JP3789783B2 - Wavelength division multiplexing optical transmission system and transmission method - Google Patents

Wavelength division multiplexing optical transmission system and transmission method Download PDF

Info

Publication number
JP3789783B2
JP3789783B2 JP2001238077A JP2001238077A JP3789783B2 JP 3789783 B2 JP3789783 B2 JP 3789783B2 JP 2001238077 A JP2001238077 A JP 2001238077A JP 2001238077 A JP2001238077 A JP 2001238077A JP 3789783 B2 JP3789783 B2 JP 3789783B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
bit
signal
multiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001238077A
Other languages
Japanese (ja)
Other versions
JP2003051809A (en
Inventor
英一 山田
裕三 吉國
広明 三条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001238077A priority Critical patent/JP3789783B2/en
Priority to US10/214,487 priority patent/US7113702B2/en
Publication of JP2003051809A publication Critical patent/JP2003051809A/en
Application granted granted Critical
Publication of JP3789783B2 publication Critical patent/JP3789783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光通信分野における波長多重光伝送方式及び伝送方法に関する。
【0002】
【従来の技術】
従来、光通信の伝送容量を増大させるために、多数の波長を用いて信号を伝送する波長多重光伝送方式が用いられている。
【0003】
図6は従来の波長多重光伝送方式の構成図である。送信部では、波長(=光周波数)の異なる複数の光送信器1−1の信号を波長合波器1−3により合波する。合波された多数の光信号は、1つの光伝送媒体1−5を共用して伝送される。受信部では波長分波器1−8により、波長ごとに分波され、各波長の光信号は光受信器1−10で受信される。以上のような構成で波長分割多重光伝送方式が実現されていた。
【0004】
光の波長域の有効利用の点から、光の波長間隔を近接させる高密度な波長多重伝送が望まれる。光周波数間隔を△f[Hz]、伝送速度をB[bit/s]とするとB/△f[bit/s/Hz]を帯域利用効率(Spectral Efficiency)という。両側帯波のON/OFF変調方式の帯域利用効率の理論限界は1[bit/s/Hz]である。
【0005】
従来の波長多重伝送方式では、受信部ではアレイ導波路型回折格子などの波長分波器を用いた波長選択フィルタで所望の信号光を取り出していた。しかしながら、高密度で多数の信号を伝送しようとすると、隣り合う波長の信号と重なり合うため、波長選択フィルタでは所望の信号の検出ができないという問題点があった。隣接周波数との干渉を防ぐため波長間隔を広げると帯域利用効率は低下し、従来の波長多重伝送方式では帯域利用効率は通常0.4[bit/s/Hz]程度以下であった。
【0006】
【発明が解決しようとする課題】
高密度で多数の信号を伝送しようとすると、隣り合う波長の信号が重なり合うため従来の波長多重伝送方式で用いる波長選択フィルタでは信号の分離ができないという問題点があった。一方、波長間隔を広げると従来の波長多重伝送方式は帯域利用効率が悪いという課題があった。本発明の目的は帯域利用効率が良い波長多重光伝送方式及び伝送方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の波長多重伝送方式は、変調素子により光周波数間隔Δf[Hz]、変調速度B[bit/s](但し、B/Δf≦1[bit/s/Hz])で変調したN波(Nは2以上の整数)の光信号を発生する光送信器と、該光信号を合波する手段からなる光送信部と、前記光送信部からの送信信号を入力するものであって、光路長差がc/(2nΔf)(ここで、cは光速、nは導波路の等価屈折率)の非対称マッハツェンダ型干渉素子と、前記非対称マッハツェンダ型干渉素子の出力信号から所望の波長を選択透過する波長フィルタ手段と、波長フィルタ手段の後に接続し、波長フィルタの出力からビット単位で、1/(2Δf)[s]からT[s](但し、Tは1ビットの時間)までの間の時間の信号を取り出す時間ゲート手段とからなる光受信部と、前記変調素子に電気的に接続される、あるいは、前記光送信器と前記合波手段との間に設けられた、前記非対称マッハツェンダ型干渉素子の入力における全ての波長信号のビット位相を一致させるためのビット位相調整手段とを備えたことを特徴とする。
【0008】
また、請求項2の発明においては、前記ビット位相調整手段は、光送信器に電気的に接続され、前記光送信部における変調素子への電気的変調信号のビット位相を制御するものであることを特徴とする。前記ビット位相調整手段は、前記光送信部から前記合波手段の間に配置された光伝送経路に設けられ、光信号の光路長を制御して光学的なビット位相を調整するものである。前記時間ゲート手段は光ゲートスイッチであることを特徴とする。前記時間ゲート手段は光受信部における電気ゲート回路であることを特徴とする。
【0009】
また、請求項6の発明においては、前記光送信部における合波のための手段が、光周波数間隔ΔfのN波の光信号に関して、奇数番目の光信号を合波する第1の波長合波手段と、偶数番目の光信号を合波する第2の波長合波手段とからなることを特徴とする。請求項7の発明においては、非対称マッハツェンダ型素子は、位相シフタを内蔵することを特徴とする。さらに、前記位相シフタが、奇数番目又は偶数番目の何れかの信号光波長と前記非対称マッハツェンダ型干渉素子の透過スペクトルのピークとが対応するように位相シフトを調整することを特徴とする。
【0010】
また、本発明の波長多重光伝送方法は、変調素子により光周波数間隔Δf[Hz]、変調速度B[bit/s](但し、B/Δf≦1[bit/s/Hz])で変調したN波(Nは2以上の整数)の光信号を光送信器により発生し、該光信号を合波して送信し、光送信器に電気的に接続し、あるいは、光送信器と合波手段の間に設けられたビット位相調整手段により、全波長信号のビット位相が一致するようにビット位相の調整を行うとともに、その送信された信号を、光路長差がc/(2nΔf)(ここで、cは光速、nは導波路の等価屈折率)の非対称マッハツェンダ型干渉素子に入力し、前記非対称マッハツェンダ型干渉素子の出力から波長フィルタ手段を用いて所望の波長を選択した後、その選択した信号から、ビット単位で、1/(2Δf)[s]からT[s](但し、Tは1ビットの時間)までの間の時間の信号を取り出して出力することを特徴とする。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。 図1に本発明の実施の形態を示す。
【0012】
送信部において、光周波数間隔△f[Hz]で並ぶN個(Nは2以上の整数、ただし参照符号の付け方を簡単にするため本実施の形態ではNは偶数であるとする。)の光送信器1−11〜1−1Nはそれぞれ波長λ1〜λNの光信号を変調速度B[bit/s]で変調しており、帯域利用効率B/△f[bit/s/Hz]が1以下且つ1に近い値になるように変調速度が設定されている。変調方式は、ON/OFF変調方式であるとする。
【0013】
光送信器1−11〜1−1Nは電気的なビット位相調整手段1−21〜1−2Nによって光送信器1−11〜1−1Nにおける変調素子への電気的変調信号のビット位相を制御できるようになっており、ある一つのビットに注目して信号処理ができるように、受信部のマッハツェンダ型干渉素子1−6の入力端において全波長の信号のビット位相が一致するように電気的信号のビット位相を調整する。あるいは、ビット位相調整手段として、光送信器1−11〜1−1Nと波長合波器1−3a,1−3bとの間に可変遅延導波路など光学的なビット位相調整手段を設け、光路長を調整して、受信部のマッハツェンダ型干渉素子1−6の入力端における全波長の信号のビット位相を一致させても良い。
【0014】
本発明では、帯域利用効率B/△f[bit/s/Hz]を1以下且つ1に近い値になるように設定しているので、信号帯域と同程度に波長間隔が狭くなる。そのため、送信部で従来例のような波長合波器を用いて合波すると、波長合波の際に信号成分が削られてしまう。したがって、それを避けるために、本実施の形態では、波長合波器を用いて合波する場合は、光周波数間隔2△fで並ぶ奇数チャンネルの複数の光信号(光信号波長λ1,λ3,λ5,…,λN-1の光信号)を光周波数間隔2△fの波長合波器1−3aにより合波し、また偶数チャンネルの複数の光信号(光信号波長λ2,λ4,λ6,…,λNの光信号)を光周波数間隔2△fの別の波長合波器1−3bにより合波し、2つの波長合波器の出力を1:1カップラ1−4等により合波する。波長合波器1−3a,1−3bの光周波数間隔2△fは信号帯域より広いため、信号成分が削られて情報が失われることは無い。波長合波器1−3a,1−3bを用いず、多モード干渉型光素子などのN×1合波素子ないしは1:1カップラの多段接続などを用いて合波しても良い。
【0015】
以上のようにして送信部において合波された波長多重信号は一つの光伝送媒体1−5を共用して伝送される。
【0016】
波長多重信号は光伝送媒体1−5を伝送された後、受信部において、光路長差がc/(2nc△f)(ここで、cは光速、ncは導波路の等価屈折率)の非対称マッハツェンダ型干渉素子1−6に入力される。ここで、各信号は、一方の光路で時間1/(2△f)だけ遅延されるとともに、他方の遅延されない信号と合波され、奇数チャンネル用の信号と偶数チャンネル用の信号に分岐される。このとき、奇数チャンネルと偶数チャンネルの何れかの信号光波長とマッハツェンダ型干渉素子1−6の透過スペクトルのピークを一致させるように、位相シフタ1−7を調整する。このとき、導波路の等価屈折率の波長依存性が小さいとすると、奇数チャンネル用の信号出力端子においては、全ての奇数チャンネルの信号光波長とマッハツェンダ型干渉素子1−6の透過スペクトルのピークが一致し、また、偶数チャンネル用の信号出力端子においては、全ての偶数チャンネル信号光波長とマッハツェンダ型干渉素子の1−6の透過スペクトルのピークが一致することになる。また、非対称マッハツェンダ型干渉素子1−6が半導体、ガラス、誘電体等の光導波路で構成されている場合には、非対称マッハツェンダ型干渉素子1−6の光路長差は温度依存性が有ることが知られている。非対称マッハツェンダ型干渉素子1−6の光路長差に温度依存性が有る場合には、奇数チャンネル又は偶数チャンネルの何れかの信号光波長とマッハツェンダ型干渉素子1−6の透過スペクトルのピークを一致させるように、マッハツェンダ型干渉素子1−6の温度を制御しても良い。この場合は、位相シフタ1−7は不要である。さらに、マッハツェンダ型干渉素子1−6の寸法の製造精度が十分である場合には、奇数チャンネル又は偶数チャンネルの何れかの信号光波長とマッハツェンダ型干渉素子1−6の透過スペクトルのピークを一致させるように精密に光路長差を制御して位相シフタ1−7を不要としても良い。
【0017】
奇数チャンネル用の信号は、光周波数間隔2△fの奇数チャンネル用の波長分波器1−8aにより各波長に分離される。波長分波器1−8a(または波長分波器1−8b)は、非対称マッハツェンダ型干渉素子1−6の出力信号から所望の奇数チャンネル(または偶数チャンネル)の波長を選択透過する波長フィルタによって構成されている。奇数チャンネルだけについて考えると、波長分波器1−8aの光周波数間隔2△fは信号帯域より広いため、所望の信号成分が削られて情報が失われることはなく、また、波長分波器1−8aの特性により所望以外の奇数チャンネルの信号は取り除かれる。
【0018】
さらに、出力された各端子から、光時間ゲートスイッチを用いた時間ゲート1−91〜1−9Nによって、遅延の少ない方の信号を基準として1/(2△f)〜T(但し、Tは1ビットの時間)の時間に於ける信号を取り出す。
【0019】
非対称マッハツェンダ型干渉素子1−6と時間ゲート1−91,1−93,…,1−9N-1によって、奇数チャンネルの出力において偶数チャンネルの信号成分は全て打ち消しあう(この動作の詳細は後ほど説明する。)。そのため、波長分波器1−8aとの組み合わせにより、奇数チャンネルのただ一つの波長の信号のみが取り出される。
【0020】
偶数チャンネル用光分波器1−8bに入力された信号も奇数チャンネルと同様にして、波長分離される。
【0021】
各波長に分離された信号は、各波長λ1〜λNの光信号に対する光受信器1−101〜1−10Nにより受信され、こうして高密度な波長多重光伝送が実現される。
【0022】
図1では、時間ゲートとして光時間ゲートスイッチを用いているが、光時間ゲートスイッチとして、具体的には、電界吸収型変調器やマッハツェンダ型強度変調器をスイッチとして用いたものや非線形光学効果を用いた光スイッチなどが用いられる。あるいは、時間ゲートとしては、光受信回路で電気信号に変換した後、識別回路の識別タイミングを調整して、時間ゲートとして特定の時間の電圧を検出する方法など、電気的な時間ゲート回路も有りうる。
【0023】
以下図2をもって、非対称マッハツェンダ型干渉素子1−6と時間ゲート1−91〜1−9Nの動作を説明する。ある一つのビットの信号に注目すると、図のように、非対称マッハツェンダ型干渉素子により遅延の無い信号(a)と遅延導波路により1/(2△f)だけ遅延された信号(b)は合波され、非対称マッハツェンダ型干渉素子の出力信号(c)となる。図より、1/(2△f)〜Tの時間部分のみが、そのビットの信号の干渉信号になっていることがわかる。したがって、幅T−1/(2△f)の時間ゲートスイッチにより1/(2△f)〜Tの時間の信号を取り出すことにより、そのビットの信号の干渉信号成分のみを取り出すことができる。
【0024】
奇数チャンネル信号光波長とマッハツェンダ型干渉素子1−6の透過スペクトルのピークを一致させるように位相シフタ1−7を調整しているものとすると、奇数チャンネルの信号光波長は位相が一致し、強めあうように干渉している。一方、△fだけ離れた偶数チャンネルの信号光波長は光路長差c/(2nc△f)によってπだけ位相がずれるから、打ち消しあうように干渉する。したがって、干渉信号成分においては打ち消しあって、偶数チャンネル成分は現れない。
【0025】
図3〜図5に本発明の実施の形態の構成を用いたシミュレーション結果を示す。波長間隔5GHz、ビットレート5Gb/s、チャンネル数N=4とした。帯域利用効率は1となる。非対称マッハツェンダ型干渉素子1−6の前(図3)、光ゲートスイッチ1−91〜1−94のいずれか1つの前(図4)、および光ゲートスイッチ1−91〜1−94のいずれか1つの後(図5)のアイダイアグラムを示す。光ゲートスイッチ1−91〜1−94の後において十分にアイダイアグラムが開いていることがわかる。
【0026】
したがって、本発明により帯域利用効率の良い波長多重光伝送方式が実現できる。
【0027】
【発明の効果】
以上、説明したように本発明により、帯域利用効率の良い波長多重光伝送方式が実現できる。これにより、従来と同じ波長帯域幅で、より多くの波長数を有する波長多重伝送方式を実現でき、光通信の伝送容量の増大に貢献することができる。
【0028】
また、帯域の狭い光伝送路は帯域の広い光伝送路に比べて安価に構築できるため、伝送路の構築コストが光伝送方式のコストの多くを占めるような光伝送方式においては、本発明によりコストの削減が可能となる。
【図面の簡単な説明】
【図1】本発明による波長多重光伝送方式の一実施の形態の構成を示すブロック図
【図2】図1の構成の動作を説明するための波形図
【図3】図1の構成によるシミュレーション結果を示すアイダイアグラム(非対称マッハツェンダ型干渉素子1−6の前)
【図4】図1の構成によるシミュレーション結果を示すアイダイアグラム(光ゲートスイッチ1−91〜1−94のいずれか1つの前)
【図5】図1の構成によるシミュレーション結果を示すアイダイアグラム(光ゲートスイッチ1−91〜1−94のいずれか1つの後)
【図6】従来の構成例を示すブロック図
【符号の説明】
1−11〜1−1N 光送信器
1−21〜1−2N ビット位相調整手段
1−3a,1−3b 波形合波器
1−4 1:1カップラ
1−5 光伝送媒体
1−6 非対称マッハツェンダ型干渉素子
1−7 位相シフタ
1−8 波長分波器
1−91〜1−9N 光時間ゲートスイッチ
1−101〜1−10N 光受信器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wavelength division multiplexing optical transmission system and transmission method in the field of optical communication.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in order to increase the transmission capacity of optical communication, a wavelength division multiplexing optical transmission system that transmits signals using a large number of wavelengths has been used.
[0003]
FIG. 6 is a block diagram of a conventional wavelength division multiplexing optical transmission system. In the transmission unit, signals from a plurality of optical transmitters 1-1 having different wavelengths (= optical frequencies) are multiplexed by the wavelength multiplexer 1-3. A number of combined optical signals are transmitted by sharing one optical transmission medium 1-5. In the receiving unit, the wavelength demultiplexer 1-8 demultiplexes each wavelength, and the optical signal of each wavelength is received by the optical receiver 1-10. The wavelength division multiplexing optical transmission system has been realized with the above configuration.
[0004]
From the viewpoint of effective use of the wavelength region of light, high-density wavelength division multiplex transmission is desired in which the wavelength intervals of light are close. When the optical frequency interval is Δf [Hz] and the transmission speed is B [bit / s], B / Δf [bit / s / Hz] is referred to as band efficiency (Spectral Efficiency). The theoretical limit of the band use efficiency of the ON / OFF modulation method of the double sideband is 1 [bit / s / Hz].
[0005]
In the conventional wavelength division multiplex transmission system, a desired signal light is extracted from a receiving unit by a wavelength selection filter using a wavelength demultiplexer such as an arrayed waveguide type diffraction grating. However, when a large number of signals are transmitted at a high density, they overlap with signals of adjacent wavelengths, so that there is a problem that a desired signal cannot be detected by the wavelength selective filter. If the wavelength interval is widened to prevent interference with adjacent frequencies, the band utilization efficiency decreases. In the conventional wavelength division multiplexing transmission system, the band utilization efficiency is usually about 0.4 [bit / s / Hz] or less.
[0006]
[Problems to be solved by the invention]
When a large number of signals are transmitted at a high density, signals of adjacent wavelengths are overlapped with each other, so that there is a problem that the wavelength selection filter used in the conventional wavelength multiplexing transmission system cannot separate the signals. On the other hand, when the wavelength interval is widened, the conventional wavelength multiplexing transmission system has a problem that the band use efficiency is poor. An object of the present invention is to provide a wavelength division multiplexing optical transmission system and transmission method with good band utilization efficiency.
[0007]
[Means for Solving the Problems]
The wavelength division multiplexing transmission system of the present invention uses an N wave (B / Δf ≦ 1 [bit / s / Hz]) modulated by an optical element at an optical frequency interval Δf [Hz] and modulation speed B [bit / s] (where B / Δf ≦ 1 [bit / s / Hz]). N is an integer greater than or equal to 2) an optical transmitter for generating an optical signal, an optical transmitter comprising means for combining the optical signals, and a transmission signal from the optical transmitter, the length difference is c / (2n c Δf) (where, c is the speed of light, n c is the effective refractive index of the waveguide) and an asymmetric Mach-Zehnder interference element of the desired wavelength from the output signal of the asymmetric Mach-Zehnder interference element Selectively transmitting wavelength filter means , connected after the wavelength filter means, from 1 / (2Δf) [s] to T [s] (where T is a time of 1 bit) in units of bits from the output of the wavelength filter Time gate means to extract the time signal between An optical receiver comprising, electrically connected to the modulation device, or, provided between said multiplexing means and said optical transmitter, all the wavelength signals at the input of the asymmetric Mach-Zehnder interference element And a bit phase adjusting means for matching the bit phases.
[0008]
According to a second aspect of the present invention, the bit phase adjusting means is electrically connected to an optical transmitter and controls a bit phase of an electrical modulation signal to a modulation element in the optical transmission unit. It is characterized by. The bit phase adjusting means is provided in an optical transmission path disposed between the optical transmitter and the multiplexing means , and adjusts the optical bit phase by controlling the optical path length of the optical signal. The time gate means is an optical gate switch. The time gate means is an electric gate circuit in an optical receiver.
[0009]
Further, in the invention of claim 6, the means for multiplexing in the optical transmission section is a first wavelength multiplexing for multiplexing odd-numbered optical signals with respect to N-wave optical signals with an optical frequency interval Δf. And second wavelength multiplexing means for multiplexing even-numbered optical signals. The invention according to claim 7 is characterized in that the asymmetric Mach-Zehnder type element has a built-in phase shifter. Furthermore, the phase shifter adjusts the phase shift so that either the odd-numbered or even-numbered signal light wavelength corresponds to the peak of the transmission spectrum of the asymmetric Mach-Zehnder interference element.
[0010]
In the wavelength division multiplexing optical transmission method of the present invention, modulation is performed by the modulation element at an optical frequency interval Δf [Hz] and a modulation speed B [bit / s] (B / Δf ≦ 1 [bit / s / Hz]). An optical signal of N waves (N is an integer of 2 or more) is generated by an optical transmitter, and the optical signals are combined and transmitted, and electrically connected to the optical transmitter, or combined with the optical transmitter. The bit phase adjustment means provided between the means adjusts the bit phase so that the bit phases of the signals of all wavelengths match, and the transmitted signal has an optical path length difference of c / (2n c Δf ) (where, c is the speed of light, n c is input to the asymmetric Mach-Zehnder interference element of the equivalent refractive index of the waveguide), using the wavelength filter means from an output of the asymmetric Mach-Zehnder interferometer device selects the desired wavelength after, from the selected signal, in bits 1 / (2Δf) [s] from T [s] (where, T is 1-bit time) and outputs removed time of the signal until.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention.
[0012]
In the transmission unit, N pieces of light (N is an integer of 2 or more, where N is an even number in this embodiment in order to simplify the way of attaching reference numerals) arranged at an optical frequency interval Δf [Hz]. Transmitters 1-1 1 to 1-1 N modulate optical signals having wavelengths λ 1 to λ N at a modulation speed B [bit / s], respectively, and use efficiency B / Δf [bit / s / Hz]. ] Is set to a value equal to or less than 1 and close to 1. The modulation method is assumed to be an ON / OFF modulation method.
[0013]
Optical transmitter 1-1 1 ~1-1 N electrical modulation by electrical bit phase adjusting means 1-2 1 ~1-2 N to modulating element in the optical transmitter 1-1 1 ~1-1 N The bit phase of the signal can be controlled, and the bit phase of the signal of all wavelengths is at the input end of the Mach-Zehnder type interference element 1-6 of the receiving unit so that signal processing can be performed while paying attention to one bit. The bit phase of the electrical signal is adjusted so as to match. Alternatively, as the bit phase adjusting means, an optical bit phase adjusting means such as a variable delay waveguide is provided between the optical transmitters 1-1 1 to 1-1 N and the wavelength multiplexers 1-3a and 1-3b. Alternatively, the optical path length may be adjusted so that the bit phases of the signals of all wavelengths at the input end of the Mach-Zehnder type interference element 1-6 of the receiving unit are matched.
[0014]
In the present invention, since the band use efficiency B / Δf [bit / s / Hz] is set to be 1 or less and close to 1, the wavelength interval becomes as narrow as the signal band. For this reason, if the transmitter unit multiplexes using a wavelength combiner as in the conventional example, the signal component is cut off during the wavelength combination. Therefore, in order to avoid this, in the present embodiment, when multiplexing is performed using a wavelength multiplexer, a plurality of optical signals (optical signal wavelengths λ 1 , λ) of odd channels arranged at the optical frequency interval 2Δf are used. 3 , λ 5 ,..., Λ N−1 ) are combined by a wavelength multiplexer 1-3 a with an optical frequency interval of 2Δf, and a plurality of even-channel optical signals (optical signal wavelengths λ 2 ,. λ 4 , λ 6 ,..., λ N ) are combined by another wavelength multiplexer 1-3b with an optical frequency interval of 2Δf, and the outputs of the two wavelength multiplexers are 1: 1 couplers 1. -4 etc. to combine. Since the optical frequency interval 2Δf of the wavelength multiplexers 1-3a and 1-3b is wider than the signal band, the signal component is not deleted and information is not lost. Instead of using the wavelength multiplexers 1-3a and 1-3b, multiplexing may be performed using an N × 1 multiplexing element such as a multimode interference optical element or a multistage connection of a 1: 1 coupler.
[0015]
As described above, the wavelength multiplexed signal combined in the transmission unit is transmitted by sharing one optical transmission medium 1-5.
[0016]
After the wavelength multiplexed signal is transmitted through the optical transmission medium 1-5, the optical path length difference is c / (2n c Δf) (where c is the speed of light and n c is the equivalent refractive index of the waveguide) at the receiver. Of the asymmetric Mach-Zehnder type interference element 1-6. Here, each signal is delayed by time 1 / (2Δf) in one optical path, and is combined with the other non-delayed signal and branched into an odd channel signal and an even channel signal. . At this time, the phase shifter 1-7 is adjusted so that the signal light wavelength of either the odd channel or the even channel matches the peak of the transmission spectrum of the Mach-Zehnder type interference element 1-6. At this time, if the wavelength dependence of the equivalent refractive index of the waveguide is small, the signal light wavelengths of all odd channels and the peak of the transmission spectrum of the Mach-Zehnder type interference element 1-6 are present at the signal output terminals for odd channels. In addition, at the signal output terminals for even channels, all even channel signal light wavelengths coincide with the peaks of the transmission spectrums 1-6 of the Mach-Zehnder type interference elements. Further, when the asymmetric Mach-Zehnder type interference element 1-6 is composed of an optical waveguide such as a semiconductor, glass, dielectric, etc., the optical path length difference of the asymmetric Mach-Zehnder type interference element 1-6 may be temperature dependent. Are known. When the optical path length difference of the asymmetric Mach-Zehnder type interference element 1-6 is temperature-dependent, the signal light wavelength of either the odd channel or the even channel matches the peak of the transmission spectrum of the Mach-Zehnder type interference element 1-6. In this way, the temperature of the Mach-Zehnder type interference element 1-6 may be controlled. In this case, the phase shifter 1-7 is not necessary. Further, when the manufacturing accuracy of the dimensions of the Mach-Zehnder type interference element 1-6 is sufficient, the signal light wavelength of either the odd channel or the even channel matches the peak of the transmission spectrum of the Mach-Zehnder type interference element 1-6. In this way, the phase shifter 1-7 may be unnecessary by precisely controlling the optical path length difference.
[0017]
The signal for the odd channel is separated into each wavelength by the wavelength demultiplexer 1-8a for the odd channel having the optical frequency interval 2Δf. The wavelength demultiplexer 1-8a (or wavelength demultiplexer 1-8b) includes a wavelength filter that selectively transmits the wavelength of a desired odd channel (or even channel) from the output signal of the asymmetric Mach-Zehnder type interference element 1-6. Has been. Considering only odd-numbered channels, the optical frequency interval 2Δf of the wavelength demultiplexer 1-8a is wider than the signal band, so that a desired signal component is not deleted and information is not lost. Due to the characteristics of 1-8a, signals of odd-numbered channels other than desired are removed.
[0018]
Further, from the output terminals, the time gates 1-9 1 to 1-9 N using an optical time gate switch are used to set 1 / (2Δf) to T (where, The signal at time T) is taken out.
[0019]
The asymmetric Mach-Zehnder interferometer 1-6 and the time gates 1-9 1 , 1-9 3 ,..., 1-9 N-1 cancel all the even channel signal components at the odd channel output (details of this operation). Will be explained later.) For this reason, only the signal of only one wavelength of the odd-numbered channel is extracted by the combination with the wavelength demultiplexer 1-8a.
[0020]
The signal input to the even-channel optical demultiplexer 1-8b is also wavelength-separated in the same manner as the odd-numbered channel.
[0021]
Signal separated into each wavelength is received by the wavelength lambda 1 to [lambda] N optical receiver 1-10 1 ~1-10 N to light signals, thus high-density wavelength division multiplexing optical transmission is realized.
[0022]
In FIG. 1, an optical time gate switch is used as a time gate. Specifically, as an optical time gate switch, an electroabsorption modulator or a Mach-Zehnder intensity modulator is used as a switch, or a nonlinear optical effect is used. The optical switch used is used. Alternatively, there is an electrical time gate circuit, such as a method that detects the voltage at a specific time as the time gate by adjusting the identification timing of the identification circuit after it is converted into an electrical signal by the optical receiver circuit. sell.
[0023]
The operation of the asymmetric Mach-Zehnder type interference element 1-6 and the time gates 1-9 1 to 1-9 N will be described below with reference to FIG. When attention is paid to a signal of one bit, as shown in the figure, the signal (a) without delay by the asymmetric Mach-Zehnder type interference element and the signal (b) delayed by 1 / (2Δf) by the delay waveguide are combined. The output signal (c) of the asymmetric Mach-Zehnder type interference element is generated. From the figure, it can be seen that only the time portion of 1 / (2Δf) to T is an interference signal of the signal of the bit. Therefore, by extracting a signal having a time of 1 / (2Δf) to T by a time gate switch having a width T−1 / (2Δf), only an interference signal component of the signal of the bit can be extracted.
[0024]
If the phase shifter 1-7 is adjusted so that the odd channel signal light wavelength and the peak of the transmission spectrum of the Mach-Zehnder interference element 1-6 match, the phase of the signal light wavelength of the odd channel becomes stronger. Interfering like that. On the other hand, the signal light wavelengths of even-numbered channels separated by Δf are shifted in phase by π due to the optical path length difference c / (2n c Δf), and thus interfere with each other so as to cancel each other. Therefore, the interference signal component cancels out and the even channel component does not appear.
[0025]
3 to 5 show simulation results using the configuration of the embodiment of the present invention. The wavelength interval was 5 GHz, the bit rate was 5 Gb / s, and the number of channels was N = 4. The bandwidth utilization efficiency is 1. Before the asymmetric Mach-Zehnder interference element 1-6 (FIG. 3), any one of the preceding optical gate switches 1-9 1 ~1-9 4 (FIG. 4), and an optical gate switch 1-9 1 ~1-9 The eye diagram after any one of 4 (FIG. 5) is shown. It can be seen that sufficiently eye diagram is open even after the optical gate switches 1-9 1 ~1-9 4.
[0026]
Therefore, according to the present invention, it is possible to realize a wavelength division multiplexing optical transmission system with good band utilization efficiency.
[0027]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a wavelength division multiplexing optical transmission system with good band utilization efficiency. As a result, it is possible to realize a wavelength division multiplexing transmission system having a larger number of wavelengths with the same wavelength bandwidth as that of the prior art, thereby contributing to an increase in the transmission capacity of optical communication.
[0028]
In addition, since an optical transmission line with a narrow band can be constructed at a lower cost than an optical transmission line with a wide band, in the optical transmission system in which the construction cost of the transmission path occupies much of the cost of the optical transmission system, the present invention Cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of an embodiment of a wavelength division multiplexing optical transmission system according to the present invention. FIG. 2 is a waveform diagram for explaining the operation of the configuration of FIG. Eye diagram showing results (before asymmetric Mach-Zehnder type interference element 1-6)
4 is an eye diagram showing a simulation result according to the configuration of FIG. 1 (before any one of the optical gate switches 1-9 1 to 1-9 4 ).
[5] (after one of the optical gate switches 1-9 1 ~1-9 4) eye diagram showing the simulation result of the configuration of FIG. 1
FIG. 6 is a block diagram showing a conventional configuration example.
1-1 1 to 1-1 N optical transmitter 1-2 1 to 1-2 N- bit phase adjusting means 1-3a, 1-3b Waveform multiplexer 1-4 1: 1 coupler 1-5 optical transmission medium 1 -6 Asymmetric Mach-Zehnder type interference element 1-7 Phase shifter 1-8 Wavelength demultiplexer 1-9 1 to 1-9 N optical time gate switch 1-10 1 to 1-10 N optical receiver

Claims (9)

変調素子により光周波数間隔Δf[Hz]、変調速度B[bit/s](但し、B/Δf≦1[bit/s/Hz])で変調したN波(Nは2以上の整数)の光信号を発生する光送信器と、該光信号を合波する手段からなる光送信部と、
前記光送信部からの送信信号を入力するものであって、光路長差がc/(2nΔf)(ここで、cは光速、nは導波路の等価屈折率)の非対称マッハツェンダ型干渉素子と、
前記非対称マッハツェンダ型干渉素子の出力信号から所望の波長を選択透過する波長フィルタ手段と、
波長フィルタ手段の後に接続し、波長フィルタの出力からビット単位で、1/(2Δf)[s]からT[s](但し、Tは1ビットの時間)までの間の時間の信号を取り出す時間ゲート手段と
からなる光受信部と、
前記変調素子に電気的に接続される、あるいは、前記光送信器と前記合波手段との間に設けられた、前記非対称マッハツェンダ型干渉素子の入力における全ての波長信号のビット位相を一致させるためのビット位相調整手段と
を備えたことを特徴とする波長多重光伝送方式。
Light of N waves (N is an integer of 2 or more) modulated by a modulation element at an optical frequency interval Δf [Hz] and modulation speed B [bit / s] (B / Δf ≦ 1 [bit / s / Hz]) An optical transmitter for generating a signal, and an optical transmitter comprising means for multiplexing the optical signals;
An asymmetric Mach-Zehnder interference having an optical path length difference of c / (2n c Δf) (where c is the speed of light and n c is an equivalent refractive index of the waveguide). Elements,
Wavelength filter means for selectively transmitting a desired wavelength from the output signal of the asymmetric Mach-Zehnder interference element;
Time to connect after the wavelength filter means and extract a signal of time from 1 / (2Δf) [s] to T [s] (where T is a time of 1 bit) in units of bits from the output of the wavelength filter An optical receiver comprising gate means,
To match the bit phases of all wavelength signals at the input of the asymmetric Mach-Zehnder type interference element that is electrically connected to the modulation element or provided between the optical transmitter and the multiplexing means A wavelength division multiplexing optical transmission system characterized by comprising:
前記ビット位相調整手段は、光送信器に電気的に接続され、前記光送信部における変調素子への電気的変調信号のビット位相を制御するものである
ことを特徴とする請求項1に記載の波長多重光伝送方式。
The bit phase adjusting means is electrically connected to an optical transmitter and controls a bit phase of an electrical modulation signal to a modulation element in the optical transmission unit. Wavelength multiplexing optical transmission system.
前記ビット位相調整手段は、前記光送信部から前記合波手段の間に配置された光伝送経路に設けられ、光信号の光路長を制御して光学的なビット位相を調整するものである
ことを特徴とする請求項1に記載の波長多重光伝送方式。
The bit phase adjustment means is provided in an optical transmission path disposed between the optical transmission unit and the multiplexing means , and adjusts the optical bit phase by controlling the optical path length of the optical signal. The wavelength division multiplexing optical transmission system according to claim 1.
前記時間ゲート手段は光ゲートスイッチである
ことを特徴とする請求項1に記載の波長多重光伝送方式。
The wavelength multiplexing optical transmission system according to claim 1, wherein the time gate means is an optical gate switch.
前記時間ゲート手段は光受信部における電気ゲート回路である
ことを特徴とする請求項1に記載の波長多重光伝送方式。
The wavelength multiplexing optical transmission system according to claim 1, wherein the time gate means is an electric gate circuit in an optical receiver.
前記光送信部における合波のための手段が、光周波数間隔ΔfのN波の光信号に関して、奇数番目の光信号を合波する第1の波長合波手段と、偶数番目の光信号を合波する第2の波長合波手段とからなる
ことを特徴とする請求項1〜5のいずれかに記載の波長多重光伝送方式。
The means for multiplexing in the optical transmission unit combines first wavelength multiplexing means for multiplexing odd-numbered optical signals and even-numbered optical signals for N-wave optical signals with an optical frequency interval Δf. The wavelength division multiplexing optical transmission system according to any one of claims 1 to 5, further comprising: a second wavelength multiplexing unit that waves.
前記非対称マッハツェンダ型素子は、位相シフタを内蔵する
ことを特徴とする請求項1〜6のいずれかに記載の波長多重光伝送方式。
The wavelength division multiplexing optical transmission system according to claim 1, wherein the asymmetric Mach-Zehnder element includes a phase shifter.
前記位相シフタが、奇数番目又は偶数番目の何れかの信号光波長と前記非対称マッハツェンダ型干渉素子の透過スペクトルのピークとが対応するように位相シフトを調整する
ことを特徴とする請求項7に記載の波長多重光伝送方式。
The phase shifter adjusts the phase shift so that either the odd-numbered or even-numbered signal light wavelength corresponds to the peak of the transmission spectrum of the asymmetric Mach-Zehnder type interference element. WDM optical transmission system.
変調素子により光周波数間隔Δf[Hz]、変調速度B[bit/s](但し、B/Δf≦1[bit/s/Hz])で変調したN波(Nは2以上の整数)の光信号を光送信器により発生し、該光信号を合波して送信し、
光送信器に電気的に接続し、あるいは、光送信器と合波手段の間に設けられたビット位相調整手段により、全波長信号のビット位相が一致するようにビット位相の調整を行うとともに、その送信された信号を、光路長差がc/(2nΔf)(ここで、cは光速、nは導波路の等価屈折率)の非対称マッハツェンダ型干渉素子に入力し、
前記非対称マッハツェンダ型干渉素子の出力から波長フィルタ手段を用いて所望の波長を選択した後
その選択した信号から、ビット単位で、1/(2Δf)[s]からT[s](但し、Tは1ビットの時間)までの間の時間の信号を取り出して出力する
ことを特徴とする波長多重光伝送方法。
Light of N waves (N is an integer of 2 or more) modulated by a modulation element at an optical frequency interval Δf [Hz] and modulation speed B [bit / s] (B / Δf ≦ 1 [bit / s / Hz]) signal generated by the optical transmitter transmits optical signals multiplexed by,
The bit phase is adjusted so that the bit phases of the signals of all wavelengths coincide with each other by the bit phase adjusting means electrically connected to the optical transmitter or provided between the optical transmitter and the multiplexing means. , the transmitted signal, the optical path length difference c / (2n c Δf) (where, c is the speed of light, n c is the effective refractive index of the waveguide) input to the asymmetric Mach-Zehnder interference element,
After selecting a desired wavelength using the wavelength filter means from the output of the asymmetric Mach-Zehnder type interference element,
From the selected signal, a signal in a time period from 1 / (2Δf) [s] to T [s] (where T is a time of 1 bit) is extracted and output in bits. Wavelength multiplexing optical transmission method.
JP2001238077A 2001-08-06 2001-08-06 Wavelength division multiplexing optical transmission system and transmission method Expired - Fee Related JP3789783B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001238077A JP3789783B2 (en) 2001-08-06 2001-08-06 Wavelength division multiplexing optical transmission system and transmission method
US10/214,487 US7113702B2 (en) 2001-08-06 2002-07-31 Wavelength division multiplexing optical transmission system and transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238077A JP3789783B2 (en) 2001-08-06 2001-08-06 Wavelength division multiplexing optical transmission system and transmission method

Publications (2)

Publication Number Publication Date
JP2003051809A JP2003051809A (en) 2003-02-21
JP3789783B2 true JP3789783B2 (en) 2006-06-28

Family

ID=19069057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238077A Expired - Fee Related JP3789783B2 (en) 2001-08-06 2001-08-06 Wavelength division multiplexing optical transmission system and transmission method

Country Status (1)

Country Link
JP (1) JP3789783B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495415B2 (en) 2003-06-26 2010-07-07 独立行政法人科学技術振興機構 OTDM transmission method and apparatus
KR100617709B1 (en) * 2004-08-05 2006-08-28 삼성전자주식회사 Apparatus and method for frequency-shift-keying optical transmission
JP7079391B2 (en) 2018-10-30 2022-06-02 富士通株式会社 Optical transmission equipment and optical elements

Also Published As

Publication number Publication date
JP2003051809A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP3975810B2 (en) Optical single sideband transmitter
JP3256419B2 (en) Optical filter and optical signal transmission system
JP4252219B2 (en) Optical node device and system including the device
US6788899B2 (en) Dynamic wavelength add/drop multiplexer for UDWDM optical communication system
US7113702B2 (en) Wavelength division multiplexing optical transmission system and transmission method
JP3789784B2 (en) Optical orthogonal frequency division multiplexing transmission system and transmission method
EP2359513B1 (en) Wavelength division multiplexing transmission equipment
JPH11202374A (en) Optical communication terminal station in wavelength multiplex system, optical signal transmission method and increase method for optical signals
US6798562B2 (en) Fast optical wavelength shifter
JP2008067048A (en) Wavelength conversion type wavelength division multiplexing transmission device
JP3789783B2 (en) Wavelength division multiplexing optical transmission system and transmission method
CA2289322A1 (en) Multi-channel optical add/drop multiplexor/demultiplexor
US6831773B2 (en) Bidirectional coding splitter
US7167650B2 (en) Method and apparatus for demultiplexing high bit rate optical signals on dense wavelength grid
JP3615476B2 (en) Optical access system, access node device, and user node device
JP3782402B2 (en) Optical transmitter and optical communication system
JP3843322B2 (en) Optical wavelength division multiplexing FSK modulation method
JP2000332693A (en) Wave length multiplexing light source
KR100264950B1 (en) Wavelength-variable light extraction / transmission filter for WDM communication without feedback noise
US6172781B1 (en) Wave division multiplexed optical network
EP1233562A1 (en) Modulation scheme and transmission system for NRZ signals with left and right side filtering
EP1408633A1 (en) Apparatus and method for regeneration of optical pulses
JP4665102B2 (en) Optical intensity modulation and optical frequency shift keying modulation system
JP2000201110A (en) Optical transmitter
JP2006276874A (en) Light wavelength multiplex fsk modulation system using light phase modulation and light fsk modulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees