JP3791258B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3791258B2
JP3791258B2 JP27814599A JP27814599A JP3791258B2 JP 3791258 B2 JP3791258 B2 JP 3791258B2 JP 27814599 A JP27814599 A JP 27814599A JP 27814599 A JP27814599 A JP 27814599A JP 3791258 B2 JP3791258 B2 JP 3791258B2
Authority
JP
Japan
Prior art keywords
temperature
indoor
air
air conditioner
sensory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27814599A
Other languages
Japanese (ja)
Other versions
JP2001099458A (en
Inventor
聡 鈴木
康雄 今城
聡 地口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27814599A priority Critical patent/JP3791258B2/en
Publication of JP2001099458A publication Critical patent/JP2001099458A/en
Application granted granted Critical
Publication of JP3791258B2 publication Critical patent/JP3791258B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、輻射熱検出手段を用いて体感温度を得る空気調和機に関する。
【0002】
【従来の技術】
室内の人間の快適性を左右する要因として室内空気温度、壁や床からの輻射熱、そして室内空気湿度がある。空気調和機の運転を制御する場合、室内空気温度と設定温度との差によって圧縮機の周波数や室内ファン及び室外ファンの回転速度を制御する方法では適度な湿度環境にならなかったり、人間が快適と感じる体感温度とは異なる温度となってしまい、快適空調が不十分になってしまう。
【0003】
そこで、より快適な空調を行うために、室内空気温度と壁や床からの輻射熱温度とによって室内空気温度を補正して体感温度として算出し、この体感温度と設定温度との差を測定することによって空気調和負荷を算出し、この空調負荷に応じて圧縮機の運転等を制御している。ただし、この場合でも、設定温度とリモコンまたは空気調和機本体に表示されている温度値は、体感温度ではなく、室内空気温度やそれに基くもののことである。この結果、例えば室内温度の表示は既に設定温度になっているにも関わらず、体感的には快適でないため、設定温度を変更してしまい、かえって希望の体感温度から離れた設定温度に設定することがある。よって、常に同じ体感温度を得るために環境変化に応じて設定温度を感覚的に変更することになる。
【0004】
【発明が解決しようとする課題】
これは同じ空気温度でも空調負荷が変われば体感温度は違ってくることを意味している。よって、表示温度が室内空気温度の場合、常に同じ体感温度を得ようとするには自らが感覚を便りに設定温度を変えなければならず、快適な空調環境を設定しにくいという課題があった。
【0005】
この発明は上記のような課題を解決するためになされたものであり、体感温度を表示することで、快適な空調環境の設定がしやすい空気調和機を得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る空気調和機は、圧縮機、凝縮器、蒸発器を備えた空気調和機において、室内空気温度を検出する室温検出手段と、輻射熱温度を検出する輻射熱温度検出手段と、所望の設定温度を入力する温度設定手段と、希望体感温度を入力する入力手段と、前記室温検出手段及び輻射熱温度検出手段から輻射熱温度を加味した体感温度を得る制御部と、空気調和機本体又はリモコンに設けられた表示部に室内空気温度から体感温度または設定温度から希望体感温度に切り換え表示させる切換手段とを備えたものである。
【0008】
また、前記制御部は前記室内空気温度及び輻射熱温度に基づいて空調制御を行なうものである。
【0010】
また、前記希望体感温度を1℃より細かくしたものである。
【0011】
また、前記表示部の表示温度間隔を前記体感温度の間隔よりも大きくしたものである。
【0012】
また、室内空気湿度を検出する湿度検出手段を備え、前記制御部は前記室温検出手段、輻射熱温度検出手段及び湿度検出手段から体感温度を得るものである。
【0014】
また、前記体感温度と室内空気温度との何れが表示されているかを表示する切換表示手段を備えたものである。
【0015】
また、圧縮機、凝縮器、蒸発器を備えた空気調和機において、室内空気温度を検出する室温検出手段と、所望の設定温度を入力する温度設定手段と、被空調空間に居る人間が感じる体感温度を検出する体感温度検出手段と、を備え、室内空気温度または設定温度を前記体感温度検出手段により検出した体感温度に応じて補正した設定温度または室内空気温度に近づけるように制御するものである。
また、前記空気調和機は圧縮機、四方弁、室外熱交換器、第1絞り機構、第1室内熱交換器、第2絞り機構、第2室内熱交換器を順次接続した冷凍サイクルと、前記室外熱交換器に空気流を発生させる室外ファンと、前記室内熱交換器に空気流を発生させる室内ファンとを備え、前記圧縮機の周波数または前記室内外ファンの回転速度または前記絞り機構の開度を制御するものである。
【0016】
また、前記体感温度検出手段は輻射センサを用い床面または壁面の輻射熱温度を検出するものである。
また、前記輻射センサにより検出された輻射熱温度Trによる設定温度の補正量Totが室内空気温度TH1及び輻射センサ定数C1を用いて、Tot=(C1*(TH1−Tr))/2である。
【0017】
【発明の実施の形態】
実施の形態1.
以下この発明の実施の形態を図について説明する。図1はこの発明の実施の形態における空気調和機を示す冷媒回路図である。図1において、1は圧縮機、2は圧縮機1の吐出側に設けられ、冷房、除湿運転時と暖房運転時とで冷凍サイクルの冷媒流れ方向を切換える四方弁、3は冷房、除湿運転時には凝縮器、暖房運転時には蒸発器となる室外熱交換器、4は例えば電気式膨張弁から成る第1絞り機構、5は第1室内熱交換器、7は第2室内熱交換器であり、この第1室内熱交換器5と第2室内熱交換器7の間には、第2絞り機構6が設けられており、これらは配管によって順次接続され、冷凍サイクルを構成している。本実施の形態では第2絞り機構6は電子式膨張弁を用い、開閉する弁体には閉時にも冷媒が通過可能な多孔質透過材が用いられている。
【0018】
8は室外熱交換器3へ室外空気を通過させるための空気流を発生させる室外ファンで、ここではプロペラファンである。9は第1室内熱交換器5及び第2室内熱交換器7へ室内空気を通過させるための空気流を発生させる室内ファンで、ここではクロスフローファンである。また、圧縮機1、四方弁2、室外熱交換器3および第1流量制御弁4で室外機11を構成し、第1室内熱交換器5、第2室内熱交換器7および第2流量制御弁6で室内機10を構成している。この冷凍サイクルの冷媒には、R32とR125の混合冷媒であるR410Aが用いられ、冷凍機油には冷媒との相溶性が低い(弱相溶油と呼ばれる)アルキルベンゼン系油が用いられている。勿論従来のR22冷媒や例えばR407Cのような他のHFC冷媒でもよく、冷凍機油もエステル油等の相溶油であってもよい。
【0019】
図2は室内機10の外観を示す斜視図である。図1、2において、10aは室内機10内の第1室内熱交換器5および第2室内熱交換器7へ室内空気を取り込む吸込口、10bは第1室内熱交換器5および第2室内熱交換器7にて熱交換された調和空気を室内へと吐出する吹出口、10cは吹出口10b付近に設けられ、室内への吐出空気を上下方向へ制御する風向ベーンである。尚図示しないが風向ベーン10cの上流側には室内への吐出空気を左右方向へ制御する左右風向ベーンも設けられている。12は室内機10に設けられた温度表示部で、本実施の形態では1℃刻みの温度毎にLEDが設けられ、冷房、除湿運転時にはLED上方の数値が温度として対応し、暖房運転時にはLED下方の数値が温度として対応している。
【0020】
13は室内機10に設けられた体感モニタで、本実施の形態ではLEDが設けられ、温度表示部12が室内温度を表示している場合は消灯し、体感温度を表示している場合には点灯する。即ち、体感温度表示または室内空気温度表示の何れに切り換わったかを示す切換手段である。この切換手段は体感モニタとして別途設けずに温度表示部12のLEDの色を変えるものであっても良い。このような切換手段を設けることで、体感温度、室内空気温度それぞれの温度表示部を設ける必要がなくなり、電気部品を減らせる分リサイクル時の解体性が向上する。14は後述するリモコンからの信号を受信するリモコン信号受光部、15は床面または壁面の輻射熱温度を検出するための輻射センサ(輻射熱温度検出手段)で、本実施の形態では室内機10下方の床面温度を60°の範囲で計測している。17は室内空気温度を検出する室温センサ(室温検出手段)、18は室内空気湿度を検出する湿度センサ(湿度検出手段)である。
【0021】
20は室内機10に設けられ、リモコン信号受光部14にてリモコンからの信号を受信し、使用者の所望の環境を設定するとともに、輻射センサ15、室温センサ17、湿度センサ18からの検出結果を入力し、第2絞り機構6の開度(開閉を含む)や室内ファン9のファン回転速度を制御する室内制御部で、さらに室内機10の温度表示部12や体感モニタ13への表示内容を決定し、表示するよう制御している。21は室外機11に設けられ、室内制御部10と相互に通信して、上記室内制御部20の情報から圧縮機1の周波数や四方弁2の切り換え、室外ファン8の回転速度、第1絞り機構の開度(開閉を含む)を制御する室外機制御部である。
【0022】
図3は入力手段であるリモコンを示す正面図である。図3において、16は室内機10のリモコン信号受光部14を介して室内制御部20へ運転モードや設定温度等使用者の所望の設定条件を入力するためのリモコン、16aはリモコン16に設けられ、所望の設定湿度を入力するための湿度設定ボタン、16bはリモコン16に設けられ、所望の設定温度を入力するための温度設定ボタン、16cはリモコン16から入力可能な設定内容のうち、選択された設定内容を表示する表示窓、16dは表示窓16c内に区画形成された温度表示部で、0.5℃刻みで表示可能である。
【0023】
温度設定ボタン16bにて温度を下げる方向に入力すると、温度表示部16dの表示内容は図4のように0.5℃刻みで変化する。
また、16eは省エネ運転ボタンやタイマー設定ボタン等、使用頻度が比較的少ないボタンを覆う開閉式の蓋で、開時には上記ボタンが露出し、閉時には蓋により隠蔽される。また、図示しないが蓋16eを閉じた状態では蓋16e表面に体感温度表示切換ボタンが露出し、この体感温度表示切換ボタンの操作によって室内機本体10の温度表示部12の表示内容を室内空気温度または体感温度に切り換えることができる。
【0024】
次に冷凍サイクルの動作について説明する。除湿及び冷房運転時では、圧縮機1を出た冷媒は四方弁2を通り、室外ファン8が付設された室外熱交換器3、第1絞り機構4を通過し、第1室内熱交換器5、第2絞り機構6、第2室内熱交換器7、四方弁2を通って圧縮機1に戻る。暖房運転時は四方弁2が切り替わり、冷媒の流れ方向が逆となる。
【0025】
次に冷房、除湿運転時の動作についてさらに詳細に説明する。図1では冷房、除湿運転時の冷媒の流れを実線矢印で示している。冷房運転は、起動時や夏季時など部屋の空調顕熱負荷と潜熱負荷がともに大きい場合に対応する通常冷房運転と、中間期や梅雨時期のように空調潜熱負荷は小さいが、顕熱負荷が大きな場合に対応する除湿運転に分けられる。通常冷房運転は、第2絞り機構6の図示しない電磁コイルを非通電状態とする。このとき圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2を通って室外熱交換器3に流入し、外気と熱交換して凝縮、液化する。この高圧の液冷媒は、第1絞り機構4で低圧に減圧され、気液二相冷媒となって第1室内熱交換器5および第2室内熱交換器7で室内空気の顕熱および潜熱を奪って蒸発する。第2絞り機構6では、第1室内熱交換器5側と第2室内熱交換器7側とが大きな開口面積で接続されているので、この弁を通過する際の冷媒圧力損失はほとんどなく、圧力損失による冷房能力や効率面での低下もない。第2室内熱交換器7を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。この通常冷房運転時の第1絞り機構4の開度は、例えば第2室内熱交換器の出口冷媒の過熱度が5℃となるように制御されている。
【0026】
次に除湿運転時の動作について説明する。この除湿運転時は、第2絞り機構6の電磁コイルに通電し、主弁体を主弁座に密着させ、主弁体の通気孔を介して第1室内熱交換器5の出口と第2室内熱交換器7の入口を接続する。この時、圧縮機1を出た高温高圧の冷媒蒸気(A点)は、四方弁2を通って室外熱交換器3に流入し、外気と熱交換して凝縮する(B点)。この高圧の液冷媒あるいは気液二相冷媒は、第1絞り機構4で若干減圧され(C点)、中間圧の気液二相冷媒となって第1室内熱交換器5に流入する。この第1室内熱交換器5に流入した冷媒は、室内空気と熱交換してさらに凝縮する(D点)。第1室内熱交換器5を出た中間圧の液冷媒あるいは気液二相冷媒は、第2絞り機構6に流入する。
【0027】
第2絞り機構6では、主弁体が主弁座に密着しているため、この弁に流入した冷媒は、多孔質透過材で構成されている主弁体内の通気孔を通って第2室内熱交換器7に流入する。この主弁体の通気孔は10マイクロメートル程度であり、この通気孔を通る冷媒は減圧されて、低圧の気液二相冷媒となって、第2室内熱交換器7に流入する(E点)。この第2室内熱交換器7に流入した冷媒は、室内空気の顕熱および潜熱を奪って蒸発する。第2室内熱交換器7を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。室内空気は、第1室内熱交換器5で加熱され、第2室内熱交換器7で冷却除湿されるため、部屋の室温低下を防ぎながら除湿を行うことができる。
【0028】
なお、この除湿運転では、圧縮機1の回転周波数や室外熱交換器3のファン回転数を調整して、室外熱交換器3の熱交換量を制御し、第1室内熱交換器5による室内空気の加熱量を制御して吹出し温度を広範囲に制御できる。また第1流量制御弁7の開度や室内ファン回転数を調整して、第1室内熱交換器5の凝縮温度を制御し、第1室内熱交換器5による室内空気の加熱量を制御することもできる。また第2絞り機構6の開度は、例えば第2室内熱交換器7の出口冷媒の過熱度が5℃となるように制御されている。
【0029】
また、通常の冷房運転や暖房運転では第2絞り機構6を全開にしておき、圧縮機1の周波数や第1絞り機構4、室外ファン8、室内ファン9を制御して冷暖房能力を変化させ、被空調室(被空調空間)の温度を調整する。
いずれの空調運転の場合も、空調制御については、室温センサ17、湿度センサ18及び輻射センサ15からの検出結果を用いる。特に温度情報については室温センサ17で検出した室内空気温度と輻射センサ15で検出した輻射熱温度との間に開きがある場合、設定温度の値を輻射熱温度に応じて補正し、その補正された値を新たな設定温度としてこの値に近づけるよう室内制御部20及び室外制御部が圧縮機周波数やファン回転速度、絞り開度等を制御する。
【0030】
輻射熱温度を取り込んだ設定温度の補正について図5を用いて説明する。図5において、Tfは輻射センサ15にて検出された輻射熱温度、TH1は室温センサ17で検出された室内空気温度、Tsetはリモコンから入力設定された設定温度TsetRを輻射熱温度で補正した結果の設定温度である。
輻射熱温度は床面や壁面の温度であり、床や壁は夏場等の暑い時期は空調前の高温環境で暖められていて冷房、除湿運転によって室内空気温度が下がる速度に比べて下がり方が緩やかである。逆に冬場等の寒い時期は空調前の低温環境で冷やされており暖房運転によって室内空気温度が上がる速度に比べて上がり方が緩やかである。
【0031】
そのため、室内に居る人間が感じる体感温度としては室内空気温度と輻射熱温度との影響を受け、冷房、除湿時には室内空気温度が下がっている程には涼しさを感じず、暖房時には室内空気温度が上がっている程には暖かさを感じない。そのため、体感温度をリモコン16から入力された設定温度に近づけるためには、上述した体感温度の沿った設定温度の補正が必要になる。
輻射による設定温度の補正量Totは下記式(1)によって求められる。
ot={C1*(TH1−Tf)}/2 式(1)
ここでC1は輻射センサ定数である。
【0032】
また、TH1−Tfはアナログ値ではなく、室温センサ17、輻射センサ15からの検出値が室内制御部20へデジタルに取り込まれるためデジタル値(本実施の形態では1/3℃刻み)となっている。
この結果、補正された設定温度Tsetも入力設定された設定温度TsetRに対してデジタル幅で補正される。
図5では、最初TH1−Tfがデジタル値ではゼロと判断されており、補正量Totもゼロである。この結果、Tset=TsetRのまま変わらない。その後、TH1−Tfがデジタル値で検出されたため、Tset=TsetR−0.33に補正される。この結果、室内空気温度と設定温度との差は0.33℃さらに開くことになり、室内制御部20及び室外制御部21はこの温度差に応じた圧縮機周波数、室内外ファン回転速度、第1、第2絞り機構開度の制御を行なう。また、室内制御部20は風向ベーン10cを制御し、吹出し風を床面や壁面に向かって吹出し、輻射熱温度を室内空気温度に近づけるよう制御する。
【0033】
輻射温度に応じて設定温度の補正を行なったにもかかわらず、補正後さらに所定時間Df1が経過してTH1−Tfが変化しない場合、室内制御部20は輻射熱温度を加味した体感温度での空調環境が改善されれていないと判断し、さらにTset=TsetR−0.67に補正する。この結果、室内空気温度と設定温度との差は0.67℃さらに開くことになり、室内制御部20及び室外制御部21はこの温度差に応じた圧縮機周波数、室内外ファン回転速度、第1、第2絞り機構開度の制御を行なう。このようにして、図5ではTset=TsetR−1.00にまで補正されていく。その後、風向ベーン10cを通常の風向に戻す。
【0034】
上記のような設定温度の補正により、制御上の室内空気温度との温度差が拡大するので、冷房能力が増大する。そして、床面等の温度が室内空気温度に近づいてくると、再びTH1−Tfのデジタル値がゼロとなる。これを受けて室内制御部20は設定温度をTset=TsetR−0.67に変更する。そして、所定時間Df2経過後もTH1−Tfのデジタル値がゼロであれば、室内空気温度と輻射熱温度との温度差が拡大していないと判断し、Tset=TsetR−0.33に変更する。ここで、再びTH1−Tfのデジタル値が広がる方向に検出されれば、再びTset=TsetR−0.67に変更する。図5ではさらに所定時間Df2経過後もTH1−Tfのデジタル値がゼロのままなので、Tset=TsetRとなる。
このようにして、輻射熱温度を含めた体感温度が設定温度へと導かれる。
【0035】
図6は暖房運転時における本実施の形態の空気調和機と従来の空気調和機との体感温度の変化を比較した対比図である。暖房運転を開始すると壁面や床面よりも早く室内空気温度が暖まる。そこで、上記のような制御を行ない、暖房能力を高く維持して風向ベーン10cを床面に向け、通常よりも床面を重点的に暖める。この結果、輻射センサ15から検出される輻射熱温度と室内空気温度との差を小さくし、体感温度を素早く設定温度に近づけることができる。そして、床面を暖めるたに室内空気温度が過度に設定温度より高い状態になる時間を短くできる。このようにして従来に比べて電気代を20%節約することができる。
【0036】
制御上は上記のように輻射熱温度を考慮した体感温度による制御は可能であるが、それだけでは室内にいる人間は現在の体感温度や制御温度を知ることができない。この発明の実施の形態1.に於ける空気調和機は、希望体感温度でリモコンから設定温度を設定入力可能にし、空気調和機の室内機10本体に備えたLEDの温度表示部12を用いて温度を表示させる場合、希望体感温度は点灯、現在の体感温度は点滅させることとした。また、リモコン16の温度表示部16dにも希望体感温度を表示可能にした。
【0037】
次に希望体感温度の入力設定や表示、体感温度の表示について説明する。室温センサ17によって検出された室内空気温度と輻射センサ15によって検出された輻射熱温度とから室内に居る人間の体感温度を求めることができる。ここで、温度補正方法として、室内空気温度、気流、輻射熱温度の3因子を1つの単位で表す標準作用温度の算出方法を採用した。例えば算出方法は下記の式(2)の通りである。
体感温度=(室内空気温度+輻射熱温度)/2 式(2)
【0038】
リモコン16に設けられた体感温度表示切換ボタンを押すと、リモコン16の温度表示部16dの表示内容は通常の設定温度から希望体感温度へと切り換わる。即ち、通常表示される設定温度26.5℃に対し、希望体感温度として26.5℃が表示される。体感温度表示切換ボタンをもう一度押すと通常の設定温度表示に切り換わる。設定温度、希望体感温度共に温度表示なので、それだけではどちらか表示されているかわからない。そこで、図3に示すように希望体感温度を表示しているときは温度の上に「体感温度」と表示される。通常の設定温度のときは「温度」と表示される。
【0039】
リモコン16から体感温度表示切換ボタンを押すと、室内機10の体感センサ13が点灯し、同時に温度表示部12の表示内容が現在の室内空気温度と設定温度とから、現在の体感温度と希望体感温度とに切り換わる。いずれの場合も室内空気温度及び現在の体感温度はLEDの点滅で、設定温度と希望体感温度はLEDの点灯で表示される。希望体感温度は、上述したリモコン16から入力設定され、リモコンに表示された温度である。体感温度表示切換ボタンをもう一度押すと体感センサ13が消灯し、温度表示部12には現在の室内空気温度と設定温度とが表示される。
【0040】
ここで、上述した制御動作としては、輻射熱温度に応じて設定温度を補正するものであり、設定温度が変化していくことになるが、表示部へ表示される希望体感温度は変化せず、TsetRの値が表示される。そして、制御上例えばTset=TsetR−1.00となると、室内空気温度と設定温度との差は1℃広がったことになるが、表示部に表示される内容は制御とは別に式(2)で計算された体感温度とTsetRなので、センシング間隔やDf1、Df2の短い間隔で表示内容がめまぐるしく変わることがない。また、温度表示部12は実際の制御におけるデジタル値である1/3℃刻みより大きな幅の1℃刻みで表示し、t±0.33℃をt℃として表示するから、この点でも表示内容がめまぐるしく変わることを防止している。
なお、体感温度が希望体感温度と一致したときは表示部12の該当温度のLED一つが点灯する。
【0041】
このような構成及び制御により、使用者はより自分の感覚に近い希望体感温度で設定温度が設定できるようになり、表示部を見ながら現在の体感温度と希望体感温度との開きを知ることができるようになる。
尚、本実施の形態では希望体感温度の設定を1℃より細かい0.5℃刻みにしている。これは従来一般的な空気調和機における温度設定の間隔1℃よりも細かい。体感温度は室内空気温度を補正するものであり、室内空気温度との温度差はそれほど大きなものではない。加えて輻射熱温度を用いた補正は制御動作にもあるように補正する温度幅が1℃より細かい単位で行なわれている。このように体感温度はデリケートなものであり、またそのような人による利用価値が高いため、希望体感温度の選択は通常より細かな温度幅としている。
また、冷房運転では設定温度1℃上げると電気代が約10%安く済む。0.5℃刻みにすることで、過度の設定温度の引き下げを無くすことができ、5%の省エネ効果が図れる。
【0042】
上記実施の形態では体感温度を室内機10の温度表示部12に表示したが、同様の表示をリモコン16の表示窓16cに表示させても良い。この場合、温度センサ、輻射センサと、体感温度を演算する制御部をリモコン16に持たせても良いが、室内機10と双方向通信とし、室内制御部20から情報を得るようにしても良い。また、体感温度の表示は温度表示部16dに表示させても良いし、切換ボタンを設けて設定温度、体感温度、希望体感温度、室内空気温度を切換表示するようにしても良い。
【0043】
実施の形態2.
この発明の実施の形態2.に於ける空気調和機は、吸込口付近に設置した湿度センサ18にて室内空間の湿度を検知し、体感温度補正をよりきめ細かなものとした。例えば不快指数を用いる場合は下記の式(3)を用いる。
不快指数=1.8×乾球温度+32-0.55×(1-相対湿度/100)×(1.8×乾球温度-5)
式(3)
冷房、除湿運転時にこの式(3)から得られた不快指数が高い場合、実施の形態1における表示部12の体感温度の表示をより高い温度に修正する。
このとき、室内空気湿度に基く圧縮機周波数や室内外ファン回転速度、第1、2絞り機構の開度の制御は、図5に示す温度補正とは別の制御であり、室内空気温度、輻射熱温度に基く図5の制御内容は実施の形態1と変わらない。その他の構成は実施の形態1.と同様である。
【0044】
実施の形態3.
この発明の実施の形態3.に於ける空気調和機は、冷房、除湿運転時に室内熱交換器のある一部分に冷媒を流し熱交換面積を可変し、空調制御のあらゆる温度帯で湿度を40%〜60%の所定範囲に、好ましくはある一定値に維持するよう制御する。湿度40%〜60%は快適性の面で最適の領域であり、この低湿度環境では汗かきの暑がりの人ほど蒸発による放熱量が増加するため涼しく感じやすい。暑がりの人は汗かきと考えることができ、湿度を下げることで、汗の少ない人より蒸発による放熱量を増加することができ、より涼しい環境となる。即ち、寒がりの人と暑がりの人との個人差が縮まる方向であり、お互いに満足できる環境を創りやすいという効果がある。
【0045】
室内熱交換器の熱交換面積の可変は実施の形態1.に示されるように、第2絞り機構6を閉じ、第1室内熱交換器5を凝縮器、第2室内熱交換器7を蒸発器として利用する。このように制御することで、潜熱分の仕事の割合を顕熱分の仕事に比べて大きくすることができ、室内温度の低下を防止しながら、湿度を下げることが可能になる。勿論湿度を維持する方法としては他の制御方法や構成を採用してもよい。
【0046】
また、第2絞り機構6を開き、第1室内熱交換器5及び第2室内熱交換器7を蒸発器として利用すると、顕熱分の仕事の割合を潜熱分の仕事に比べて大きくすることができる。このように室内熱交換器の蒸発器として作用する部分の面積を変えることで、幅広い潜熱・顕熱制御が可能になる。そして、空調制御において、常に湿度40%〜60%の範囲に維持することが可能になる。このように湿度幅を所定範囲に維持することで、体感温度に与える湿度の影響を小さくでき、温度センサ17から得られる室内空気温度及び輻射センサ15から得られる輻射熱温度によって求められる図5に示すような体感温度を、実際に人間が感じる体感温度に近づけることができる。
【0047】
空調制御中において、室内空気湿度を50%等の常に一定の値に維持するようにすると、この差はさらに縮めることができる。また、この方法にヒーターを加えるとさらに素早く湿度を一定値に近づけられる。
その他の構成は実施の形態1.と同様である。
【0048】
【発明の効果】
以上のとおり、この発明によれば、圧縮機、凝縮器、蒸発器を備えた空気調和機において、室内空気温度を検出する室温検出手段と、輻射熱温度を検出する輻射熱温度検出手段と、所望の設定温度を入力する温度設定手段と、希望体感温度を入力する入力手段と、前記室温検出手段及び輻射熱温度検出手段から輻射熱温度を加味した体感温度を得る制御部と、空気調和機本体又はリモコンに設けられた表示部に室内空気温度から体感温度または設定温度から希望体感温度に切り換え表示させる切換手段とを備えたので、体感温度として希望の温度を容易に設定できるようになり快適性が向上し、また空調制御に応じて表示部の表示内容がめまぐるしく変化することを防止できる効果が得られる。
【0050】
また、前記制御部は前記室内空気温度及び輻射熱温度に基づいて空調制御を行なうので、体感温度として快適な設定温度に導かれ、現在の体感温度との差を表示部から確認することができる効果が得られる。
【0052】
また、前記希望体感温度を1℃より細かくしたので、体感温度の性質、希望体感温度を設定する需要に沿った温度制御が可能になる効果が得られる。
【0053】
また、前記表示部の表示温度間隔を前記体感温度の間隔よりも大きくしたので、体感温度の細かい変化に応じて表示部の表示内容がめまぐるしく変化することを防止できる効果が得られる。
【0054】
また、室内空気湿度を検出する湿度検出手段を備え、前記制御部は前記室温検出手段、輻射熱温度検出手段及び湿度検出手段から体感温度を得るので、温度だけでなく湿度も含めたより人間の感覚に近い体感温度を表示できる効果が得られる。
【0056】
また、前記体感温度と室内空気温度との何れが表示されているかを表示する切換表示手段を備えたので、同じ温度という表示内容でありながら、使用者が容易に判別できる効果が得られる。
【0057】
また、圧縮機、凝縮器、蒸発器を備えた空気調和機において、室内空気温度を検出する室温検出手段と、所望の設定温度を入力する温度設定手段と、被空調空間に居る人間が感じる体感温度を検出する体感温度検出手段と、を備え、室内空気温度または設定温度を前記体感温度検出手段により検出した体感温度に応じて補正した設定温度または室内空気温度に近づけるように制御するので、体感温度として快適な設定温度に導かれて快適性が向上する効果が得られる。
また、前記空気調和機は圧縮機、四方弁、室外熱交換器、第1絞り機構、第1室内熱交換器、第2絞り機構、第2室内熱交換器を順次接続した冷凍サイクルと、前記室外熱交換器に空気流を発生させる室外ファンと、前記室内熱交換器に空気流を発生させる室内ファンとを備え、前記圧縮機の周波数または前記室内外ファンの回転速度または前記絞り機構の開度を制御するので、除湿運転、冷房運転、暖房運転のいずれの場合も快適性が向上する効果が得られる。
【0058】
また、前記体感温度検出手段は輻射センサを用い床面または壁面の輻射熱温度を検出するので、空調領域の空気調和機から離れたところに居る人の体感温度が得られる効果がある。
また、前記輻射センサにより検出された輻射熱温度Trによる設定温度の補正量Totを室内空気温度TH1及び輻射センサ定数C1を用いて、Tot=(C1*(TH1−Tr))/2としたので、デジタル幅で設定温度を補正でき、体感温度を素早く設定温度に近づけることができる効果が得られる。
【図面の簡単な説明】
【図1】 この発明の実施の形態における空気調和機の冷凍サイクルを示す冷媒回路図である。
【図2】 この発明の実施の形態における空気調和機の室内機を示す斜視図である。
【図3】 この発明の実施の形態における空気調和機のリモコンを示す正面図である。
【図4】 リモコンで温度設定入力操作をした場合の温度表示部の表示内容の変化を示した概念図である。
【図5】 この発明の実施の形態における空気調和機の室内空気温度と輻射熱温度とに基いた温度制御の様子を示すタイミングチャートである。
【図6】 この発明の実施の形態における空気調和機と従来の空気調和機との体感温度の変化を比較した対比図である。
【符号の説明】
1 圧縮機、 2 四方弁、 3 室外熱交換器、 4 第1絞り機構、 5第1室内熱交換器、 6 第2絞り機構、 7 第2室内熱交換器、 8 室外ファン、 9 室内ファン、 10 室内機、 10c 風向ベーン、 11室外機、 12 温度表示部、 13 体感モニタ、 14 リモコン信号受光部、 15 輻射センサ、 16 リモコン、 17 室温センサ、 18 湿度センサ、 20 室内制御部、 21 室外制御部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that obtains a sensory temperature using radiant heat detection means.
[0002]
[Prior art]
Factors that affect the comfort of indoor people include indoor air temperature, radiant heat from walls and floors, and indoor air humidity. When controlling the operation of the air conditioner, the method of controlling the frequency of the compressor and the rotation speed of the indoor fan and outdoor fan by the difference between the indoor air temperature and the set temperature does not result in an appropriate humidity environment, or human comfort This results in a temperature different from the perceived temperature, and the comfort air conditioning becomes insufficient.
[0003]
Therefore, in order to perform more comfortable air conditioning, the indoor air temperature is corrected based on the indoor air temperature and the radiant heat temperature from the wall or floor to calculate the sensory temperature, and the difference between the sensory temperature and the set temperature is measured. The air conditioning load is calculated by the above, and the operation of the compressor is controlled according to the air conditioning load. However, even in this case, the set temperature and the temperature value displayed on the remote controller or the air conditioner main body are not the perceived temperature but the room air temperature or the temperature based on it. As a result, for example, although the display of the indoor temperature is already at the set temperature, it is not comfortable in the sense of experience, so the set temperature is changed and set to a set temperature that is far from the desired sense of temperature. Sometimes. Therefore, in order to always obtain the same sensible temperature, the set temperature is changed sensuously according to the environmental change.
[0004]
[Problems to be solved by the invention]
This means that if the air conditioning load changes even at the same air temperature, the sensory temperature will be different. Therefore, when the display temperature is the room air temperature, there is a problem that it is difficult to set a comfortable air-conditioning environment because it is necessary to change the set temperature for the sake of sensation in order to always obtain the same sensible temperature. .
[0005]
The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an air conditioner in which a comfortable air-conditioning environment can be easily set by displaying a sensory temperature.
[0006]
[Means for Solving the Problems]
An air conditioner according to the present invention is an air conditioner equipped with a compressor, a condenser, and an evaporator, and includes a room temperature detecting means for detecting an indoor air temperature, a radiant heat temperature detecting means for detecting a radiant heat temperature, and a desired setting. Provided in the temperature setting means for inputting the temperature, the input means for inputting the desired sensation temperature, the control unit for obtaining the sensation temperature in consideration of the radiant heat temperature from the room temperature detection means and the radiant heat temperature detection means, and the air conditioner body or the remote control The display unit is provided with switching means for switching and displaying from the room air temperature to the sensible temperature or from the set temperature to the desired sensible temperature.
[0008]
Moreover, the said control part performs air-conditioning control based on the said indoor air temperature and radiant heat temperature.
[0010]
Further, the desired sensory temperature is made finer than 1 ° C.
[0011]
Further, the display temperature interval of the display unit is made larger than the interval of the sensory temperature.
[0012]
In addition, humidity detection means for detecting the indoor air humidity is provided, and the control unit obtains a sensible temperature from the room temperature detection means, radiant heat temperature detection means, and humidity detection means.
[0014]
Further, there is provided switching display means for displaying which of the body temperature and the indoor air temperature is displayed.
[0015]
Further, in an air conditioner equipped with a compressor, a condenser, and an evaporator, a room temperature detecting means for detecting the indoor air temperature, a temperature setting means for inputting a desired set temperature, and a sensation felt by a person in the air-conditioned space A temperature sensing means for detecting temperature, and controls the indoor air temperature or the set temperature so as to approach the set temperature or the room air temperature corrected according to the temperature detected by the temperature sensing means. .
The air conditioner includes a compressor, a four-way valve, an outdoor heat exchanger, a first throttle mechanism, a first indoor heat exchanger, a second throttle mechanism, and a second indoor heat exchanger in order, An outdoor fan that generates an air flow in the outdoor heat exchanger; and an indoor fan that generates an air flow in the indoor heat exchanger; and the frequency of the compressor, the rotational speed of the outdoor fan, or the opening of the throttle mechanism. The degree is controlled.
[0016]
Further, the sensory temperature detecting means detects the radiant heat temperature of the floor surface or wall surface using a radiation sensor.
Further, the correction amount Tot of the set temperature based on the radiant heat temperature Tr detected by the radiant sensor is Tot = (C1 * (TH1-Tr)) / 2 using the indoor air temperature TH1 and the radiant sensor constant C1.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing an air conditioner according to an embodiment of the present invention. In FIG. 1, 1 is a compressor, 2 is provided on the discharge side of the compressor 1, and is a four-way valve that switches the refrigerant flow direction of the refrigeration cycle between cooling and dehumidifying operation and heating operation, and 3 is during cooling and dehumidifying operation Condenser, outdoor heat exchanger that becomes an evaporator during heating operation, 4 is a first throttle mechanism composed of, for example, an electric expansion valve, 5 is a first indoor heat exchanger, 7 is a second indoor heat exchanger, Between the 1st indoor heat exchanger 5 and the 2nd indoor heat exchanger 7, the 2nd expansion mechanism 6 is provided, These are connected sequentially by piping, and comprise the refrigerating cycle. In the present embodiment, the second throttle mechanism 6 uses an electronic expansion valve, and a porous permeable material that allows refrigerant to pass even when closed is used for the valve body that opens and closes.
[0018]
Reference numeral 8 denotes an outdoor fan that generates an air flow for allowing outdoor air to pass through the outdoor heat exchanger 3, and is a propeller fan here. Reference numeral 9 denotes an indoor fan that generates an air flow for allowing room air to pass through the first indoor heat exchanger 5 and the second indoor heat exchanger 7, and is a cross-flow fan here. The compressor 1, the four-way valve 2, the outdoor heat exchanger 3 and the first flow control valve 4 constitute an outdoor unit 11, and the first indoor heat exchanger 5, the second indoor heat exchanger 7 and the second flow control. The indoor unit 10 is configured by the valve 6. R410A, which is a mixed refrigerant of R32 and R125, is used as the refrigerant in the refrigeration cycle, and alkylbenzene oil having low compatibility with the refrigerant (referred to as weakly compatible oil) is used as the refrigerator oil. Of course, it may be a conventional R22 refrigerant or another HFC refrigerant such as R407C, and the refrigerating machine oil may also be a compatible oil such as ester oil.
[0019]
FIG. 2 is a perspective view showing the appearance of the indoor unit 10. 1 and 2, 10a is a suction port for taking room air into the first indoor heat exchanger 5 and the second indoor heat exchanger 7 in the indoor unit 10, and 10b is the first indoor heat exchanger 5 and the second indoor heat. Air outlets 10c for discharging the conditioned air heat-exchanged by the exchanger 7 into the room are wind direction vanes that are provided near the air outlet 10b and control the air discharged into the room in the vertical direction. Although not shown, a left and right wind direction vane for controlling the air discharged into the room in the left and right direction is also provided upstream of the wind direction vane 10c. Reference numeral 12 denotes a temperature display unit provided in the indoor unit 10. In this embodiment, an LED is provided for each temperature in increments of 1 ° C. The numerical value above the LED corresponds to the temperature during cooling and dehumidifying operation, and the LED is used during heating operation. The lower value corresponds to the temperature.
[0020]
Reference numeral 13 denotes a sensation monitor provided in the indoor unit 10. In this embodiment, an LED is provided. When the temperature display unit 12 displays the indoor temperature, the LED is turned off, and when the sensation temperature is displayed. Light. That is, it is a switching means that indicates whether the display has been switched to the sensory temperature display or the indoor air temperature display. This switching means may be one that changes the color of the LED of the temperature display unit 12 without providing it separately as a sensation monitor. By providing such switching means, it is not necessary to provide temperature display portions for the sensible temperature and the indoor air temperature, and the dismantling at the time of recycling is improved by reducing the number of electrical components. Reference numeral 14 denotes a remote control signal light receiving unit for receiving a signal from a remote controller, which will be described later. Reference numeral 15 denotes a radiation sensor (radiant heat temperature detecting means) for detecting the radiant heat temperature of the floor or wall surface. The floor temperature is measured in the range of 60 °. Reference numeral 17 denotes a room temperature sensor (room temperature detection means) for detecting the indoor air temperature, and reference numeral 18 denotes a humidity sensor (humidity detection means) for detecting the indoor air humidity.
[0021]
Reference numeral 20 is provided in the indoor unit 10 and receives a signal from the remote control by the remote control signal light receiving unit 14 to set a user's desired environment, and detection results from the radiation sensor 15, the room temperature sensor 17, and the humidity sensor 18. Is input to the temperature control unit 12 for controlling the opening degree (including opening and closing) of the second throttle mechanism 6 and the fan rotation speed of the indoor fan 9, and the display contents on the temperature display unit 12 and the sensation monitor 13 of the indoor unit 10. Is controlled and displayed. 21 is provided in the outdoor unit 11 and communicates with the indoor control unit 10 to switch the frequency of the compressor 1 and the four-way valve 2 from the information of the indoor control unit 20, the rotational speed of the outdoor fan 8, and the first throttle. It is an outdoor unit control part which controls the opening degree (including opening and closing) of a mechanism.
[0022]
FIG. 3 is a front view showing a remote controller as input means. In FIG. 3, reference numeral 16 denotes a remote controller for inputting a user's desired setting conditions such as operation mode and set temperature to the indoor control unit 20 via the remote control signal light receiving unit 14 of the indoor unit 10, and 16 a is provided in the remote control 16. , A humidity setting button for inputting a desired set humidity, 16b is provided on the remote controller 16, a temperature setting button for inputting a desired set temperature, and 16c is selected from setting contents that can be input from the remote controller 16. A display window 16d for displaying the set contents is a temperature display section partitioned in the display window 16c and can be displayed in increments of 0.5 ° C.
[0023]
When the temperature setting button 16b is used to input a temperature decreasing direction, the display content of the temperature display section 16d changes in increments of 0.5 ° C. as shown in FIG.
Reference numeral 16e denotes an open / close-type lid that covers buttons that are relatively infrequently used, such as an energy saving operation button and a timer setting button. The above-mentioned buttons are exposed when opened, and are hidden by the lid when closed. Although not shown, when the lid 16e is closed, the sensory temperature display switching button is exposed on the surface of the lid 16e, and the display content of the temperature display unit 12 of the indoor unit body 10 is changed to the indoor air temperature by operating the sensory temperature display switching button. Alternatively, it can be switched to the sensory temperature.
[0024]
Next, the operation of the refrigeration cycle will be described. At the time of dehumidification and cooling operation, the refrigerant discharged from the compressor 1 passes through the four-way valve 2, passes through the outdoor heat exchanger 3 and the first throttle mechanism 4 provided with the outdoor fan 8, and passes through the first indoor heat exchanger 5. The second throttle mechanism 6, the second indoor heat exchanger 7, and the four-way valve 2 return to the compressor 1. During the heating operation, the four-way valve 2 is switched, and the flow direction of the refrigerant is reversed.
[0025]
Next, operations during cooling and dehumidifying operations will be described in more detail. In FIG. 1, the flow of the refrigerant during the cooling and dehumidifying operation is indicated by solid arrows. In the cooling operation, the normal cooling operation corresponding to the case where the air conditioning sensible heat load and the latent heat load of the room are both large at the time of start-up and summer, and the sensible heat load is small although the air conditioning latent heat load is small like the intermediate period and the rainy season. It can be divided into dehumidifying operation corresponding to large cases. In normal cooling operation, an electromagnetic coil (not shown) of the second throttle mechanism 6 is turned off. At this time, the high-temperature and high-pressure refrigerant vapor exiting the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2, and is condensed and liquefied by exchanging heat with the outside air. This high-pressure liquid refrigerant is decompressed to a low pressure by the first throttle mechanism 4 and becomes a gas-liquid two-phase refrigerant, and the sensible heat and latent heat of the indoor air are removed by the first indoor heat exchanger 5 and the second indoor heat exchanger 7. Take away and evaporate. In the second throttle mechanism 6, since the first indoor heat exchanger 5 side and the second indoor heat exchanger 7 side are connected with a large opening area, there is almost no refrigerant pressure loss when passing through this valve, There is no reduction in cooling capacity or efficiency due to pressure loss. The low-pressure vapor refrigerant that has exited the second indoor heat exchanger 7 returns to the compressor 1 again through the four-way valve 2. The opening degree of the first throttle mechanism 4 during the normal cooling operation is controlled so that, for example, the degree of superheat of the outlet refrigerant of the second indoor heat exchanger is 5 ° C.
[0026]
Next, the operation during the dehumidifying operation will be described. During this dehumidifying operation, the electromagnetic coil of the second throttle mechanism 6 is energized, the main valve body is brought into close contact with the main valve seat, and the outlet of the first indoor heat exchanger 5 and the second through the vent hole of the main valve body. The inlet of the indoor heat exchanger 7 is connected. At this time, the high-temperature and high-pressure refrigerant vapor (point A) exiting the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and is condensed by exchanging heat with the outside air (point B). This high-pressure liquid refrigerant or gas-liquid two-phase refrigerant is slightly depressurized by the first throttle mechanism 4 (point C) and flows into the first indoor heat exchanger 5 as an intermediate-pressure gas-liquid two-phase refrigerant. The refrigerant flowing into the first indoor heat exchanger 5 is further condensed by exchanging heat with room air (point D). The intermediate-pressure liquid refrigerant or gas-liquid two-phase refrigerant that has exited the first indoor heat exchanger 5 flows into the second throttle mechanism 6.
[0027]
In the second throttle mechanism 6, since the main valve body is in close contact with the main valve seat, the refrigerant that has flowed into the valve passes through the vent hole in the main valve body made of the porous permeating material, and the second chamber. It flows into the heat exchanger 7. The vent hole of the main valve body is about 10 micrometers, and the refrigerant passing through the vent hole is decompressed to become a low-pressure gas-liquid two-phase refrigerant and flows into the second indoor heat exchanger 7 (point E). ). The refrigerant flowing into the second indoor heat exchanger 7 takes away sensible heat and latent heat of the room air and evaporates. The low-pressure vapor refrigerant that has exited the second indoor heat exchanger 7 returns to the compressor 1 again through the four-way valve 2. The room air is heated by the first indoor heat exchanger 5 and cooled and dehumidified by the second indoor heat exchanger 7, so that the room air can be dehumidified while preventing the room temperature from lowering.
[0028]
In this dehumidifying operation, the amount of heat exchange of the outdoor heat exchanger 3 is controlled by adjusting the rotational frequency of the compressor 1 and the fan rotational speed of the outdoor heat exchanger 3, and the indoor heat by the first indoor heat exchanger 5 is controlled. The blowing temperature can be controlled over a wide range by controlling the heating amount of air. Moreover, the opening degree of the 1st flow control valve 7 and the indoor fan rotation speed are adjusted, the condensation temperature of the 1st indoor heat exchanger 5 is controlled, and the heating amount of the indoor air by the 1st indoor heat exchanger 5 is controlled. You can also The opening degree of the second throttle mechanism 6 is controlled such that the degree of superheat of the outlet refrigerant of the second indoor heat exchanger 7 becomes 5 ° C., for example.
[0029]
Further, in the normal cooling operation or heating operation, the second throttle mechanism 6 is fully opened, and the cooling / heating capacity is changed by controlling the frequency of the compressor 1, the first throttle mechanism 4, the outdoor fan 8, and the indoor fan 9, The temperature of the air-conditioned room (air-conditioned space) is adjusted.
In any air conditioning operation, detection results from the room temperature sensor 17, the humidity sensor 18, and the radiation sensor 15 are used for air conditioning control. In particular, for temperature information, when there is a gap between the indoor air temperature detected by the room temperature sensor 17 and the radiant heat temperature detected by the radiation sensor 15, the set temperature value is corrected according to the radiant heat temperature, and the corrected value As a new set temperature, the indoor control unit 20 and the outdoor control unit control the compressor frequency, fan rotation speed, throttle opening, and the like.
[0030]
The correction of the set temperature incorporating the radiant heat temperature will be described with reference to FIG. In FIG. f Is the radiant heat temperature detected by the radiation sensor 15, TH1 is the indoor air temperature detected by the room temperature sensor 17, and T set Is the set temperature T input from the remote control setR Is the set temperature as a result of correcting by the radiant heat temperature.
The radiant heat temperature is the temperature of the floor and walls, and the floor and walls are warmed in a high temperature environment before air conditioning during hot weather such as summer, and the rate of decrease is slower than the rate at which the room air temperature decreases due to cooling and dehumidifying operations. is there. Conversely, during cold periods such as winter, the air is cooled in a low-temperature environment before air conditioning, and the rate of increase is slower than the rate at which the indoor air temperature increases due to heating operation.
[0031]
Therefore, the sensible temperature perceived by a person in the room is affected by the room air temperature and the radiant heat temperature. I don't feel warmth as it goes up. Therefore, in order to bring the sensible temperature closer to the set temperature input from the remote controller 16, it is necessary to correct the set temperature along the sensible temperature described above.
Correction amount T of set temperature due to radiation ot Is obtained by the following equation (1).
T ot = {C1 * (TH1-T f )} / 2 Formula (1)
Here, C1 is a radiation sensor constant.
[0032]
TH1-T f Is not an analog value, but the detection value from the room temperature sensor 17 and the radiation sensor 15 is digitally taken into the indoor control unit 20 and is thus a digital value (in this embodiment, in increments of 1/3 ° C.).
As a result, the corrected set temperature T set Is also set temperature T setR Is corrected with a digital width.
In FIG. 5, the first TH1-T f Is determined to be zero by the digital value, and the correction amount T ot Is also zero. As a result, T set = T setR It remains unchanged. Then TH1-T f Was detected as a digital value, so T set = T setR It is corrected to -0.33. As a result, the difference between the indoor air temperature and the set temperature is further increased by 0.33 ° C., and the indoor control unit 20 and the outdoor control unit 21 have the compressor frequency, indoor / outdoor fan rotation speed, 1. Control the opening of the second throttle mechanism. In addition, the indoor control unit 20 controls the wind direction vane 10c and controls the radiant heat temperature to be close to the indoor air temperature by blowing the blown air toward the floor or wall surface.
[0033]
Despite the correction of the set temperature according to the radiation temperature, a predetermined time D after the correction f1 Has passed and TH1-T f If the air temperature does not change, the indoor control unit 20 determines that the air-conditioning environment at the sensible temperature considering the radiant heat temperature has not been improved. set = T setR Correct to -0.67. As a result, the difference between the indoor air temperature and the set temperature is further increased by 0.67 ° C., and the indoor control unit 20 and the outdoor control unit 21 have the compressor frequency, indoor / outdoor fan rotation speed, 1. Control the opening of the second throttle mechanism. Thus, in FIG. set = T setR It is corrected to -1.00. Thereafter, the wind direction vane 10c is returned to the normal wind direction.
[0034]
By correcting the set temperature as described above, the temperature difference from the indoor air temperature in control increases, so that the cooling capacity increases. When the temperature of the floor surface or the like approaches the room air temperature, TH1-T again. f The digital value of becomes zero. In response to this, the indoor control unit 20 changes the set temperature to T. set = T setR Change to -0.67. And predetermined time D f2 TH1-T after elapse f If the digital value of is zero, it is determined that the temperature difference between the indoor air temperature and the radiant heat temperature has not increased, and T set = T setR Change to -0.33. Here again TH1-T f If the digital value of set = T setR Change to -0.67. In FIG. f2 TH1-T after elapse f Since the digital value of is still zero, T set = T setR It becomes.
In this way, the sensible temperature including the radiant heat temperature is led to the set temperature.
[0035]
FIG. 6 is a comparison diagram comparing changes in the sensible temperature between the air conditioner of the present embodiment and the conventional air conditioner during heating operation. When the heating operation is started, the room air temperature warms earlier than the wall surface and floor surface. Therefore, the control as described above is performed, the heating capacity is maintained high, the wind direction vane 10c is directed to the floor surface, and the floor surface is warmed more than usual. As a result, the difference between the radiant heat temperature detected from the radiation sensor 15 and the room air temperature can be reduced, and the sensible temperature can be quickly brought close to the set temperature. And in order to warm a floor surface, time for indoor air temperature to be in a state higher than preset temperature can be shortened. In this way, it is possible to save 20% on the electricity bill as compared with the prior art.
[0036]
In terms of control, it is possible to perform control based on the sensible temperature in consideration of the radiant heat temperature as described above. However, a person in the room cannot know the current sensible temperature and the control temperature. Embodiment 1 of the Invention In the air conditioner, the desired temperature can be set and input from the remote controller at the desired temperature, and when the temperature is displayed using the LED temperature display unit 12 provided on the indoor unit 10 of the air conditioner, The temperature is turned on and the current temperature is blinked. In addition, the desired sensory temperature can be displayed on the temperature display portion 16d of the remote controller 16.
[0037]
Next, input setting and display of the desired sensation temperature and display of the sensation temperature will be described. From the room air temperature detected by the room temperature sensor 17 and the radiant heat temperature detected by the radiation sensor 15, the sensible temperature of a person in the room can be obtained. Here, as a temperature correction method, a standard action temperature calculation method in which three factors of room air temperature, airflow, and radiant heat temperature are expressed in one unit is adopted. For example, the calculation method is as the following formula (2).
Experience temperature = (Indoor air temperature + Radiant heat temperature) / 2 Formula (2)
[0038]
When the sensible temperature display switching button provided on the remote controller 16 is pressed, the display content of the temperature display portion 16d of the remote controller 16 is switched from the normal set temperature to the desired sensible temperature. That is, 26.5 [deg.] C. is displayed as the desired sensory temperature with respect to the normally displayed set temperature of 26.5 [deg.] C. Press the temperature sensor display switch button again to switch to the normal set temperature display. Since both the set temperature and the desired sensory temperature are displayed, it is not possible to tell which is displayed. Therefore, as shown in FIG. 3, when the desired temperature of experience is displayed, “temperature of experience” is displayed above the temperature. “Temperature” is displayed at the normal set temperature.
[0039]
When the sensible temperature display switching button is pressed from the remote controller 16, the sensation sensor 13 of the indoor unit 10 is turned on, and at the same time, the display content of the temperature display unit 12 is determined from the current indoor air temperature and the set temperature, Switch to temperature. In any case, the indoor air temperature and the current sensible temperature are displayed by blinking the LED, and the set temperature and the desired sensible temperature are displayed by turning on the LED. The desired sensory temperature is a temperature that is input from the remote controller 16 and displayed on the remote controller. When the sensory temperature display switching button is pressed again, the sensory sensor 13 is turned off, and the current indoor air temperature and the set temperature are displayed on the temperature display unit 12.
[0040]
Here, as the control operation described above, the set temperature is corrected according to the radiant heat temperature, and the set temperature will change, but the desired sensory temperature displayed on the display unit does not change, T setR The value of is displayed. For example, T set = T setR When −1.00, the difference between the indoor air temperature and the set temperature has increased by 1 ° C., but the content displayed on the display unit is the sensory temperature calculated by Equation (2) and T setR So sensing interval and D f1 , D f2 The displayed content does not change rapidly in a short interval. Further, the temperature display unit 12 displays in increments of 1 ° C. with a width larger than 1/3 ° C., which is a digital value in actual control, and displays t ± 0.33 ° C. as t ° C. Is preventing the sudden change.
In addition, when the sensory temperature matches the desired sensory temperature, one LED of the corresponding temperature on the display unit 12 is turned on.
[0041]
With this configuration and control, the user can set the set temperature at a desired sensory temperature that is closer to his / her sense, and can know the difference between the current sensory temperature and the desired sensory temperature while viewing the display unit. become able to.
In the present embodiment, the desired sensory temperature is set in increments of 0.5 ° C., which is finer than 1 ° C. This is finer than the temperature setting interval of 1 ° C. in a conventional general air conditioner. The sensory temperature corrects the indoor air temperature, and the temperature difference from the indoor air temperature is not so large. In addition, the correction using the radiant heat temperature is performed in units smaller than 1 ° C. so that the temperature range to be corrected is also in the control operation. In this way, the temperature of sensation is delicate, and since the value of use by such a person is high, the selection of the desired sensation temperature is set to a finer temperature range than usual.
In the cooling operation, if the set temperature is raised by 1 ° C., the electricity bill can be reduced by about 10%. By setting the increments to 0.5 ° C, excessive reduction of the set temperature can be eliminated, and an energy saving effect of 5% can be achieved.
[0042]
In the above embodiment, the sensible temperature is displayed on the temperature display unit 12 of the indoor unit 10, but a similar display may be displayed on the display window 16 c of the remote controller 16. In this case, the remote controller 16 may be provided with a temperature sensor, a radiation sensor, and a control unit for calculating the sensible temperature. However, information may be obtained from the indoor control unit 20 by bidirectional communication with the indoor unit 10. . In addition, the sensory temperature may be displayed on the temperature display unit 16d, or a switch button may be provided to switch and display the set temperature, the sensory temperature, the desired sensory temperature, and the room air temperature.
[0043]
Embodiment 2. FIG.
Embodiment 2 of the present invention. In the air conditioner, the humidity of the indoor space is detected by the humidity sensor 18 installed in the vicinity of the suction port, and the sensory temperature correction is made finer. For example, when using the discomfort index, the following formula (3) is used.
Discomfort index = 1.8 x dry bulb temperature + 32-0.55 x (1-relative humidity / 100) x (1.8 x dry bulb temperature -5)
Formula (3)
When the discomfort index obtained from the equation (3) is high during the cooling and dehumidifying operation, the display of the sensory temperature on the display unit 12 in the first embodiment is corrected to a higher temperature.
At this time, the control of the compressor frequency based on the indoor air humidity, the indoor / outdoor fan rotation speed, and the opening degree of the first and second throttle mechanisms is a control different from the temperature correction shown in FIG. The control content of FIG. 5 based on temperature is the same as that of the first embodiment. Other configurations are the same as those in the first embodiment. It is the same.
[0044]
Embodiment 3 FIG.
Embodiment 3 of the present invention. In the air conditioner, the refrigerant flows through a part of the indoor heat exchanger during cooling and dehumidifying operation to change the heat exchange area, and the humidity is set within a predetermined range of 40% to 60% in all temperature ranges of the air conditioning control. Preferably, control is performed so as to maintain a certain value. Humidity of 40% to 60% is an optimal area in terms of comfort. In this low humidity environment, a person who is sweaty is more likely to feel cool because the amount of heat released by evaporation increases. People who are hot can be considered sweating, and by reducing the humidity, the amount of heat released by evaporation can be increased compared to people with less sweat, resulting in a cooler environment. That is, the individual difference between the cold person and the hot person is reduced, and there is an effect that it is easy to create an environment that can satisfy each other.
[0045]
The heat exchange area of the indoor heat exchanger can be changed according to the first embodiment. 2, the second throttle mechanism 6 is closed, the first indoor heat exchanger 5 is used as a condenser, and the second indoor heat exchanger 7 is used as an evaporator. By controlling in this way, the ratio of the work for the latent heat can be increased as compared with the work for the sensible heat, and the humidity can be lowered while preventing a decrease in the room temperature. Of course, other control methods and configurations may be adopted as a method of maintaining the humidity.
[0046]
Further, when the second throttle mechanism 6 is opened and the first indoor heat exchanger 5 and the second indoor heat exchanger 7 are used as an evaporator, the work ratio of the sensible heat is made larger than the work of the latent heat. Can do. Thus, by changing the area of the portion that acts as the evaporator of the indoor heat exchanger, a wide range of latent heat / sensible heat control becomes possible. And in air-conditioning control, it becomes possible to always maintain the humidity in the range of 40% to 60%. By maintaining the humidity range in the predetermined range as described above, the influence of humidity on the perceived temperature can be reduced, and the temperature is obtained from the indoor air temperature obtained from the temperature sensor 17 and the radiant heat temperature obtained from the radiation sensor 15 as shown in FIG. Such a sensory temperature can be brought close to the sensory temperature actually felt by humans.
[0047]
This difference can be further reduced by keeping the indoor air humidity at a constant value such as 50% during air conditioning control. In addition, when a heater is added to this method, the humidity can be brought closer to a constant value more quickly.
Other configurations are the same as those in the first embodiment. It is the same.
[0048]
【The invention's effect】
As described above, according to the present invention, in an air conditioner including a compressor, a condenser, and an evaporator, a room temperature detection unit that detects a room air temperature, a radiant heat temperature detection unit that detects a radiant heat temperature, and a desired A temperature setting means for inputting a set temperature, an input means for inputting a desired sensory temperature, a control unit for obtaining a sensory temperature in consideration of a radiant heat temperature from the room temperature detecting means and the radiant heat temperature detecting means, and an air conditioner body or a remote controller The provided display unit has switching means for switching from the room air temperature to the sensory temperature or from the set temperature to the desired sensory temperature, so that the desired temperature can be easily set as the sensory temperature and comfort is improved. In addition, it is possible to prevent the display content of the display unit from changing rapidly according to the air conditioning control.
[0050]
Moreover, since the said control part performs air-conditioning control based on the said indoor air temperature and radiant heat temperature, it is led to comfortable setting temperature as a body temperature, and the effect which can confirm the difference with the present body temperature from a display part. Is obtained.
[0052]
In addition, since the desired temperature is set to be finer than 1 ° C., the effect of enabling temperature control in accordance with the nature of the temperature and the demand for setting the desired temperature is obtained.
[0053]
In addition, since the display temperature interval of the display unit is made larger than the interval of the sensible temperature, an effect of preventing the display content of the display unit from changing rapidly according to a fine change in the sensible temperature can be obtained.
[0054]
In addition, a humidity detection means for detecting the indoor air humidity is provided, and the control unit obtains the temperature of sensation from the room temperature detection means, the radiant heat temperature detection means and the humidity detection means. An effect of displaying a close sensory temperature is obtained.
[0056]
Further, since the switching display means for displaying which of the sensory temperature and the indoor air temperature is displayed is provided, an effect that the user can easily discriminate is obtained while displaying the same temperature.
[0057]
Further, in an air conditioner equipped with a compressor, a condenser, and an evaporator, a room temperature detecting means for detecting the indoor air temperature, a temperature setting means for inputting a desired set temperature, and a sensation felt by a person in the air-conditioned space A sensory temperature detecting means for detecting the temperature, and controls the indoor air temperature or the set temperature to approach the set temperature or the indoor air temperature corrected according to the sensory temperature detected by the sensory temperature detecting means. An effect of improving the comfort by being guided to a comfortable set temperature as the temperature is obtained.
The air conditioner includes a compressor, a four-way valve, an outdoor heat exchanger, a first throttle mechanism, a first indoor heat exchanger, a second throttle mechanism, and a second indoor heat exchanger in order, An outdoor fan that generates an air flow in the outdoor heat exchanger; and an indoor fan that generates an air flow in the indoor heat exchanger; and the frequency of the compressor, the rotational speed of the outdoor fan, or the opening of the throttle mechanism. Since the degree is controlled, the effect of improving the comfort can be obtained in any of the dehumidifying operation, the cooling operation, and the heating operation.
[0058]
Further, since the sensory temperature detecting means detects the radiant heat temperature of the floor surface or the wall surface using a radiation sensor, there is an effect that the sensory temperature of a person who is away from the air conditioner in the air-conditioned area can be obtained.
Further, since the set amount correction amount Tot based on the radiant heat temperature Tr detected by the radiation sensor is set to Tot = (C1 * (TH1-Tr)) / 2 using the indoor air temperature TH1 and the radiation sensor constant C1, The set temperature can be corrected with the digital width, and the effect that the sensible temperature can be brought close to the set temperature quickly is obtained.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle of an air conditioner according to an embodiment of the present invention.
FIG. 2 is a perspective view showing an indoor unit of an air conditioner according to an embodiment of the present invention.
FIG. 3 is a front view showing a remote controller of the air conditioner according to the embodiment of the present invention.
FIG. 4 is a conceptual diagram showing a change in display content of a temperature display section when a temperature setting input operation is performed with a remote controller.
FIG. 5 is a timing chart showing a state of temperature control based on the indoor air temperature and the radiant heat temperature of the air conditioner according to the embodiment of the present invention.
FIG. 6 is a comparison diagram comparing changes in the sensible temperature between the air conditioner and the conventional air conditioner according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four-way valve, 3 Outdoor heat exchanger, 4 1st throttle mechanism, 5 1st indoor heat exchanger, 6 2nd throttle mechanism, 7 2nd indoor heat exchanger, 8 Outdoor fan, 9 Indoor fan, DESCRIPTION OF SYMBOLS 10 Indoor unit, 10c Wind direction vane, 11 Outdoor unit, 12 Temperature display part, 13 Experience monitor, 14 Remote control signal light-receiving part, 15 Radiation sensor, 16 Remote control, 17 Room temperature sensor, 18 Humidity sensor, 20 Indoor control part, 21 Outdoor control Department.

Claims (10)

圧縮機、凝縮器、蒸発器を備えた空気調和機において、室内空気温度を検出する室温検出手段と、輻射熱温度を検出する輻射熱温度検出手段と、所望の設定温度を入力する温度設定手段と、希望体感温度を入力する入力手段と、前記室温検出手段及び輻射熱温度検出手段から輻射熱温度を加味した体感温度を得る制御部と、空気調和機本体又はリモコンに設けられた表示部に室内空気温度から体感温度または設定温度から希望体感温度に切り換え表示させる切換手段とを備えたことを特徴とする空気調和機。In an air conditioner equipped with a compressor, a condenser, and an evaporator, room temperature detection means for detecting indoor air temperature, radiant heat temperature detection means for detecting radiant heat temperature, and temperature setting means for inputting a desired set temperature, Input means for inputting the desired sensory temperature, a control unit for obtaining a sensory temperature taking into account the radiant heat temperature from the room temperature detecting unit and the radiant heat temperature detecting unit, and a display unit provided on the air conditioner main body or the remote controller from the room air temperature An air conditioner comprising switching means for switching from a sensory temperature or a set temperature to a desired sensory temperature . 前記制御部は前記室内空気温度及び輻射熱温度に基づいて空調制御を行うことを特徴とする請求項1記載の空気調和機。  The air conditioner according to claim 1, wherein the controller performs air conditioning control based on the indoor air temperature and the radiant heat temperature. 前記希望体感温度を1℃より細かくしたことを特徴とする請求項1記載の空気調和機。  The air conditioner according to claim 1, wherein the desired sensible temperature is finer than 1 ° C. 前記表示部の表示温度間隔を前記体感温度の間隔よりも大きくしたことを特徴とする請求項1記載の空気調和機。  The air conditioner according to claim 1, wherein a display temperature interval of the display unit is made larger than an interval of the sensible temperature. 室内空気湿度を検出する湿度検出手段を備え、前記制御部は前記室温検出手段、輻射熱温度検出手段及び湿度検出手段から体感温度を得ることを特徴とする請求項1記載の空気調和機。  The air conditioner according to claim 1, further comprising humidity detection means for detecting indoor air humidity, wherein the control unit obtains a sensible temperature from the room temperature detection means, radiant heat temperature detection means, and humidity detection means. 前記体感温度と室内空気温度との何れが表示されているかを表示する切換表示手段を備えたことを特徴とする請求項1記載の空気調和機。  2. The air conditioner according to claim 1, further comprising switching display means for displaying which of the sensory temperature and the indoor air temperature is displayed. 圧縮機、凝縮器、蒸発器を備えた空気調和機において、室内空気温度を検出する室温検出手段と、所望の設定温度を入力する温度設定手段と、被空調空間に居る人間が感じる体感温度を検出する体感温度検出手段と、を備え、室内空気温度または設定温度を前記体感温度検出手段により検出した体感温度に応じて補正した設定温度または室内空気温度に近づけるように制御することを特徴とする空気調和機。In an air conditioner equipped with a compressor, a condenser, and an evaporator, a room temperature detecting means for detecting the indoor air temperature, a temperature setting means for inputting a desired set temperature, and a perceived temperature sensed by a person in the air-conditioned space. A sensory temperature detecting means for detecting, and controlling the room air temperature or the set temperature so as to approach the set temperature or the room air temperature corrected according to the sensory temperature detected by the sensory temperature detecting means. Air conditioner. 前記空気調和機は圧縮機、四方弁、室外熱交換器、第The air conditioner includes a compressor, a four-way valve, an outdoor heat exchanger, 11 絞り機構、第Aperture mechanism 11 室内熱交換器、第2絞り機構、第2室内熱交換器を順次接続した冷凍サイクルと、前記室外熱交換器に空気流を発生させる室外ファンと、前記室内熱交換器に空気流を発生させる室内ファンとを備え、前記圧縮機の周波数または前記室内外ファンの回転速度または前記絞り機構の開度を制御することを特徴とする請求項7記載の空気調和機。A refrigeration cycle in which an indoor heat exchanger, a second throttle mechanism, and a second indoor heat exchanger are sequentially connected, an outdoor fan that generates an air flow in the outdoor heat exchanger, and an air flow in the indoor heat exchanger. The air conditioner according to claim 7, further comprising an indoor fan, wherein the air conditioner controls a frequency of the compressor, a rotational speed of the indoor / outdoor fan, or an opening of the throttle mechanism. 前記体感温度検出手段は輻射センサを用い床面または壁面の輻射熱温度を検出することを特徴とする請求項7または請求項8記載の空気調和機。The air conditioner according to claim 7 or 8, wherein the sensory temperature detecting means detects a radiant heat temperature of a floor surface or a wall surface using a radiation sensor. 前記輻射センサにより検出された輻射熱温度Trによる設定温度の補正量Totが室内空気温度TH1及び輻射センサ定数C1を用いて、Tot=(C1*(TH1−Tr))/2であることを特徴とする請求項9記載の空気調和機。The correction amount Tot of the set temperature based on the radiant heat temperature Tr detected by the radiation sensor is Tot = (C1 * (TH1−Tr)) / 2 using the indoor air temperature TH1 and the radiation sensor constant C1. The air conditioner according to claim 9.
JP27814599A 1999-09-30 1999-09-30 Air conditioner Expired - Lifetime JP3791258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27814599A JP3791258B2 (en) 1999-09-30 1999-09-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27814599A JP3791258B2 (en) 1999-09-30 1999-09-30 Air conditioner

Publications (2)

Publication Number Publication Date
JP2001099458A JP2001099458A (en) 2001-04-13
JP3791258B2 true JP3791258B2 (en) 2006-06-28

Family

ID=17593226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27814599A Expired - Lifetime JP3791258B2 (en) 1999-09-30 1999-09-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP3791258B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479783B2 (en) * 2007-11-28 2010-06-09 ダイキン工業株式会社 Air conditioner
JP5063509B2 (en) * 2008-06-30 2012-10-31 三菱電機株式会社 Air conditioner
JP5084676B2 (en) * 2008-09-11 2012-11-28 三菱電機株式会社 Air conditioner
JP5478397B2 (en) * 2010-07-16 2014-04-23 三菱電機株式会社 Air conditioner
JP5575096B2 (en) * 2011-12-01 2014-08-20 三菱電機株式会社 Air conditioner
JP6091243B2 (en) * 2013-02-18 2017-03-08 三菱電機株式会社 Air conditioner
JP6206839B2 (en) * 2013-05-24 2017-10-04 株式会社竹中工務店 Air conditioning control system
CN111512258B (en) * 2017-10-11 2022-03-11 B·P·阿苏阿德 Automatic switching thermostat system based on apparent temperature and method for determining and automatically controlling apparent temperature of conditioned space
JP6698959B2 (en) 2017-12-26 2020-05-27 三菱電機株式会社 Controller, radiation air conditioning equipment, control method and control program
JP7036348B2 (en) * 2018-07-26 2022-03-15 株式会社デバイス Double-skin cavity heat utilization promotion system
JP6881641B2 (en) * 2019-03-25 2021-06-02 ダイキン工業株式会社 Air conditioner and air conditioner system
CN114674068B (en) * 2022-03-16 2024-03-19 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium

Also Published As

Publication number Publication date
JP2001099458A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
AU2016297238B2 (en) Air conditioner and control method thereof
US20190293311A1 (en) Air conditioning apparatus and air conditioning control method
JP3791258B2 (en) Air conditioner
GB2302729A (en) Air conditioning apparatus having dehumidifying operation function.
JP5507231B2 (en) Air conditioner
JP2937090B2 (en) Dehumidifier
JP2017078556A (en) Radiation type air conditioner
JP2000257939A (en) Air conditioner
KR102170542B1 (en) Cooling control method for air conditioner
JP2019163920A (en) Air conditioner and air conditioning control method
JP4555671B2 (en) Air conditioner
JP2002089933A (en) Controller for air conditioner
JP3852571B2 (en) Air conditioner
JP2002333186A (en) Air conditioner
JP2011033263A (en) Air conditioner
JP3239110B2 (en) Control method of air conditioner
JP4258117B2 (en) Air conditioner
JPH07139848A (en) Air conditioner
JP3936345B2 (en) Air conditioner
JPH1061998A (en) Air conditioner
JP3993616B2 (en) Air conditioner
CN113375290B (en) Air conditioner and control method thereof
CN110736142B (en) Air conditioner and rapid dehumidification control method without cooling
CN113959107A (en) Refrigerating system and control method
JP2002333191A (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R151 Written notification of patent or utility model registration

Ref document number: 3791258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term