JP3790034B2 - Antioxidant paint for steel - Google Patents

Antioxidant paint for steel Download PDF

Info

Publication number
JP3790034B2
JP3790034B2 JP02593698A JP2593698A JP3790034B2 JP 3790034 B2 JP3790034 B2 JP 3790034B2 JP 02593698 A JP02593698 A JP 02593698A JP 2593698 A JP2593698 A JP 2593698A JP 3790034 B2 JP3790034 B2 JP 3790034B2
Authority
JP
Japan
Prior art keywords
steel
curing accelerator
antioxidant
paint
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02593698A
Other languages
Japanese (ja)
Other versions
JPH11222564A (en
Inventor
幸法 村岡
浩 高橋
満 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Co Ltd
Original Assignee
Asahi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Co Ltd filed Critical Asahi Chemical Co Ltd
Priority to JP02593698A priority Critical patent/JP3790034B2/en
Publication of JPH11222564A publication Critical patent/JPH11222564A/en
Application granted granted Critical
Publication of JP3790034B2 publication Critical patent/JP3790034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル鋼などの鋼材(スラブ)に塗布して、均熱炉などの高温酸化雰囲気中における酸化スケールの発生を防止する鋼材用酸化防止塗料に関する。
【0002】
【従来の技術】
ニッケル鋼などの鋼材は、スラブの形で均熱炉などで1000〜1300℃の温度に加熱され、圧延機で圧延されて鋼板とされる。均熱炉などでは窒素を吹込むなどして酸化を防いでいるが、完全に酸素を遮断することができず炉内でスラブ表面が酸化されスケールが発生し、これによって製品歩留りが低下し、またスケールが鋼板に入込み品質が低下するという問題がある。
【0003】
スラブ表面の酸化およびスケールの発生を防止する方法として、スラブに薄鉄板の保護カバーを被せる方法が考えられるが、この方法は薄鉄板をスラブに取付けるのに手間がかかりまた薄鉄板が消耗品となり材料も嵩み実用的ではない。
【0004】
スラブ表面の酸化およびスケールの発生を防止する典型的な従来技術として、シリカ、アルミナ、マグネシアなどの耐火性骨材にケイ素バインダを配合した無機の酸化防止塗料をスラブ表面に塗布する方法が特開昭63−60806に記載されている。
【0005】
【発明が解決しようとする課題】
耐火性骨材にバインダとして水ガラスを加えた塗料は、均熱炉に投入されて急激に温度が上昇する際に発泡して均一で緻密な保護膜ができず、部分的に酸化防止効果が低下するという問題がある。水ガラスの代りに、急激な温度上昇でも発泡しないシリカゾルを用いることが考えられるが、シリカゾルをバインダとして用いた塗料は、被膜の機械的強度が弱く、スラブに塗布されて均熱炉に投入するまでの間に衝撃などによって微細な剥離(ヘアークラック)が生じやすく、このヘアークラックが発生していると、均熱炉に挿入後、ヘアークラックが発達し部分的に塗膜が剥離するという問題がある。
【0006】
本発明の目的は、急激な加熱によって発泡せずまた初期段階で密着性が充分あって、多少の衝撃によってヘアークラックの発生がない被膜をスラブ表面に形成でき、均熱炉から取出した後被膜が容易に剥離できる鋼材用酸化防止塗料を提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、鋼材の酸化、スケール発生を防止する塗料の成分組成を検討した結果、耐火物粉末にバインダとしてシリカゾル、より好ましくは特定のシリカゾルと、硬化促進剤とを配合することによって、急激な温度上昇によっても発砲せずまた初期段階の密着性が充分あって、強度の高い被膜を鋼材表面に形成する塗料を完成した。
【0008】
本発明は、耐火物粉末としてシリカ100重量部に対し、バインダとしてアンモニウム4級塩で安定化したシリカゾルをSiO2換算で5〜50重量部と、硬化促進剤として比表面積0.5〜50m 2 /gであり、平均粒径10μm以下のMgOを5〜50重量部とを配合したことを特徴とする鋼材用酸化防止塗料である。
【0009】
本発明に従う鋼材用酸化防止塗料は、耐火物粉末にバインダと硬化促進剤とを配合したものである。
【0010】
耐火物粉末としては、シリカが用いられる。シリカは後述のシリカゾルバインダとの密着性が良好であるためである。耐火物粉末の平均粒径は、0.5〜50μmのものが好ましく、さらに好ましくは1〜30μmである。粒径が大き過ぎると被膜中に泡ができやすく、粒径が小さ過ぎると被膜にクラックが生じやすく、いずれも酸化防止効果が低下して好ましくない。
【0011】
バインダとして用いられるシリカゾルは、アンモニウム4級塩で安定化したシリカゾルである。一般にシリカゾルは、少量のNa 2 Oで安定化されている。本発明に従うシリカゾルは、Na 2 Oの代わりに4級アンモニウム塩で安定化されている。塗布時の密着性は、4級アンモニウム塩で安定化されたものが他のものに比べて高い。特に、硬化促進剤にMgOを用いたときは、MgOとの反応性がマイルドであり、硬化促進剤混合後の可使用時間を長くすることができる。
リカゾルの配合割合は、耐火物粉末100重量部に対し、SiO2として5〜50重量部である。5重量部未満では密着性が低下し強い被膜ができない。また50重量部を超えると耐火性が低下し均熱炉中で飛散するおそれがある。シリカゾルの市販品は、粒径が0.002〜0.1μmであり、市販品をそのまま用いてもよいが、0.01〜0.02μmのものが好ましい。粒径が小さ過ぎると塗料の安定性に問題がありまた大きすぎると接着強度が低下する。
【0012】
硬化促進剤としては、MgOが用いられる。硬化促進剤の配合割合は、耐火物粉末100重量部に対し、5〜50重量部である。これが5重量部未満では硬化促進剤としての効果がなく、また50重量部を超えると反応性が高くなり、可使用時間が極端に短くなり、作業性が悪く均一な塗膜が得られない。なお硬化促進剤の配合割合は、MgOなどの比表面積と関係する。
【0013】
また本発明は、前記硬化促進剤が比表面積0.5〜50m2/gであり、平均粒径0μm以下のMgOであることを特徴とする。
【0014】
本発明に従う硬化促進剤は、比表面積、平均粒径および物質が前記のように特定される。平均粒径が0μmを超えると、硬化促進剤としての作用が劣り、耐酸化性に悪影響を及ぼすおそれがある。特に平均粒径の前記範囲は、硬化促進剤にMgOを用いたときに重要である。
【0015】
前記酸化促進剤中では、MgOが安定性に優れ、可使用時間が長いことが本発明者らによって確認されている。MgOが硬化促進剤として機能するためには、その粒径が0μm以下であり、BET比表面積が0.5〜50m2/g好ましくは5〜50m2/gであることが必要である。比表面積が0.5m2/g以下では、硬化促進剤として機能せず、またこれが50m2/gを超えると反応性が高くなり可使用時間が短くなる。硬化促進剤の配合割合と比表面積とは関係があり、可使用時間を長くするために配合割合を多くして比表面積を30m2/g以下、好ましくは10m2/g以下とすることも可能である。
【0018】
また本発明は、前記耐火物粉末と、バインダと、硬化促進剤とにさらにシランカップリング剤を添加したことを特徴とする。
【0019】
本発明に従う塗料は、さらにシランカップリング剤を含む。シランカップリング剤は、シリカゾルのバインダとしての密着性を補うものであり、その添加量は、固形分換算でシリカゾル中のSiO2の0.1〜5重量%が好ましい。
【0020】
本発明の塗料の塗布方法は、スプレー塗布、刷毛塗りなど通常の塗布方法を使用することができる。塗膜厚みは通常30〜500μmが好ましい。30μmを下回ると酸化防止効果が充分に発揮されず、500μm以上では熱伝導に影響し、コスト的にも好ましくない。
【0021】
本発明の塗料は鋼材として普通鋼、SUS、ニッケル鋼等のスラブ用として適応できる。また酸化防止剤を塗布された鋼材は均一炉で加熱され炉から取出され圧延工程に入る。圧延工程で酸化防止剤が残留していると圧延後の鋼板に酸化防止剤が噛込み製品を駄目にするので、特に熱処理後の塗布物の完全剥離が重要となるが、本発明の酸化防止剤はこの点での適応に充分なものである。
【0022】
【発明の実施の形態】
以下、本発明を実施例によってより詳しく説明するが、本発明はこれら実施例に限定されるものではない。
【0023】
(実施例1)
固形分濃度20%の4級アンモニウム塩安定化シリカゾル100gに中心粒径5μmのシリカ粉を135g、固形分濃度10%のシランカップリング剤1gを添加しスリーワンモーターで30分撹拌し、酸化防止剤の主剤を得た。使用の直前に主剤に硬化剤として中心粒径10μm、BET比表面積30m2/gのMgOを15g添加し、ペイントシェーカーで混合した。混合後1時間以内に得られた酸化防止剤を厚み1mmのニッケル鋼板の表面に乾燥時の厚みが200μmになるように塗布した。約1時間で乾燥し、3時間後に表面にセロテープを貼り、はがした際の塗料の剥離を調べたが、剥離していなかった。
【0024】
1日風乾した後、600℃の炉に入れ、1100℃まで1時間で昇温した後、1時間保持した。塗布面はほとんど酸化されておらず、断面の酸化層厚みは50μm以下であった。また、熱膨張の差によって冷却後塗膜は塗布面から完全に剥離していた。
【0025】
(実施例2)
固形分濃度20%の4級アンモニウム塩安定化シリカゾル100gに中心粒径5μmのシリカ粉を135g添加しスリーワンモーターで30分撹拌し、酸化防止剤の主剤を得た。使用の直前に主剤に硬化剤として中心粒径10μm、BET比表面積30m2/gのMgOを15g添加し、ペイントシェーカーで混合した。混合後1時間以内に得られた酸化防止剤を厚み1mmのニッケル鋼板の表面に乾燥時の厚みが200μmになるように塗布した。約1時間で乾燥し、3時間後に表面にセロテープを貼り、はがした際の塗料の剥離を調べたが、粉末がテープにわずかに付着しただけで塗膜は剥離していなかった。
【0026】
1日風乾した後、600℃の炉に入れ、1100℃まで1時間で昇温した後、1時間保持した。塗布面はほとんど酸化されておらず、断面の酸化層厚みは50μm以下であった。また、熱膨張の差によって冷却後塗膜は塗布面から完全に剥離していた。
【0035】
(比較例1)
固形分濃度20%の4級アンモニウム塩安定化シリカゾル100gに中心粒径7μmのシリカ粉を150g、固形分濃度10%のシランカップリング剤1gを添加しスリーワンモーターで30分撹拌し、酸化防止剤とした。混合後1時間以内に得られた酸化防止剤を厚み1mmのニッケル鋼板の表面に乾燥時の厚みが200μmになるように塗布した。約1時間で乾燥し、3時間後に表面にセロテープを貼り、はがした際の塗料の剥離を調べたが、部分的に剥離が見られた。
【0036】
1日風乾した後、600℃の炉に入れ、1100℃まで1時間で昇温した後、1時間保持した。剥離のなかった部分はほとんど酸化されておらず、断面の酸化層厚みは50μ以下であったが、塗膜が剥離した部分は500μm程度の酸化層を持っていた。
【0037】
(比較例2)
固形分濃度20%の4級アンモニウム塩安定化シリカゾル100gに中心粒径7μmのシリカ粉150gを添加しスリーワンモーターで30分撹拌し、酸化防止剤とした。混合後1時間以内に得られた酸化防止剤を厚み1mmのニッケル鋼板の表面に乾燥時の厚みが200μmになるように塗布した。約1時間で乾燥し、3時間後に表面にセロテープを貼り、はがした際の塗料の剥離を調べたが、鋼板の端部が完全に剥離していた。
【0038】
1日風乾した後、600℃の炉に入れ、1100℃まで1時間で昇温した後、1時間保持した。剥離のなかった部分はほとんど酸化されておらず、断面の酸化層厚みは50μ以下であったが、塗膜が剥離した部分は500μm程度の酸化層を持っていた。
【0039】
【発明の効果】
以上のように本発明によれば、耐火物粉末としてシリカとバインダとして4級アンモニウム塩で安定化したシリカゾルとに硬化促進剤として比表面積0.5〜50m 2 /gであり、平均粒径10μm以下のMgOを配合した酸化防止塗料を鋼材スラブに塗布すると、鋼材スラブ表面に密着性が大きい被膜を形成し、鋼材スラブを均熱炉で加熱する際に酸化を防止し、酸化ロスを防ぐことによって鋼材の歩留りを向上することができる。また本発明の塗料による被膜は、均熱炉から取出した後、容易に剥離でき、圧延時に被膜が鋼板中に噛込むことがない。また本発明に従うシリカゾルは、Na 2 Oの代わりに4級アンモニウム塩で安定化されている。塗布時の密着性は、4級アンモニウム塩で安定化されたものが他のものに比べて高い。特に、硬化促進剤にMgOを用いたときは、MgOとの反応性がマイルドであり、硬化促進剤混合後の可使用時間を長くすることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-oxidant paint for steel that is applied to a steel material (slab) such as nickel steel to prevent the generation of oxide scale in a high-temperature oxidizing atmosphere such as a soaking furnace.
[0002]
[Prior art]
A steel material such as nickel steel is heated to 1000 to 1300 ° C. in a soaking furnace or the like in the form of a slab, and is rolled into a steel plate by a rolling mill. In a soaking furnace or the like, nitrogen is blown to prevent oxidation, but oxygen cannot be completely shut off, the slab surface is oxidized in the furnace, and scale is generated, which reduces the product yield. Further, there is a problem that the scale enters the steel plate and the quality is deteriorated.
[0003]
One way to prevent slab surface oxidation and scale formation is to cover the slab with a thin steel plate protective cover. However, this method takes time and labor to attach the thin steel plate to the slab, and the thin iron plate becomes a consumable item. The material is bulky and not practical.
[0004]
As a typical conventional technique for preventing slab surface oxidation and scale generation, there is a method of applying an inorganic antioxidant paint containing a silicon binder to a refractory aggregate such as silica, alumina and magnesia on the slab surface. Sho 63-60806.
[0005]
[Problems to be solved by the invention]
Paint with water glass added as a binder to refractory aggregates is foamed when the temperature rises rapidly after being put in a soaking furnace, and a uniform and dense protective film cannot be formed. There is a problem of lowering. Instead of water glass, it is conceivable to use silica sol that does not foam even when the temperature rises suddenly. However, the coating material using silica sol as a binder has low mechanical strength and is applied to a slab after being applied to a slab. In the past, fine peeling (hair crack) is likely to occur due to impact, etc., and if this hair crack has occurred, the hair crack will develop after insertion into a soaking furnace, and the coating film will be partially peeled off There is.
[0006]
The object of the present invention is to form a coating on the slab surface that does not foam by rapid heating, has sufficient adhesion at the initial stage, and does not generate hair cracks due to some impact, and is then removed from the soaking furnace. Is to provide an anti-oxidation paint for steel that can be easily peeled off.
[0007]
[Means for Solving the Problems]
As a result of examining the component composition of the paint that prevents oxidation and scale generation of the steel material, the present inventors, as a binder, into the refractory powder as a binder, more preferably by combining a specific silica sol and a curing accelerator, A paint that does not shoot even with a sudden rise in temperature and has sufficient adhesion at the initial stage to form a high-strength coating on the steel surface was completed.
[0008]
The present invention is, relative to 100 parts by weight of silica as an anti-fire powder, 5-50 parts by weight in terms of SiO 2 stabilized silica sol with ammonium quaternary salt as a binder, the specific surface area 0.5~50m as a curing accelerator 2 / g, and 5 to 50 parts by weight of Mg 2 O having an average particle size of 10 μm or less .
[0009]
The antioxidant coating material for steel according to the present invention is a mixture of a refractory powder and a binder and a curing accelerator.
[0010]
The refractory powder, silica mosquitoes are used. This is because silica has good adhesion to a silica sol binder described later . The average particle size of the anti fire powder is preferably one of 0.5 to 50 [mu] m, more preferably from 1 to 30 [mu] m. If the particle size is too large, bubbles are likely to be formed in the coating, and if the particle size is too small, cracks are likely to occur in the coating.
[0011]
The silica sol used as the binder is a silica sol stabilized with an ammonium quaternary salt. In general, the silica sol is stabilized with a small amount of Na 2 O. The silica sol according to the invention is stabilized with a quaternary ammonium salt instead of Na 2 O. The adhesion at the time of application is higher than that of the others stabilized with a quaternary ammonium salt. In particular, when MgO is used as the curing accelerator, the reactivity with MgO is mild, and the usable time after mixing the curing accelerator can be increased.
The mixing ratio of the sheet Rikazoru, compared refractory powder 100 parts by weight, 5 to 50 parts by weight as SiO 2. If it is less than 5 parts by weight, the adhesion is lowered and a strong film cannot be formed. Moreover, when it exceeds 50 weight part, there exists a possibility that fire resistance may fall and it may disperse in a soaking furnace. A commercially available product of silica sol has a particle size of 0.002 to 0.1 μm, and a commercially available product may be used as it is, but a product of 0.01 to 0.02 μm is preferable. If the particle size is too small, there is a problem with the stability of the paint, and if it is too large, the adhesive strength is lowered.
[0012]
Mg 2 O is used as the curing accelerator. The mixture ratio of a hardening accelerator is 5-50 weight part with respect to 100 weight part of refractory powders. If it is less than 5 parts by weight, there is no effect as a curing accelerator, and if it exceeds 50 parts by weight, the reactivity becomes high, the usable time becomes extremely short, the workability is poor and a uniform coating film cannot be obtained. The blending ratio of the curing accelerator is related to the specific surface area such as MgO.
[0013]
In addition, the present invention is characterized in that the curing accelerator is MgO having a specific surface area of 0.5 to 50 m 2 / g and an average particle size of 10 μm or less.
[0014]
The curing accelerator according to the present invention is specified as described above in terms of specific surface area, average particle size and substance. When the average particle size exceeds 10 μm, the action as a curing accelerator is inferior, and there is a risk of adversely affecting the oxidation resistance. In particular, the above range of the average particle diameter is important when MgO is used as the curing accelerator.
[0015]
Among the oxidation accelerators, the present inventors have confirmed that MgO is excellent in stability and has a long usable time. In order for MgO to function as a curing accelerator, it is necessary that its particle size is 10 μm or less and the BET specific surface area is 0.5 to 50 m 2 / g, preferably 5 to 50 m 2 / g. When the specific surface area is 0.5 m 2 / g or less, it does not function as a curing accelerator, and when it exceeds 50 m 2 / g, the reactivity increases and the usable time is shortened. There is a relationship between the blending ratio of the curing accelerator and the specific surface area. To increase the usable time, the blending ratio is increased so that the specific surface area can be 30 m 2 / g or less, preferably 10 m 2 / g or less. It is.
[0018]
Further, the present invention is characterized in that a silane coupling agent is further added to the refractory powder, the binder, and the curing accelerator.
[0019]
The paint according to the present invention further comprises a silane coupling agent. The silane coupling agent supplements the adhesion of the silica sol as a binder, and the addition amount is preferably 0.1 to 5% by weight of SiO 2 in the silica sol in terms of solid content.
[0020]
The coating method of the present invention may be a normal coating method such as spray coating or brush coating. The coating film thickness is preferably 30 to 500 μm. When the thickness is less than 30 μm, the antioxidant effect is not sufficiently exhibited, and when the thickness is 500 μm or more, the heat conduction is affected, which is not preferable in terms of cost.
[0021]
The paint of the present invention can be applied as a steel material for slabs such as ordinary steel, SUS, nickel steel and the like. Further, the steel material coated with the antioxidant is heated in a uniform furnace, taken out of the furnace, and enters a rolling process. If the antioxidant remains in the rolling process, the antioxidant bites into the rolled steel sheet and destroys the product. Therefore, it is particularly important to completely remove the coating after the heat treatment. The agent is sufficient for adaptation in this respect.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to these Examples.
[0023]
Example 1
Antioxidant with 100g of quaternary ammonium salt stabilized silica sol with solid content of 20%, 135g of silica powder with central particle size of 5μm and 1g of silane coupling agent with solid content of 10%, and stirring for 30 minutes with Three One Motor The main agent was obtained. Immediately before use, 15 g of MgO having a center particle size of 10 μm and a BET specific surface area of 30 m 2 / g was added to the main agent as a curing agent and mixed with a paint shaker. The antioxidant obtained within 1 hour after mixing was applied to the surface of a nickel steel plate having a thickness of 1 mm so that the thickness upon drying was 200 μm. After drying in about 1 hour, after 3 hours, a cellophane tape was applied to the surface, and the peeling of the paint when peeled was examined, but it was not peeled off.
[0024]
After air-drying for 1 day, it was put into a furnace at 600 ° C., heated to 1100 ° C. over 1 hour, and held for 1 hour. The coated surface was hardly oxidized, and the thickness of the oxidized layer in the cross section was 50 μm or less. Moreover, the coating film was completely peeled from the coated surface after cooling due to the difference in thermal expansion.
[0025]
(Example 2)
135 g of silica powder having a center particle diameter of 5 μm was added to 100 g of quaternary ammonium salt stabilized silica sol having a solid content concentration of 20%, and the mixture was stirred with a three-one motor for 30 minutes to obtain an antioxidant main ingredient. Immediately before use, 15 g of MgO having a center particle size of 10 μm and a BET specific surface area of 30 m 2 / g was added to the main agent as a curing agent and mixed with a paint shaker. The antioxidant obtained within 1 hour after mixing was applied to the surface of a nickel steel plate having a thickness of 1 mm so that the thickness upon drying was 200 μm. After drying in about 1 hour, a tape was applied to the surface after 3 hours, and the peeling of the paint when it was peeled off was examined. However, the coating was not peeled off because the powder was only slightly adhered to the tape.
[0026]
After air-drying for 1 day, it was put into a furnace at 600 ° C., heated to 1100 ° C. over 1 hour, and held for 1 hour. The coated surface was hardly oxidized, and the thickness of the oxidized layer in the cross section was 50 μm or less. Moreover, the coating film was completely peeled from the coated surface after cooling due to the difference in thermal expansion.
[0035]
(Comparative Example 1)
To 100 g of quaternary ammonium salt stabilized silica sol with a solid content of 20%, 150 g of silica powder with a center particle size of 7 μm and 1 g of a silane coupling agent with a solid content of 10% are added and stirred for 30 minutes with a three-one motor, and an antioxidant. It was. The antioxidant obtained within 1 hour after mixing was applied to the surface of a nickel steel plate having a thickness of 1 mm so that the thickness upon drying was 200 μm. After drying in about 1 hour, after 3 hours, a cellophane tape was applied to the surface, and the peeling of the paint when peeled was examined. Partial peeling was observed.
[0036]
After air-drying for 1 day, it was put into a furnace at 600 ° C., heated to 1100 ° C. over 1 hour, and held for 1 hour. The portion where peeling did not occur was hardly oxidized, and the thickness of the oxidized layer in the cross section was 50 μm or less, but the portion where the coating film was peeled had an oxide layer of about 500 μm.
[0037]
(Comparative Example 2)
To 100 g of quaternary ammonium salt stabilized silica sol having a solid content concentration of 20%, 150 g of silica powder having a center particle diameter of 7 μm was added and stirred for 30 minutes with a three-one motor to obtain an antioxidant. The antioxidant obtained within 1 hour after mixing was applied to the surface of a nickel steel plate having a thickness of 1 mm so that the thickness upon drying was 200 μm. After drying for about 1 hour, 3 hours later, a cellophane tape was applied to the surface, and the peeling of the paint when peeled was examined. The end of the steel plate was completely peeled off.
[0038]
After air-drying for 1 day, it was put into a furnace at 600 ° C., heated to 1100 ° C. over 1 hour, and held for 1 hour. The portion where peeling did not occur was hardly oxidized, and the thickness of the oxidized layer in the cross section was 50 μm or less, but the portion where the coating film was peeled had an oxide layer of about 500 μm.
[0039]
【The invention's effect】
As described above, according to the present invention, silica as a refractory powder and silica sol stabilized with a quaternary ammonium salt as a binder have a specific surface area of 0.5 to 50 m 2 / g as a curing accelerator , and an average particle size of 10 μm. When the following anti-oxidation paint containing Mg 2 O is applied to a steel slab, a coating with high adhesion is formed on the surface of the steel slab, preventing oxidation when the steel slab is heated in a soaking furnace, and preventing oxidation loss. Thus, the yield of the steel material can be improved. Moreover, the film by the coating material of this invention can be easily peeled after taking out from a soaking furnace, and a film does not bite into a steel plate at the time of rolling. The silica sol according to the present invention is stabilized with a quaternary ammonium salt instead of Na 2 O. The adhesion at the time of application is higher than that of the others stabilized with a quaternary ammonium salt. In particular, when MgO is used as the curing accelerator, the reactivity with MgO is mild, and the usable time after mixing the curing accelerator can be increased.

Claims (2)

火物粉末としてシリカ100重量部に対し、バインダとしてアンモニウム4級塩で安定化したシリカゾルをSiO2換算で5〜50重量部と、硬化促進剤として比表面積0.5〜50m 2 /gであり、平均粒径10μm以下のMgOを5〜50重量部とを配合したことを特徴とする鋼材用酸化防止塗料。Relative to 100 parts by weight of silica as an anti-fire powder, 5-50 parts by weight in terms of SiO 2 stabilized silica sol with ammonium quaternary salt as a binder, a specific surface area 0.5~50m 2 / g as a curing accelerator An antioxidant paint for steel materials, comprising 5 to 50 parts by weight of Mg 2 O having an average particle size of 10 μm or less . 前記耐火物粉末と、バインダと、硬化促進剤とにさらにシランカップリング剤を添加したことを特徴とする請求項1に記載の鋼材用酸化防止塗料。 The antioxidant coating material for steel according to claim 1, wherein a silane coupling agent is further added to the refractory powder, the binder, and the curing accelerator .
JP02593698A 1998-02-06 1998-02-06 Antioxidant paint for steel Expired - Lifetime JP3790034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02593698A JP3790034B2 (en) 1998-02-06 1998-02-06 Antioxidant paint for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02593698A JP3790034B2 (en) 1998-02-06 1998-02-06 Antioxidant paint for steel

Publications (2)

Publication Number Publication Date
JPH11222564A JPH11222564A (en) 1999-08-17
JP3790034B2 true JP3790034B2 (en) 2006-06-28

Family

ID=12179668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02593698A Expired - Lifetime JP3790034B2 (en) 1998-02-06 1998-02-06 Antioxidant paint for steel

Country Status (1)

Country Link
JP (1) JP3790034B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502678A (en) * 2011-09-21 2012-06-20 镇江忆诺唯记忆合金有限公司 Preparation method of nanometer TiO2-ATP (Adenosine Triphosphate) powder material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5784637B2 (en) * 2010-02-19 2015-09-24 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv Strips, sheets or blanks suitable for hot forming, and methods for their production
CN102296166B (en) * 2011-09-23 2013-09-04 贵州安吉航空精密铸造有限责任公司 Method for preventing surface oxidation in thermal treatment process of investment steel casting
CN103643011A (en) * 2013-11-20 2014-03-19 上海钫淦冶金科技有限公司 Low-nickel steel high-temperature surface descaling separating agent
CN103757188A (en) * 2014-01-08 2014-04-30 上海钫淦冶金科技有限公司 Anti-decarburizing separant for bearing steel
CN104498682A (en) * 2014-12-15 2015-04-08 贵州安吉航空精密铸造有限责任公司 Heat treatment method of casting in precision-investment casting
CN105177247A (en) * 2015-08-28 2015-12-23 济南昊泽环保科技有限公司 Oxidation and decarbonization preventing paint for workpiece
CN105177250A (en) * 2015-08-28 2015-12-23 济南昊泽环保科技有限公司 High-temperature decarburization-resistant coating
CA3049283A1 (en) * 2017-01-09 2018-07-12 Henkel Ag & Co. Kgaa A curable protective coating composition
CN110452565B (en) * 2019-07-25 2021-03-26 太原理工大学 High-temperature-resistant oxidation-resistant coating for hot rolling of nickel-based alloy and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502678A (en) * 2011-09-21 2012-06-20 镇江忆诺唯记忆合金有限公司 Preparation method of nanometer TiO2-ATP (Adenosine Triphosphate) powder material

Also Published As

Publication number Publication date
JPH11222564A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP3790034B2 (en) Antioxidant paint for steel
JP5101509B2 (en) Layer or coating and composition for its production
US4608087A (en) Heat-resistant inorganic composition
US5420084A (en) Coatings for protecting materials against reactions with atmosphere at high temperatures
CA2203301A1 (en) Belt coating material for belt type continuous casting and belt coating method
US5246488A (en) Temporary rust resisting coating composition
US20030235651A1 (en) Inorganic insulation coating material
EP1443031A1 (en) Thermally insulating coating material for refractory containing carbon
WO2006038681A1 (en) Aqueous suspension composition, aqueous coating composition and coated article
JP4275814B2 (en) Antioxidant paint for steel
HUT61344A (en) Composition on coated magnesium grain base for desulfurization of pig iron or steel melt and process for producing the composition
EP0335350B1 (en) Temporary rust resisting coating composition
JP3438837B2 (en) Magnesia-carbon refractories
JPH02205622A (en) Paint for preventing high-temperature decarburization of carbon steel
JP3126003B2 (en) Sprayed refractory
KR910007159B1 (en) Inhibitor for preventing oxidizing or decarburizing of a metal and method for using the same
JP3868186B2 (en) Insulating coating material for refractories containing carbon
JPS6326993A (en) Particle material for protecting graphite electrode and method of protection employing the same
RU2191221C2 (en) Silicate composition for manufacture of heat-resistant coating
CN115521642B (en) Serpentine composite anti-oxidation coating for protecting metal material, and preparation method and application thereof
JPS5831258B2 (en) Durable coating material for mold casting
JPH0892719A (en) Refractory coating structural body
JPH01229080A (en) High temperature oxidation-preventing coating for steel
JPH02133512A (en) High-temperature oxidation preventive coating for steel material
JP3297337B2 (en) Method of manufacturing hot water supply ladle for molten aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term