JP3788702B2 - Superconducting rotating electrical machine rotor - Google Patents

Superconducting rotating electrical machine rotor Download PDF

Info

Publication number
JP3788702B2
JP3788702B2 JP05526399A JP5526399A JP3788702B2 JP 3788702 B2 JP3788702 B2 JP 3788702B2 JP 05526399 A JP05526399 A JP 05526399A JP 5526399 A JP5526399 A JP 5526399A JP 3788702 B2 JP3788702 B2 JP 3788702B2
Authority
JP
Japan
Prior art keywords
superconducting
field winding
superconducting field
winding
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05526399A
Other languages
Japanese (ja)
Other versions
JP2000253645A (en
Inventor
顕 増永
進 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP05526399A priority Critical patent/JP3788702B2/en
Publication of JP2000253645A publication Critical patent/JP2000253645A/en
Application granted granted Critical
Publication of JP3788702B2 publication Critical patent/JP3788702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は、超電導回転電機の回転子に関し、詳しくは、超電導回転電機の回転子を構成する超電導界磁巻線と、当該超電導界磁巻線にスリップリングや電流リード線を介して界磁電流を供給する励磁電源と、上記超電導界磁巻線と並列に接続され中間タップを有する保護抵抗と、上記超電導界磁巻線にクエンチが発生した場合に上記超電導界磁巻線及び保護抵抗の回路と上記励磁電源とを断路する遮断器を備えた超電導回転電機の回転子に関するものである。
【0002】
【従来の技術】
図10は、例えば特開昭57−166888号公報に示された従来の超電導回転電機の回転子の構造を示す断面図である。図中の1は、中空のトルクチューブで、その両端の一方側は駆動側端部軸2のフランジ部2aに、他方側は反駆動側端部軸3のフランジ部3aに固定されている。4はこのトルクチューブ1の中央部に形成された中空の巻線取付軸であり、5はこの巻線取付軸4に巻回固定された超電導界磁巻線である。
上記巻線取付軸4の外周部にはヘリウム外筒6が配設され、巻線取付軸4の両側面部のそれぞれには端板としてのヘリウム端板7が配設されて、冷媒の液溜め部としての液体ヘリウムの液溜め部8が形成されている。
9は常温ダンパで、その両端の一方側は駆動側端部軸2のフランジ部2aに、他方側は反駆動側端部軸3のフランジ部3aに固着されており、上記トルクチューブ1と巻線取付軸4とを包囲して配設されている。
10は上記巻線取付軸4と常温ダンパ9との間に配設された低温ダンパ、11は駆動側端部軸2及び反駆動側端部軸3を軸支する軸受、12はトルクチューブ1に形成あるいは配置された熱交換器、13は巻線取付軸4の両側面部の外側のトルクチューブ1内に設けられた側部輻射シールド、14は真空部である。
【0003】
15は界磁電流供給用のスリップリングで、反駆動側端部軸3に設けられている。16は電流リード線で、ヘリウム端板7を貫通し、超電導界磁巻線5とスリップリング15とを電気的に接続している。16aはこの電流リード線16を収納するパイプとしての電流リード線管である。17は反駆動側端部軸3の軸端に取り付けられたヘリウム給排装置、18は液体ヘリウムの液溜め部8とヘリウム給排装置17とを連通する液体ヘリウム供給管、19は液体ヘリウムの液溜め部8と熱交換器12とを連通するヘリウム配管、20は熱交換器12とヘリウム給排装置17とを連通するガスヘリウム排出管、21は電流リード線管16aとヘリウム給排装置17とを連通するガスヘリウム排出管である。尚、図11は上記超電導界磁巻線5の展開図である。
【0004】
図12は、上記従来の超電導回転電機の回転子の励磁回路である。図中の5は超電導界磁巻線、15はスリップリング、22は励磁電源で、超電導界磁巻線5に直列に接続されスリップリング15を介して超電導界磁巻線5に界磁電流を供給する。
23は遮断器で、超電導界磁巻線5に直列に接続され、超電導界磁巻線5にクエンチが発生すると開放する。24は保護抵抗で、超電導界磁巻線5に並列に接続され、超電導界磁巻線5にクエンチが発生すると投入される一定抵抗値Rを有する。
【0005】
次に動作について説明する。
超電導界磁巻線5が超電導状態では、超電導界磁巻線5は遮断器23を閉路して、スリップリング15を介して励磁電源22により励磁される。
超電導界磁巻線5にはクエンチと称される現象が存在する。ワイヤムーブメント等の微小振動による導体表面の発熱、或いは、外部磁界の変動による導体内部での発熱等が生じた場合には、超電導状態が部分的に常電導状態に転位する。この発熱が超電導界磁巻線5の冷却剤、例えば、液体ヘリウムの冷却能力より大きい場合には常電導部分が拡大し、伝播する。この間も電流は流れ続けており、ジュール損失により、超電導界磁巻線5の各部分の温度は更に上昇する。
超電導界磁巻線5のエネルギーが大きい場合には、超電導界磁巻線5は温度上昇により焼損する可能性がある。このため、超電導界磁巻線5のエネルギーを回転子外部に取り出し、クエンチが発生すると遮断器23を開路して、保護抵抗24に電流を流すことで、保護抵抗24でエネルギーを消費させ、超電導界磁巻線5の温度上昇を抑制する。
但し、保護抵抗24に電流が流れる瞬間、超電導界磁巻線5には電圧が発生する。超電導界磁巻線5の自己インダクタンスL、保護抵抗24の抵抗値R、回路に流れる電流Iの場合には、界磁電流の減衰時定数T=L/R、超電導界磁巻線5で発生する電圧はI×Rとなる。
【0006】
【発明が解決しようとする課題】
超電導回転電機を大容量化する場合、容量増大に伴い超電導界磁巻線5のインダクタンスや界磁電流が何れも増大し、超電導界磁巻線5に蓄えられるエネルギーも小容量機と比較して増大する。蓄積エネルギーは、例えば60万kW級発電機では20万kW級発電機の約3倍に増大する。
従って放電抵抗値が小容量機と同一の場合には超電導界磁巻線5の温度上昇が大きくなり、回転子外部でのエネルギー消費量を増大するには、保護抵抗24の抵抗値を大きくする必要がある。
しかし、保護抵抗が大きくなると、遮断器23の投入時に、超電導界磁巻線5で発生する電圧(界磁電流Iと保護抵抗Rの積)が数kVのレベルまで大きくなるため、大容量化すると超電導界磁巻線5の絶縁設計が困難になる。
本発明はこのような課題の解決を目的とする。
【0007】
【課題を解決するための手段】
請求項1の発明は、超電導界磁巻線と、当該超電導界磁巻線にスリップリングや電流リード線を介して界磁電流を供給する励磁電源と、回転子外部に設置されて上記超電導界磁巻線と並列に接続され中間タップを有する保護抵抗と、上記超電導界磁巻線にクエンチが発生した場合に上記超電導界磁巻線及び保護抵抗の回路と上記励磁電源とを断路する遮断器を備えた超電導回転電機の回転子において、上記超電導界磁巻線の極間位置と上記保護抵抗の中間タップ間を電気的に接続する中間リード線が設けられたことを特徴とする。
【0008】
請求項2の発明は、超電導界磁巻線を巻回する巻線取付軸の外周と内周を繋ぐ貫通穴を当該巻線取付軸の上記超電導界磁巻線の極間位置に設け、当該貫通穴に前記中間リード線を固定すると共に、上記巻線取付軸内周に取り出された中間リード線をスリップリングに接続する軸方向導体が設けられたことを特徴とする。
【0009】
請求項3の発明は、巻線取付軸に設けられた貫通穴に対して軸対称位置に当該貫通穴と同一形状の第2の貫通穴を設け、当該第2の貫通穴に中間リード線と同一重量のダミーリード線が固定されたことを特徴とする。
【0010】
請求項4の発明は、超電導界磁巻線と、当該超電導界磁巻線にスリップリングや電流リード線を介して界磁電流を供給する励磁電源と、回転子外部に設置されて上記超電導界磁巻線と並列に接続される保護抵抗と、上記超電導界磁巻線にクエンチが発生した場合に上記超電導界磁巻線及び保護抵抗の回路と上記励磁電源とを断路する遮断器を備えた超電導回転電機の回転子において、上記超電導界磁巻線を自己インダクタンスが1/3になるように等分割した位置と抵抗値が同一である3つの上記保護抵抗の中間位置が2本の中間リード線で電気的に接続されたことを特徴とする。
【0011】
【発明の実施の形態】
実施の形態1.
実施の形態1は、超電導界磁巻線の極間位置と保護抵抗の中間タップ間を電気的に接続する中間リード線を設けた構成としたものである。以下、図1に基づいて説明する。図は、2極の超電導回転電機の回転子における励磁回路の構成図を示す。尚、図示以外の箇所は従来例と同じである。
図中の5a、5bはそれぞれ超電導回転電機回転子のN極、S極の磁界を発生する超電導界磁巻線、5cはN極とS極の中間位置を示し、15はスリップリング、22は励磁電源、24a、24bは超電導界磁巻線5a、5bに並列接続されそれぞれ抵抗値Rを有する保護抵抗であり、23は超電導界磁巻線5a,5bにクエンチが発生すると励磁回路を開放する遮断器である。
又、24cは保護抵抗24a、24bの中間位置であり、25は極間位置5cと保護抵抗24a、24bの中間位置24cとを電気的に接続した中間リード線である。
【0012】
次に動作について説明する。
超電導界磁巻線5a、5bが超電導状態で抵抗が零の場合には、超電導界磁巻線5a、5bは遮断器23を閉路してスリップリング15を介して励磁電源22により励磁されることは従来技術で説明した通りである。
本実施の形態1においては、超電導界磁巻線5a、5bが外部からの擾乱等何らかの理由によりクエンチした場合、遮断器23にて励磁電源22の回路を切り離し、保護抵抗24a、24bに電流が流れることで、超電導界磁巻線5a、5b、保護抵抗24a、24b、極間位置5cと中間位置24cとの間を電気的に接続するように設けられた中間リード線25にて、2つの閉回路が形成されるので、超電導界磁巻線5a、5bに流れる界磁電流により蓄えられたエネルギーが保護抵抗24a、24bで消費される。
【0013】
超電導界磁巻線5a若しくは5bにクエンチが発生した場合、中間リード線25で2つの閉回路が形成されるため、自己インダクタンスLが中間リード線25を設けない場合の1/2に減少し、超電導界磁巻線5a、5bに流れる界磁電流の減衰時定数が1/2に減少する。
このことは、一方では外部抵抗でのエネルギー消費量が増加していることに対応しており、超電導界磁巻線5a、5bの温度上昇が抑制される。
又、保護抵抗24a、24bの抵抗値Rを、例えば、それぞれR/2にした場合は、界磁電流の減衰時定数は変化しないが、遮断器23の投入時に超電導界磁巻線5で発生する電圧は中間リード線25がない場合の1/2に減少することができ、超電導界磁巻線5の絶縁部材(図示なし)を損傷する可能性が低減される。
保護抵抗24a、24bの抵抗値を調整することで、超電導界磁巻線5に流れる界磁電流の減衰時定数と超電導界磁巻線5に発生する電圧を調整することが可能となるため、大容量超電導回転電機の界磁巻線の設計裕度が向上する。
【0014】
尚、中間リード線25には、超電導界磁巻線5a若しくは5bにクエンチが発生しない限り、電流は流れず、又、クエンチが発生した場合についても、流れる電流は数秒間と極めて短時間であり、ジュール損失による発熱が小さいため、可能な限り細いリード線の適用が可能となる。
【0015】
実施の形態2.
上記実施の形態1では、極間位置5cと中間位置24cとの間に設けられた中間リード線25にて2つの閉回路を形成することで、超電導界磁巻線5の温度上昇、絶縁部材(図示なし)の損傷可能性が低減されることを、電気回路による機能上の説明により示したが、ここでは、実施の形態2として、これを実現する具体的構造を図2乃至図5について説明する。尚、図2は回転子の構造を示す断面図で、図3は図2のA−A断面図、図4は図2のB−B断面図、図5は超電導界磁巻線の展開図である。
この図2乃至図5に示す例では、超電導界磁巻線5を巻回する巻線取付軸4に巻線取付軸4の外周と内周とを繋ぐ貫通穴27(以下、第1の貫通穴ともいう)を設け、この第1の貫通穴27に中間リード線25を固定すると共に、巻線取付軸4の内周に取り出された中間リード線25をスリップリング15に接続する軸方向導体28を設ける構成としてある。
従来の超電導界磁巻線5の電流リード線16では、磁極部分4aに設けた貫通穴29に通していたが、極間部分4bに設けられた貫通穴27から中間リード線25を取り出すことで、巻線取付軸4の外径側表面から渡す必要がなくなり、簡素で信頼性の高い構造を提供できる。
又、図5では一例として貫通穴27の軸方向位置を超電導界磁巻線5の中心に設けているが、貫通穴27は軸方向の任意の位置に設けても問題はない。
【0016】
実施の形態3.
上記実施の形態2では、超電導界磁巻線5を巻回する巻線取付軸4に巻線取付軸4の外周と内周を繋ぐ貫通穴27を設けることで、当該貫通穴27を介して中間リード線25を巻線取付軸4の外径側から内径側に通すことが構造上可能になる場合について述べたが、この実施の形態3では、図7に示すように、巻線取付軸4に設けた第1の貫通穴27の軸対称位置に、新たに当該第1の貫通穴27と同一形状の第2の貫通穴30を設け、当該第2の貫通穴30に前記中間リード線25と同一重量のダミーリード線31を配線、この例では固定した構成とした。
このように構成すると、超電導回転電機の回転子が回転する際に発生するアンバランスを解消することが可能となり、軸振動特性の向上につながる。
【0017】
実施の形態4.
上記実施の形態1では、極間位置5cと中間位置24cとを電気的に接続するように設けられた中間リード線25にて2つの閉回路を形成することで、超電導界磁巻線5の温度上昇、絶縁部材(図示なし)の損傷可能性が低減される場合について説明したが、この実施の形態4では、図9に示すように、超電導界磁巻線5を自己インダクタンスが1/3になるように5a、5b、5cと等分割した位置5d、5eと抵抗値が同一である保護抵抗24a、24b、24cの中間位置24d、24eに中間リード線25a、25bを電気的に接続する構成とした。このように構成すると、超電導界磁巻線5a、5b、5cの何れかにクエンチが発生した場合、中間リード線25a、25bにより3つの閉回路が形成されるため、自己インダクタンスLが中間リード線25がない場合の1/3に減少し、超電導界磁巻線5a、5b、5cに流れる界磁電流の減衰時定数が小さくなり、超電導界磁巻線5a、5b、5cの温度上昇を抑制させる。
又、保護抵抗24a、24b、24cの抵抗値Rを、例えば、それぞれR/3にした場合、遮断器23の投入時に超電導界磁巻線5に発生する電圧は、中間リード線がない場合の1/3に減少し、超電導界磁巻線5の絶縁部材(図示なし)を損傷する可能性が低減される。
以上のように、この実施の形態4によれば、大容量化に対する超電導界磁巻線設計の裕度が上記実施の形態1の場合より向上する。
又、上記実施の形態3を適用して、巻線取付軸4に設けた貫通穴27の軸対称位置に、新たに貫通穴27と同一形状の第2の貫通穴30を設けた場合には、中間リード線が25a、25bと2本存在することになるため、ダミーリード線31を採用することなく、超電導回転電機の回転子が回転する際に発生するアンバランスを解消することが可能となり、軸振動特性の向上につながる。
【0018】
【発明の効果】
請求項1の発明によれば、超電導界磁巻線がクエンチした場合、保護抵抗に電流が流れることで、中間リード線にて、2つの閉回路が形成されるので、超電導界磁巻線に流れる界磁電流により蓄えられたエネルギーを保護抵抗で消費させることができる。
又、中間リード線にて2つの閉回路が形成されるため、自己インダクタンスLが大幅に減少し、超電導界磁巻線に流れる界磁電流の減衰時定数を大幅に減少させることができ、従って又、超電導界磁巻線の温度上昇を大幅に抑制することができる。
又、保護抵抗の抵抗値Rを、例えば、それぞれR/2にした場合は、界磁電流の減衰時定数は変化しないが、遮断器投入時に超電導界磁巻線で発生する電圧は中間リード線がない場合の1/2に減少することができ、超電導界磁巻線の絶縁部材を損傷する可能性が著しく低減される。
又、保護抵抗の抵抗値を調整することで、超電導界磁巻線に流れる界磁電流の減衰時定数と超電導界磁巻線に発生する電圧を調整することが可能となるため、大容量超電導回転電機の界磁巻線の設計裕度が著しく向上する。
又、中間リード線には、超電導界磁巻線にクエンチが発生しない限り、電流は流れず、又、クエンチが発生した場合についても、流れる電流は数秒間と極めて短時間でありジュール損失による発熱が小さいため、可能な限り細いリード線の適用が可能となる。
【0019】
請求項2の発明によれば、極間位置に設けられた貫通穴から中間リード線を取り出すことで、巻線取付軸の外径側表面から渡す必要がなくなり、簡素で信頼性の高い構造を提供することができる。
【0020】
請求項3の発明によれば、超電導回転電機の回転子が回転する際に発生するアンバランスを解消することが可能となり、軸振動特性を著しく向上させることができる。
【0021】
請求項4の発明によれば、超電導界磁巻線の何れかにクエンチが発生した場合、中間リード線により3つの閉回路が形成されるため、自己インダクタンスLが大幅に減少し、超電導界磁巻線に流れる界磁電流の減衰時定数が小さくなり、超電導界磁巻線の温度上昇を抑制させることができる。
又、保護抵抗の抵抗値Rを、例えば、それぞれR/3にした場合、遮断器投入時に超電導界磁巻線に発生する電圧が、中間リード線がない場合の1/3に減少し、超電導界磁巻線の絶縁部材を損傷させる可能性が著しく低減される。
従って又、この実施の形態4によれば、大容量化に対する超電導界磁巻線設計の裕度をより一段と向上させることができる。
更に又、巻線取付軸に設けた貫通穴の軸対称位置に、新たに貫通穴と同一形状の第2の貫通穴を設けた場合には、中間リード線が2本存在することになるため、ダミーリード線を採用することなく、超電導回転電機の回転子が回転する際に発生するアンバランスを解消することが可能となり、軸振動特性を向上させることができる。
【図面の簡単な説明】
【図1】 実施の形態1を示す超電導回転電機の回転子の励磁回路を示す説明図である。
【図2】 実施の形態2を示す超電導回転電機の回転子の構造を示す断面図である。
【図3】 図2のA−A断面図である。
【図4】 図2のB−B断面図である。
【図5】 実施の形態2を示す超電導回転電機の超電導界磁巻線の展開図である。
【図6】 実施の形態3を示す超電導回転電機の回転子の構造を示す断面図である。
【図7】 図6のA−A断面図である。
【図8】 図6のB−B断面図である。
【図9】 実施の形態4を示す超電導回転電機の回転子の励磁回路を示す説明図である。
【図10】 従来の超電導回転電機の回転子の構造を示す断面図である。
【図11】 従来の超電導回転電機の超電導界磁巻線の展開図である。
【図12】 従来の超電導回転電機の回転子の励磁回路を示す説明図である
【符号の説明】
4 巻線取付軸、5 超電導界磁巻線、15 スリップリング、16 電流リード線、22 励磁電源、23 遮断器、24 保護抵抗、25 中間リード線、27 貫通穴、28 軸方向導体、29 貫通穴、31 ダミーリード線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotor of a superconducting rotating electrical machine, and more particularly, to a superconducting field winding constituting the rotor of the superconducting rotating electrical machine, and a field current via a slip ring or a current lead wire to the superconducting field winding. An excitation power source for supplying the superconducting field winding, a protective resistor connected in parallel with the superconducting field winding and having an intermediate tap, and a circuit for the superconducting field winding and the protective resistor when quenching occurs in the superconducting field winding And a rotor of a superconducting rotating electrical machine including a circuit breaker that disconnects the excitation power source.
[0002]
[Prior art]
FIG. 10 is a cross-sectional view showing the structure of a rotor of a conventional superconducting rotating electrical machine disclosed in, for example, Japanese Patent Laid-Open No. 57-166888. In the figure, reference numeral 1 denotes a hollow torque tube, one side of which is fixed to the flange portion 2 a of the drive side end shaft 2 and the other side is fixed to the flange portion 3 a of the counter drive side end shaft 3. 4 is a hollow winding mounting shaft formed at the center of the torque tube 1, and 5 is a superconducting field winding wound around the winding mounting shaft 4.
A helium outer cylinder 6 is disposed on the outer peripheral portion of the winding mounting shaft 4, and a helium end plate 7 as an end plate is disposed on each of both side surfaces of the winding mounting shaft 4, so that a refrigerant reservoir is provided. A liquid helium reservoir 8 is formed as a part.
9 is a room temperature damper, one end of which is fixed to the flange portion 2a of the driving side end shaft 2 and the other side is fixed to the flange portion 3a of the counter driving side end shaft 3, The wire mounting shaft 4 is surrounded.
10 is a low temperature damper disposed between the winding mounting shaft 4 and the normal temperature damper 9, 11 is a bearing that supports the driving side end shaft 2 and the non-driving side end shaft 3, and 12 is a torque tube 1. The heat exchanger 13 is formed or arranged on the side, 13 is a side radiation shield provided in the torque tube 1 outside the both side surfaces of the winding mounting shaft 4, and 14 is a vacuum part.
[0003]
A slip ring 15 for supplying a field current is provided on the non-driving side end shaft 3. Reference numeral 16 denotes a current lead, which penetrates the helium end plate 7 and electrically connects the superconducting field winding 5 and the slip ring 15. Reference numeral 16a denotes a current lead tube as a pipe for accommodating the current lead wire 16. 17 is a helium supply / discharge device attached to the shaft end of the counter-drive side end shaft 3, 18 is a liquid helium supply pipe that connects the liquid helium reservoir 8 and the helium supply / discharge device 17, and 19 is liquid helium. A helium pipe communicating the liquid reservoir 8 and the heat exchanger 12, 20 a gas helium discharge pipe communicating the heat exchanger 12 and the helium supply / discharge apparatus 17, and 21 a current lead line pipe 16a and the helium supply / discharge apparatus 17 Is a gas helium discharge pipe that communicates with FIG. 11 is a development view of the superconducting field winding 5.
[0004]
FIG. 12 shows an excitation circuit for the rotor of the conventional superconducting rotating electrical machine. In the figure, 5 is a superconducting field winding, 15 is a slip ring, 22 is an excitation power source, and is connected in series to the superconducting field winding 5 and sends a field current to the superconducting field winding 5 via the slip ring 15. Supply.
A circuit breaker 23 is connected in series to the superconducting field winding 5 and is opened when quenching occurs in the superconducting field winding 5. Reference numeral 24 denotes a protective resistor, which is connected in parallel to the superconducting field winding 5 and has a constant resistance value R that is input when quenching occurs in the superconducting field winding 5.
[0005]
Next, the operation will be described.
When the superconducting field winding 5 is in the superconducting state, the superconducting field winding 5 closes the circuit breaker 23 and is excited by the excitation power source 22 through the slip ring 15.
The superconducting field winding 5 has a phenomenon called quench. When heat generation on the surface of the conductor due to minute vibrations such as wire movement or heat generation inside the conductor due to fluctuations in the external magnetic field, the superconducting state is partially shifted to the normal conducting state. When this heat generation is larger than the cooling capacity of the superconducting field winding 5 such as liquid helium, the normal conducting portion expands and propagates. During this time, current continues to flow, and the temperature of each part of the superconducting field winding 5 further rises due to Joule loss.
When the energy of the superconducting field winding 5 is large, the superconducting field winding 5 may be burned out due to a temperature rise. For this reason, the energy of the superconducting field winding 5 is taken out of the rotor, and when a quench occurs, the circuit breaker 23 is opened, and the current is passed through the protective resistor 24, so that the protective resistor 24 consumes the energy and the superconducting The temperature rise of the field winding 5 is suppressed.
However, a voltage is generated in the superconducting field winding 5 at the moment when a current flows through the protective resistor 24. In the case of the self-inductance L of the superconducting field winding 5, the resistance value R of the protective resistor 24, and the current I flowing through the circuit, the decay time constant T = L / R of the field current is generated in the superconducting field winding 5. The voltage to be applied is I × R.
[0006]
[Problems to be solved by the invention]
When the capacity of a superconducting rotating electrical machine is increased, the inductance and field current of the superconducting field winding 5 both increase as the capacity increases, and the energy stored in the superconducting field winding 5 is also larger than that of a small capacity machine. Increase. For example, in a 600,000 kW class generator, the stored energy increases about three times that of a 200,000 kW class generator.
Therefore, when the discharge resistance value is the same as that of the small capacity machine, the temperature rise of the superconducting field winding 5 becomes large, and the resistance value of the protective resistor 24 is increased in order to increase the energy consumption outside the rotor. There is a need.
However, when the protective resistance increases, the voltage generated by the superconducting field winding 5 (the product of the field current I and the protective resistance R) increases to a level of several kV when the circuit breaker 23 is turned on. Then, the insulation design of the superconducting field winding 5 becomes difficult.
The present invention aims to solve such problems.
[0007]
[Means for Solving the Problems]
The invention of claim 1 includes a superconducting field winding, an excitation power source that supplies a field current to the superconducting field winding via a slip ring or a current lead wire, and the superconducting field installed outside the rotor. A protective resistor connected in parallel with the magnetic winding and having an intermediate tap; and a circuit breaker that disconnects the superconducting field winding and the circuit of the protective resistor and the excitation power source when quenching occurs in the superconducting field winding. In the rotor of the superconducting rotating electrical machine, the intermediate lead wire for electrically connecting the position between the poles of the superconducting field winding and the intermediate tap of the protective resistor is provided.
[0008]
The invention of claim 2 provides a through hole connecting the outer periphery and the inner periphery of the winding mounting shaft for winding the superconducting field winding at a position between the poles of the superconducting field winding of the winding mounting shaft, The intermediate lead wire is fixed to the through hole, and an axial conductor for connecting the intermediate lead wire taken out to the inner periphery of the winding attachment shaft to a slip ring is provided.
[0009]
According to a third aspect of the present invention, a second through hole having the same shape as the through hole is provided in an axially symmetric position with respect to the through hole provided in the winding attachment shaft, and an intermediate lead wire is provided in the second through hole. A dummy lead wire having the same weight is fixed.
[0010]
According to a fourth aspect of the present invention, there is provided a superconducting field winding, an excitation power source for supplying a field current to the superconducting field winding via a slip ring or a current lead wire, and the superconducting field installed outside the rotor. A protective resistor connected in parallel with the magnetic winding, and a circuit breaker for disconnecting the superconducting field winding and the circuit of the protective resistor and the excitation power source when quenching occurs in the superconducting field winding. in the rotor of the superconducting rotating electrical machine, the superconducting field winding three intermediate position of the protective resistance two intermediate lead resistance and positions equally divided such self-inductance becomes 1/3 is the same for It is electrically connected by a wire.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
In the first embodiment, an intermediate lead wire is provided to electrically connect the position between the poles of the superconducting field winding and the intermediate tap of the protective resistor. Hereinafter, a description will be given based on FIG. The figure shows a configuration diagram of an excitation circuit in a rotor of a two-pole superconducting rotating electrical machine. The portions other than those shown in the figure are the same as in the conventional example.
In the figure, 5a and 5b are superconducting field windings for generating N and S magnetic fields of the superconducting rotating electrical machine rotor, 5c is an intermediate position between the N and S poles, 15 is a slip ring, and 22 is a slip ring. Excitation power sources 24a and 24b are protective resistors connected in parallel to the superconducting field windings 5a and 5b and having resistance values R, respectively, and 23 opens the excitation circuit when quenching occurs in the superconducting field windings 5a and 5b. It is a circuit breaker.
Reference numeral 24c denotes an intermediate position between the protective resistors 24a and 24b, and reference numeral 25 denotes an intermediate lead wire electrically connecting the inter-electrode position 5c and the intermediate position 24c between the protective resistors 24a and 24b.
[0012]
Next, the operation will be described.
When the superconducting field windings 5a and 5b are in the superconducting state and the resistance is zero, the superconducting field windings 5a and 5b are excited by the excitation power source 22 via the slip ring 15 by closing the circuit breaker 23. Is as described in the prior art.
In the first embodiment, when the superconducting field windings 5a and 5b are quenched for some reason such as external disturbance, the circuit of the exciting power source 22 is disconnected by the circuit breaker 23, and current is supplied to the protective resistors 24a and 24b. By flowing, the superconducting field windings 5a and 5b, the protective resistors 24a and 24b, and the intermediate lead wire 25 provided so as to electrically connect between the inter-pole position 5c and the intermediate position 24c, Since the closed circuit is formed, the energy stored by the field current flowing through the superconducting field windings 5a and 5b is consumed by the protective resistors 24a and 24b.
[0013]
When quenching occurs in the superconducting field winding 5a or 5b, two closed circuits are formed by the intermediate lead wire 25, so that the self-inductance L is reduced to ½ that when the intermediate lead wire 25 is not provided, The decay time constant of the field current flowing through superconducting field windings 5a and 5b is reduced to ½.
On the other hand, this corresponds to an increase in energy consumption by the external resistance, and the temperature rise of the superconducting field windings 5a and 5b is suppressed.
When the resistance values R of the protective resistors 24a and 24b are set to R / 2, for example, the decay time constant of the field current does not change, but is generated in the superconducting field winding 5 when the circuit breaker 23 is turned on. The voltage to be reduced can be reduced to ½ that when the intermediate lead wire 25 is not provided, and the possibility of damaging the insulating member (not shown) of the superconducting field winding 5 is reduced.
By adjusting the resistance values of the protective resistors 24a and 24b, it becomes possible to adjust the decay time constant of the field current flowing in the superconducting field winding 5 and the voltage generated in the superconducting field winding 5. Design margin of field winding of large capacity superconducting rotating electrical machine is improved.
[0014]
It should be noted that no current flows through the intermediate lead wire 25 unless quenching occurs in the superconducting field winding 5a or 5b, and even when quenching occurs, the flowing current is only a few seconds. Since heat generation due to Joule loss is small, it is possible to apply a lead wire as thin as possible.
[0015]
Embodiment 2. FIG.
In the first embodiment, by forming two closed circuits with the intermediate lead wire 25 provided between the inter-pole position 5c and the intermediate position 24c, the temperature rise of the superconducting field winding 5, the insulating member Although the possibility of damage (not shown) is reduced by the functional description of the electric circuit, here, as a second embodiment, a specific structure for realizing this will be described with reference to FIGS. explain. 2 is a sectional view showing the structure of the rotor, FIG. 3 is a sectional view taken along line AA in FIG. 2, FIG. 4 is a sectional view taken along line BB in FIG. 2, and FIG. It is.
In the example shown in FIGS. 2 to 5, a through hole 27 (hereinafter referred to as a first through hole) that connects the outer periphery and the inner periphery of the winding mounting shaft 4 to the winding mounting shaft 4 around which the superconducting field winding 5 is wound. An axial conductor for fixing the intermediate lead wire 25 to the first through hole 27 and connecting the intermediate lead wire 25 taken out to the inner periphery of the winding mounting shaft 4 to the slip ring 15. 28 is provided.
In the current lead wire 16 of the conventional superconducting field winding 5, the current lead wire 16 was passed through the through hole 29 provided in the magnetic pole portion 4 a, but by removing the intermediate lead wire 25 from the through hole 27 provided in the interpolar portion 4 b. Thus, it is not necessary to pass from the outer diameter side surface of the winding mounting shaft 4, and a simple and highly reliable structure can be provided.
In FIG. 5, the axial position of the through hole 27 is provided at the center of the superconducting field winding 5 as an example. However, there is no problem even if the through hole 27 is provided at an arbitrary position in the axial direction.
[0016]
Embodiment 3 FIG.
In the second embodiment, the through-hole 27 that connects the outer periphery and the inner periphery of the winding attachment shaft 4 is provided in the winding attachment shaft 4 that winds the superconducting field winding 5, so that the through-hole 27 passes through the through-hole 27. Although the case where the intermediate lead wire 25 is structurally possible to pass from the outer diameter side to the inner diameter side of the winding mounting shaft 4 has been described, in the third embodiment, as shown in FIG. 4, a second through hole 30 having the same shape as the first through hole 27 is newly provided at the axially symmetric position of the first through hole 27 provided in the first through hole 27, and the intermediate lead wire is provided in the second through hole 30. A dummy lead wire 31 having the same weight as 25 is wired, in this example, fixed.
If comprised in this way, it will become possible to eliminate the imbalance which generate | occur | produces when the rotor of a superconducting rotary electric machine rotates, and it will lead to the improvement of a shaft vibration characteristic.
[0017]
Embodiment 4 FIG.
In the first embodiment, two closed circuits are formed by the intermediate lead wire 25 provided so as to electrically connect the inter-pole position 5c and the intermediate position 24c, so that the superconducting field winding 5 Although the case where the temperature rise and the possibility of damage to the insulating member (not shown) are reduced has been described, in the fourth embodiment, the self-inductance of the superconducting field winding 5 is 1/3 as shown in FIG. The intermediate lead wires 25a and 25b are electrically connected to the intermediate positions 24d and 24e of the protective resistors 24a, 24b and 24c which have the same resistance value as the positions 5d and 5e equally divided from 5a, 5b and 5c. The configuration. With this configuration, when a quench occurs in any of the superconducting field windings 5a, 5b, and 5c, three closed circuits are formed by the intermediate lead wires 25a and 25b. The current time of the field current flowing through the superconducting field windings 5a, 5b, and 5c is reduced, and the temperature rise of the superconducting field windings 5a, 5b, and 5c is suppressed. Let
Further, when the resistance values R of the protective resistors 24a, 24b, and 24c are set to R / 3, for example, the voltage generated in the superconducting field winding 5 when the circuit breaker 23 is turned on is the case where there is no intermediate lead wire. The possibility of damaging the insulating member (not shown) of the superconducting field winding 5 is reduced.
As described above, according to the fourth embodiment, the tolerance of the superconducting field winding design with respect to the increase in capacity is improved as compared with the first embodiment.
When the third embodiment is applied and a second through hole 30 having the same shape as the through hole 27 is newly provided at the axially symmetric position of the through hole 27 provided in the winding mounting shaft 4 Since there are two intermediate lead wires 25a and 25b, it becomes possible to eliminate the imbalance that occurs when the rotor of the superconducting rotating electrical machine rotates without adopting the dummy lead wire 31. This leads to improved shaft vibration characteristics.
[0018]
【The invention's effect】
According to the first aspect of the present invention, when the superconducting field winding is quenched, a current flows through the protective resistance, so that two closed circuits are formed in the intermediate lead wire. The energy stored by the flowing field current can be consumed by the protective resistor.
Further, since two closed circuits are formed by the intermediate lead wire, the self-inductance L is greatly reduced, and the decay time constant of the field current flowing in the superconducting field winding can be greatly reduced. Moreover, the temperature rise of the superconducting field winding can be significantly suppressed.
Also, when the resistance value R of the protective resistance is set to R / 2, for example, the decay time constant of the field current does not change, but the voltage generated in the superconducting field winding when the breaker is turned on is the intermediate lead wire. The possibility of damaging the insulating member of the superconducting field winding is significantly reduced.
Also, by adjusting the resistance value of the protective resistor, it is possible to adjust the decay time constant of the field current flowing in the superconducting field winding and the voltage generated in the superconducting field winding. The design margin of the field winding of the rotating electrical machine is significantly improved.
In addition, no current flows through the intermediate lead wire unless a quench occurs in the superconducting field winding, and even when a quench occurs, the flowing current is only a few seconds, and heat is generated due to Joule loss. Because of the small size, it is possible to apply a lead wire as thin as possible.
[0019]
According to the invention of claim 2, by removing the intermediate lead wire from the through hole provided at the position between the electrodes, it is not necessary to pass from the outer diameter side surface of the winding mounting shaft, and a simple and highly reliable structure is achieved. Can be provided.
[0020]
According to the third aspect of the present invention, it is possible to eliminate the imbalance that occurs when the rotor of the superconducting rotating electrical machine rotates, and the shaft vibration characteristics can be remarkably improved.
[0021]
According to the invention of claim 4, when a quench occurs in any of the superconducting field windings, three closed circuits are formed by the intermediate lead wires, so that the self-inductance L is greatly reduced, and the superconducting field magnet is The decay time constant of the field current flowing through the winding becomes small, and the temperature rise of the superconducting field winding can be suppressed.
In addition, when the resistance value R of the protective resistance is set to R / 3, for example, the voltage generated in the superconducting field winding when the circuit breaker is turned on is reduced to 1/3 when there is no intermediate lead wire. The possibility of damaging the field winding insulation is significantly reduced.
Therefore, according to the fourth embodiment, the tolerance of the superconducting field winding design with respect to the increase in capacity can be further improved.
Furthermore, when a second through hole having the same shape as the through hole is newly provided at the axially symmetric position of the through hole provided in the winding mounting shaft, there are two intermediate lead wires. Without adopting a dummy lead wire, it is possible to eliminate the imbalance that occurs when the rotor of the superconducting rotating electrical machine rotates, and the shaft vibration characteristics can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an excitation circuit of a rotor of a superconducting rotating electrical machine showing a first embodiment.
FIG. 2 is a cross-sectional view showing a structure of a rotor of a superconducting rotating electrical machine showing a second embodiment.
3 is a cross-sectional view taken along a line AA in FIG.
4 is a cross-sectional view taken along the line BB in FIG.
FIG. 5 is a development view of a superconducting field winding of the superconducting rotating electrical machine showing the second embodiment.
FIG. 6 is a cross-sectional view showing a structure of a rotor of a superconducting rotating electrical machine showing a third embodiment.
7 is a cross-sectional view taken along the line AA in FIG.
8 is a cross-sectional view taken along the line BB in FIG.
FIG. 9 is an explanatory diagram showing an excitation circuit for a rotor of a superconducting rotating electrical machine according to a fourth embodiment.
FIG. 10 is a cross-sectional view showing a structure of a rotor of a conventional superconducting rotating electrical machine.
FIG. 11 is a development view of a superconducting field winding of a conventional superconducting rotating electrical machine.
FIG. 12 is an explanatory diagram showing a rotor excitation circuit of a conventional superconducting rotating electrical machine.
4 Winding mounting shaft, 5 Superconducting field winding, 15 Slip ring, 16 Current lead wire, 22 Excitation power source, 23 Circuit breaker, 24 Protection resistance, 25 Intermediate lead wire, 27 Through hole, 28 Axial conductor, 29 Through Hole, 31 Dummy lead wire.

Claims (4)

超電導界磁巻線と、当該超電導界磁巻線にスリップリングや電流リード線を介して界磁電流を供給する励磁電源と、回転子外部に設置されて上記超電導界磁巻線と並列に接続され中間タップを有する保護抵抗と、上記超電導界磁巻線にクエンチが発生した場合に上記超電導界磁巻線及び保護抵抗の回路と上記励磁電源とを断路する遮断器を備えた超電導回転電機の回転子において、
上記超電導界磁巻線の極間位置と上記保護抵抗の中間タップ間を電気的に接続する中間リード線が設けられたことを特徴とする超電導回転電機の回転子。
A superconducting field winding, an excitation power source that supplies field current to the superconducting field winding via a slip ring or current lead, and a parallel connection to the superconducting field winding installed outside the rotor A superconducting rotating electrical machine comprising a protective resistor having an intermediate tap and a circuit breaker that disconnects the superconducting field winding and the circuit of the protective resistor and the excitation power source when quenching occurs in the superconducting field winding. In the rotor,
A rotor of a superconducting rotating electrical machine, wherein an intermediate lead wire is provided for electrically connecting a position between poles of the superconducting field winding and an intermediate tap of the protective resistor.
超電導界磁巻線を巻回する巻線取付軸の外周と内周を繋ぐ貫通穴を当該巻線取付軸の上記超電導界磁巻線の極間位置に設け、当該貫通穴に前記中間リード線を固定すると共に、上記巻線取付軸内周に取り出された中間リード線をスリップリングに接続する軸方向導体が設けられたことを特徴とする請求項1に記載の超電導回転電機の回転子。A through hole connecting the outer periphery and the inner periphery of the winding mounting shaft for winding the superconducting field winding is provided at a position between the superconducting field windings of the winding mounting shaft , and the intermediate lead wire is provided in the through hole. The rotor of a superconducting electric rotating machine according to claim 1, further comprising: an axial conductor for fixing the intermediate lead wire connected to the slip ring to the inner periphery of the winding attachment shaft. 巻線取付軸に設けられた貫通穴に対して軸対称位置に当該貫通穴と同一形状の第2の貫通穴を設けて、当該第2の貫通穴に中間リード線と同一重量のダミーリード線が固定されたことを特徴とする請求項2に記載の超電導回転電機の回転子  A second through hole having the same shape as the through hole is provided in an axially symmetric position with respect to the through hole provided in the winding mounting shaft, and the dummy lead wire having the same weight as the intermediate lead wire is provided in the second through hole. The rotor of a superconducting rotating electrical machine according to claim 2, wherein the rotor is fixed. 超電導界磁巻線と、当該超電導界磁巻線にスリップリングや電流リード線を介して界磁電流を供給する励磁電源と、回転子外部に設置されて上記超電導界磁巻線と並列に接続される保護抵抗と、上記超電導界磁巻線にクエンチが発生した場合に上記超電導界磁巻線及び保護抵抗の回路と上記励磁電源とを断路する遮断器を備えた超電導回転電機の回転子において、
上記超電導界磁巻線を自己インダクタンスが1/3になるように等分割した位置と抵抗値が同一である3つの上記保護抵抗の中間位置が2本の中間リード線で電気的に接続されたことを特徴とする超電導回転電機の回転子。
A superconducting field winding, an excitation power source that supplies field current to the superconducting field winding via a slip ring or current lead, and a parallel connection to the superconducting field winding installed outside the rotor In a rotor of a superconducting rotating electrical machine comprising a protective resistor and a circuit breaker that disconnects the superconducting field winding and the circuit of the protective resistor and the excitation power source when quenching occurs in the superconducting field winding ,
The superconducting field winding an intermediate position of the self-inductance three of the protective resistor is the same position as the resistance value obtained by equally dividing so that 1/3 are electrically connected by two intermediate lead wire the rotor of the superconducting rotating electrical machine you wherein a.
JP05526399A 1999-03-03 1999-03-03 Superconducting rotating electrical machine rotor Expired - Fee Related JP3788702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05526399A JP3788702B2 (en) 1999-03-03 1999-03-03 Superconducting rotating electrical machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05526399A JP3788702B2 (en) 1999-03-03 1999-03-03 Superconducting rotating electrical machine rotor

Publications (2)

Publication Number Publication Date
JP2000253645A JP2000253645A (en) 2000-09-14
JP3788702B2 true JP3788702B2 (en) 2006-06-21

Family

ID=12993722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05526399A Expired - Fee Related JP3788702B2 (en) 1999-03-03 1999-03-03 Superconducting rotating electrical machine rotor

Country Status (1)

Country Link
JP (1) JP3788702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11521771B2 (en) 2019-04-03 2022-12-06 General Electric Company System for quench protection of superconducting machines, such as a superconducting wind turbine generator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359365B1 (en) * 2000-08-04 2002-03-19 American Superconductor Corporation Superconducting synchronous machine field winding protection
US7724483B2 (en) * 2008-03-19 2010-05-25 General Electric Company Systems and methods involving protection of superconducting generators for power applications
KR101460341B1 (en) * 2011-12-01 2014-11-21 두산중공업 주식회사 A Protecting Structure and Method of a Field Coil for Superconducting Rotating Machines
JP6262417B2 (en) * 2012-07-31 2018-01-17 川崎重工業株式会社 Magnetic field generator and superconducting rotating machine equipped with the same
US9240681B2 (en) 2012-12-27 2016-01-19 General Electric Company Superconducting coil system and methods of assembling the same
KR101507306B1 (en) * 2013-06-14 2015-04-06 두산중공업 주식회사 Field coil protecting apparatus and method of superconducting rotating electric machine
US10910920B2 (en) * 2019-05-01 2021-02-02 General Electric Company Magnetic shield for a superconducting generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11521771B2 (en) 2019-04-03 2022-12-06 General Electric Company System for quench protection of superconducting machines, such as a superconducting wind turbine generator

Also Published As

Publication number Publication date
JP2000253645A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US4117360A (en) Self-supporting amortisseur cage for high-speed synchronous machine solid rotor
US6664705B2 (en) Method of providing electric power with thermal protection
EP0057730B2 (en) Electric generator
US6097124A (en) Hybrid permanent magnet/homopolar generator and motor
EP0920107B1 (en) Winding arrangement for switched reluctance machine based internal starter generator
JP2007082391A (en) Redundant winding for electric machine equipped with current limiter
EP2881954B1 (en) Magnetic field generating device and superconducting rotary machine comprising the magnetic field generating device
JP3788702B2 (en) Superconducting rotating electrical machine rotor
US7928616B2 (en) Systems and apparatus involving toothed armatures in superconducting machines
US6891308B2 (en) Extended core for motor/generator
JP5043955B2 (en) Superconducting synchronous motor
KR20100044396A (en) Superconducting field coil consisting of closed magnetic loop and method for operation of superconducting motor using the same
JPH08126277A (en) Flat rotating machine
US4583014A (en) Dynamoelectric machine with a rotor having a superconducting field winding and damper winding
US6703756B2 (en) Electrical machine
JP2005269868A (en) Superconductive motor device and movable body with use of superconductive motor device
JPH10285906A (en) Rotor of superconductive dynamoelectric machine
KR100742715B1 (en) Permanent magnet generator equipped with pfc
JPS631582Y2 (en)
KR20060004808A (en) Apparatus for driving capacitor run type hybrid induction motor
JP2019030153A (en) Superconducting rotary machine
JP2933151B2 (en) Generator
JP3668925B2 (en) Current lead device for rotor of superconducting rotating electrical machine
JPH01126156A (en) Rotor of superconductive rotary electric machine
JP2001086685A (en) Rotor of electric rotating machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees