JP3790200B2 - Construction method of excavated underground structure - Google Patents

Construction method of excavated underground structure Download PDF

Info

Publication number
JP3790200B2
JP3790200B2 JP2002257481A JP2002257481A JP3790200B2 JP 3790200 B2 JP3790200 B2 JP 3790200B2 JP 2002257481 A JP2002257481 A JP 2002257481A JP 2002257481 A JP2002257481 A JP 2002257481A JP 3790200 B2 JP3790200 B2 JP 3790200B2
Authority
JP
Japan
Prior art keywords
water
joint
structures
peripheral surface
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002257481A
Other languages
Japanese (ja)
Other versions
JP2004092288A (en
Inventor
敏雄 安松
満 寺島
知之 山下
徹 木佐貫
一敏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Pacific Consultants Co Ltd
Original Assignee
Kajima Corp
Pacific Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Pacific Consultants Co Ltd filed Critical Kajima Corp
Priority to JP2002257481A priority Critical patent/JP3790200B2/en
Publication of JP2004092288A publication Critical patent/JP2004092288A/en
Application granted granted Critical
Publication of JP3790200B2 publication Critical patent/JP3790200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は地中に道路或は鉄道等を敷設する場合に構築される開削地下構造物構築方法に関し、特に継手部分の止水部分の構築方法を提案するものである。
【0002】
【従来の技術】
図3に一般的な開削地下構造物の一例を示す。図中1は地表面、2はこの地表面を開削して構築した掘割、3はこの掘割2の内部に構築した開削地下構造物を示す。
開削地下構造物3は掘割2の内部でコンクリートを型枠に流し込んで形成される。型枠の構築とコンクリートの流し込みの繰り返しにより開削地下構造物3を構築する施工方法が採られるから、所要の距離毎に継手(目地)が形成される。
【0003】
工法上やむをえず継手が形成されるが、継手には従来より以下の2つの機能を持つ継手が実用されている。
1、地震等により地盤が変位した場合、この地盤の変位に追従して開削地下構造物3も変位させるための継手、
2、コンクリートが収縮変形するとき、ヒビ割を生じさせないようにするための継手、
とが存在する。
前者は一般に構造継手と呼ばれ約20〜30m間隔程度で形成される。後者は誘発目地と呼ばれ、4〜6m程度の間隔で形成される。図3に示す4は構造継手、5は誘発目地を示す。
【0004】
図4に構造継手の構造の一例を示す。この図4に示す断面は図3に示すA―A、B―B、C―C、D―Dの何れかの断面図を示す。
構造継手4の場合、構造物3―1と3―2の間に例えばエラスタイトのような目地材6が充填され、構造物3―1と3―2の間に反力を発生させる。構造物3―1及び」3―2の周方向に主鉄筋7―1が張られ、延長方向に配力筋7―2が張られる。構造物3―1と3―2の間は鞘管に格納された配力筋7―3で連結される。この配力筋7―3は両端が構造物3―1と3―2を構成するコンクリートに固定され、構造物3―1と3―2の各接合部分では鞘管に格納される。この構造により、構造物3―1と3―2の相互に圧縮荷重及び引張り荷重が掛った場合に配力筋7―3が伸縮変形することにより構造物3―1と3―2の各端面部分に極部的な荷重が掛ることを阻止、端面部分が配力筋7―3の伸縮変形に伴ってヒビ割が生じることを阻止する構造としている。
【0005】
8は目地部分に設けた止水板を示す。この止水板は図6に示すように、空胴部8―1と、この空胴部8―1の両側に突出されたヒレ部8―2とによって構成され、ゴムのような弾性体によって形成される。空胴部8―1を目地部に配置し、ヒレ部8―2が構造物3―1と3―2を構成するコンクリートにインサートされて固定される。
図5に誘発目地5の断面構造を示す。誘発目地5の場合は目地としては単にコンクリート打ち継ぎ面で構成され、この打ち継ぎ面を跨いで止水板8が挿入される。
【0006】
【発明が解決しようとする課題】
従来の止水板8を用いた継手構造の場合、コンクリートの打込みの際に止水板8の特にヒレ部8―2に接して緊密にコンクリートを流し込むことが難しく、ヒレ部8―2に接してコンクリートに空胴が形成される場合が多い。このために止水性が悪い欠点がある。またヒレ部8―2に密着させてコンクリートを流し込もうとすると、それに手間が掛り作業性が悪い欠点もある。
更に、止水板8はゴムのようなは弾性材で作られるが大きな変位に対しては弾性変形量が不足するため地震時に破断してしまう事故が起きる欠点もある。
【0007】
このため、Ω形の断面形状を持つ止水ゴムが提案されているが、Ω形の断面形状を持つ止水ゴムは高価であり、長距離の開削地下構造物に多量に用いることは経済的に困難である。
この発明の目的は止水性能が高く、更に施工時の作業性がよい開削地下構造物構築方法を提案するものである。
【0008】
【課題を解決するための手段】
この発明では開削された溝の内部に単位長ごとに構造物が場所打ちされ、場所打ちされた構造物が硬化する毎に継手が設けられて他の構造物が場所打ちされ、地中に構造物を構築する開削地下構造物構築方法において、
【0009】
硬化された構造物の他の構造物との継手となるべき端部の外周面に帯状に水膨張止水ゴムを被着し、この水膨張止水ゴムの周面を帯状の保護鋼板で被覆すると共に、帯状の保護鋼板の幅方向の半部が次に構築されるべき構造物の外周面となるべき面と平行して突出し、この突出した保護鋼板の次に構築されるべき構造物の外周面と対向する面に水膨張止水ゴムを保持させ、この状態で他の構造物を場所打ちすることを特徴とする。
【0010】
作用
この発明のよれば継手となる目地の少なくとも外周に目地を跨いで目地からほぼ等間隔に水膨張止水ゴムを被着して目地の外周をシールする構造とし、更に水膨張止水ゴムの外周に保護鋼板を被覆する構造としたから、シール性が高く、高い止水性能を得ることができる。
特に水膨張止水ゴムとして非加硫ゴムを用いた場合には非加硫ゴムはコンクリートに対して親和性が高く、強力な接着力が得られる。この結果、強力なシール性能を得ることができる。
【0011】
更に、非加硫ゴムは引張り伸び性能は1000%以上とされているから、目地が大きく変形しても破断事故が起きるおそれはない。この結果、信頼性の高い止水構造を提供することができる。
更に、この発明によればコンクリートの内部にインサートする構造でないため、施工性がよい利点も得られる。
【0012】
【発明の実施の形態】
図1にこの発明による開削地下構造物の実施例を示す。図1に示す断面も図3に示したA―A、B―B、C―C、D―Dの何れかの断面を示す。この発明では図4に示した構造継手4と図5に示した誘発目地5の区別をすることなく、4〜6m間隔でこの発明による継手構造を適用しようとするものである。
図1に示す実施例では構造物3―1と3―2の間に配力筋7―2を差し渡し、構造物3―1と3―2を配力筋7―2で連結した構造とし、目地の外周に目地を跨いでほぼ等距離にわたって水膨張止水ゴム11―1を被着すると共に、水膨張止水ゴム11―1の外周を保護鋼板12―1で被覆した構造とするものである。
【0013】
水膨張止水ゴム11―1は非加硫ゴムを用いる。非加硫ゴムはコンクリートに対してセメントと水和反応し、コンクリートの面に対して強力に接着する特性を有する。非加硫ブチルゴムを目地を跨いでほぼ等距離(構造物3―1、3―2の延長方向)に例えば目地から70〜80mm程度の幅にわたって構造物3―1と3―2の各外周面の双方に被着させる。厚みとしては20mm程度とする。図1に示す実施例では構造物3―1及び3―2の内周面側にも水膨張止水ゴム11―2を被着し、更にそのその内周面を保護鋼板12―2で被覆した場合を示す。保護鋼板12―1及び12―2は厚みが約3mmで幅wが200mm程度の帯状の亜鉛鋼板を用いることができる。
【0014】
更に、この実施例では目地の部分に例えばエクスタイトのような目地材6を充填し隣接する構造物3―1及び3―2の相互に反力を与える構造とした場合を示す。このように目地材6を充填し、隣接する構造物3―1及び3―2の相互に反力を与える構造にすることにより、圧縮荷重に対して構造物3―1及び3―2の端面の損壊を防ぐことができる。
水膨張止水ゴム11―1及び11―2と保護鋼板12―1及び12―2を被覆する施工方法としてはコンクリートが硬化した側の例えば構造物3―1の端部に水膨張止水ゴム11―1及び11―2を被着させ、更にこの外周に保護鋼板12―1及び12―2を被覆する。この状態ではこれからコンクリートを打設する構造物に被着されるべき水膨張止水ゴム11―1及び11―2は保護鋼板12―1及び12―2によって保持されており、保護鋼板12―1及び12―2に保持されている水膨張止水ゴム11―1及び11―2の面に次に構築される構造3―2のコンクリートが打設されて構造物3―2が構築される。
【0015】
このように、この発明によれば止水ゴム11―1及び11―2をコンクリートの内部にインサートする構造でないため、コンクリート打設作業は簡素に行うことができ作業性は従来の場合と比較して大幅に改善される。
図2はこの発明の変形実施例を示す。この実施例では構造物3―1及び3―2の間を連結する配力筋を鞘管13に格納した配力筋7―3とした場合を示す。つまり、配力筋7―3の両端は構造物3―1及び3―2のコンクリートに固定し目地部では配力筋7―3を鞘管13に格納し、鞘管13の内部で配力筋7―3が自由に伸縮できる構造とした場合を示す。
【0016】
この構造により図4で説明したように構造物3―1及び3―2の相互に圧縮荷重及び引張り荷重が与えられた場合に配力筋7―3の伸縮によって構造物3―1及び3―2の端面が破損する事故を防止することができる。そのほかの構造としてはこの実施例では端面補強筋14を設け、構造物13―1、13―2の各端面の強度を補強した構造とした場合を示す。そのほかの部分の構造は図1と同じであるから、ここではこれ以上の説明は省略する。
【0017】
【発明の効果】
以上説明したように、この発明によれば止水性能が高く、然も目地が大きく変形しても水膨張止水ゴム11―1、11―2が破断することもないから、信頼性の高い開削地下構造物を提供することができる。
【図面の簡単な説明】
【図1】この発明の一実施例を説明するための断面図。
【図2】この発明の変形実施例を説明するための断面図
【図3】開削地下構造物の一般的な構造を説明するための斜視図。
【図4】従来の開削地下構造物に使われている構造継手を説明するための断面図。
【図5】従来の開削地下構造物に使われている誘発目地の構造を説明するための断面図。
【図6】従来の止水板の構造を説明するための斜視図。
【符号の説明】
3―1、3―2 構造物
6 目地材
7―1、7―2 配力筋
7―3 鞘管に格納された配力筋
11―1、11―2 水膨張止水ゴム
12―1、12―2 保護鋼板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an excavation underground structure construction method constructed when a road or a railroad is laid in the ground, and particularly proposes a construction method of a water stop portion of a joint portion.
[0002]
[Prior art]
FIG. 3 shows an example of a general excavated underground structure. In the figure, 1 is the ground surface, 2 is the excavation split constructed by excavating the ground surface, and 3 shows the excavated underground structure built inside the excavation split 2.
The excavated underground structure 3 is formed by pouring concrete into the formwork inside the excavation split 2. Since the construction method of constructing the open-cut underground structure 3 by repeating the construction of the formwork and the pouring of concrete is adopted, joints (joints) are formed at every required distance.
[0003]
A joint is unavoidably formed due to the construction method, but a joint having the following two functions has been practically used.
1. A joint for displacing the excavated underground structure 3 following the displacement of the ground when the ground is displaced by an earthquake, etc.
2. A joint to prevent cracking when concrete shrinks and deforms,
And exist.
The former is generally called a structural joint and is formed at intervals of about 20 to 30 m. The latter is called an induction joint and is formed at intervals of about 4 to 6 m. In FIG. 3, 4 is a structural joint, and 5 is an induction joint.
[0004]
FIG. 4 shows an example of the structure of the structural joint. The cross section shown in FIG. 4 is a cross sectional view of any of AA, BB, CC, and DD shown in FIG.
In the case of the structural joint 4, a joint material 6 such as elastite is filled between the structures 3-1 and 3-2, and a reaction force is generated between the structures 3-1 and 3-2. The main reinforcing bar 7-1 is stretched in the circumferential direction of the structures 3-1 and “3-2”, and the distribution bar 7-2 is stretched in the extending direction. The structures 3-1 and 3-2 are connected by a power distribution bar 7-3 stored in the sheath tube. Both ends of the power distribution bar 7-3 are fixed to the concrete constituting the structures 3-1 and 3-2, and are stored in the sheath tube at each joint portion of the structures 3-1 and 3-2. With this structure, when the compressive load and tensile load are applied to the structures 3-1 and 3-2, the end surfaces of the structures 3-1 and 3-2 are deformed by the stretching of the distribution bar 7-3. The structure prevents the extreme load from being applied to the portion, and prevents the end surface portion from being cracked due to the expansion and contraction of the distribution bar 7-3.
[0005]
8 shows the water stop board provided in the joint part. As shown in FIG. 6, this water stop plate is composed of a cavity portion 8-1 and fin portions 8-2 projecting on both sides of the cavity portion 8-1, and is made of an elastic material such as rubber. It is formed. The cavity portion 8-1 is arranged at the joint portion, and the fin portion 8-1 is inserted and fixed to the concrete constituting the structures 3-1 and 3-2.
FIG. 5 shows a cross-sectional structure of the induction joint 5. In the case of the induction joint 5, the joint is simply constituted by a concrete joint surface, and the water stop plate 8 is inserted across the joint surface.
[0006]
[Problems to be solved by the invention]
In the case of the joint structure using the conventional water stop plate 8, it is difficult to pour the concrete tightly in contact with the fin portion 8-2 of the water stop plate 8 when the concrete is driven in, and it is in contact with the fin portion 8-2. As a result, cavities are often formed in concrete. For this reason, there exists a fault with a bad water stop. In addition, when concrete is poured into the fin portion 8-2, there is a disadvantage that it takes time and workability is poor.
Furthermore, although the water stop plate 8 is made of an elastic material such as rubber, there is also a drawback that an accident that breaks at the time of an earthquake occurs due to insufficient elastic deformation for a large displacement.
[0007]
For this reason, water-stopping rubbers with Ω-shaped cross-sectional shapes have been proposed, but water-stopping rubbers with Ω-shaped cross-sectional shapes are expensive and economical to use in large quantities in long-distance excavated underground structures It is difficult to.
The object of the present invention is to propose a method for constructing an open-cut underground structure having high water-stopping performance and good workability during construction.
[0008]
[Means for Solving the Problems]
In this invention, a structure is cast in place for each unit length inside the cut groove, and a joint is provided every time the cast structure is hardened, and another structure is cast in place. In the excavation underground structure construction method to construct a thing,
[0009]
Cover the outer peripheral surface of the end that should be a joint with another structure of the cured structure with water-swelling water-stopping rubber in a band shape, and coat the peripheral surface of this water-swelling water-stopping rubber with a band-shaped protective steel plate At the same time, half of the band-shaped protective steel plate in the width direction protrudes in parallel with the surface to be the outer peripheral surface of the structure to be constructed next, and the structure of the structure to be constructed next to the projecting protective steel plate A water expansion waterproof rubber is held on a surface facing the outer peripheral surface, and another structure is cast in place in this state.
[0010]
Action According to the present invention, at least the outer periphery of the joint serving as a joint is provided with a structure that seals the outer periphery of the joint by applying water-expanding water-stopping rubber at substantially equal intervals from the joint and further expanding the water expansion. Since the outer periphery of the water-stopping rubber is covered with a protective steel plate, the sealing performance is high and high water-stopping performance can be obtained.
In particular, when a non-vulcanized rubber is used as the water-expandable water-stopping rubber, the non-vulcanized rubber has a high affinity for concrete and a strong adhesive force can be obtained. As a result, strong sealing performance can be obtained.
[0011]
Furthermore, since the unvulcanized rubber has a tensile elongation performance of 1000% or more, there is no possibility that a fracture accident will occur even if the joint is greatly deformed. As a result, a highly reliable water stop structure can be provided.
Furthermore, according to this invention, since it is not the structure inserted in the inside of concrete, the advantage that workability is good is also acquired.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of an excavated underground structure according to the present invention. The cross section shown in FIG. 1 also shows one of the cross sections AA, BB, CC, and DD shown in FIG. In the present invention, the joint structure according to the present invention is applied at intervals of 4 to 6 m without making a distinction between the structural joint 4 shown in FIG. 4 and the induction joint 5 shown in FIG. 5.
In the embodiment shown in FIG. 1, the structure 3-1 and 3-2 are provided with a force distribution bar 7-2, and the structures 3-1 and 3-2 are connected with the force distribution line 7-2. The water-expanding water-stopping rubber 11-1 is applied to the outer periphery of the joint across the joint, and the outer periphery of the water-expanding water-stopping rubber 11-1 is covered with a protective steel plate 12-1. is there.
[0013]
Non-vulcanized rubber is used as the water expansion water-stopping rubber 11-1. Non-vulcanized rubber has a property of hydrating with cement to concrete and strongly adhering to the concrete surface. Non-vulcanized butyl rubber straddles the joints and at approximately equal distances (extension direction of the structures 3-1 and 3-2), for example, the outer peripheral surfaces of the structures 3-1 and 3-2 over a width of about 70 to 80 mm from the joints. Adhere to both sides. The thickness is about 20 mm. In the embodiment shown in FIG. 1, the water expansion / stop rubber 11-2 is also applied to the inner peripheral surfaces of the structures 3-1 and 3-2, and the inner peripheral surface thereof is covered with a protective steel plate 12-2. Shows the case. The protective steel plates 12-1 and 12-2 can be strip-shaped zinc steel plates having a thickness of about 3 mm and a width w of about 200 mm.
[0014]
Furthermore, in this embodiment, a case is shown in which the joint portion is filled with a joint material 6 such as extite to give a reaction force between the adjacent structures 3-1 and 3-2. In this way, by filling the joint material 6 and giving a reaction force between the adjacent structures 3-1 and 3-2, the end surfaces of the structures 3-1 and 3-2 against the compressive load. Can prevent damage.
As a construction method for covering the water expansion waterproof rubber 11-1 and 11-2 and the protective steel plates 12-1 and 12-2, the water expansion waterproof rubber is applied to the end of the structure 3-1 on the side where the concrete is hardened, for example. 11-1 and 11-2 are deposited, and further, protective steel plates 12-1 and 12-2 are coated on the outer periphery. In this state, the water expansion waterproofing rubbers 11-1 and 11-2 to be attached to the structure where concrete is to be placed are held by the protective steel plates 12-1 and 12-2. And the concrete of the structure 3-2 to be constructed next is placed on the surfaces of the water-expanding water-stopping rubbers 11-1 and 11-2 held by 12-2, and the structure 3-2 is constructed. .
[0015]
As described above, according to the present invention, since the waterproof rubbers 11-1 and 11-2 are not inserted into the concrete, the concrete placing work can be performed simply and the workability is compared with the conventional case. Greatly improved.
FIG. 2 shows a modified embodiment of the present invention. In this embodiment, a case is shown in which the force distribution muscles connecting the structures 3-1 and 3-2 are force distribution muscles 7-3 stored in the sheath tube 13. That is, both ends of the distribution bar 7-3 are fixed to the concrete of the structures 3-1 and 3-2, and the distribution bar 7-3 is stored in the sheath tube 13 at the joint, and the distribution force is stored inside the sheath tube 13. A case where the muscle 7-3 can be freely expanded and contracted is shown.
[0016]
With this structure, as described with reference to FIG. 4, when a compressive load and a tensile load are applied to the structures 3-1 and 3-2, the structures 3-1 and 3- Accidents in which the end face of 2 is damaged can be prevented. As another structure, in this embodiment, an end face reinforcing bar 14 is provided, and the strength of each end face of the structures 13-1 and 13-2 is reinforced. Since the structure of other parts is the same as that of FIG. 1, further explanation is omitted here.
[0017]
【The invention's effect】
As described above, according to the present invention, the water stop performance is high, and even if the joints are greatly deformed, the water expansion water stop rubbers 11-1 and 11-2 are not broken, so that the reliability is high. Open-cut underground structures can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining an embodiment of the present invention.
FIG. 2 is a sectional view for explaining a modified embodiment of the present invention. FIG. 3 is a perspective view for explaining a general structure of an excavated underground structure.
FIG. 4 is a cross-sectional view for explaining a structural joint used in a conventional excavated underground structure.
FIG. 5 is a cross-sectional view for explaining the structure of a trigger joint used in a conventional excavated underground structure.
FIG. 6 is a perspective view for explaining the structure of a conventional water stop plate.
[Explanation of symbols]
3-1, 3-2 Structure 6 Joint material 7-1, 7-2 Strengthening force 7-3 Strengthening force 11-1, 11-2 stored in the sheath tube Water expansion waterproofing rubber 12-1, 12-2 Protection steel plate

Claims (1)

開削された溝の内部に単位長ごとに構造物が場所打ちされ、場所打ちされた構造物が硬化する毎に継手が設けられて他の構造物が場所打ちされ、地中に構造物を構築する開削地下構造物構築方法において、
硬化された構造物の他の構造物との継手となるべき端部の外周面に帯状に水膨張止水ゴムを被着し、この水膨張止水ゴムの周面を帯状の保護鋼板で被覆すると共に、帯状の保護鋼板の幅方向の半部が次に構築されるべき構造物の外周面となるべき面と平行して突出し、この突出した保護鋼板の次に構築されるべき構造物の外周面と対向する面に水膨張止水ゴムを保持させ、この状態で他の構造物を場所打ちすることを特徴とする開削地下構造物構築方法。
A structure is cast in place for each unit length inside the excavated groove, and each time the cast-in structure is cured, a joint is provided to place another structure in place, and the structure is built in the ground. In the excavation underground structure construction method to
Cover the outer peripheral surface of the end that should be a joint with another structure of the cured structure with water-swelling water-stopping rubber in a band shape, and coat the peripheral surface of this water-swelling water-stopping rubber with a band-shaped protective steel plate At the same time, half of the band-shaped protective steel plate in the width direction protrudes in parallel with the surface to be the outer peripheral surface of the structure to be constructed next, and the structure of the structure to be constructed next to the projecting protective steel plate A method for constructing an open-cut underground structure, characterized in that a water-expanding water-stopping rubber is held on a surface facing an outer peripheral surface, and another structure is cast in place in this state.
JP2002257481A 2002-09-03 2002-09-03 Construction method of excavated underground structure Expired - Fee Related JP3790200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257481A JP3790200B2 (en) 2002-09-03 2002-09-03 Construction method of excavated underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257481A JP3790200B2 (en) 2002-09-03 2002-09-03 Construction method of excavated underground structure

Publications (2)

Publication Number Publication Date
JP2004092288A JP2004092288A (en) 2004-03-25
JP3790200B2 true JP3790200B2 (en) 2006-06-28

Family

ID=32062372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257481A Expired - Fee Related JP3790200B2 (en) 2002-09-03 2002-09-03 Construction method of excavated underground structure

Country Status (1)

Country Link
JP (1) JP3790200B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104929154B (en) * 2015-06-24 2016-06-08 中铁上海工程局集团北方工程有限公司 Covered back-digging subway station totally-enclosed post one-time-concreting molding construction technique
JP6901956B2 (en) * 2017-11-06 2021-07-14 鹿島建設株式会社 Concrete structure

Also Published As

Publication number Publication date
JP2004092288A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
EP3450632B1 (en) Prestressed tube section structure and construction method thereof
CN110005438B (en) Large-deformation tunnel cast-in-place structure design and construction method for crossing movable fault
KR20080068210A (en) The tunnel second lining construction work method and that equipment
CN111749279A (en) Waterproof construction method for construction joint with combined design of water-stop steel plate and anti-crack reinforcing steel bar
CN108547316B (en) Double-layer corrugated steel structure for underground comprehensive pipe gallery
JP3790200B2 (en) Construction method of excavated underground structure
CN210380191U (en) Lightweight power communication combination prefabricated cable channel
JP7215252B2 (en) Synthetic segment
JP3127038U (en) Box culvert
KR100841696B1 (en) Manufacturing method and execution method of the chemical resin lining precast concrete culvert which uses the installation structure and this liner of the chemical resin liner
KR100765360B1 (en) Precast structure connecting part
JP3777549B2 (en) Synthetic underground wall, its construction method, and water expansion waterproofing material
CN211597830U (en) Roof gap repairing structure
CN212477466U (en) Large-span culvert structure and prefabricated box culvert
KR200157898Y1 (en) Fabricated p.c culvert formed connection
KR101283556B1 (en) expansion joint for agriculture channels and this construction technique
JP3789412B2 (en) Buried joints for road bridge buried joints and buried bridge joints for road bridges
JP4956250B2 (en) Segment for shield method
JP2878267B1 (en) Concrete box for underground structures
JP2000178990A (en) Flexible structure type immersed tunnel and construction method therefor
CN215887970U (en) Box culvert movement joint construction structures
KR100379187B1 (en) delay-joint method of constructuction for underground structure
CN112343188A (en) Construction joint waterproof structure and construction method thereof
JP2945282B2 (en) Precast concrete slab joining method
JP4182004B2 (en) Stripping prevention member, tunnel lining prevention structure, and tunnel lining construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150407

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees