into light energy, desulfurization, demetalization and useful energy sources is disclosed in JP-A-11-80750, Japanese Laid-Open Patent Publication Nos. 2000-109850 and 2000-109851 have proposed.
[0003]
In any of the methods described in these publications, supercritical water and heavy oil, or alkali-added water such as Na and heavy oil are 20 MPa or more and about 400 ° C. (super critical point of water: 374 ° C., 22 .1 MPa) under the reaction conditions for thermal decomposition and hydrolysis, reduced pressure step for reducing the pressure of the reaction product, cooling the product after pressure reduction and separating it into gas, light oil, residue, water, etc. It consists of a separation process. In these configurations, when the final form is a low-pressure fuel gas and fuel liquid (light oil, residual oil), and the obtained gas and light oil fuel are used in a gas turbine combustor for highly efficient combined cycle power generation In addition, a gas compressor for compressing gas fuel is required, and gas and oil are supplied to the combustor, so that an apparatus for simultaneously burning the gas and oil is required.
[0004]
In the supercritical reaction process, the resulting light oil is completely dissolved in supercritical water by the dissolution action of supercritical water in addition to thermal decomposition and hydrolysis (clusters of several hundreds of water molecules and light oil molecules). For this reason, ultrafine oil droplets and water droplets are produced in a mixed state by cooling in the separation step (a state in which oil and water are emulsified), and separation of light oil and water is not easy.
[0005]
[Problems to be solved by the invention]
The present invention produces a high-pressure light fuel gas having good combustibility by causing catalytic reaction between supercritical water and heavy oil in a plurality of processes having different reaction conditions to lighten and demetalize heavy oil, and to produce a gas turbine. The purpose of the present invention is to provide a simple and highly efficient heavy oil reforming method that does not require a gas compressor even when used as fuel, and does not require a separation step of separating light oil and water. To do.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the following means were adopted.
[0007]
In order to efficiently reform heavy oil, the first invention is to bring a supercritical water and a heavy oil into contact with each other to dissolve a light fraction in the supercritical water and an insoluble heavy fraction (residual oil content). ) And a residual oil content reforming process in which the separated residual oil content is further brought into contact with supercritical water for reforming.
[0008]
In general, supercritical water or high-pressure hot water dissolves non-polar gas, hydrocarbon gas (methane, ethane, propane, etc.), oil that becomes liquid at room temperature and normal pressure, etc. to a considerable extent or completely, And the oil has a hydrolytic action that decomposes by reacting with hydrogen ions and hydroxide ions in supercritical water. However, these dissolution and hydrolysis actions are (1) temperature, (2) pressure, (3) partial pressure, (4) contact time, (5) solute (substance dissolved in supercritical water), etc. Will vary greatly.
[0009]
The first invention was made in order to make maximum use of the above-mentioned action in reforming heavy oil (V content is 1 ppm or less) with supercritical water. And a heavy oil of 320 MPa, 22.1 MPa or more, preferably 400 to 539 ° C. generated in a power plant to which the present invention is applied, a supercritical water of about 25 MPa, and a heavy oil of about 25 MPa heated up to 350 ° C. Oil ((supercritical water amount / heavy oil amount) = 0.25 to 2) is introduced into a dissolution / separation reactor, and H 2 , CO, CO 2 , CH 4 , C 2 H is obtained by hydrolysis in the reactor. 6 , C 2 H 4 , C 3 H 8 , C 3 H 6 , C 4 H 10 , C 4 H 8 and other gases and C5 to C20 light fractions are generated, and at the same time, these products are supercritical. Dissolves completely in water to form clusters consisting of water molecules and gas molecules, water molecules and light oil molecules. That. The mixture of clusters and supercritical water is sent to the combustor at the temperature and pressure to be used as fuel for the gas turbine. On the other hand, several percent of unreacted products and polycondensates that could not be hydrolyzed (hereinafter referred to as residual oil) are further lightened under these reaction conditions even if they are retained in the dissolution / separation process. Since it does not proceed, it is extracted from the melting / separating process and sent to the reforming process.
[0010]
In the reforming step, supercritical water about 1 to 4 times the amount of residual oil, preferably 539 to 593 ° C., about 23 to 25 MPa is supplied and brought into contact with the residual oil to make it more severe. Hydrolyze under conditions. As a result, the produced light oil molecules form clusters with supercritical water, and the mixture of clusters and supercritical water is sent to the combustor at the temperature and pressure to be used as gas turbine fuel. Depending on the type of heavy oil, substances that cannot be modified even in the reforming process, or inorganic substances remain, and these are discharged from the bottom of the reformer and processed separately.
[0011]
In the reforming step, an alkali metal can be added and a cracking catalyst or the like can be filled in order to accelerate the cracking reaction of the residual oil. Also, depending on the type of heavy oil (for example, A heavy oil, B heavy oil, C heavy oil, vacuum residual oil, orimulsion, oil sand, oil shell, waste oil, etc.), optimum temperature, pressure, steam in the dissolution / separation process and reforming process Since the partial pressures are different, the temperature, pressure, and water vapor partial pressure in the present invention are not limited. What is important is that it is divided into a dissolution / separation process and a reforming process, and in the dissolution / separation process, aliphatic and aromatic hydrocarbons that are relatively lightened are hydrolyzed with supercritical water to form clusters, and reforming. In the process, the residual oil having a high degree of polymerization is reformed with fresh, higher temperature supercritical water over a sufficient contact time to form a cluster. The mixture of clusters and supercritical water generated in each process (in gaseous form, this is collectively referred to as reformed fuel) is led to the combustor of the gas turbine as fuel at high temperature and high pressure. No gas compressor or oil-water separator is required. In addition, the two-stage reforming method can efficiently modify heavy oil because it can take the optimum temperature, water vapor partial pressure, and contact time corresponding to the change in the solvent substance, compared to the conventional one-step reforming. .
[0012]
The second invention relates to high-efficiency reforming and V removal of heavy oil in the case where the heavy oil contains a large amount of heavy metals such as vanadium (V), and supercritical water and heavy oil are brought into contact with each other. A dissolution / separation process that dissolves the light fraction in supercritical water and separates the undissolvable heavy fraction (residual oil), and a residual oil reforming process that further reforms the separated residual oil in contact with supercritical water. An oxidation process means is employed in which the residue extracted from the residual oil reforming process is burned to remove vanadium compounds.
[0013]
Heavy metals such as vanadium (V) are contained in heavy oils in the form of polyphyllin in polymers with a high degree of polymerization, and only move to the gas or light oil side by catalytic reaction with supercritical water. However, it remains in the polymer having a high degree of polymerization. In the second invention, the dissolution / separation process and the residual oil reforming process have the same basic functions as in the first invention, but the means of the oxidation process for actively removing and removing heavy metals such as V is adopted. ing.
[0014]
In the oxidation process, calcium compound, magnesium compound, dolomite and the like are filled, and residual oil extracted from the reforming process and oxidant such as air from outside the system are supplied to burn the residual oil. When heavy oil becomes CO 2 and H 2 O by combustion, heavy metals are oxidized and become metal oxides. For example, V becomes V 2 O 5 . V 2 O 5 reacts with the packing, becomes a compound such as CaO · V 2 O 5 (melting point 618 ° C.), MgO · V 2 O 5 (melting point 671 ° C.) and is trapped in the packing.
[0015]
The temperature in the oxidation step is about 450 ° C. to 900 ° C., and preferably burns at a temperature not exceeding the melting point of the substance that is a compound of V 2 O 5 and the filler. For example, the amount of oxidant such as air is adjusted so that it can be operated at 600 ° C. for CaO · V 2 O 5 (melting point 618 ° C.) and 650 ° C. for MgO · V 2 O 5 (melting point 671 ° C.). The pressure is preferably about 1 to 2 atmospheres in order to facilitate the taking in and out of the packing material and to reduce the supply power cost of the combustion air. By making the packing shape into particles crushed to about 0.1 to 2 mm, handling during filling and discharging becomes easy. The layer state of the particles in the oxidizer is preferably a stationary phase, a moving bed, or a fluidized bed.
[0016]
The filler is selected depending on the properties of the heavy oil to be treated. When processing residual oil containing a large amount of sulfur and heavy metals, the calcium-based compounds such as limestone and dolomato are selected and the oxidizer. If the lower temperature is 850 ° C. and the upper temperature is about 600 ° C., the SO 2 gas generated during combustion reacts with limestone in the lower part and becomes CaSO 4 and is fixed, and V 2 O 5 is CaO. V 2 O 5 (melting point 618 ° C.) and fixed. That is, not only heavy metal oxides but also sulfur oxides can be removed. When mainly removing heavy metal, Fe-based oxide, Mg-based oxide, or Ni-based oxide is used as the filler, and Fe 2 O 3 · V 2 O 5 (melting point 860 ° C.), MgO · V 2 is used. It can also be fixed as O 5 (melting point 671 ° C.), 2NiO · V 2 O 5 (melting point 900 ° C.). The particles with V and S fixed are discharged from the oxidation process and used for recovery of V.
[0017]
According to a third invention, in the first and second inventions, new supercritical water is supplied to the reforming step of the residual oil to increase the partial pressure of water vapor, and the temperature of the reforming step is set higher than that of the dissolving step. By increasing it, hydrolysis is performed under more severe conditions.
[0018]
In the fourth invention, the pressure in the oxidation process in the second invention is made lower than the pressure in the dissolution / separation process and the residual oil reforming process, and it is preferable to operate at about 1 to 2 atm to facilitate loading and unloading of the packing material. This is to reduce the supply power cost of the combustion air.
[0019]
The fifth invention is for achieving high-efficiency power generation by power generation using the reformed oil (supercritical water in which oil is dissolved) obtained in the first invention or the second invention as a fuel.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0021]
Example 1
FIG. 1 shows a lightening method using heavy oil (mixed oil of C heavy oil and waste oil, mixed oil having a fraction of C15 or more, V content 20 ppm). This system is composed of a heavy oil and supercritical water supply system, a dissolution / separation process 1, a reforming process 2, and piping connecting each process. Heavy oil is heated to 50 ° C. in a tank, heated to 350 ° C. by an extra-tube heater while being transported at 24 g / min by a pump, and supplied to the dissolution / separation step 1. Water is heated to 450 ° C. by an extra-tube heater while being transported at a rate of 24 g / min by a pump, and supplied to the dissolution / separation process 1 as supercritical water. In the dissolution / separation step, the heavy oil is supercritically treated at a liquid-based space velocity of 10 h −1 while being maintained at 390 ° C. to 25 MPa to produce a reformed fuel composed of a mixed gas of clusters and supercritical water. The reformed fuel is supplied to the gas turbine combustor through the reformed fuel extraction pipe 3 and the pressure control valve 4. On the other hand, the residual oil not dissolved in the dissolution / separation process 1 is supplied to the reforming process 2 through the residual oil extraction pipe 5 and the residual oil extraction valve 6 at 0.8 g / min. In the reforming step 2, supercritical water at 550 ° C.-25 MPa is supplied from the supercritical water supply pipe 7 at 1.6 g / min, the reforming step 2 is maintained at 450 ° C.-25 MPa, and the liquid-based space velocity 2 h The residual oil is reacted at -1 to generate reformed fuel, and the reformed fuel is returned to the melting / separating process through the reformed fuel pipe 8. The reformed fuel produced by the above operation was collected after cooling under reduced pressure, and its composition was examined. Gaseous material at room temperature H 2, CO, CO 2, C1~C4, V lighter oil component in oil in fraction or C5 was 0.8 ppm. The calorific value of the reformed fuel containing water vapor was 4500 kcal / kg. Further, even when the amount of supercritical water / heavy oil was changed to 0.25-2 (the liquid-based space velocity was the same), V in the light oil was 0.8 ppm.
[0022]
Example 2
FIG. 2 shows a lightening method using a vacuum residue oil as a heavy oil (a fraction having an initial boiling point of 375 ° C. or higher under normal pressure, a V content of 150 ppm). This system connects high pressure heavy oil, supercritical water supply system, dissolution / separation process 1, reforming process 2 and normal pressure oxidation process 20, heat recovery unit 21, dedusting unit 22, and each process. Consists of piping. The heavy oil is heated to 120 ° C. in a tank, heated to 370 ° C. by an external heater while being transported by a pump at 24 g / min, and supplied to the dissolution / separation step 1. Water is heated to 450 ° C. by an extra-tube heater while being transported at a rate of 24 g / min by a pump, and supplied to the dissolution / separation process 1 as supercritical water. In the dissolution / separation step, the heavy oil is supercritically treated at a liquid-based space velocity of 10 h −1 while being maintained at 390 ° C. to 25 MPa to produce a reformed fuel composed of a mixed gas of clusters and supercritical water. The reformed fuel is supplied to the gas turbine combustor through the reformed fuel extraction pipe 3 and the pressure control valve 4. On the other hand, the residual oil not dissolved in the dissolution / separation process 1 is supplied to the reforming process 2 through the residual oil extraction pipe 5 and the residual oil extraction valve 6 at 5 g / min. In the reforming step 2, supercritical water at 550 ° C.-25 MPa is supplied from the supercritical water supply pipe 7 at 20 g / min, the reforming step 2 is maintained at 450 ° C.-25 MPa, and the liquid-based space velocity 2 h −1. Then, the residual oil is reacted to generate reformed fuel, and the reformed fuel is returned to the melting / separating process through the reformed fuel pipe 8. On the other hand, the residual oil that has not been reformed in the reforming step 2 is sent to the atmospheric pressure oxidation step 20 at 2 g / min via the residual oil discharge pipe 9 and the residual oil discharge valve 23. In the oxidation step, limestone having an average particle diameter of 0.5 mm is filled through a filler supply pipe 27 (the filler is discharged through a filler discharge pipe 28). Further, air is supplied at 64 g / min from outside the system to the oxidation step 20 through the oxidant supply pipe 24, and the residual oil is burned at 600 ° C. By combustion, C, H, and S in the residual oil become CO 2 , H 2 O, and SO 2 , and V metal contained in the residual oil becomes V 2 O 5 . SO 2 and V 2 O 5 react with the packing to become CaSO 4 and CaO · V 2 O 5 and are chemisorbed onto the solid packing. The combustion exhaust gas is cooled to about 120 ° C. by the heat recovery unit 21 through the exhaust pipe 25, and then the entrained particulates are separated by the dust remover 22 and then discharged from the pipe 26. In the oxidation step 20, 99.4% of V and 58% of S contained in the heavy oil were chemisorbed.
[0023]
Example 3
In the apparatus of Example 2, dolomite having an average particle diameter of 0.5 mm was used as a filler in the oxidation step, and the modification was performed under the conditions of Example 2. The reformed fuel discharged from the pressure control valve 4 was 66 g / min, and V in the liquid fraction of C5 or higher was 1 ppm or less. In the dolomite charged in the oxidation step 20, 99.3% of V and 63% of S contained in the heavy oil were adsorbed. V became MgO · V 2 O 5 and CaO · V 2 O 5 , and adhered to the solid packing.
[0024]
Example 4
In the apparatus of Example 2, in the reforming step, an equimolar amount of NaOH was supplied with respect to S in the heavy oil and reformed under the conditions of Example 2. The reformed fuel discharged from the pressure control valve 4 was 66 g / min, and V in the liquid fraction of C5 or higher was 1 ppm or less. In the limestone charged in the oxidation step 20, 99.3% of V and 83% of S contained in the heavy oil were adsorbed. V became CaO · V 2 O 5 and was deposited on the solid packing.
[0025]
Example 5
FIG. 3 shows a high-efficiency power generation system using heavy oil lighter fuel.
[0026]
Melting / separation step 1, reforming step 2 and atmospheric pressure oxidation step 20, combustor 31, gas turbine 32, air compressor 33, exhaust heat recovery device 34, environmental device 35 (denitration, desulfurization, dust removal), steam The turbine 36 is configured. The reformed fuel generated in the dissolution / separation process 1 and the reforming process 2 is supplied to the gas turbine combustor 31 through the reformed fuel extraction pipe 3, the pressure control valve 4, and the fuel supply pipe 37. The combustor 31 receives the air from the air compressor 33 from the conduit 38 and burns the reformed fuel. The combustion gas drives the gas turbine 32 and is used for power generation, and then sent to the exhaust heat recovery unit 34. A heat transfer pipe 39 is installed in the exhaust heat recovery unit 34, and power is generated by exhaust heat recovery in a power generation system including a feed water pump 40, a steam turbine 36, and the like connected thereto. The exhaust gas exiting the exhaust heat recovery device 34 is purified by the environmental device 35 and released outside the system. On the other hand, the combustion exhaust gas generated in the oxidation step 20 is sent to the exhaust heat recovery unit 34 through the exhaust pipe 25 and the pipe 26 and is recovered by the exhaust heat recovery unit.
[0027]
This system does not describe how to heat heavy oil and generate supercritical water, but install a heat transfer tube for heating heavy oil and a heat transfer tube for generating supercritical water in the exhaust heat recovery unit 34. And they can be achieved.
[0028]
【The invention's effect】
According to the present invention, a light oil fuel demetalized from heavy oil can be produced. Therefore, when used as a gas turbine fuel, a gas compressor is unnecessary, a separation step for separating light oil and water is unnecessary, An efficient power generation system becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention.
FIG. 2 is a schematic diagram showing the configuration of another embodiment according to the present invention.
FIG. 3 is a schematic view of a power generation system according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dissolution / separation process, 2 ... Reforming process, 3 ... Reformed fuel extraction pipe, 4 ... Pressure control valve, 5 ... Residual oil extraction pipe, 6 ... Residual oil extraction valve, 7 ... Supercritical water supply pipe, 8 ... reformed fuel pipe, 9 ... residue oil discharge pipe, 20 ... oxidation process, 21 ... heat recovery device, 22 ... dust remover, 23 ... residue oil discharge valve, 24 ... oxidant supply pipe, 25 ... discharge pipe , 26 ... piping, 31 ... combustor, 32 ... gas turbine, 33 ... air compressor, 34 ... exhaust heat recovery device, 35 ... environmental equipment, 36 ... steam turbine, 37 ... fuel supply pipe, 38 ... conduit, 39 ... Heat transfer tube, 40 ... feed pump.

Claims (5)

超臨界水と重質油を混合し軽質燃料を製造する方法において、超臨界水と重質油を接触させて超臨界水に軽質留分を溶解するとともに溶解不能な重質分(残油分)を分離する溶解・分離工程と、分離した残油分を更に超臨界水と接触させ改質する残油分改質工程とを有することを特徴とする重質油の軽質化方法。In the method of producing light fuel by mixing supercritical water and heavy oil, the supercritical water and heavy oil are brought into contact with each other to dissolve the light fraction in supercritical water and to dissolve the heavy fraction that cannot be dissolved (residual oil) A method for lightening heavy oil, comprising: a dissolving / separating step for separating oil; and a residual oil reforming step in which the separated residual oil is further brought into contact with supercritical water for reforming. 超臨界水と重質油を混合し軽質燃料を製造する方法において、超臨界水と重質油を接触させて超臨界水に軽質留分を溶解するとともに溶解不能な重質分(残油分)を分離する溶解・分離工程と、分離した残油分を更に超臨界水と接触させ改質する残油分改質工程と、残油分改質工程からの残査分を燃焼処理する酸化工程とを有することを特徴とする重質油の軽質化方法。In the method of producing light fuel by mixing supercritical water and heavy oil, the supercritical water and heavy oil are brought into contact with each other to dissolve the light fraction in supercritical water and to dissolve the heavy fraction that cannot be dissolved (residual oil) A dissolution / separation process for separating the residual oil, a residual oil reforming process for bringing the separated residual oil into contact with supercritical water for reforming, and an oxidation process for combusting the residue from the residual oil reforming process A method for reducing the weight of heavy oil. 請求項1又は請求項2において、残油分改質工程に新たな超臨界水を供給し、水蒸気分圧を高めるとともに、残油分改質工程の温度を溶解工程よりも高めることを特徴とする重質油の軽質化方法。3. The method according to claim 1, wherein new supercritical water is supplied to the residual oil reforming step to increase the water vapor partial pressure, and the temperature of the residual oil reforming step is higher than that of the dissolving step. Lightening method of quality oil. 請求項2において、酸化工程の圧力を溶解・分離工程,残油分改質工程の圧力より低くし、酸化剤を供給することを特徴とする重質油の軽質化方法。3. The method for lightening heavy oil according to claim 2, wherein the pressure in the oxidation step is made lower than the pressure in the dissolution / separation step and the residual oil reforming step, and an oxidizing agent is supplied. 請求項1あるいは請求項2で得られた油分を溶解した超臨界水を燃料とし、発電することを特徴とする重質油による発電方法。A power generation method using heavy oil, wherein power is generated using supercritical water obtained by dissolving the oil obtained in claim 1 or 2 as fuel.
JP2001238582A 2001-08-07 2001-08-07 Lightening of heavy oil Expired - Fee Related JP3791363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238582A JP3791363B2 (en) 2001-08-07 2001-08-07 Lightening of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238582A JP3791363B2 (en) 2001-08-07 2001-08-07 Lightening of heavy oil

Publications (2)

Publication Number Publication Date
JP2003049180A JP2003049180A (en) 2003-02-21
JP3791363B2 true JP3791363B2 (en) 2006-06-28

Family

ID=19069467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238582A Expired - Fee Related JP3791363B2 (en) 2001-08-07 2001-08-07 Lightening of heavy oil

Country Status (1)

Country Link
JP (1) JP3791363B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4098181B2 (en) 2003-08-05 2008-06-11 株式会社日立製作所 Heavy oil treatment method and heavy oil treatment system
JP4555010B2 (en) * 2004-07-15 2010-09-29 株式会社日立製作所 Reformed fuel-fired gas turbine and operation method thereof
JP4495004B2 (en) 2005-02-24 2010-06-30 株式会社日立製作所 Heavy oil reformed fuel-fired gas turbine system and operation method thereof
JP4643369B2 (en) * 2005-06-17 2011-03-02 株式会社日立製作所 Heavy oil reforming system and power generation system
JP4627468B2 (en) * 2005-09-26 2011-02-09 株式会社日立製作所 Gas turbine fuel manufacturing method, gas turbine power generation method, and power generation apparatus
US7842181B2 (en) 2006-12-06 2010-11-30 Saudi Arabian Oil Company Composition and process for the removal of sulfur from middle distillate fuels
WO2009073442A2 (en) 2007-11-28 2009-06-11 Saudi Arabian Oil Company Process to reduce acidity of crude oil
US8142646B2 (en) 2007-11-30 2012-03-27 Saudi Arabian Oil Company Process to produce low sulfur catalytically cracked gasoline without saturation of olefinic compounds
EP2250129A2 (en) 2008-02-21 2010-11-17 Saudi Arabian Oil Company Catalyst to attain low sulfur gasoline
JP2011088964A (en) * 2009-10-20 2011-05-06 Jgc Corp Apparatus and method for modifying heavy oil
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process
US9005432B2 (en) 2010-06-29 2015-04-14 Saudi Arabian Oil Company Removal of sulfur compounds from petroleum stream
US9039889B2 (en) 2010-09-14 2015-05-26 Saudi Arabian Oil Company Upgrading of hydrocarbons by hydrothermal process
US9382485B2 (en) 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process
US8535518B2 (en) 2011-01-19 2013-09-17 Saudi Arabian Oil Company Petroleum upgrading and desulfurizing process
WO2012143972A1 (en) * 2011-04-19 2012-10-26 日揮株式会社 Reformate production method and reformate production apparatus
US10066172B2 (en) 2015-12-15 2018-09-04 Saudi Arabian Oil Company Supercritical water upgrading process to produce paraffinic stream from heavy oil
US10066176B2 (en) 2015-12-15 2018-09-04 Saudi Arabian Oil Company Supercritical water upgrading process to produce high grade coke
KR20180094073A (en) 2015-12-15 2018-08-22 사우디 아라비안 오일 컴퍼니 Supercritical Reactor System and Method for Upgrading Petroleum
US10011790B2 (en) 2015-12-15 2018-07-03 Saudi Arabian Oil Company Supercritical water processes for upgrading a petroleum-based composition while decreasing plugging
US10577546B2 (en) 2017-01-04 2020-03-03 Saudi Arabian Oil Company Systems and processes for deasphalting oil
US10815434B2 (en) 2017-01-04 2020-10-27 Saudi Arabian Oil Company Systems and processes for power generation
US10752847B2 (en) 2017-03-08 2020-08-25 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
US10920158B2 (en) * 2019-06-14 2021-02-16 Saudi Arabian Oil Company Supercritical water process to produce bottom free hydrocarbons
CN111392912A (en) * 2020-04-21 2020-07-10 江苏暻慧诚环境工程有限公司 Oil-based cutting waste liquid treatment and separation system and working method thereof

Also Published As

Publication number Publication date
JP2003049180A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP3791363B2 (en) Lightening of heavy oil
TWI291988B (en)
EP2812417B1 (en) Partial oxidation reaction with closed cycle quench
JP4098181B2 (en) Heavy oil treatment method and heavy oil treatment system
JP5137392B2 (en) Method and system for partial regulator bypass
CN106085469B (en) System and method for the elastic conversion of feedstock to oil and gas
US20080202985A1 (en) Method for recovery of hydrocarbon oils from oil shale and other carbonaceous solids
WO2018187741A1 (en) Multi-purpose application of the second stage of a 2-stage bio-reforming reactor system for reforming bio-syngas natural gas and process recycle streams
JP5766434B2 (en) Fluid catalytic cracking process with reduced carbon dioxide emissions
JP6356343B2 (en) Coking heavy liquid fuels incorporating the concept of chemical loops.
WO2010106540A1 (en) Environmentally clean process for utilizing pyrolysis products
TW200905061A (en) Process and installation for generating electrical energy in a gas and steam turbine (combined cycle) power generating plant
US10443004B2 (en) First stage process configurations in a 2-stage bio-reforming reactor system
JPH0770569A (en) Gasification of carbonaceous substance
KR101679288B1 (en) Reformer gas-based reducing method with reduced NOx emission
KR100444350B1 (en) Method and apparatus for producing iron
JPH02237646A (en) Combustion method of flue gas from catalytic regenerator
US20180086635A1 (en) Process and apparatus for steam reforming
US4132627A (en) Integrated coal conversion process
AU741448B2 (en) Soot filter cake disposal
JP7315092B2 (en) Hydrogen production equipment
CA2622471A1 (en) Process and apparatus for upgrading coal using supercritical water
WO2023230195A1 (en) Continuous carbonaceous matter thermolysis and pressurized char activation with hydrogen production
WO2023167928A1 (en) Alternating fixed and fluidized bed reactor systems and processes
KR20230088936A (en) Appratus for extracting hydrogen using steam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees