JP3790481B2 - Radiation therapy equipment - Google Patents

Radiation therapy equipment Download PDF

Info

Publication number
JP3790481B2
JP3790481B2 JP2002022252A JP2002022252A JP3790481B2 JP 3790481 B2 JP3790481 B2 JP 3790481B2 JP 2002022252 A JP2002022252 A JP 2002022252A JP 2002022252 A JP2002022252 A JP 2002022252A JP 3790481 B2 JP3790481 B2 JP 3790481B2
Authority
JP
Japan
Prior art keywords
radiation
treatment target
inspection
treatment
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002022252A
Other languages
Japanese (ja)
Other versions
JP2003220151A (en
Inventor
一正 三原
祐一郎 神納
謙治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002022252A priority Critical patent/JP3790481B2/en
Publication of JP2003220151A publication Critical patent/JP2003220151A/en
Application granted granted Critical
Publication of JP3790481B2 publication Critical patent/JP3790481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1037Treatment planning systems taking into account the movement of the target, e.g. 4D-image based planning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、治療対象部の動きに応じて治療用放射線の照射野を追尾させる放射線治療装置に関する。
【0002】
【従来の技術】
外科治療の分野において、病巣に放射線を照射し、この病巣を壊死させることで治療する放射線治療がある。放射線は、人体を透過させて照射することができるため、この放射線治療は、切開手術が難しい深部にできた病巣に対して効果的である。このとき、壊死させる十分な放射線量を人体の深部にできた病巣に対して照射するために、多方位から放射線を照射する必要がある。
【0003】
放射線治療を行うための放射線治療装置は、病巣である治療対象部位に多方位から治療用放射線を照射するために、治療用放射線源を搭載したヘッドを治療対象部位に対して、アイソセントリックまたはノンアイソセントリックに移動及び保持できるように構成されたものがある。
【0004】
アイソセントリック型放射線治療装置は、ヘッドを移動させ、多方位から治療対象部位に向けて治療用放射線を照射したときに、照射された治療用放射線が1点(アイソセンタ)で交差するように造られている。このアイソセントリック型放射線治療装置は、可動軸数が少なく構造が簡単であるとともに、照射野の位置決めが簡単である。したがって、照射精度を要求されるとともに、治療対象部位を固定し、放射線を照射できる部位、例えば脳腫瘍などの治療に適している。
【0005】
また、ノンアイソセントリック型放射線治療装置は、ヘッドを移動させ、多方位から治療対象部位に向けて治療用放射線を照射するときに、照射する治療用放射線の交点をある範囲内で自由に設定することができる。このノンアイソセントリック型放射線治療装置として、ヘッドに放射線発生装置を搭載したロボットアームや、(ヘッドを支持する部分に2つの回動軸を設けた)首振り機能を備えたヘッド部に放射線発生装置を搭載したアイソセントリック(擬似アイソセントリック)で動くガントリが、一般的に知られている。
【0006】
治療対象部位は、不定形であることが多い。治療対象部位に対して違う角度から治療用放射線を照射するとき、治療対象部位をアイソセンタに合わせて移動させる必要があるアイソセントリック型放射線治療装置に比べ、ノンアイソセントリック型放射線治療装置は、治療対象部位を移動させることなく放射線を照射することができる。患者を照射位置に合わせて移動させることが少ないので、患者への負担が軽減される。
【0007】
放射線治療において、健全な部位への放射線量を小さくするとともに、不定形の治療対象部位に対して照射される放射線の体積密度(放射線量)を均一にするために、口径の異なるコリメータが用意されている。治療対象部位の大きさおよび形状にあわせて、その都度適したコリメータが選択されて使用される。
【0008】
また、放射線治療を行う場合、事前にその治療対象部位の位置及び形状を検査によって決定し、放射線の照射計画が立てられている。この照射計画に基いて、放射線の出射口を変化させる出射口可変式コリメータを備えた放射線治療装置がある。この放射線治療装置は、オペレータによるコリメータの取替作業が不用であり、遠隔操作によって放射線の出射口の形状を変更することができる。
【0009】
治療対象部位に対する照射野の位置決めは、放射線治療装置と同期させて設けられたX線透過診断装置によって、放射線の照射前にその都度確認される。治療対象部位が、X線透過診断装置による撮像で特定し難い部位である場合、骨などの体組織や、治療対象部位の近傍に埋め込んだ金プレートなどのマーカをランドマークとし、相対的な位置を基に治療対象部位を確認している。
【0010】
【発明が解決しようとする課題】
放射線は、人体を透過すると、透過した部分の細胞に影響を与える。そのため、放射線は、放射線の影響を受けやすい臓器がその照射経路に入らないように回避して、治療対象部位へ照射しなければならない。治療対象部位が、X線透過診断装置によって確認されてから放射線の照射までの間に移動してしまう場合、移動する先を予測して放射線を照射しなければならない。
【0011】
循環器系や消化器系、及びその周辺などは、心鼓動、呼吸運動、消化器の蠕動運度などにより移動する。呼吸運動に対しては、胸部に取付けたマーカの動きを光学的に追尾し、設定された位置で放射線を照射する方法がある。しかしながら、実際の臓器の動きは、複雑であり、体調によっても異なる。そのため、不規則に動く治療対象部位に計画された放射線の照射野を一致させることは難しい。また、健全な部分へ許容線量を超える放射線量が照射されないようにするために、照射野を狭く設定すると、計画線量を充分に照射できない部分が生じてしまう。
【0012】
したがって、精度よく治療対象部位に計画線量を照射するためには、治療対象部位に照射野が一致する瞬間を狙って放射線を照射する必要がるため、放射線治療に長時間を要する。
【0013】
また、蠕動運動する消化器系や、膀胱など患者の体調が時々刻々変化しやすい部位及びその周囲にある治療対象部位は、治療中に位置が変わるとともにその形状も変化する。
【0014】
アイソセントリック型放射線治療装置の場合、患者を乗せたベッドを動かすことによって、治療対象部位を放射線の照射野に対して追従させることが考えられる。しかし、患者を動かすことによって、さらに臓器の位置が変化してしまうので好ましくない。ノンアイソセントリック型放射線治療装置の場合、ヘッド部を治療対象部位の動きに合わせて追従させることが考えられる。しかし、心鼓動や呼吸運動のように比較的速い動きに対して、ヘッド部に搭載された放射線発生装置を追従させると、放射線発生装置の慣性によって、放射線治療装置が振動することがある。この振動によって、放射線の照射野がずれるので、放射線の照射精度は、悪くなってしまう。したがって、治療中に動く可能性のある部位に対して、効率的に放射線治療を施すことができない。
【0016】
本発明が解決しようとする課題は、治療対象部位に、治療用放射線の照射野を精度よく追尾させて治療対象部位に治療用放射線を精度よく照射できる放射線治療装置を提供することにある。
【0017】
【課題を解決するための手段】
前記課題を解決するために、本発明の放射線治療装置は、次のような手段とした。
【0018】
前記課題を解決するために、本発明の放射線治療装置は、出射した検査用放射線が検査対象部で互いに交差するように配置された複数の放射線源と、これらの放射線源と1対1に対を成して配置され、検査対象部を透過した検査用放射線を検出する複数の検出器と、前記検出器で検出された情報を基に、検査対象部の3次元画像を構成する画像形成装置と、前記画像形成装置によって構成された3次元画像を基に、前記検査対象部の範囲内で動く追尾すべき治療対象部位の3次元位置及び3次元形状を求める解析装置と、検査対象部に治療用放射線を照射する放射線発生装置と、出射方向に対して直交する方向に移動する多数のスライドを備え、それらのスライドを上記方向と直交する方向に束ねて2つのスライド群が形成され、そのスライド群の突き合わせ面を体軸に沿う方向にあわせて配置された前記放射線発生装置から出射される放射線の照射野を変化させる出射口可変式コリメータと、前記解析装置によって求められた治療対象部位の3次元位置と3次元形状を基に、前記出射口可変式コリメータの上記スライドを制御する制御装置とを備え、この制御装置は、前記治療対象部位の変形に応じて、前記出射口可変式コリメータの出射口形状を変化させることによって、前記治療対象部位に対して治療用放射線の照射野を追尾させる。
【0020】
【発明の実施の形態】
本発明の一実施形態の放射線治療装置1について、図1及び図2を参照して説明する。図1に示す放射線治療装置1は、動体追尾装置2、放射線発生装置3、出射口可変式コリメータ4、制御装置5を備えている。動体追尾装置2は、2つの放射線源6と、2つの検出器7と、画像形成装置8と、解析装置9とを備えている。
【0021】
放射線源6は、放射線として検査用X線を出射する。また、放射線源6は、出射されたX線が検査対象部、例えば患者Pの検査対象部Mで互いに交差するように配置されている。検出器7は、放射線源6と対を成しており、検査対象部Mを透過したX線を検出できるように配置されている。検出器7は、所定の時間間隔毎に検査対象部Mを透過したX線を検出する。
【0022】
画像形成装置8は、2つの検出器7で検出されたX線の情報を基に、検査対象部Mの3次元画像を構成する。また、検出器7の情報が所定の時間間隔毎に更新されるとともに、3次元画像は更新される。解析装置9は、画像形成装置8で構成された3次元画像を基に、検査対象部Mの範囲内において指定された追尾対象部位、例えば放射線治療を施す治療対象部位Tの3次元位置及び3次元形状を求める。また、この解析装置9は、所定の時間間隔後に更新された3次元画像の中から、指定された治療対象部位Tとして、前の治療対象部位Tと類似する形状を識別する。すなわち、解析装置9は、3次元画像の中から時間とともに変形及び移動する放射線照射対照部Tを追尾し、その3次元位置及び3次元形状を求めることができる。
【0023】
放射線発生装置3は、放射線源6及び検出器7と干渉することなく、検査対象部Mに向けて治療用X線を照射できるように配置されている。
【0024】
出射口可変式コリメータ4は、2つのスライド群10a,10bを備えている。各スライド群10a,10bは、治療用X線の出射方向Aに対して直交する方向Sに移動する多数のスライド11a,11bを備えている。スライド11a,11bは、治療用X線の出射方向A及びスライド11a,11bの移動する方向Sと直交する方向Wに束ねられてスライド群10a,10bを形成している。それぞれのスライド群10a,10bは、スライド11a,11bの移動方向Sに端部11c、11dを突き合わせ、配置されている。スライド11a,11bは、比重の大きい金属、例えば、タングステンなど含み、かつ治療用X線を吸収できる充分な厚さを治療用X線の出射方向Aに備えている。
【0025】
制御装置5は、スライド11a,11bを制御し、スライド群10a,10bの間に治療用X線が通過する出射口12を形成する。出射口12は、解析装置9によって求められた治療対象部位Tの3次元位置及び3次元形状を基に、放射線発生装置3から出射される治療用X線の照射野13が、放射線照射対称部位Tの放射線発生装置3からの投影面積と重なるように設けられる。治療用X線は、この出射口12を通して患者Pの治療対象部位Tに照射される。
【0026】
以上のように構成された放射線治療装置1は、検出対象部Mで互いに交差するように検査用X線を放射線源から照射する。照射されたX線は、検査対象部Mを透過し、検出部7で所定の時間間隔毎に検出される。検出されたX線は、画像形成装置によって3次元画像に構成される。構成された3次元画像の中から、治療用X線を照射する治療対象部位Tを指定する。治療対象部位Tが選択されると、この治療対象部位Tへの投影面積に合わせて、出射口可変式コリメータ4のスライド11a,11bを制御し、出射口12の形状を変化させる。
【0027】
図2に示すように、治療対象部位TがTaからTbへ変形及び移動する場合、変形及び移動に対して充分に短い時間間隔で治療対象部位Tを検出することによって、出射口12の形状を12aから12bまで連続的に変化させる。これにより、TaからTbまで変化する治療対象部位Tの形状及び位置に対応させて、放射線発生装置3から出射される治療用X線の照射野13を連続的に追尾させる。
【0028】
本実施形態の放射線治療装置1は、治療対象部位Tの移動及び変形を出射口可変式コリメータ4の出射口12を変化させることで追尾する。治療対象部位Tを追尾するために動く部分は、スライド11a,11bであるので、慣性モーメントが小さく、治療対象部位Tの変形及び移動に対する追尾応答性が良い。したがって、治療用X線照射中に治療対象部位Tが心鼓動、呼吸による横隔膜の動き、消化器の蠕動運動などによって移動する場合においても、治療対象部位Tに治療用X線の照射野を連続的に追尾させ、治療用X線を照射することができる。
【0029】
また、出射口可変式コリメータ4は、スライド群10a,10bのスライド11a,11bを増やすことで、治療対象部位Tの追尾距離を大きくすることができる。心鼓動、呼吸運動、蠕動運動などで治療対象部位Tが移動する場合、患者Pの体軸方向に沿ってより大きく移動する。そこで、出射口可変式コリメータ4のスライド群10a,10bの突き合わせ面を体軸Bに沿う方向にあわせて配置することで、より広範囲にわたって治療対象部位Tを追尾することができるようになる。
【0030】
動体追尾装置2は、3次元画像から求められる3次元位置及び3次元形状を基に治療対象部位Tの追尾を行うので、治療対象部位Tの変形及び移動を精度よく追尾することができる。
【0031】
また、動体追尾装置2によって追尾される治療対象部位Tの3次元位置及び3次元形状の変化に合わせて出射口可変式コリメータ4の出射口12の形状及び位置を連続的に変化させることで、放射線発生装置3を機械的に動かすことなく、放射線発生装置3の照射野13を精度よく治療対象部位Tに追尾させることができる。
【0032】
放射線治療装置1は、検査用X線を出射する放射線源6と、治療用X線を出射する放射線発生装置3とを別々に設けたので、検査対象部Mの範囲内を動く治療対象部位Tを放射線治療中に観察することができる。したがって、治療対象部位Tの連続的な変化に対して、治療用X線の照射野を精度よく、かつ連続的に追尾させることができる。
【0033】
なお、放射線源6から出射されたX線を検出器7で検出することによって治療対象部位Tを特定し難い場合は、治療対象部位Tの近傍に金プレートなど目標となるランドマークを埋込み、このランドマークの3次元位置を追尾する。また、ランドマークを治療対象部位の近傍に複数配置し、その位置及びランドマーク同士の距離を基に、治療対象部位の位置及び形状を予測しても良い。
【0034】
【発明の効果】
本発明の放射線治療装置は、次のような効果を有する。
【0035】
出射した検査用放射線が検査対象部で互いに交差するように配置された複数の放射線源と、これらの放射線源と1対1に対を成して配置され、検査対象部を透過した検査用放射線を検出する複数の検出器と、検出器で検出された情報を基に、検査対象部の3次元画像を構成する画像形成装置と、画像形成装置によって構成された3次元画像を基に、検査対象部の範囲内で動く追尾すべき治療対象部位の3次元位置及び3次元形状を求める解析装置と、検査対象部に治療用放射線を照射する放射線発生装置と、出射方向に対して直交する方向に移動する多数のスライドを備え、それらのスライドを上記方向と直交する方向に束ねて2つのスライド群が形成され、そのスライド群の突き合わせ面を体軸に沿う方向にあわせて配置された放射線発生装置から出射される放射線の照射野を変化させる出射口可変式コリメータと、解析装置によって求められた治療対象部位の3次元位置と3次元形状を基に、出射口可変式コリメータの上記スライドを制御する制御装置とを備え、制御装置は、治療対象部位の変形に応じて、出射口可変式コリメータの出射口形状を変化させることによって、治療対象部位に対して治療用放射線の照射野を追尾させる本発明の放射線治療装置によれば、検査対象部の3次元画像から追尾対象部位の3次元位置及び3次元形状を求め、これに合わせて出射口可変式コリメータの出射口の形状を制御装置によって変化させて、治療対象部位に応じて治療用放射線の照射野を追尾させるので、治療対象部位に対して精度よく治療用放射線を照射することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の放射線治療装置の動体追尾装置などを示す斜視図。
【図2】図1の放射線治療装置の出射口可変式コリメータの出射口と放射線照射対象部の位置関係を模式的に示す斜視図。
【符号の説明】
1…放射線治療装置
2…動体追尾装置
3…放射線発生装置
4…出射口可変式コリメータ
5…制御装置
6…放射線源
7…検出器
8…画像形成装置
9…解析装置
12…出射口
13…照射野
M…検査対象部
T…治療対象部位(追尾対象部位)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to radiation therapy equipment for tracking the irradiation field of the therapeutic radiation in accordance with the movement of the treated portion.
[0002]
[Prior art]
In the field of surgical treatment, there is radiation therapy that treats a lesion by irradiating the lesion with necrosis. Since radiation can be irradiated through the human body, this radiation treatment is effective for deep lesions that are difficult to open. At this time, it is necessary to irradiate radiation from multiple directions in order to irradiate the lesion formed in the deep part of the human body with a sufficient radiation dose for necrosis.
[0003]
A radiotherapy apparatus for performing radiotherapy is an isocentric or a head equipped with a therapeutic radiation source with respect to a treatment target site in order to irradiate the treatment target site that is a lesion from multiple directions. Some are configured to move and hold in a non-isocentric manner.
[0004]
An isocentric radiotherapy apparatus is constructed so that when the head is moved and therapeutic radiation is irradiated from multiple directions toward the treatment target site, the irradiated therapeutic radiation intersects at one point (isocenter). It has been. This isocentric radiotherapy apparatus has a small number of movable axes, a simple structure, and easy positioning of the irradiation field. Accordingly, irradiation accuracy is required, and the treatment target region is fixed and suitable for treatment of a region where radiation can be irradiated, for example, a brain tumor.
[0005]
In addition, the non-isocentric radiotherapy device can freely set the intersection of the therapeutic radiation to be irradiated within a certain range when irradiating the therapeutic radiation from multiple directions toward the target site by moving the head. can do. As this non-isocentric type radiotherapy device, radiation is generated in a robot arm equipped with a radiation generator on the head or a head portion having a swinging function (with two rotating shafts on the portion supporting the head). A gantry that operates with an isocentric (pseudo-isocentric) mounting device is generally known.
[0006]
The site to be treated is often irregular. Compared to the isocentric radiation therapy device that needs to move the treatment target site to the isocenter when irradiating therapeutic radiation from a different angle to the treatment target site, the non-isocentric radiation therapy device is Radiation can be irradiated without moving the treatment target region. Since the patient is rarely moved according to the irradiation position, the burden on the patient is reduced.
[0007]
In radiation therapy, collimators with different apertures are prepared to reduce the radiation dose to a healthy site and to make the volume density (radiation dose) of the radiation irradiated to an irregular treatment site uniform. ing. A suitable collimator is selected and used each time according to the size and shape of the site to be treated.
[0008]
Moreover, when performing radiotherapy, the position and shape of the site to be treated are determined in advance, and a radiation irradiation plan is made. Based on this irradiation plan, there is a radiotherapy apparatus provided with a variable exit collimator that changes the radiation exit. This radiotherapy apparatus does not require the operator to replace the collimator, and can change the shape of the radiation outlet by remote control.
[0009]
Positioning of the irradiation field with respect to the treatment target site is confirmed each time before radiation irradiation by an X-ray transmission diagnostic apparatus provided in synchronization with the radiation therapy apparatus. If the site to be treated is a site that is difficult to identify by imaging with an X-ray transmission diagnostic device, use a landmark such as a body tissue such as a bone or a gold plate embedded in the vicinity of the site to be treated. Based on the above, the site to be treated is confirmed.
[0010]
[Problems to be solved by the invention]
When radiation passes through the human body, it affects the cells in the transmitted part. Therefore, radiation must be irradiated to the site to be treated while avoiding organs that are susceptible to radiation from entering the irradiation route. In the case where the treatment target part moves between the time when it is confirmed by the X-ray transmission diagnostic apparatus and the time when the radiation is irradiated, it is necessary to predict the movement destination and irradiate the radiation.
[0011]
The circulatory system, digestive system, and their surroundings move due to heartbeat, respiratory movement, peristaltic movement of the digestive system, and the like. For respiratory motion, there is a method of optically tracking the movement of a marker attached to the chest and irradiating radiation at a set position. However, the actual movement of the organ is complicated and varies depending on the physical condition. Therefore, it is difficult to match the planned radiation field to the treatment target region that moves irregularly. Further, if the irradiation field is set narrow in order to prevent the radiation dose exceeding the allowable dose from being applied to a healthy part, there will be a part where the planned dose cannot be sufficiently irradiated.
[0012]
Therefore, in order to accurately irradiate the treatment target site with the planned dose, it is necessary to irradiate the radiation at the moment when the irradiation field coincides with the treatment target region. Therefore, the radiation treatment takes a long time.
[0013]
In addition, the digestive system that performs peristaltic movement, the site where the patient's physical condition is likely to change from moment to moment, such as the bladder, and the site to be treated around the site change during the treatment and the shape thereof also changes.
[0014]
In the case of an isocentric radiotherapy apparatus, it is conceivable to cause the treatment target site to follow the radiation field by moving the bed on which the patient is placed. However, moving the patient is not preferable because the position of the organ is further changed. In the case of a non-isocentric radiotherapy apparatus, it is conceivable to make the head follow the movement of the treatment target site. However, when the radiation generating device mounted on the head unit is made to follow a relatively fast movement such as a heartbeat or a respiratory motion, the radiation therapy device may vibrate due to the inertia of the radiation generating device. Due to this vibration, the radiation field is shifted, so that the radiation irradiation accuracy is deteriorated. Therefore, it is not possible to efficiently perform radiation therapy on a portion that may move during treatment.
[0016]
An object of the present invention is to provide treatment to the target site is to provide a radiation therapy equipment for irradiation field can irradiation accurately accurately therapeutic radiation to the target site to be treated by tracking of the therapeutic radiation.
[0017]
[Means for Solving the Problems]
In order to solve the above problems, radiation therapy equipment of the present invention, was as follows means.
[0018]
In order to solve the above-described problems, a radiotherapy apparatus according to the present invention has a plurality of radiation sources arranged so that emitted examination radiations intersect with each other at an examination target portion, and these radiation sources have a one-to-one correspondence. And a plurality of detectors for detecting inspection radiation transmitted through the inspection target portion, and an image forming apparatus that forms a three-dimensional image of the inspection target portion based on information detected by the detector And an analysis device for obtaining a three-dimensional position and a three-dimensional shape of a treatment target portion to be tracked that moves within the range of the inspection target portion based on the three-dimensional image formed by the image forming device, and an inspection target portion A radiation generator for irradiating therapeutic radiation and a large number of slides that move in a direction orthogonal to the emission direction, and these slides are bundled in a direction orthogonal to the above direction to form two slide groups, Sly 3 of the exit variable collimator that changes the irradiation field of the radiation emitted from the radiation generator arranged so that the abutting surface of the group is aligned with the direction along the body axis, and 3 of the treatment target site obtained by the analysis device based on the dimensions the position and three-dimensional shape, e Bei and a control device for controlling the sliding of said exit variable collimator, the control device according to the deformation of the target site to be treated, said exit variable collimator The radiation field of therapeutic radiation is tracked with respect to the treatment target site by changing the shape of the exit port of.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
A radiotherapy apparatus 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. A radiotherapy apparatus 1 shown in FIG. 1 includes a moving body tracking apparatus 2, a radiation generation apparatus 3, an emission port variable collimator 4, and a control apparatus 5. The moving body tracking device 2 includes two radiation sources 6, two detectors 7, an image forming device 8, and an analysis device 9.
[0021]
The radiation source 6 emits inspection X-rays as radiation. The radiation source 6 is arranged so that the emitted X-rays intersect each other at the examination target part, for example, the examination target part M of the patient P. The detector 7 is paired with the radiation source 6 and is arranged so as to detect X-rays transmitted through the inspection target part M. The detector 7 detects X-rays that have passed through the inspection target part M at predetermined time intervals.
[0022]
The image forming apparatus 8 constitutes a three-dimensional image of the inspection target part M based on the information of the X-rays detected by the two detectors 7. Further, the information of the detector 7 is updated every predetermined time interval, and the three-dimensional image is updated. The analysis device 9 is based on the three-dimensional image formed by the image forming device 8 and the tracking target portion designated within the range of the examination target portion M, for example, the three-dimensional position and 3 of the treatment target portion T to be subjected to radiation therapy. Find the dimensional shape. Further, the analysis device 9 identifies a shape similar to the previous treatment target region T as the designated treatment target region T from the three-dimensional image updated after a predetermined time interval. That is, the analysis device 9 can track the radiation irradiation control part T that is deformed and moved with time from the three-dimensional image, and can obtain the three-dimensional position and three-dimensional shape thereof.
[0023]
The radiation generating apparatus 3 is arranged so that it can irradiate the therapeutic X-ray toward the examination target part M without interfering with the radiation source 6 and the detector 7.
[0024]
The emission port variable collimator 4 includes two slide groups 10a and 10b. Each of the slide groups 10a and 10b includes a large number of slides 11a and 11b that move in a direction S perpendicular to the radiation direction A of the therapeutic X-ray. The slides 11a and 11b are bundled in the direction W perpendicular to the radiation direction A of the therapeutic X-rays and the direction S in which the slides 11a and 11b move to form slide groups 10a and 10b. Each of the slide groups 10a and 10b is disposed with the end portions 11c and 11d abutted against each other in the moving direction S of the slides 11a and 11b. The slides 11a and 11b include a metal having a large specific gravity, such as tungsten, and have a sufficient thickness in the radiation direction A for therapeutic X-rays to absorb the therapeutic X-rays.
[0025]
The control device 5 controls the slides 11a and 11b, and forms an emission port 12 through which the therapeutic X-ray passes between the slide groups 10a and 10b. The exit port 12 has a radiation X-ray irradiation field 13 emitted from the radiation generator 3 based on the three-dimensional position and the three-dimensional shape of the treatment target site T obtained by the analysis device 9. It is provided so as to overlap the projected area from the radiation generator 3 of T. The therapeutic X-rays are irradiated to the treatment target site T of the patient P through the emission port 12.
[0026]
The radiotherapy apparatus 1 configured as described above irradiates examination X-rays from a radiation source so as to cross each other at the detection target portion M. The irradiated X-rays pass through the inspection target part M and are detected by the detection unit 7 at predetermined time intervals. The detected X-ray is formed into a three-dimensional image by the image forming apparatus. A treatment target region T to be irradiated with therapeutic X-rays is designated from the constructed three-dimensional image. When the treatment target region T is selected, the slides 11a and 11b of the emission port variable collimator 4 are controlled to change the shape of the emission port 12 according to the projected area on the treatment target region T.
[0027]
As shown in FIG. 2, when the treatment target site T is deformed and moved from Ta to Tb, the shape of the emission port 12 is changed by detecting the treatment target site T at a sufficiently short time interval with respect to the deformation and movement. It is changed continuously from 12a to 12b. Thereby, the irradiation field 13 of the therapeutic X-ray emitted from the radiation generator 3 is continuously tracked in accordance with the shape and position of the treatment target site T that changes from Ta to Tb.
[0028]
The radiotherapy apparatus 1 of the present embodiment tracks the movement and deformation of the treatment target site T by changing the emission port 12 of the emission port variable collimator 4. Since the portions that move to track the treatment target site T are the slides 11a and 11b, the moment of inertia is small, and the tracking responsiveness to the deformation and movement of the treatment target site T is good. Therefore, even when the treatment target site T moves during cardiac X-ray irradiation due to heartbeat, movement of the diaphragm due to breathing, peristaltic movement of the digestive organ, etc., the therapeutic X-ray irradiation field is continuously applied to the treatment target site T. Tracking, and therapeutic X-rays can be irradiated.
[0029]
Moreover, the exit variable collimator 4 can increase the tracking distance of the treatment target site T by increasing the slides 11a and 11b of the slide groups 10a and 10b. When the treatment target site T moves due to heartbeat, breathing motion, peristaltic motion, etc., it moves more greatly along the body axis direction of the patient P. Therefore, by arranging the abutting surfaces of the slide groups 10a and 10b of the emission port variable collimator 4 in the direction along the body axis B, the treatment target site T can be tracked over a wider range.
[0030]
Since the moving body tracking device 2 tracks the treatment target region T based on the three-dimensional position and the three-dimensional shape obtained from the three-dimensional image, the moving object tracking device 2 can accurately track the deformation and movement of the treatment target region T.
[0031]
Moreover, by continuously changing the shape and position of the exit port 12 of the exit port variable collimator 4 in accordance with the change of the three-dimensional position 置及 beauty three-dimensional shape of the target site to be treated T to be tracked by the moving body tracking device 2 Thus, the irradiation field 13 of the radiation generator 3 can be accurately tracked to the treatment target site T without mechanically moving the radiation generator 3.
[0032]
Since the radiation therapy apparatus 1 is provided with the radiation source 6 that emits the examination X-rays and the radiation generator 3 that emits the therapy X-rays separately, the treatment target region T that moves within the range of the examination target portion M is provided. Can be observed during radiation therapy. Therefore, the irradiation field of the therapeutic X-ray can be tracked accurately and continuously with respect to the continuous change of the treatment target site T.
[0033]
If it is difficult to identify the treatment target region T by detecting the X-rays emitted from the radiation source 6 with the detector 7, a target landmark such as a gold plate is embedded in the vicinity of the treatment target region T. Track the landmark's 3D position. Alternatively, a plurality of landmarks may be arranged in the vicinity of the treatment target site, and the position and shape of the treatment target site may be predicted based on the position and the distance between the landmarks.
[0034]
【The invention's effect】
Radiation therapy equipment of the present invention has the following effects.
[0035]
A plurality of radiation sources arranged so that the emitted inspection radiation intersects with each other in the inspection target portion, and inspection radiation that is arranged in a one-to-one pair with these radiation sources and passes through the inspection target portion Based on information detected by the detector, an image forming apparatus that forms a three-dimensional image of the inspection target portion, and a three-dimensional image formed by the image forming apparatus An analysis device for obtaining a three-dimensional position and a three-dimensional shape of a treatment target part to be tracked that moves within the range of the target part, a radiation generator for irradiating therapeutic radiation to the examination target part, and a direction orthogonal to the emission direction Radiation generation with two slide groups formed by bundling these slides in a direction perpendicular to the above direction, with the abutment surfaces of the slide groups aligned along the body axis The above-mentioned slide of the exit variable collimator is controlled based on the output variable collimator that changes the irradiation field of the radiation emitted from the device, and the three-dimensional position and the three-dimensional shape of the treatment target portion obtained by the analysis device The control device tracks the irradiation field of the therapeutic radiation with respect to the treatment target region by changing the shape of the emission port of the variable emission port collimator according to the deformation of the treatment target region. According to the radiotherapy apparatus of the present invention, the three-dimensional position and the three-dimensional shape of the tracking target part are obtained from the three-dimensional image of the examination target part, and the shape of the emission port of the variable emission port collimator is adjusted accordingly. Since the irradiation field of the therapeutic radiation is tracked according to the treatment target region, the therapeutic radiation can be accurately irradiated to the treatment target region.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a moving body tracking device of a radiation therapy apparatus according to an embodiment of the present invention.
2 is a perspective view schematically showing a positional relationship between an emission port of the emission port variable collimator of the radiotherapy apparatus of FIG. 1 and a radiation irradiation target portion;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Radiation therapy apparatus 2 ... Moving body tracking apparatus 3 ... Radiation generator 4 ... Output port variable collimator 5 ... Control apparatus 6 ... Radiation source 7 ... Detector 8 ... Image forming apparatus 9 ... Analysis apparatus 12 ... Output port 13 ... Irradiation Field M ... Inspection target part T ... Treatment target region (tracking target region)

Claims (1)

出射した検査用放射線が検査対象部で互いに交差するように配置された複数の放射線源と、
これらの放射線源と1対1に対を成して配置され、検査対象部を透過した検査用放射線を検出する複数の検出器と、
前記検出器で検出された情報を基に、検査対象部の3次元画像を構成する画像形成装置と、
前記画像形成装置によって構成された3次元画像を基に、前記検査対象部の範囲内で動く追尾すべき治療対象部位の3次元位置及び3次元形状を求める解析装置と、
検査対象部に治療用放射線を照射する放射線発生装置と、
出射方向に対して直交する方向に移動する多数のスライドを備え、それらのスライドを上記方向と直交する方向に束ねて2つのスライド群が形成され、そのスライド群の突き合わせ面を体軸に沿う方向にあわせて配置された前記放射線発生装置から出射される放射線の照射野を変化させる出射口可変式コリメータと、
前記解析装置によって求められた治療対象部位の3次元位置と3次元形状を基に、前記出射口可変式コリメータの上記スライドを制御する制御装置とを備え、前記制御装置は、前記治療対象部位の変形に応じて、前記出射口可変式コリメータの出射口形状を変化させることによって、前記治療対象部位に対して治療用放射線の照射野を追尾させることを特徴とする放射線治療装置
A plurality of radiation sources arranged so that the emitted inspection radiation intersects with each other in the inspection target part; and
A plurality of detectors which are arranged in a one-to-one pair with these radiation sources and detect inspection radiation transmitted through the inspection target part;
Based on the information detected by the detector, an image forming apparatus that constitutes a three-dimensional image of the inspection target part;
An analysis device for obtaining a three-dimensional position and a three-dimensional shape of a treatment target portion to be tracked that moves within the range of the examination target portion based on the three-dimensional image formed by the image forming device;
A radiation generator for irradiating therapeutic radiation to the examination target; and
A plurality of slides moving in a direction orthogonal to the emission direction are provided, and these slides are bundled in a direction orthogonal to the above direction to form two slide groups, and the butting surfaces of the slide groups are directions along the body axis An exit variable collimator that changes an irradiation field of radiation emitted from the radiation generator arranged in accordance with
Based on the three-dimensional position and three-dimensional shape of the target site to be treated obtained by the analyzer, and a control device for controlling the sliding of said exit variable collimator, the control device of the target site to be treated A radiation therapy apparatus for tracking a treatment radiation irradiation field with respect to the treatment target region by changing an emission port shape of the emission port variable collimator according to deformation .
JP2002022252A 2002-01-30 2002-01-30 Radiation therapy equipment Expired - Lifetime JP3790481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022252A JP3790481B2 (en) 2002-01-30 2002-01-30 Radiation therapy equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022252A JP3790481B2 (en) 2002-01-30 2002-01-30 Radiation therapy equipment

Publications (2)

Publication Number Publication Date
JP2003220151A JP2003220151A (en) 2003-08-05
JP3790481B2 true JP3790481B2 (en) 2006-06-28

Family

ID=27745292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022252A Expired - Lifetime JP3790481B2 (en) 2002-01-30 2002-01-30 Radiation therapy equipment

Country Status (1)

Country Link
JP (1) JP3790481B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358737B2 (en) 2009-03-25 2013-01-22 Accuthera Inc. Apparatus and method for X-ray treatment
US9149656B2 (en) 2012-06-15 2015-10-06 Accuthera Inc. Real-time three-dimensional radiation therapy apparatus and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310319B2 (en) 2006-03-10 2009-08-05 三菱重工業株式会社 Radiotherapy apparatus control apparatus and radiation irradiation method
CN108785872B (en) * 2017-10-24 2023-10-13 华瑞先锋医学科技(北京)有限公司 4 pi multi-mode image guided accurate radiation therapy system
JP2024023069A (en) * 2022-08-08 2024-02-21 株式会社ビードットメディカル Electric charge particle beam irradiation system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531963B2 (en) * 1994-03-25 2004-05-31 株式会社東芝 Radiation treatment planning device
JP3053389B1 (en) * 1998-12-03 2000-06-19 三菱電機株式会社 Moving object tracking irradiation device
US6144875A (en) * 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
EP2311527B1 (en) * 2000-02-18 2019-08-28 William Beaumont Hospital Cone-beam computerized tomography with a flat-panel imager
JP4159226B2 (en) * 2000-03-21 2008-10-01 住友重機械工業株式会社 Affected part tracking method and apparatus, and radiation irradiation method and apparatus using the same, and radiation treatment apparatus
JP4159227B2 (en) * 2000-03-21 2008-10-01 住友重機械工業株式会社 Patient position deviation measuring device, patient positioning device using the same, and radiotherapy device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358737B2 (en) 2009-03-25 2013-01-22 Accuthera Inc. Apparatus and method for X-ray treatment
US9149656B2 (en) 2012-06-15 2015-10-06 Accuthera Inc. Real-time three-dimensional radiation therapy apparatus and method

Also Published As

Publication number Publication date
JP2003220151A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
JP5214569B2 (en) Device to compensate for breathing and patient movement during treatment
JP4948415B2 (en) Medical radiotherapy equipment
CN106714905B (en) Radiotherapy equipment and beam imaging method
JP4310319B2 (en) Radiotherapy apparatus control apparatus and radiation irradiation method
JP4974164B2 (en) Frameless radiosurgery system and method
KR100327821B1 (en) Stereotactic Brain Surgery Radiology Surgery and Radiotherapy Apparatus and Method
US9149656B2 (en) Real-time three-dimensional radiation therapy apparatus and method
US8542797B2 (en) Radiotherapy apparatus configured to track a motion of a target region using a combination of a multileaf collimator and a patient support
JP4444338B2 (en) Radiotherapy apparatus control apparatus and radiation irradiation method
AU2009275698B2 (en) Image-guided multi-source radiotherapy
JP2017504449A (en) Method and system for stereotactic intensity modulated rotational radiation therapy
JP2004166975A (en) Radiotherapy system, and operation method therefor
US11446520B2 (en) Radiation therapy apparatus configured to track a tracking object moving in an irradiation object
JP2004097646A (en) Radiotherapy system
JP2008154861A (en) Radiotherapy system
CN111035861A (en) Radiation therapy system and method of operation
US20130289400A1 (en) Devices, apparatus and methods for analyzing, affecting and/or treating one or more anatomical structures
JP3790481B2 (en) Radiation therapy equipment
US11065474B2 (en) Patient alignment method and system using light field and light reflector during radiation therapy
JP2006180910A (en) Radiation therapy device
KR101654263B1 (en) Real time control system of stereotactic ablative body radiotherapy, stereotactic body radiation therapy and control method of the same
JP4088618B2 (en) Radiotherapy apparatus and radiotherapy planning method
CN104117150A (en) Cancer therapy system based on cyber knife

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

R151 Written notification of patent or utility model registration

Ref document number: 3790481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term