JP3788051B2 - Resonator, filter, duplexer, and communication device - Google Patents

Resonator, filter, duplexer, and communication device Download PDF

Info

Publication number
JP3788051B2
JP3788051B2 JP21281998A JP21281998A JP3788051B2 JP 3788051 B2 JP3788051 B2 JP 3788051B2 JP 21281998 A JP21281998 A JP 21281998A JP 21281998 A JP21281998 A JP 21281998A JP 3788051 B2 JP3788051 B2 JP 3788051B2
Authority
JP
Japan
Prior art keywords
conductor
resonator
lines
line
conductor line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21281998A
Other languages
Japanese (ja)
Other versions
JP2000049512A (en
Inventor
青路 日高
充昭 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP21281998A priority Critical patent/JP3788051B2/en
Publication of JP2000049512A publication Critical patent/JP2000049512A/en
Application granted granted Critical
Publication of JP3788051B2 publication Critical patent/JP3788051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、共振器、フィルタ、デュプレクサ及び通信機装置に関する。
【0002】
【従来の技術】
マイクロ波帯やミリ波帯で用いられる共振器としては、特開昭62−193302号公報に記載のヘアピン共振器が知られている。このヘアピン共振器は曲部を有した線路を誘電体基板上に設けたものであり、直線状の線路を有した共振器と比較して小型化できるという特徴がある。さらに、小型化を図ることができる別の共振器として、特開平2−96402号公報に記載の、スパイラル状の線路を誘電体基板上に設けた共振器が知られている。
【0003】
【発明が解決しようとする課題】
ところで、従来の共振器は、一つの半波長線路にて一つの共振器を構成したものであった。従って、従来の共振器は、電気エネルギーが集中して蓄積される領域と磁気エネルギーが集中して蓄積される領域とが、それぞれ誘電体基板の特定の領域に分離されて偏在し、いわゆる集中定数素子として扱えた。具体的には、電気エネルギーが蓄積される領域は半波長線路の開放端部近傍であり、磁気エネルギーが蓄積される領域は半波長線路の中央部近傍である。
【0004】
ここに、磁気エネルギーは、アンペールの法則により、電流が半波長線路内を流れることによって蓄積される。つまり、磁気エネルギーを蓄積する領域が特定の場所に集中するということは、電流がその場所に集中していることを意味する。ところが、マイクロ波帯やミリ波帯の高周波帯では、いわゆる縁端効果により、半波長線路の縁端部に電流が集中し、縁端部における導体損失が大きくなる。このため、電流が特定の場所に集中することは、縁端効果による導体損失を著しく大きくすることになる。
【0005】
また、共振器を小型化する場合、誘電体基板のサイズを小さくすると共に、誘電体基板の誘電率も高くする必要がある。誘電体基板のサイズの縮小に伴って半波長線路の長さが短くなると、共振周波数が高くなる(例えば10GHz)ので、誘電体基板の誘電率を高くして共振周波数を下げて元の所望の共振周波数(例えば2GHz)にしなければならないためである。ところが、実用上低損失な誘電体基板の誘電率にはいくらでも大きな値が使えないという限界があるため、共振器の小型化にも限界があった。
【0006】
そこで、本発明の目的は、小型軽量化を図ると共に、優れた損失特性を有する共振器、フィルタ、デュプレクサ及び通信機装置を提供することにある。
【0007】
【課題を解決するための手段と作用】
以上の目的を達成するため、本発明に係る共振器は、
(a)絶縁性部材と、
(b)前記絶縁性部材に設けられた、曲部を有しかつ電磁気的に相互に結合した複数の導体線路とを備え、
(c)前記導体線路のそれぞれ両端が開放端であり、該開放端を同一平面内互いに異なる位置に配設し、前記導体線路の形状が切断部を有したほぼ環形状であること、
を特徴とする。より具体的には、導体線路の切断部を、隣接する導体線路相互間で、例えば180度又は90度異なる位置に配設する。
【0008】
以上の構成により、電気エネルギーが蓄積される領域と磁気エネルギーが蓄積される領域とが絶縁性部材に分散され、電界、磁界分布の片寄りが少なくなる。従って、導体線路内を流れる電流の密度が一様化される。言い換えると、導体線路の長手方向の電流分布が正弦曲線からより均一で振幅の小さい形の曲線群に変形される。このように、電流分布が均一化するため、縁端効果及び表皮効果による導体損失が低減される。
【0009】
また、本発明に係る共振器は、導体線路の縁端部に、該縁端部に沿って少なくとも1本の間隙を設け、前記縁端部の導体パターン幅及び間隙幅をほぼ電流の表皮深さ寸法に設定したことを特徴とする。あるいは、複数の線状導体を間隙を有して配設して導体線路を構成し、前記線状導体の導体パターン幅及び前記間隙の幅をほぼ表皮深さ寸法に設定したことを特徴とする。
【0010】
以上の構成により、導体線路を流れる電流が、ほぼ表皮深さ寸法のパターン幅を有する導体に分流することになる。従って、縁端効果や表皮効果が緩和され、導体損失が更に低減される。
【0011】
また、本発明に係る共振器は、導体線路を薄膜誘電体を介して積み重ね、最上層の前記導体線路を残して、残りの前記導体線路の膜厚及び前記薄膜誘電体の膜厚を表皮深さ以下の寸法に設定したことを特徴とする。ここに、導体線路は全て同一形状パターンであってもよい。
【0012】
以上の構成により、電流は、積み重ねられた複数の導体線路に分流することになる。従って、導体線路の膜厚方向に対しても電流の縁端効果や表皮効果が緩和され、導体損失が更に低減される。
【0013】
また、同一平面内の隣接する前記導体線路の間の空隙に誘電体材料を充填することにより、誘電体材料の誘電率に応じて導体線路の間隔寸法を変更でき、共振器の設計の自由度が大きくなる。
【0014】
さらに、導体線路の各部において電流集中が緩和されるため、パターン幅の細い(断面積の小さい)導体線路であっても、電流密度を超伝導状態を保つために必要とされる臨界電流密度以下にできる。従って、超伝導体からなる導体線路は、超伝導状態を容易に保つことが可能となる。
【0015】
さらに、本発明に係るフィルタやデュプレクサや通信機装置は、前述の特徴を有する共振器を備えることより、挿入損失が低減され、かつ、小型化が図れる。
【0016】
【発明の実施の形態】
以下、本発明に係る共振器、フィルタ、デュプレクサ及び通信機装置の実施形態について添付図面を参照して説明する。
【0017】
[原理、図1〜図5]
共振器を複数の導体線路にて構成することによって共振器の導体損失を低減させることができることを、図1及び図2を参照して説明する。図1及び図2は、それぞれ一つ及び二つの導体線路にて一つの共振器を構成した場合の、共振器の電磁界分布図である。
【0018】
図1に示すように、導体線路1は、切断部Cを有した略環形状のものであり、その長さはλ/2(λ:共振器の共振周波数の波長)である。この導体線路1内を電流iが例えば矢印で示す方向に流れると、線路1の開放端部1a,1bの近傍には、電気エネルギーが集中して蓄積され、磁気エネルギーは少ししか蓄積されない。従って、開放端部1a,1b間に最大電位差が得られる。一方、線路1内を電流iが流れることによって、アンペールの法則により磁界Hが線路1の周囲に発生し、線路1の中央部1cの近傍には、磁気エネルギーが集中して蓄積され、電気エネルギーは少ししか蓄積されない。従って、一つの導体線路1にて構成された共振器R1は、電気エネルギーが集中して蓄積される領域と磁気エネルギーが集中して蓄積される領域とが分離されて偏在し、いわゆる集中定数素子として扱われる。
【0019】
この共振器R1は、導体線路1の長手方向の電流分布が正弦曲線であり、線路1の開放端部1a,1bでその振幅が最小(節)となり、中央部1cでその振幅が最大(腹)となる。つまり、中央部1cで電流密度が最大となり、縁端効果による導体損失が著しく大きくなる。なお、図1及び図2においては、電流iの矢印の長さで電流密度の疎密を表示している。すなわち、矢印が短ければ電流密度が低く、矢印が長ければ電流密度が高い。また、磁界HのZ成分の方向記号の径の大きさで磁界強度の強弱を表示している。すなわち、方向記号の径が小さければ磁界強度が弱く、方向記号の径が大きければ磁界強度が強い。
【0020】
これに対して、次に、図2に示すように、二つの導体線路2,3にて構成した共振器R2について説明する。導体線路2,3はそれぞれ切断部Cを有した略環形状のものである。線路3は、線路2の内側に所定の間隔を有して並設されると共に、線路3の切断部Cが線路2の切断Cに対して180度異なる位置に配設されている。共振器R2が、共振しているとき、隣接する線路2,3内をそれぞれ流れる電流iの方向は、同一方向である。
【0021】
線路2,3内をそれぞれ電流iが例えば矢印で示す方向に流れると、線路2,3の開放端部2a,2b,3a,3bの近傍には電気エネルギーが集中して蓄積され、中央部2c,3c近傍には磁気エネルギーが集中して蓄積される。つまり、二つの導体線路2,3にて構成された共振器R2は、電気エネルギーが集中して蓄積される領域と磁気エネルギーが集中して蓄積される領域とが隣接配置され、分散されている。これにより、磁界分布の片寄りが少なくなり、線路2,3の実効インダクタンスを増大させ、共振器R2の無負荷Qを向上させることができる。
【0022】
言い換えると、導体線路2,3は、それぞれ長手方向の電流分布が正弦曲線であり、開放端部2a,2b,3a,3bでその振幅が最小(節)となり、中央部2c,3cでその振幅が最大(腹)となる。ところが、線路2の開放端部2a,2bと線路3の中央部3cとが隣接配置されているため、両者間で相互誘導が生じる。同様に、線路2の中央部2cと線路3の開放端部3a,3bも隣接配置されているので、両者間で相互誘導が生じる。これにより、互いの電流分布が正弦曲線からより均一で振幅の小さい形の曲線に変形する。この結果、導体線路2,3内を流れる電流iの密度が一様化され、縁端効果及び表皮効果による導体損失を低減することができる。
【0023】
次に、共振器を複数の導体線路にて構成することによって、共振器の共振周波数を低下させることができることを、平面回路シミュレーション解析に基づいて説明する。
【0024】
図3の(A)〜(D)はそれぞれ解析に用いた共振器R3〜R6を示す。図3(A)に示した共振器R3は、切断部Cを有した略環形状の導体線路4を備えたものである。線路4のパターン幅は400μmに設定した。図3(B)に示した共振器R4は、切断部Cを有した略環形状の導体線路5,6を備えたものである。線路6は、線路5の内側に所定の間隔を有して並設されると共に、線路6の切断部Cを線路5の切断部Cに隣接して配設している。線路5,6のパターン幅は190μm、線路5,6の間隔は20μmに設定した。図3(C)に示した共振器R5は、切断部Cを有した略環形状の導体線路7,8を備えたものである。線路8は、線路7の内側に所定の間隔を有して並設されると共に、線路8の切断部Cを線路7の切断部Cに対して90度異なる位置に配設している。線路7,8のパターン幅は190μm、線路7,8の間隔は20μmに設定した。図3(D)に示した共振器R6は、切断部Cを有した略環形状の導体線路9,10を備えたものである。線路10は、線路9の内側に所定の間隔を有して並設されると共に、線路10の切断部Cを線路9の切断部Cに対して180度異なる位置に配設している。線路9,10のパターン幅は190μm、線路9,10の間隔は20μmに設定した。
【0025】
図4は共振器R3〜R6のシミュレーション解析結果を示すグラフである。共振器R3の共振特性は点線で表示されている。共振器R3の共振周波数(基本モード)は3.33GHzであり、基本モードより高い周波数をもつスプリアスモード(2次モード)が周波数6.64GHzに発生している。共振器R4の共振特性は二点鎖線で表示されている。共振器R4の共振周波数(基本モード)は2.95GHzであり、スプリアスモード(2次、3次及び4次モード)はそれぞれ周波数3.52GHz、4.74GHz及び6.92GHzに発生している。共振器R4は、二つの導体線路5,6にて構成されることで、線路5,6間に発生する静電容量の影響により、共振周波数が共振器R3より低くなる。しかしながら、2次スプリアスモードが共振周波数(基本モード)に接近して発生し、フィルタとして使用しづらいという問題がある。
【0026】
共振器R5の共振特性は一点鎖線で表示されている。共振器R5の共振周波数(基本モード)は2.20GHzであり、スプリアスモード(2次及び3次)はそれぞれ周波数4.06GHz、5.60GHzに発生している。共振器R5は、二つの導体線路7,8にて構成されると共に、相互の切断部Cが90度異なる位置に配置されている。これにより、線路7,8間に発生する静電容量の影響に加え、相互誘導量が増加すると考えられ、共振器のサイズが同じであれば、共振周波数が共振器R3の2/3程度まで低くなる。しかも、2次及び3次スプリアスモードが高周波側に移動し、共振器R4と比較して共振周波数(基本モード)から離れるので、フィルタとしての使用に適している。
【0027】
共振器R6の共振特性は実線で表示されている。共振器R6の共振周波数(基本モード)は2.15GHzであり、スプリアスモード(2次及び3次)はそれぞれ4.86GHz、6.18GHzに発生している。共振器R6は、二つの導体線路9,10にて構成されると共に、相互の切断部Cが180度異なる位置に配置されている。これにより、線路9,10間に発生する静電容量の影響に加え、相互誘導量が増加すると考えられ、共振周波数が共振器R3の2/3程度まで低くなる。しかも、2次及び3次スプリアスモードが共振器R5より更に高周波側に移動し、共振周波数(基本モード)から離れるので、フィルタとしての使用に適している。この結果、共振器を複数の導体線路にて構成することで、絶縁性基板の誘電率をアップさせなくても、絶縁性基板のサイズを小さくして共振器を小型化できる。
【0028】
さらに、図5の(A)及び(B)に示すように、共振器を三つ及び四つの導体線路にて構成した場合の、共振器の共振周波数について平面回路シミュレーション解析に基づいて説明する。
【0029】
図5(A)に示した共振器R7は、切断部Cを有した略環形状の導体線路11〜13を備えたものである。線路11〜13は所定の間隔を有して並設されると共に、隣接する線路11〜13の切断部Cが相互に180度異なる位置に配設されている。線路11〜13のパターン幅は120μm、線路11〜13の間隔は20μmに設定した。以上の構成からなる共振器R7をシミュレーションした結果、共振周波数(基本モード)は1.78GHzであった。
【0030】
図5(B)に示した共振器R8は、切断部Cを有した略環形状の導体線路14〜17を備えたものである。線路14〜17は所定の間隔を有して並設されると共に、隣接する線路14〜17の切断部Cが相互に180度異なる位置に配設されている。線路14〜17のパターン幅は85μm、線路14〜17の間隔は20μmに設定した。以上の構成からなる共振器R8をシミュレーションした結果、共振周波数(基本モード)は1.57GHzであった。
【0031】
この結果、共振器を構成する導体線路の数を増加させることにより、共振器の共振周波数が低減され、共振器の小型化(小面積化)を更に図ることができることがわかる。
【0032】
[第1実施形態、図6〜図18]
図6に示すように、共振器R9は、絶縁性基板21と、この絶縁性基板21の上面に設けた二つの導体線路22,23と、絶縁性基板21の下面及び外周端部に設けたグランド導体25と、絶縁性基板21の端部に設けた入力端子28及び出力端子29とで構成されている。絶縁性基板21の材料としては、誘電体や絶縁体等が用いられる。
【0033】
導体線路22,23は、それぞれ3箇所に直角に折れ曲がった曲部を有し、その両端部22a,22b,23a,23bは開放端とされている。線路22の開放端22a,22bは近接され、開放端22aと22bの間に線路23の中央部23cが配置されている。同様に、線路23の開放端23a,23bは近接され、開放端23aと23bの間に線路22の中央部22cが配置されている。開放端22aと22bは、開放端23aと23bに対して180度異なる位置に配設されている。さらに、線路22,23は所定の間隙Dを有して並設されている。こうして、線路22,23は絶縁性基板21の上面で相互誘導及び容量結合している。入力端子28及び出力端子29は、それぞれ所定の間隙を有して線路22,23の開放端22a,23bに近接し、開放端22a,23bに容量結合している。
【0034】
これら導体線路22,23、グランド導体25及び入出力端子28,29は、絶縁性基板21の表面にAg,Ag−Pd,Cu等の導電性材料を印刷やスパッタリング、蒸着等の手法により膜状に形成した後、周知のフォトリソグラフィの技術(レジスト膜塗布、露光、レジスト膜現像、導電性材料エッチング、レジスト膜剥離)等を用いて形成される。
【0035】
入力端子28から高周波信号が供給され、共振器R9が共振しているとき、隣接する線路22,23内をそれぞれ流れる電流の方向は同一方向である。線路22,23内をそれぞれ電流が流れると、線路22,23の開放端部22a,22b,23a,23bの近傍には電気エネルギーが集中して蓄積され、中央部22c,23c近傍には磁気エネルギーが集中して蓄積される。つまり、二つの導体線路22,23にて構成された共振器R9は、電気エネルギーが集中して蓄積される領域と磁気エネルギーが集中して蓄積される領域とが隣接配置され、分散されている。これにより、磁界分布の片寄りが少なくなり、線路22,23の実効インダクタンスを増大させ、共振器R9の無負荷Qを向上させることができる。
【0036】
言い換えると、導体線路22,23は、それぞれ長手方向の電流分布が正弦曲線であり、開放端部22a,22b,23a,23bでその振幅が最小(節)となり、中央部22c,23cでその振幅が最大(腹)となる。ところが、線路22の開放端部22a,22bと線路23の中央部23cとが隣接配置されているため、両者間で相互誘導が生じる。同様に、線路22の中央部22cと線路23の開放端部23a,23bとも隣接配置されているので、両者間で相互誘導が生じる。これにより、互いの電流分布が正弦曲線からより均一で振幅の小さい形の曲線に変形する。この結果、導体線路22,23内を流れる電流の密度が一様化され、縁端効果及び表皮効果による導体損失を低減することができる。
【0037】
さらに、共振器R9を二つの導体線路22,23にて構成することによって、従来の共振器と比較して共振周波数を低下させることができる。この結果、絶縁性基板21の誘電率をアップさせなくても、絶縁性基板21のサイズを小さくして共振器R9を小型化できる。
【0038】
また、導体線路22,23は、通常、それぞれ図7(A)に示すように、一つの導体パターンである。ところで、マイクロ波帯やミリ波帯の高周波帯で用いられる共振器R9の場合、図7(A)に示したような導体パターンの導体線路22,23では、縁端効果により、縁端部に電流が集中する傾向にある。そこで、図7(B)に示すように、縁端部での電流集中を緩和させるために、線路22,23のそれぞれの両縁端部に、該縁端部に沿って2本の間隙31を設け、縁端部の導体パターン幅及び間隙幅をほぼ電流の表皮深さ寸法に設定するようにしてもよい。これにより、導体線路22,23の縁端部に細い導体パターンが構成され、細い導体パターンと主たる導体パターンに電流が分流することになる。この結果、電流の縁端効果や表皮効果が緩和され、導体損失を更に低減することができる。
【0039】
さらに、図7(B)では、線路22,23の縁端部に設けた間隙31と、線路22と23の間隙Dとに誘電体材料33を充填して線路22,23間の結合容量を大きくしている。これにより、誘電体材料33の誘電率に応じて線路22と23の間隙Dの寸法を変更でき、共振器R9の設計の自由度が大きくなる。
【0040】
また、共振器R9は、前記二つの導体線路22,23にて構成されるものの他に、図8〜図18にそれぞれ示した導体線路にて構成されるものであってもよい。図8は、四つの導体線路41〜44にて構成されたものである。線路41〜44の切断部Cは、隣接する線路41〜44相互間で90度異なる位置に配設されている。図9及び図10は、それぞれ四角形の角部に切断部Cを有する略環形状の導体線路45〜48、49〜52にて構成されたものである。図9では、切断部Cが、隣接する線路45〜48相互間で90度異なる位置に配設されている。図10では、切断部Cが、隣接する線路49〜52相互間で180度異なる位置に配設されている。
【0041】
図11は、導体線路53〜56にて構成されたものである。導体線路53〜56の間隙には誘電体材料33が充填されている。図12及び図13は、それぞれ二つのスパイラル状の導体線路57,58、導体線路59,60にて構成されたものである。線路57と58の間隙並びに線路59と60の間隙には誘電体材料33が充填されている。図14は、二つのコ字形の導体線路61,62にて構成されたものである。図15は、図14に示した線路61,62の内側に、さらに導体線路63を配置したものである。線路61〜63の相互の間隙には誘電体材料33が充填されている。図16は、四つの略円環形状の導体線路64〜67にて構成されたものである。線路64〜67の切断部Cは、隣接する線路64〜67相互間で180度異なる位置に配設されている。図17は、導体線路68〜71のそれぞれの中央部のパターン幅を、開放端部のパターン幅より広くすることにより、電流密度が最大となる中央部のパターン断面積を大きくして、さらに導体損失を低減させている。
【0042】
図18は、一定のパターン幅Wを有する10本の略環形状の導体線路72〜81を一定の間隙幅D1を保って、点線82で囲んだ領域に並設したものである。線路72〜81の切断部Cは、隣接する線路72〜81相互間で180度異なる位置に配設されている。線路72〜81のパターン幅W及び間隙幅D1は、表皮深さ寸法程度に設定されている。これにより、線路72〜81に電流が分流し、電流の縁端効果や表皮効果が緩和され、導体損失を更に低減することができる。
【0043】
[第2実施形態、図19〜図26]
第2実施形態は、絶縁性基板上に導体線路と誘電体とを積み重ねた構造の共振器について説明する。
【0044】
図19に示すように、絶縁性基板101の上面にコ字形状の導体線路102を設け、下面及び外周端部にグランド導体106を設け、端部に入力端子108及び出力端子109を設ける。線路102の両端部102a,102bは開放端とされ、それぞれ所定の間隙を有して入力端子108及び出力端子109に近接し、容量結合している。さらに、図20及び図21に示すように、線路102の上に誘電体104を介して、線路102と同形の導体線路103を、線路102に対して180度回転した状態で積層する。
【0045】
線路102の開放端部102aと102bの間には、線路103の中央部103Cが配置されている。同様に、線路103の開放端部103aと103bの間には、線路102の中央部102cが配置されている。開放端部102aと102bは、開放端部103aと103bに対して180度異なる位置に配設されている。
【0046】
こうして、得られた共振器R10の線路102,103は、誘電体104を介してその膜厚方向に相互誘導及び容量結合している。入力端子108から高周波信号が供給され、共振器R10が共振しているとき、隣接する線路102,103内をそれぞれ流れる電流の方向は同一方向である。線路102内を電流が流れると、線路102の開放端部102a,102bの近傍及び開放端部102a,102bで挟まれた部分には、電気エネルギーが集中して蓄積され、中央部102c近傍には磁気エネルギーが集中して蓄積される。同様に、線路103内を電流が流れると、線路103の開放端部103a,103bの近傍及び開放端部103aと103bで挟まれた部分には、電気エネルギーが集中して蓄積され、中央部103c近傍には磁気エネルギーが集中して蓄積される。つまり、二つの導体線路102、103にて構成された共振器10は、電気エネルギーが集中して蓄積される領域と磁気エネルギーが集中される領域とが隣接配置され、分散されている。これにより、磁界分布の片寄りが少なくなる。
【0047】
言い換えると、導体線路102,103は、それぞれ長手方向の電流分布が正弦曲線であり、開放端部102a,102b,103a,103bでその振幅が最小(節)となり、中央部102c,103cでその振幅が最大(腹)となる。ところが、線路102の開放端部102a,102bと線路103の中央部103cとが隣接配置されているため、両者間で相互誘導が生じる。同様に、線路102の中央部102cと線路103の開放端部103a,103bも隣接配置されているので、両者間で相互誘導が生じる。これにより、互いの電流分布が正弦曲線からより均一で振幅の小さい形の曲線に変形する。この結果、導体線路102,103内を流れる電流の密度が一様化され、縁端効果及び表皮効果による導体損失を低減することができる。
【0048】
さらに、共振器R10を二つの導体線路102,103にて構成することによって、従来の共振器と比較して共振周波数を低下させることができる。この結果、絶縁性基板101の誘電率をアップさせなくても、絶縁性基板101のサイズを小さくして共振器R10を小型化できる。
【0049】
また、図22に示すように、導体線路102,103のそれぞれの両縁端部に、該縁端部に沿って3本の間隙111を設け、縁端部の導体パターン幅及び間隙幅を表皮深さ以下の寸法に設定するようにしてもよい。これにより、線路102,103の縁端部に細い導体パターンが構成され、細い導体パターンと主たる導体パターンに電流が分流することになる。この結果、電流の縁端効果や表皮効果が緩和され、導体損失を更に低減することができる。
【0050】
さらに、共振器R10は、前記二つの導体線路102,103にて構成されるものの他に、図23〜図26に示された導体線路にて構成されるものであってもよい。図23は、導体線路112a,112b及び導体線路113a,113bを、それぞれ誘電体104を介して交互に積み重ね、多層構造(図23の場合は4層構造)の線路102,103としたものである。このとき、最上層の線路113b以外の線路112a,112b,113aの膜厚t1と誘電体104の膜厚t2を表皮深さ以下の寸法に設定する。こうして、線路102,103を多層化することにより、電流は線路112a,112b及び線路113a,113bに分流することになる。従って、線路102,103の膜厚方向に対しても電流の縁端効果や表皮効果が緩和され、導体損失を更に低減することができる。
【0051】
図24は、切断部Cを有した四角形の略環状導体線路115((A)参照)の上に、誘電体を介して線路115と同形の導体線路116((B)及び(C)参照)を積層して構成したものである。図24(B)は、切断部Cが、隣接する線路115,116相互間で90度異なる位置に配設されている場合である。図24(C)は、切断部Cが、隣接する線路115,116相互間で180度異なる位置に配設されている場合である。なお、図24において、導体線路115,116の切断部Cは四角形の角部に形成されていてもよいし、また、導体線路115,116の形状は切断部Cを有した略円形の環であってもよい。
【0052】
また、図25及び図26に示した共振器R11は、図6に示した共振器R9において、導体線路122a,122b及び導体線路123a,123bを、それぞれ誘電体124を介して積み重ね、多層構造(図26の場合は2層構造)の線路22,23としたものである。線路122a,122bは相互に同一形状パターンであり、線路123a,123bも相互に同一形状パターンである。このとき、最上層の線路122b,123b以外の線路122a,123aの膜厚t1と誘電体124の膜厚t2を表皮深さ以下の寸法に設定する。こうして、導体線路22,23を多層化することにより、電流は、線路122a,122b及び線路123a,123bに分流することになる。従って、線路22,23の膜厚方向に対しても電流の縁端効果や表皮効果が緩和され、導体損失を更に低減することができる。
【0053】
[第3実施形態、図27及び図28]
第3実施形態は、本発明に係るフィルタの一実施形態を示すもので、3段バンドパスフィルタを例にして説明する。
【0054】
図27及び図28に示すように、バンドパスフィルタ131は、絶縁性基板132の上面に、図5(B)に示した共振器R8を3個並設する。さらに、絶縁性基板132の左側端部に入力端子135を設け、この入力端子135を基板132の左側に配設された共振器R8の導体線路14の開放端部に近接させ、容量結合させる。同様に、基板132の右側端部に出力端子136を設け、この出力端子136を基板132の右側に配設された共振器R8の導体線路14の開放端部に近接させ、容量結合させる。絶縁性基板132は、遮蔽ケース137内に収容されている。こうして得られたバンドパスフィルタ131は、挿入損失が少なくかつ小型化をすることができる。
【0055】
[第4実施形態、図29]
第4実施形態は、本発明に係るデュプレクサ(アンテナ共用器)の一実施形態を示すものである。図29に示すように、デュプレクサ141は、送信端子Txとアンテナ端子ANTの間に送信フィルタ142が電気的に接続し、受信端子Rxとアンテナ端子ANTの間に受信フィルタ143が電気的に接続している。ここに、送信フィルタ142や受信フィルタ143として、前記第3実施形態のフィルタ131を使用することができる。このフィルタ131を実装することにより、挿入損失が少なくかつ小型化を図ることができるデュプレクサ141を実現することができる。
【0056】
[第5実施形態、図30]
第5実施形態は、本発明に係る通信機装置の一実施形態を示すもので、携帯電話を例にして説明する。
【0057】
図30は携帯電話150のRF送受信部分の電気回路ブロック図である。図30において、151はアンテナ素子、152はアンテナ共用器、153は受信回路、154は送信回路である。ここに、アンテナ共用器152として、前記第4実施形態のデュプレクサ141を使用することができる。このデュプレクサ141を実装することにより、RF送受信部分の挿入損失が低減され、携帯電話150の雑音特性や伝送速度等の通信品質を向上させることができる。
【0058】
[他の実施形態]
なお、本発明に係る共振器、フィルタ、デュプレクサ及び通信機装置は前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。
【0059】
前記実施形態では、切断部Cを、隣接する導体線路相互間で90度あるいは180度異なる位置に配設しているが、必ずしもこれに限るものではなく、切断部Cは任意の角度の異なる位置に配設することができる。
【0060】
さらに、導体線路の少なくとも一つを超伝導体で構成してもよい。本発明においては、線路の各部において電流集中が緩和されるので、パターン幅の細い(断面積の小さい)線路であっても、電流密度を超伝導状態を保つために必要とされる臨界電流密度以下にでき、超伝導体からなる導体線路を超伝導状態に容易に保つことができる。超伝導体には、イットリウム系やビスマス系等の高温超伝導体を用いるのが好ましい。
【0061】
また、本発明に係る導体線路は、マイクロストリップラインの他に、周知のコプレーナガイド、スロットガイド、平面誘電体線路(特開平8−265007号公報参照)、サスペンデッドストリップ、フィンライン、ストリップライン、非対称ストリップライン、トリプレートライン、並行ストリップライン等を含むものである。
【0062】
【発明の効果】
以上の説明で明らかなように、本発明によれば、絶縁性部材と、それぞれ両端が開放端の複数の導体線路とで共振器を構成し、各導体線路の開放端を互いに異なる位置に配設したので、電気エネルギーが蓄積される領域と磁気エネルギーが蓄積される領域とが絶縁性部材に分散され、磁界分布の片寄りが少なくなる。従って、導体線路内を流れる電流の密度が一様化され、縁端効果及び表皮効果による導体損失を低減することができる。さらに、共振器を複数の導体線路にて構成することで、共振器の共振周波数を低下させることができ、絶縁性部材の誘電率をアップさせなくても、絶縁性部材のサイズを小さくして共振器の小型化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る共振器の原理を説明するための電流と磁界分布図。
【図2】本発明に係る共振器の原理を説明するための電流と磁界分布図。
【図3】本発明に係る共振器の原理を説明するためのもので、(A),(B),(C),(D)はそれぞれ異なる導体線路を備えた共振器の平面図。
【図4】図3に示した各共振器の共振周波数特性を示すグラフ。
【図5】本発明に係る共振器の原理を説明するためのもので、(A),(B)はさらに別の導体線路を備えた共振器の平面図。
【図6】本発明に係る共振器の第1実施形態を示す斜視図。
【図7】(A)は図6に示した共振器の導体線路の拡大縦断面図、(B)は別の導体線路の拡大縦断面図。
【図8】図6に示した共振器のさらに別の導体線路の平面図。
【図9】図6に示した共振器のさらに別の導体線路の平面図。
【図10】図6に示した共振器のさらに別の導体線路の平面図。
【図11】図6に示した共振器のさらに別の導体線路の平面図。
【図12】図6に示した共振器のさらに別の導体線路の平面図。
【図13】図6に示した共振器のさらに別の導体線路の平面図。
【図14】図6に示した共振器のさらに別の導体線路の平面図。
【図15】図6に示した共振器のさらに別の導体線路の平面図。
【図16】図6に示した共振器のさらに別の導体線路の平面図。
【図17】図6に示した共振器のさらに別の導体線路の平面図。
【図18】図6に示した共振器のさらに別の導体線路の平面図。
【図19】本発明に係る共振器の第2実施形態を示す斜視図。
【図20】図19に続く製造手順を示す斜視図。
【図21】図20に示した共振器の導体線路の拡大縦断面図。
【図22】図20に示した共振器の別の導体線路の拡大縦断面図。
【図23】図20に示した共振器のさらに別の導体線路の拡大縦断面図。
【図24】図20に示した共振器のさらに別の導体線路の平面図。
【図25】本発明に係る共振器のさらに別の実施形態を示す斜視図。
【図26】図25に示した共振器の導体線路の拡大縦断面図。
【図27】本発明に係るフィルタの一実施形態を示す内部平面図。
【図28】図27に示したフィルタの縦断面図。
【図29】本発明に係るデュプレクサの一実施形態を示す電気回路ブロック図。
【図30】本発明に係る通信器装置の一実施形態を示す電気回路ブロック図。
【符号の説明】
2,3…導体線路
2a,2b,3a,3b…開放端部
7〜14…導体線路
21…絶縁性基板
22,23…導体線路
22a,22b,23a,23b…開放端部
25…グランド導体
28…入力端子
29…出力端子
31…間隙
33…誘電体材料
41〜81…導体線路
101…絶縁性基板
102,103…導体線路
102a,102b,103a,103b…開放端部
104…誘電体
106…グランド導体
108…入力端子
109…出力端子
111…間隙
112a,112b,113a,113b…導体線路
115,116…導体線路
122a,122b,123a,123b…導体線路
33…誘電体材料
131…フィルタ
132…絶縁性基板
135…入力端子
136…出力端子
137…遮蔽ケース
141…デュプレクサ
142…送信フィルタ
143…受信フィルタ
150…携帯電話
151…アンテナ素子
152…アンテナ共用器
153…受信回路
154…送信回路
R2,R5〜R11…共振器
C…切断部
D…間隙
W…パターン幅
D1…間隙幅
t1…導体線路の膜厚
t2…誘電体の膜厚
ANT…アンテナ端子
Tx…送信端子
Rx…受信端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resonator, a filter, a duplexer, and a communication device.
[0002]
[Prior art]
As a resonator used in the microwave band and the millimeter wave band, a hairpin resonator described in JP-A-62-193302 is known. This hairpin resonator is provided with a line having a curved portion on a dielectric substrate, and is characterized in that it can be downsized as compared with a resonator having a linear line. Further, as another resonator that can be miniaturized, a resonator in which a spiral line is provided on a dielectric substrate as described in JP-A-2-96402 is known.
[0003]
[Problems to be solved by the invention]
By the way, the conventional resonator comprises one resonator by one half wavelength line. Therefore, in the conventional resonator, a region where electric energy is concentrated and accumulated and a region where magnetic energy is concentrated and accumulated are separated into specific regions of the dielectric substrate, respectively, so-called lumped constants. It was handled as an element. Specifically, the region where electric energy is stored is near the open end of the half-wave line, and the region where magnetic energy is stored is near the center of the half-wave line.
[0004]
Here, the magnetic energy is accumulated by the current flowing in the half-wave line according to Ampere's law. In other words, the concentration of the magnetic energy storage area at a specific location means that the current is concentrated at that location. However, in the high frequency band of the microwave band and the millimeter wave band, current concentrates on the edge of the half-wavelength line due to the so-called edge effect, and the conductor loss at the edge increases. For this reason, the concentration of the current at a specific location significantly increases the conductor loss due to the edge effect.
[0005]
When the resonator is downsized, it is necessary to reduce the size of the dielectric substrate and increase the dielectric constant of the dielectric substrate. When the length of the half-wavelength line is shortened as the size of the dielectric substrate is reduced, the resonance frequency is increased (for example, 10 GHz). Therefore, the dielectric constant of the dielectric substrate is increased to lower the resonance frequency to reduce the original desired frequency. This is because the resonance frequency (for example, 2 GHz) must be set. However, since there is a limit that a dielectric constant of a dielectric substrate having a low loss in practice cannot be used as much as possible, there is a limit to miniaturization of the resonator.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a resonator, a filter, a duplexer, and a communication device that have an excellent loss characteristic while achieving a reduction in size and weight.
[0007]
[Means and Actions for Solving the Problems]
In order to achieve the above object, a resonator according to the present invention includes:
(A) an insulating member;
(B) a plurality of conductor lines provided on the insulating member and having a curved portion and electromagnetically coupled to each other;
(C) Both ends of the conductor line are open ends, and the open ends are in the same plane. so Placed in different positions The conductor line has a substantially ring shape with a cut portion. thing,
It is characterized by. More specifically, Conductor track Are disposed at positions different from each other by, for example, 180 degrees or 90 degrees between adjacent conductor lines.
[0008]
With the above configuration, the region in which electrical energy is stored and the region in which magnetic energy is stored are dispersed in the insulating member, and the deviation of the electric field and magnetic field distribution is reduced. Therefore, the density of current flowing in the conductor line is made uniform. In other words, the current distribution in the longitudinal direction of the conductor line is transformed from a sinusoidal curve into a group of curves having a more uniform shape and a smaller amplitude. As described above, since the current distribution is made uniform, the conductor loss due to the edge effect and the skin effect is reduced.
[0009]
In the resonator according to the present invention, at least one gap is provided at the edge of the conductor line along the edge, and the conductor pattern width and the gap width of the edge are substantially equal to the skin depth of the current. It is characterized in that it is set to a size. Alternatively, a plurality of linear conductors are arranged with a gap to form a conductor line, and the conductor pattern width of the linear conductor and the width of the gap are set to substantially the skin depth dimension. .
[0010]
With the above configuration, the current flowing through the conductor line is shunted to the conductor having the pattern width of the skin depth dimension. Therefore, the edge effect and the skin effect are alleviated and the conductor loss is further reduced.
[0011]
In the resonator according to the present invention, the conductor lines are stacked via a thin film dielectric, and the thickness of the remaining conductor line and the thickness of the thin film dielectric are determined with the skin depth remaining, leaving the uppermost conductor line. It is characterized by being set to the following dimension. Here, all the conductor lines may have the same shape pattern.
[0012]
With the above configuration, the current is shunted to the plurality of stacked conductor lines. Accordingly, the edge effect and skin effect of the current are alleviated in the film thickness direction of the conductor line, and the conductor loss is further reduced.
[0013]
Also, by filling the gap between adjacent conductor lines in the same plane with a dielectric material, the distance between conductor lines can be changed according to the dielectric constant of the dielectric material, and the degree of freedom in designing the resonator Becomes larger.
[0014]
In addition, since current concentration is reduced in each part of the conductor line, even for conductor lines with a narrow pattern width (small cross-sectional area), the current density is less than the critical current density required to maintain a superconducting state. Can be. Therefore, a conductor line made of a superconductor can easily maintain a superconducting state.
[0015]
Furthermore, the filter, the duplexer, and the communication device according to the present invention include the resonator having the above-described characteristics, so that the insertion loss can be reduced and the size can be reduced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a resonator, a filter, a duplexer, and a communication device according to the present invention will be described with reference to the accompanying drawings.
[0017]
[Principle, FIGS. 1 to 5]
It will be described with reference to FIG. 1 and FIG. 2 that the conductor loss of the resonator can be reduced by configuring the resonator with a plurality of conductor lines. FIG. 1 and FIG. 2 are electromagnetic field distribution diagrams of the resonator when one resonator is constituted by one and two conductor lines, respectively.
[0018]
As shown in FIG. 1, the conductor line 1 has a substantially ring shape having a cut portion C, and the length thereof is λ / 2 (λ: wavelength of the resonance frequency of the resonator). When the current i flows through the conductor line 1 in the direction indicated by the arrow, for example, electric energy is concentrated and accumulated in the vicinity of the open ends 1a and 1b of the line 1, and little magnetic energy is accumulated. Therefore, a maximum potential difference is obtained between the open ends 1a and 1b. On the other hand, when the current i flows in the line 1, a magnetic field H is generated around the line 1 according to Ampere's law, and magnetic energy is concentrated and accumulated in the vicinity of the central portion 1 c of the line 1, and electric energy Will only accumulate a little. Therefore, in the resonator R1 configured by one conductor line 1, a region where electric energy is concentrated and accumulated is separated from a region where magnetic energy is concentrated and accumulated, so-called lumped element. Are treated as
[0019]
In the resonator R1, the current distribution in the longitudinal direction of the conductor line 1 is a sinusoidal curve, the amplitude is minimum (node) at the open ends 1a and 1b of the line 1, and the amplitude is maximum (antinode) at the center 1c. ) That is, the current density is maximized at the central portion 1c, and the conductor loss due to the edge effect is remarkably increased. In FIGS. 1 and 2, the density of current density is indicated by the length of the arrow of current i. That is, if the arrow is short, the current density is low, and if the arrow is long, the current density is high. In addition, the strength of the magnetic field strength is indicated by the size of the diameter of the direction symbol of the Z component of the magnetic field H. That is, if the diameter of the direction symbol is small, the magnetic field strength is weak, and if the diameter of the direction symbol is large, the magnetic field strength is high.
[0020]
On the other hand, next, as shown in FIG. 2, a resonator R2 constituted by two conductor lines 2 and 3 will be described. Each of the conductor lines 2 and 3 has a substantially ring shape having a cut portion C. The line 3 is arranged in parallel inside the line 2 with a predetermined interval, and the cut portion C of the line 3 is disposed at a position that is 180 degrees different from the cut C of the line 2. When the resonator R2 is resonating, the directions of the currents i flowing in the adjacent lines 2 and 3 are the same direction.
[0021]
When the current i flows through the lines 2 and 3 in the directions indicated by arrows, for example, electric energy is concentrated and accumulated near the open ends 2a, 2b, 3a, and 3b of the lines 2 and 3, and the central portion 2c. , 3c, magnetic energy is concentrated and accumulated. That is, in the resonator R2 configured by the two conductor lines 2 and 3, the region where electric energy is concentrated and accumulated and the region where magnetic energy is concentrated and accumulated are adjacently arranged and dispersed. . Thereby, the deviation of the magnetic field distribution is reduced, the effective inductance of the lines 2 and 3 can be increased, and the unloaded Q of the resonator R2 can be improved.
[0022]
In other words, each of the conductor lines 2 and 3 has a sinusoidal current distribution in the longitudinal direction, and the amplitude is minimum (node) at the open ends 2a, 2b, 3a, and 3b, and the amplitude at the central portions 2c and 3c. Is the maximum (belly). However, since the open ends 2a and 2b of the line 2 and the central part 3c of the line 3 are disposed adjacent to each other, mutual induction occurs between them. Similarly, since the central portion 2c of the line 2 and the open ends 3a and 3b of the line 3 are adjacently disposed, mutual induction occurs between them. As a result, the mutual current distribution is transformed from a sinusoidal curve to a curve having a more uniform and smaller amplitude. As a result, the density of the current i flowing in the conductor lines 2 and 3 is made uniform, and the conductor loss due to the edge effect and the skin effect can be reduced.
[0023]
Next, it will be described based on the planar circuit simulation analysis that the resonance frequency of the resonator can be lowered by configuring the resonator with a plurality of conductor lines.
[0024]
3A to 3D respectively show resonators R3 to R6 used for analysis. A resonator R3 illustrated in FIG. 3A includes a substantially ring-shaped conductor line 4 having a cut portion C. The pattern width of the line 4 was set to 400 μm. The resonator R4 shown in FIG. 3B includes substantially ring-shaped conductor lines 5 and 6 each having a cut portion C. The line 6 is arranged inside the line 5 with a predetermined interval, and the cutting part C of the line 6 is disposed adjacent to the cutting part C of the line 5. The pattern width of the lines 5 and 6 was set to 190 μm, and the interval between the lines 5 and 6 was set to 20 μm. A resonator R5 shown in FIG. 3C includes substantially ring-shaped conductor lines 7 and 8 each having a cut portion C. The line 8 is arranged inside the line 7 with a predetermined interval, and the cut portion C of the line 8 is disposed at a position 90 degrees different from the cut portion C of the line 7. The pattern width of the lines 7 and 8 was set to 190 μm, and the distance between the lines 7 and 8 was set to 20 μm. A resonator R6 shown in FIG. 3D includes substantially ring-shaped conductor lines 9 and 10 each having a cut portion C. The line 10 is arranged in parallel with a predetermined interval inside the line 9, and the cut part C of the line 10 is disposed at a position 180 degrees different from the cut part C of the line 9. The pattern width of the lines 9 and 10 was set to 190 μm, and the distance between the lines 9 and 10 was set to 20 μm.
[0025]
FIG. 4 is a graph showing simulation analysis results of the resonators R3 to R6. The resonance characteristic of the resonator R3 is indicated by a dotted line. The resonance frequency (fundamental mode) of the resonator R3 is 3.33 GHz, and a spurious mode (secondary mode) having a higher frequency than the fundamental mode is generated at a frequency of 6.64 GHz. The resonance characteristic of the resonator R4 is indicated by a two-dot chain line. The resonance frequency (fundamental mode) of the resonator R4 is 2.95 GHz, and the spurious modes (secondary, third and fourth modes) are generated at frequencies of 3.52 GHz, 4.74 GHz and 6.92 GHz, respectively. Since the resonator R4 is composed of the two conductor lines 5 and 6, the resonance frequency is lower than that of the resonator R3 due to the influence of the capacitance generated between the lines 5 and 6. However, there is a problem that the secondary spurious mode occurs close to the resonance frequency (fundamental mode) and is difficult to use as a filter.
[0026]
The resonance characteristic of the resonator R5 is indicated by a one-dot chain line. The resonance frequency (fundamental mode) of the resonator R5 is 2.20 GHz, and spurious modes (second-order and third-order) are generated at frequencies of 4.06 GHz and 5.60 GHz, respectively. The resonator R5 is composed of two conductor lines 7 and 8, and the mutual cut portions C are arranged at positions different by 90 degrees. As a result, in addition to the influence of the capacitance generated between the lines 7 and 8, it is considered that the mutual induction amount is increased. If the resonators have the same size, the resonance frequency is reduced to about 2/3 of the resonator R3. Lower. Moreover, since the secondary and tertiary spurious modes move to the high frequency side and away from the resonance frequency (fundamental mode) compared to the resonator R4, they are suitable for use as a filter.
[0027]
The resonance characteristic of the resonator R6 is indicated by a solid line. The resonance frequency (fundamental mode) of the resonator R6 is 2.15 GHz, and spurious modes (secondary and third order) are generated at 4.86 GHz and 6.18 GHz, respectively. The resonator R6 is composed of two conductor lines 9 and 10, and the mutual cut portions C are arranged at positions different by 180 degrees. Thereby, in addition to the influence of the capacitance generated between the lines 9 and 10, it is considered that the mutual induction amount increases, and the resonance frequency is lowered to about 2/3 of the resonator R3. Moreover, since the secondary and tertiary spurious modes move further to the higher frequency side than the resonator R5 and away from the resonance frequency (fundamental mode), they are suitable for use as a filter. As a result, by configuring the resonator with a plurality of conductor lines, the size of the insulating substrate can be reduced and the resonator can be downsized without increasing the dielectric constant of the insulating substrate.
[0028]
Furthermore, as shown in FIGS. 5A and 5B, the resonance frequency of the resonator in the case where the resonator is constituted by three and four conductor lines will be described based on a planar circuit simulation analysis.
[0029]
The resonator R7 shown in FIG. 5A includes substantially ring-shaped conductor lines 11 to 13 each having a cut portion C. The lines 11 to 13 are arranged in parallel with a predetermined interval, and the cut portions C of the adjacent lines 11 to 13 are arranged at positions different from each other by 180 degrees. The pattern width of the lines 11 to 13 was set to 120 μm, and the interval between the lines 11 to 13 was set to 20 μm. As a result of simulating the resonator R7 having the above configuration, the resonance frequency (fundamental mode) was 1.78 GHz.
[0030]
The resonator R8 illustrated in FIG. 5B includes substantially ring-shaped conductor lines 14 to 17 each having a cut portion C. The lines 14 to 17 are arranged side by side with a predetermined interval, and the cut portions C of the adjacent lines 14 to 17 are arranged at positions different from each other by 180 degrees. The pattern width of the lines 14 to 17 was set to 85 μm, and the interval between the lines 14 to 17 was set to 20 μm. As a result of simulating the resonator R8 having the above configuration, the resonance frequency (fundamental mode) was 1.57 GHz.
[0031]
As a result, it can be seen that by increasing the number of conductor lines constituting the resonator, the resonance frequency of the resonator is reduced, and the resonator can be further reduced in size (area).
[0032]
[First Embodiment, FIGS. 6 to 18]
As shown in FIG. 6, the resonator R <b> 9 is provided on the insulating substrate 21, the two conductor lines 22 and 23 provided on the upper surface of the insulating substrate 21, and the lower surface and the outer peripheral end of the insulating substrate 21. The ground conductor 25 is composed of an input terminal 28 and an output terminal 29 provided at the end of the insulating substrate 21. As a material for the insulating substrate 21, a dielectric, an insulator, or the like is used.
[0033]
Each of the conductor lines 22 and 23 has bent portions bent at right angles at three locations, and both end portions 22a, 22b, 23a, and 23b are open ends. The open ends 22a and 22b of the line 22 are close to each other, and the central portion 23c of the line 23 is disposed between the open ends 22a and 22b. Similarly, the open ends 23a and 23b of the line 23 are close to each other, and the central portion 22c of the line 22 is disposed between the open ends 23a and 23b. The open ends 22a and 22b are disposed at positions different from the open ends 23a and 23b by 180 degrees. Further, the lines 22 and 23 are arranged in parallel with a predetermined gap D. Thus, the lines 22 and 23 are mutually inductively and capacitively coupled on the upper surface of the insulating substrate 21. The input terminal 28 and the output terminal 29 are adjacent to the open ends 22a and 23b of the lines 22 and 23 with a predetermined gap, respectively, and are capacitively coupled to the open ends 22a and 23b.
[0034]
The conductor lines 22 and 23, the ground conductor 25, and the input / output terminals 28 and 29 are formed into a film shape on the surface of the insulating substrate 21 by a conductive material such as Ag, Ag-Pd, or Cu by printing, sputtering, vapor deposition, or the like. Then, it is formed using a known photolithography technique (resist film coating, exposure, resist film development, conductive material etching, resist film peeling) or the like.
[0035]
When a high frequency signal is supplied from the input terminal 28 and the resonator R9 is resonating, the directions of currents flowing in the adjacent lines 22 and 23 are the same. When current flows through the lines 22 and 23, electric energy is concentrated and accumulated near the open ends 22a, 22b, 23a, and 23b of the lines 22 and 23, and magnetic energy is accumulated near the center parts 22c and 23c. Is concentrated and accumulated. That is, in the resonator R9 configured by the two conductor lines 22 and 23, the region where electric energy is concentrated and accumulated and the region where magnetic energy is concentrated and accumulated are adjacently arranged and dispersed. . Thereby, the deviation of the magnetic field distribution is reduced, the effective inductance of the lines 22 and 23 can be increased, and the unloaded Q of the resonator R9 can be improved.
[0036]
In other words, each of the conductor lines 22 and 23 has a sinusoidal current distribution in the longitudinal direction, the amplitude is minimum (node) at the open ends 22a, 22b, 23a, and 23b, and the amplitude at the central portions 22c and 23c. Is the maximum (belly). However, since the open ends 22a and 22b of the line 22 and the central part 23c of the line 23 are adjacently arranged, mutual induction occurs between them. Similarly, since the central portion 22c of the line 22 and the open end portions 23a and 23b of the line 23 are disposed adjacent to each other, mutual induction occurs between them. As a result, the mutual current distribution is transformed from a sinusoidal curve to a curve having a more uniform and smaller amplitude. As a result, the density of the current flowing in the conductor lines 22 and 23 is made uniform, and the conductor loss due to the edge effect and the skin effect can be reduced.
[0037]
Furthermore, by configuring the resonator R9 with the two conductor lines 22 and 23, the resonance frequency can be lowered as compared with the conventional resonator. As a result, the resonator R9 can be downsized by reducing the size of the insulating substrate 21 without increasing the dielectric constant of the insulating substrate 21.
[0038]
The conductor lines 22 and 23 are usually one conductor pattern as shown in FIG. 7A. By the way, in the case of the resonator R9 used in the microwave band or the millimeter wave high frequency band, the conductor lines 22 and 23 having the conductor pattern as shown in FIG. Current tends to concentrate. Therefore, as shown in FIG. 7B, in order to alleviate the current concentration at the edge portion, two gaps 31 are formed along the edge portions at both edge portions of the lines 22 and 23, respectively. And the conductor pattern width and the gap width at the edge may be set to substantially the skin depth of the current. As a result, a thin conductor pattern is formed at the edge portions of the conductor lines 22 and 23, and current is divided between the thin conductor pattern and the main conductor pattern. As a result, the edge effect and skin effect of the current are alleviated, and the conductor loss can be further reduced.
[0039]
Further, in FIG. 7B, the gap 31 provided at the edge of the lines 22 and 23 and the gap D between the lines 22 and 23 are filled with a dielectric material 33 to increase the coupling capacitance between the lines 22 and 23. It is getting bigger. Thereby, the dimension of the gap D between the lines 22 and 23 can be changed according to the dielectric constant of the dielectric material 33, and the degree of freedom in designing the resonator R9 is increased.
[0040]
The resonator R9 may be constituted by the conductor lines shown in FIGS. 8 to 18 in addition to the two conductor lines 22 and 23. FIG. 8 is composed of four conductor lines 41 to 44. The cut portions C of the lines 41 to 44 are arranged at positions different by 90 degrees between the adjacent lines 41 to 44. 9 and 10 are configured by substantially ring-shaped conductor lines 45 to 48 and 49 to 52 each having a cut portion C at a square corner. In FIG. 9, the cut portions C are disposed at positions that differ by 90 degrees between the adjacent lines 45 to 48. In FIG. 10, the cut portions C are disposed at positions that differ by 180 degrees between the adjacent lines 49 to 52.
[0041]
FIG. 11 is composed of conductor lines 53 to 56. A gap between the conductor lines 53 to 56 is filled with a dielectric material 33. FIGS. 12 and 13 are each composed of two spiral conductor lines 57 and 58 and conductor lines 59 and 60. The gap between the lines 57 and 58 and the gap between the lines 59 and 60 are filled with a dielectric material 33. FIG. 14 is composed of two U-shaped conductor lines 61 and 62. FIG. 15 shows a further arrangement of a conductor line 63 inside the lines 61 and 62 shown in FIG. A gap between the lines 61 to 63 is filled with a dielectric material 33. FIG. 16 is composed of four substantially annular conductor lines 64 to 67. The cut portions C of the lines 64 to 67 are arranged at positions different by 180 degrees between the adjacent lines 64 to 67. FIG. 17 shows that the pattern cross-sectional area of the central portion where the current density is maximized is increased by making the pattern width of the central portion of each of the conductor lines 68 to 71 wider than the pattern width of the open end portion. Loss is reduced.
[0042]
In FIG. 18, ten substantially ring-shaped conductor lines 72 to 81 having a constant pattern width W are arranged side by side in a region surrounded by a dotted line 82 while maintaining a constant gap width D1. The cut portions C of the lines 72 to 81 are disposed at positions different by 180 degrees between the adjacent lines 72 to 81. The pattern width W and the gap width D1 of the lines 72 to 81 are set to the skin depth dimension. Thereby, a current is shunted to the lines 72 to 81, the edge effect and skin effect of the current are alleviated, and the conductor loss can be further reduced.
[0043]
[Second Embodiment, FIGS. 19 to 26]
In the second embodiment, a resonator having a structure in which a conductor line and a dielectric are stacked on an insulating substrate will be described.
[0044]
As shown in FIG. 19, a U-shaped conductor line 102 is provided on the upper surface of the insulating substrate 101, a ground conductor 106 is provided on the lower surface and the outer peripheral end, and an input terminal 108 and an output terminal 109 are provided on the end. Both end portions 102a and 102b of the line 102 are open ends, and are close to the input terminal 108 and the output terminal 109 with a predetermined gap, respectively, and are capacitively coupled. Further, as shown in FIGS. 20 and 21, a conductor line 103 having the same shape as the line 102 is laminated on the line 102 through a dielectric 104 while being rotated 180 degrees with respect to the line 102.
[0045]
Between the open ends 102a and 102b of the line 102, the central part 103C of the line 103 is disposed. Similarly, a central portion 102 c of the line 102 is disposed between the open ends 103 a and 103 b of the line 103. The open ends 102a and 102b are disposed at positions different from the open ends 103a and 103b by 180 degrees.
[0046]
Thus, the obtained lines 102 and 103 of the resonator R10 are mutually inductively and capacitively coupled in the film thickness direction via the dielectric 104. When a high frequency signal is supplied from the input terminal 108 and the resonator R10 is resonating, the directions of currents flowing in the adjacent lines 102 and 103 are the same. When a current flows in the line 102, electric energy is concentrated and accumulated in the vicinity of the open ends 102a and 102b of the line 102 and the portion sandwiched between the open ends 102a and 102b, and in the vicinity of the central part 102c. Magnetic energy is concentrated and stored. Similarly, when a current flows in the line 103, electric energy is concentrated and accumulated in the vicinity of the open ends 103a and 103b of the line 103 and the portion sandwiched between the open ends 103a and 103b, and the central portion 103c. Magnetic energy is concentrated and accumulated in the vicinity. That is, in the resonator 10 constituted by the two conductor lines 102 and 103, a region where electric energy is concentrated and accumulated and a region where magnetic energy is concentrated are arranged adjacent to each other and dispersed. This reduces the deviation of the magnetic field distribution.
[0047]
In other words, each of the conductor lines 102 and 103 has a sinusoidal current distribution in the longitudinal direction, the amplitude is minimum (node) at the open ends 102a, 102b, 103a, and 103b, and the amplitude at the central portions 102c and 103c. Is the maximum (belly). However, since the open ends 102a and 102b of the line 102 and the central part 103c of the line 103 are adjacently arranged, mutual induction occurs between them. Similarly, since the center portion 102c of the line 102 and the open end portions 103a and 103b of the line 103 are adjacently arranged, mutual induction occurs between them. As a result, the mutual current distribution is transformed from a sinusoidal curve to a curve having a more uniform and smaller amplitude. As a result, the density of the current flowing through the conductor lines 102 and 103 is made uniform, and the conductor loss due to the edge effect and the skin effect can be reduced.
[0048]
Furthermore, by configuring the resonator R10 with the two conductor lines 102 and 103, the resonance frequency can be lowered as compared with the conventional resonator. As a result, the resonator R10 can be downsized by reducing the size of the insulating substrate 101 without increasing the dielectric constant of the insulating substrate 101.
[0049]
Further, as shown in FIG. 22, three gaps 111 are provided at both edge ends of each of the conductor lines 102 and 103 along the edge edges, and the conductor pattern width and gap width of the edge edges are defined as the skin. You may make it set to the dimension below the depth. As a result, a thin conductor pattern is formed at the edge portions of the lines 102 and 103, and current is divided between the thin conductor pattern and the main conductor pattern. As a result, the edge effect and skin effect of the current are alleviated, and the conductor loss can be further reduced.
[0050]
Further, the resonator R10 is constituted by the two conductor lines 102 and 103, in addition to those shown in FIGS. 26 It may be configured by a conductor line shown in FIG. In FIG. 23, the conductor lines 112a and 112b and the conductor lines 113a and 113b are alternately stacked via the dielectrics 104 to form lines 102 and 103 having a multilayer structure (four-layer structure in the case of FIG. 23). . At this time, the film thickness t1 of the lines 112a, 112b, and 113a other than the uppermost line 113b and the film thickness t2 of the dielectric 104 are set to dimensions equal to or less than the skin depth. Thus, by multilayering the lines 102 and 103, the current is divided into the lines 112a and 112b and the lines 113a and 113b. Therefore, the edge effect and skin effect of the current are relaxed also in the film thickness direction of the lines 102 and 103, and the conductor loss can be further reduced.
[0051]
FIG. 24 shows a conductor line 116 having the same shape as the line 115 (see (B) and (C)) on a rectangular substantially annular conductor line 115 (see (A)) having a cut portion C via a dielectric. Are laminated. FIG. 24B shows a case where the cut portion C is disposed at a position that is 90 degrees different between the adjacent lines 115 and 116. FIG. 24C shows a case where the cut portion C is disposed at a position different by 180 degrees between the adjacent lines 115 and 116. In FIG. 24, the cut portions C of the conductor lines 115 and 116 may be formed at square corners, and the shape of the conductor lines 115 and 116 is a substantially circular ring having the cut portions C. There may be.
[0052]
Also, the resonator R11 shown in FIGS. 25 and 26 is the same as the resonator R9 shown in FIG. 6 except that the conductor lines 122a and 122b and the conductor lines 123a and 123b are stacked via the dielectric 124, respectively. In the case of FIG. 26, the lines 22 and 23 have a two-layer structure). The lines 122a and 122b have the same shape pattern, and the lines 123a and 123b also have the same shape pattern. At this time, the film thickness t1 of the lines 122a and 123a other than the uppermost lines 122b and 123b and the film thickness t2 of the dielectric 124 are set to dimensions equal to or smaller than the skin depth. Thus, by making the conductor lines 22 and 23 multilayer, the current is shunted to the lines 122a and 122b and the lines 123a and 123b. Therefore, the edge effect and skin effect of the current are also reduced in the film thickness direction of the lines 22 and 23, and the conductor loss can be further reduced.
[0053]
[Third Embodiment, FIGS. 27 and 28]
The third embodiment shows an embodiment of a filter according to the present invention, and will be described by taking a three-stage bandpass filter as an example.
[0054]
As shown in FIGS. 27 and 28, the band-pass filter 131 has three resonators R8 shown in FIG. 5B arranged in parallel on the upper surface of the insulating substrate 132. Further, an input terminal 135 is provided at the left end portion of the insulating substrate 132, and the input terminal 135 is brought close to the open end portion of the conductor line 14 of the resonator R8 disposed on the left side of the substrate 132 to be capacitively coupled. Similarly, an output terminal 136 is provided at the right end portion of the substrate 132, and this output terminal 136 is brought close to the open end portion of the conductor line 14 of the resonator R 8 disposed on the right side of the substrate 132 to be capacitively coupled. The insulating substrate 132 is accommodated in the shielding case 137. The bandpass filter 131 obtained in this way has a small insertion loss and can be miniaturized.
[0055]
[Fourth Embodiment, FIG. 29]
The fourth embodiment shows an embodiment of a duplexer (antenna duplexer) according to the present invention. As shown in FIG. 29, in the duplexer 141, the transmission filter 142 is electrically connected between the transmission terminal Tx and the antenna terminal ANT, and the reception filter 143 is electrically connected between the reception terminal Rx and the antenna terminal ANT. ing. Here, as the transmission filter 142 and the reception filter 143, the filter 131 of the third embodiment can be used. By mounting this filter 131, it is possible to realize a duplexer 141 that has a small insertion loss and can be miniaturized.
[0056]
[Fifth Embodiment, FIG. 30]
5th Embodiment shows one Embodiment of the communication apparatus which concerns on this invention, and demonstrates it taking a mobile phone as an example.
[0057]
FIG. 30 is an electric circuit block diagram of an RF transmission / reception portion of the mobile phone 150. In FIG. 30, 151 is an antenna element, 152 is an antenna duplexer, 153 is a receiving circuit, and 154 is a transmitting circuit. Here, the duplexer 141 of the fourth embodiment can be used as the antenna duplexer 152. By mounting the duplexer 141, the insertion loss of the RF transmission / reception portion is reduced, and the communication quality such as the noise characteristics and transmission speed of the mobile phone 150 can be improved.
[0058]
[Other Embodiments]
The resonator, the filter, the duplexer, and the communication device according to the present invention are not limited to the above embodiment, and can be variously modified within the scope of the gist.
[0059]
In the above-described embodiment, the cut portions C are disposed at positions that are different by 90 degrees or 180 degrees between adjacent conductor lines. However, the present invention is not limited to this, and the cut portions C are positions at different angles. Can be arranged.
[0060]
Furthermore, at least one of the conductor lines may be made of a superconductor. In the present invention, since current concentration is reduced in each part of the line, the critical current density required to maintain the current density in a superconducting state even for a line with a narrow pattern width (small cross-sectional area). The conductor line made of a superconductor can be easily kept in a superconducting state. The superconductor is preferably a high-temperature superconductor such as yttrium or bismuth.
[0061]
In addition to the microstrip line, the conductor line according to the present invention is a well-known coplanar guide, slot guide, planar dielectric line (see JP-A-8-265007), suspended strip, fin line, strip line, asymmetrical. Includes stripline, triplate line, parallel stripline, etc.
[0062]
【The invention's effect】
As is apparent from the above description, according to the present invention, a resonator is composed of an insulating member and a plurality of conductor lines each having open ends, and the open ends of the conductor lines are arranged at different positions. Thus, the region where electrical energy is stored and the region where magnetic energy is stored are dispersed in the insulating member, and the deviation of the magnetic field distribution is reduced. Therefore, the density of the current flowing in the conductor line is made uniform, and the conductor loss due to the edge effect and the skin effect can be reduced. Furthermore, by configuring the resonator with a plurality of conductor lines, the resonance frequency of the resonator can be lowered, and the size of the insulating member can be reduced without increasing the dielectric constant of the insulating member. The size of the resonator can be reduced.
[Brief description of the drawings]
FIG. 1 is a current and magnetic field distribution diagram for explaining the principle of a resonator according to the present invention.
FIG. 2 is a current and magnetic field distribution diagram for explaining the principle of the resonator according to the present invention.
FIG. 3 is a plan view of a resonator provided with different conductor lines for explaining the principle of the resonator according to the present invention, wherein (A), (B), (C), and (D) are different from each other.
4 is a graph showing a resonance frequency characteristic of each resonator shown in FIG. 3;
FIGS. 5A and 5B are plan views of a resonator provided with another conductor line for explaining the principle of the resonator according to the present invention. FIGS.
FIG. 6 is a perspective view showing a first embodiment of a resonator according to the invention.
7A is an enlarged longitudinal sectional view of a conductor line of the resonator shown in FIG. 6, and FIG. 7B is an enlarged longitudinal sectional view of another conductor line.
8 is a plan view of still another conductor line of the resonator shown in FIG. 6. FIG.
9 is a plan view of still another conductor line of the resonator shown in FIG. 6. FIG.
10 is a plan view of still another conductor line of the resonator shown in FIG. 6. FIG.
11 is a plan view of still another conductor line of the resonator shown in FIG. 6. FIG.
12 is a plan view of still another conductor line of the resonator shown in FIG. 6. FIG.
13 is a plan view of still another conductor line of the resonator shown in FIG. 6. FIG.
14 is a plan view of still another conductor line of the resonator shown in FIG. 6. FIG.
15 is a plan view of still another conductor line of the resonator shown in FIG. 6;
16 is a plan view of still another conductor line of the resonator shown in FIG. 6;
17 is a plan view of still another conductor line of the resonator shown in FIG. 6;
18 is a plan view of still another conductor line of the resonator shown in FIG. 6;
FIG. 19 is a perspective view showing a second embodiment of a resonator according to the invention.
20 is a perspective view showing a manufacturing procedure following FIG. 19. FIG.
21 is an enlarged longitudinal sectional view of a conductor line of the resonator shown in FIG.
22 is an enlarged longitudinal sectional view of another conductor line of the resonator shown in FIG. 20;
FIG. 23 is an enlarged vertical sectional view of still another conductor line of the resonator shown in FIG. 20;
24 is a plan view of still another conductor line of the resonator shown in FIG. 20. FIG.
FIG. 25 is a perspective view showing still another embodiment of the resonator according to the invention.
26 is an enlarged longitudinal sectional view of a conductor line of the resonator shown in FIG. 25. FIG.
FIG. 27 is an internal plan view showing one embodiment of a filter according to the present invention.
FIG. 28 is a longitudinal sectional view of the filter shown in FIG.
FIG. 29 is an electric circuit block diagram showing an embodiment of a duplexer according to the present invention.
FIG. 30 is an electric circuit block diagram showing an embodiment of a communication device according to the present invention.
[Explanation of symbols]
2, 3 ... Conductor line
2a, 2b, 3a, 3b ... open end
7-14 ... conductor line
21 ... Insulating substrate
22, 23 ... Conductor line
22a, 22b, 23a, 23b ... open end
25 ... Ground conductor
28 ... Input terminal
29 ... Output terminal
31 ... Gap
33 ... Dielectric material
41-81 ... Conductor line
101 ... Insulating substrate
102, 103 ... Conductor line
102a, 102b, 103a, 103b ... open end
104: Dielectric
106: Ground conductor
108: Input terminal
109 ... Output terminal
111 ... Gap
112a, 112b, 113a, 113b ... conductor line
115, 116 ... Conductor line
122a, 122b, 123a, 123b ... conductor lines
33 ... Dielectric material
131 ... Filter
132. Insulating substrate
135: Input terminal
136 ... Output terminal
137 ... Shielding case
141 ... Duplexer
142 ... transmission filter
143: Reception filter
150 ... mobile phone
151. Antenna element
152 ... Antenna duplexer
153 ... Receiving circuit
154: Transmitter circuit
R2, R5-R11 ... Resonator
C ... Cutting part
D ... Gap
W: Pattern width
D1 ... Gap width
t1: Conductor line thickness
t2: Dielectric film thickness
ANT ... antenna terminal
Tx: Transmission terminal
Rx: Receive terminal

Claims (11)

絶縁性部材と、
前記絶縁性部材に設けられた、曲部を有しかつ電磁気的に相互に結合した複数の導体線路とを備え、
前記導体線路のそれぞれ両端が開放端であり、該開放端を同一平面内互いに異なる位置に配設し、前記導体線路の形状が切断部を有したほぼ環形状であること、
を特徴とする共振器。
An insulating member;
A plurality of conductor lines provided on the insulating member and having a curved portion and electromagnetically coupled to each other;
Both ends of the conductor line are open ends, the open ends are disposed at different positions in the same plane, and the shape of the conductor line is a substantially ring shape having a cut portion ,
A resonator characterized by.
前記導体線路の切断部を、隣接する導体線路相互間で180度異なる位置に配設したことを特徴とする請求項記載の共振器。Resonator according to claim 1, wherein the cutting portion, characterized in that disposed 180 degrees different positions between adjacent conductor lines mutually of the conductor line. 前記導体線路の縁端部に、該縁端部に沿って少なくとも1本の間隙を設け、前記縁端部の導体パターン幅及び間隙幅をほぼ表皮深さ寸法に設定したことを特徴とする請求項1又は請求項記載の共振器。The edge portion of the conductor line is provided with at least one gap along the edge portion, and the conductor pattern width and the gap width of the edge portion are set to substantially the skin depth dimension. The resonator according to claim 1 or 2 . 複数の線状導体を間隙を有して配設して前記導体線路を構成し、前記線状導体の導体パターン幅及び前記間隙の幅をほぼ表皮深さ寸法に設定したことを特徴とする請求項1又は請求項記載の共振器。The conductor line is configured by arranging a plurality of linear conductors with a gap, and a conductor pattern width of the linear conductor and a width of the gap are set to approximately a skin depth dimension. The resonator according to claim 1 or 2 . 前記導体線路を薄膜誘電体を介して積み重ね、最上層の前記導体線路を残して、残りの前記導体線路の膜厚及び前記薄膜誘電体の膜厚を表皮深さ以下の寸法に設定したことを特徴とする請求項1ないし請求項4のいずれかに記載の共振器。The conductor lines are stacked through a thin film dielectric, the uppermost conductor line is left, and the film thickness of the remaining conductor lines and the film thickness of the thin film dielectric are set to dimensions of the skin depth or less. The resonator according to any one of claims 1 to 4, characterized in that: 前記導体線路が全て同一形状パターンであることを特徴とする請求項記載の共振器。6. The resonator according to claim 5, wherein all the conductor lines have the same shape pattern. 同一平面内の隣接する前記導体線路の間の空隙に誘電体材料を充填したことを特徴とする請求項1ないし請求項6のいずれかに記載の共振器。The resonator according to any one of claims 1 to 6, characterized in that filled with dielectric material in the gap between the conductor line adjacent in the same plane. 前記導体線路の少なくとも一つが超伝導体であることを特徴とする請求項1ないし請求項7のいずれかに記載の共振器。The resonator according to any of claims 1 to claim 7, characterized in that at least one of said conductor line is a superconductor. 請求項1ないし請求項記載の共振器の少なくともいずれか一つを備えたことを特徴とするフィルタ。Filter, characterized in that it comprises at least one of claims 1 to resonator according to claim 8. 請求項記載のフィルタを備えたことを特徴とするデュプレクサ。A duplexer comprising the filter according to claim 9 . 請求項記載のフィルタ又は請求項10記載のデュプレクサの少なくともいずれか一つを備えたことを特徴とする通信機装置。A communication apparatus comprising at least one of the filter according to claim 9 or the duplexer according to claim 10 .
JP21281998A 1998-07-28 1998-07-28 Resonator, filter, duplexer, and communication device Expired - Lifetime JP3788051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21281998A JP3788051B2 (en) 1998-07-28 1998-07-28 Resonator, filter, duplexer, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21281998A JP3788051B2 (en) 1998-07-28 1998-07-28 Resonator, filter, duplexer, and communication device

Publications (2)

Publication Number Publication Date
JP2000049512A JP2000049512A (en) 2000-02-18
JP3788051B2 true JP3788051B2 (en) 2006-06-21

Family

ID=16628891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21281998A Expired - Lifetime JP3788051B2 (en) 1998-07-28 1998-07-28 Resonator, filter, duplexer, and communication device

Country Status (1)

Country Link
JP (1) JP3788051B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603826B2 (en) * 2001-09-17 2004-12-22 株式会社村田製作所 Spiral line assembly element, resonator, filter, duplexer and high frequency circuit device
JP3861806B2 (en) * 2001-12-18 2006-12-27 株式会社村田製作所 Resonator, filter, duplexer, and communication device
KR100759940B1 (en) 2006-03-20 2007-09-18 한국과학기술원 A ring-type resonant cell and an microwave oscillator utilizing the ring-type resonant cell and efficiency enhancement method of it
WO2021220565A1 (en) * 2020-04-27 2021-11-04 株式会社村田製作所 Rfid auxiliary antenna device

Also Published As

Publication number Publication date
JP2000049512A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US6144268A (en) High-frequency transmission line, dielectric resonator, filter, duplexer, and communication device, with an electrode having gaps in an edge portion
US9401537B2 (en) Multi-mode filter
KR100296847B1 (en) Dielectric resonator device
US9270008B2 (en) Transmission line resonator, bandpass filter using transmission line resonator, multiplexer, balanced-to-unbalanced transformer, power divider, unbalanced-to-balanced transformer, frequency mixer, and balance-type filter
US5467064A (en) Embedded ground plane for providing shielded layers in low volume multilayer transmission line devices
US6486754B1 (en) Resonator, filter, duplexer, and communication device
JP3478219B2 (en) Resonator, resonance element, resonator device, filter, duplexer, and communication device
US3448409A (en) Integrated microwave circulator and filter
JP3788051B2 (en) Resonator, filter, duplexer, and communication device
JP2003258504A (en) High frequency circuit apparatus and transmitter/ receiver
JP4042800B2 (en) High frequency circuit device and transmission / reception device
JP3379471B2 (en) Transmission line, resonator, filter, duplexer, and communication device
US6509810B2 (en) Filter, duplexer, and communication device
JP4442066B2 (en) Dual-mode bandpass filter, characteristic adjustment method for dual-mode bandpass filter, duplexer, and wireless communication apparatus
JP3680573B2 (en) REACTANCE ELEMENT AND CIRCUIT MODULE USING THE REACTANCE ELEMENT
Thapa et al. Implementation of SIW Cavity in Commercial CMOS Technology for Sub-Terahertz Band Applications
JP3918758B2 (en) High frequency circuit element, resonator, filter, duplexer, and high frequency circuit device
US6937118B2 (en) High-frequency circuit device, resonator, filter, duplexer, and high-frequency circuit apparatus
Shen et al. A vertically stacked quasi-elliptic waveguide filter with crossly coupling vias
WO2005041345A1 (en) Dual mode planar filter based on smoothed contour resonators
JP2002335106A (en) High-frequency circuit device and communications equipment
JPH1141003A (en) Magnetic coupling circuit component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

EXPY Cancellation because of completion of term