JP3787078B2 - Unstable operating area sensing device for turbo compressor - Google Patents

Unstable operating area sensing device for turbo compressor Download PDF

Info

Publication number
JP3787078B2
JP3787078B2 JP2001228880A JP2001228880A JP3787078B2 JP 3787078 B2 JP3787078 B2 JP 3787078B2 JP 2001228880 A JP2001228880 A JP 2001228880A JP 2001228880 A JP2001228880 A JP 2001228880A JP 3787078 B2 JP3787078 B2 JP 3787078B2
Authority
JP
Japan
Prior art keywords
pressure
sensor
compressor
impeller
turbo compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001228880A
Other languages
Japanese (ja)
Other versions
JP2002242879A (en
Inventor
光鎬 金
ユファン シン
在鶴 全
Original Assignee
コリア インスティテュート オブ サイエンス アンド テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コリア インスティテュート オブ サイエンス アンド テクノロジー filed Critical コリア インスティテュート オブ サイエンス アンド テクノロジー
Publication of JP2002242879A publication Critical patent/JP2002242879A/en
Application granted granted Critical
Publication of JP3787078B2 publication Critical patent/JP3787078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/10Purpose of the control system to cope with, or avoid, compressor flow instabilities
    • F05D2270/101Compressor surge or stall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3011Inlet pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3015Pressure differential pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ターボ型圧縮機の作動中に頻発する旋回失速及びサージ(surge)を迅速且つ簡単に感知するための感知装置に関する。
【0002】
【従来の技術】
一般に、ターボ型圧縮機において、その作動流体の作動流量が次第に減少し、所定の流量以下になると旋回失速及びサージが発生する。これらの発生は圧縮機システムの性能を悪化させ、最悪の場合は圧縮機システムに致命的な機械的損傷を生じる恐れがある。そこで、かかる旋回失速及びサージの発生を迅速且つ正確に感知し、これらを解消することが何よりも重要である。
【0003】
旋回失速及びサージ領域を感知するために、従来は、高周波用圧力センサ又は振動センサ及び信号分析システムなどから成る感知装置を用いるが、これらのセンサは高価であるため感知装置の製造コストが高くなること、信号分析システムの操作には高度の技法を必要とすること、このシステムの維持・保守に高額の費用がかかることなどの問題があった。これらの問題を克服するために、構造、操作、維持・保守が簡単で、信頼性が高く、且つ、経済的で新規なターボ型圧縮機の不安定作動領域感知装置及び感知方法が要求されている。
【0004】
【発明が解決しようとする課題】
本発明の課題は、高価な高周波用圧力センサ又は振動センサ及び複雑な分析システムを用いる従来の感知装置に代えて、構成・操作が簡単で、製造コスト・維持・管理費が少なく、信頼性の高い新規なターボ型圧縮機の不安定作動領域感知装置を提供することにある。
【0005】
【課題を解決するための手段】
以上の課題を解決するために、本発明に基づくターボ型圧縮機の不安定作動領域感知装置は、感知機体と、この感知機体内に貫設された第1の圧力管と第2の圧力管と、両圧力管の同じ側の端部に形成され所定の間隔を置いて感知機体の一平端面で開口する第1の圧力取出し孔と第2の圧力取出し孔と、感知機体の該平端面に両取出し孔間を横切って設けられた分割膜とを有する不安定作動領域感知機より成り、この不安定作動領域感知機を、分割膜の長手方向がインペラの回転軸に平行になるようにターボ型圧縮機内のインペラの入口側に、又は分割膜の長手方向がインペラから流出する流体の流れ方向と平行になるようにインペラの出口側のディフューザに設け、該第1及び第2の圧力取出し孔間の圧力差で該ターボ型圧縮機が不安定作動領域で操作しているか否かを検出するように構成される。
【0006】
第1及び第2の圧力取出し孔間の圧力をモニタしてターボ型圧縮機の安定性及び非安定性を検出するモニタを圧力感知機に接続することが望ましい。
【0007】
また、第1及び第2の圧力取出し孔間の圧力差が前記ターボ型圧縮機が不安定作動領域で作動していることを示す場合は、それを運転者に直ちに警告する警告手段を前記圧力感知機に接続することが望ましい。
【0008】
感知機20は、インペラの入口側かインペラの出口側のディフューザに設けられる。何れの場合も、ターボ型圧縮機が安定作動領域で作動している時には、インペラの入口側に入ってくる作動流体の流れ方向が分割膜の長手方向と実質的に一致するので、第1及び第2の圧力取出し孔間に圧力差が生じない。これに対して、旋回失速やサージが発生してターボ型圧縮機が不安定作動領域で作動している時は、作動流体の流れ方向が分割膜の長手方向に一致しないので、第1及び第2の圧力取出し孔間に圧力差が生じる。この圧力差をU管に直接連結するか電気信号化してモニタに表示すると、この圧力差が生じてターボ型圧縮機が不安定作動領域で作動していることを認識することができ、例えば、モニタ、ディスプレー、ランプ又はブザーによって運転者に警告することができる。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明に基づくターボ型圧縮機の不安定作動領域感知装置の一実施形態について詳述する。
【0010】
図1と2は、それぞれ、本発明のターボ型圧縮機用不安定作動領域感知装置の一実施形態の正面図と側面図である。
【0011】
このターボ型圧縮機用不安定作動領域感知機20(以下、単に感知機20という)は、図3の縦断面図及び図4の横断面図に示すように、ターボ型圧縮機7に設けられる。ターボ型圧縮機7(以下、単に圧縮機7という)は、インペラ12とこの出口側のディフューザ14と、圧縮機7の入口の吸入管8と、出口30を備えたボリュート31とを有する。ディフューザ14はインペラ12の出口側に位置し、出口30に連なっている。そして、感知機20は吸入管8内のインペラ12の入口部に配設されている。作動流体は吸入管8から圧縮機7に導入され、ディフューザ14に入ってインペラ1を回転させ、ボリュート31の出口30から排出される。この際感知機20が作動流体の流れ方向に応じて圧力差を検出する。
【0012】
感知機20は、図1及び2に示すように、感知機体22と、この感知機体22の軸方向に貫設された第1の圧力管25と第2の圧力管26と、感知気体22の先端の平面(平端面)で所定の間隔を置いて開口する、第1及び第2の圧力管25,26の一端部を成す第1の圧力取出し孔25aと第2の圧力取出し孔26aと、これらの両圧力取出し孔25a,26a間を横切る分割膜28とを有する。
【0013】
第1及び第2の圧力管25,26の他端は、図示しない圧力センサ又はU字型圧力管に接続され、両圧力取出し孔25a,26a内に発生する圧力を電気的信号や視覚的信号として表示できるようになっている。
【0014】
感知機20を、図3,4に示すように、その分割膜28の長手方向がインペラ12の軸方向に平行になるように、圧縮機7の吸入管8内のインペラ12の、作動流体の入口側に配設する。
【0015】
圧縮機7の出口30における作動流体の流速(出力速度)を種々に設定して感知機20を図4で矢印Aで示す方向に回転させて、感知機回転角−標準圧力差特性曲線を作成した。この特性曲線が図5に示されている。出力速度は13m/s、29m/s、48m/s、81m/sの4種、矢印Aの方向への感知機20の回転角は−180°から180°である。又、標準圧力差は(P1−P2)/(Pt−Ps) (ただし、P1は第1の圧力取出し孔25aの圧力、P2は第2の圧力取出し孔26aの圧力、Ptは総圧力、Psは静圧力である)として定義され、無次元の値である。
【0016】
図5から明らかなように、各出力速度の特性曲線は同形であり、同一回転角度において標準圧力差はほぼ等しい。即ち、感知機回転角−標準圧力差特性は、出力速度に関わりなく感知機回転角に従属した特性を示している。従って、圧縮機の容量・大きさ及びインペラの回転数に実質的に関係なく、この感知機20を圧縮機7に用いることができる。
【0017】
図6は、圧縮機7の流量係数−静圧上昇係数特性曲線であり、流量係数が1.3以下の場合は、圧縮機7は不安定作動領域10で操作し、1.3を超える場合は圧縮機7は安定作動領域9で操作する。なお、ここで、流量係数は流量/(πxインペラ直径xインペラ出力幅xインペラ速度)と、また、静圧上昇係数は圧力差/{流体密度x(インペラ速度)/2}として定義される。図中A,B,Cは圧縮機7の安定作動領域9における作動点の例を、D,Eは圧縮機7の不安定作動領域10における作動点の例を示す。
【0018】
図7(A)は、圧縮機7が安定作動領域9内の作動点A,B,Cで作動する場合の感知機回転角度−標準圧力差特性を示す。この特性図においても、作動点が安定作動領域9内にある限り、作動点に実質的に関わりなく、感知機20の回転角に対応してサイン曲線状に変化する。即ち、図(A)から明らかなように、感知機20の回転角が0°の場合、標準圧力差は実質的に0になる。このことは、感知機20の回転角が0°の場合、第1及び第2の圧力取出し孔25a,25b間の圧力差が実質的に0であることを意味する。これは、図7(B)に示すように、作動流体が、インペラ12の回転軸と平行に設定された分割膜28に平行に流入するため、第1及び第2の圧力取出し孔25a,25b間に圧力差が発生しないからである。これから明らかなように、感知機20の回転角が0°の場合、標準圧力差が0であれば、圧縮機7は安定作動領域9内で正常に作動していることになる。
【0019】
図8(A)は、圧縮機7が不安定作動領域10内の作動点D,Eで作動する場合の感知機回転角度−標準圧力差特性を示す。この特性図においても、作動点が不安定作動領域10内にあると、作動点に実質的に関わりなく、感知機20の回転角に対応してコサイン曲線状に変化する。即ち、図8(A)から明らかなように、感知機20の回転角が0°の場合、標準圧力差が最大になる。このことは第1及び第2の圧力取出し孔25a,25b間の圧力差が感知機20の回転角が0°の場合、実質的に最大になることを意味する。これは、図8(B)に示すように、作動流体が、インペラ12の回転軸と平行に設定された分割膜28に実質的に直角に流入するため、第1及び第2の圧力取出し孔25a,25b間に最大の圧力差が発生するからである。これから明らかなように、感知機20の回転角が0°の場合、標準圧力差が最大になると、圧縮機7は不安定作動領域10内で操作していることになるから、圧縮機7が旋回失速又はサージが発生する状態にあることが示される。
【0020】
感知機20をその回転角度が0°になるように設定し、感知機20の第1及び第2の圧力管25,26に圧力測定用のU字管や他の適切な圧力測定装置を接続し、第1及び第2の圧力取出し孔25a,26aにおける圧力を電子的に又は理論回路的に処理してこれらの圧力差をモニタ又はディスプレーに電子的に又は視覚的に表示する。標準圧力差が図8(A)の最大値又はその近傍になると、圧縮機7は不安定状になっていることを示すので、圧縮機7を正常状態へ復帰させるようにする。このようにして、旋回失速やサージの発生を回避することができる。
【0021】
第1及び第2の圧力取出し孔25a,26a間の圧力差をモニタに又はディスプレーに表示したり、圧縮機7の作動状態が不安定作動領域10になったときには警告手段であるランプが点灯したりブザーが鳴ったりするようにすることができる。かくして、現在の圧縮機の運転状態が安定作動領域で作動しているか不安定作動領域で作動しているかを検出することができる。
【0022】
図9及び10は、それぞれ、感知機20をインペラ12の出口側のディフューザ14に設けた実施形態の縦断面図及び横断面図を示す。感知機20は、その分割膜28の長手方向がインペラ12から流出する作動流体の流れ方向と平行になるように配置されており、この状態にある感知機20の回転角を0°とする。この実施形態も、図5,7(A),8(A)の特性図と同等の特性図を示し、図3、4の実施形態と同様の作用が達成される。
【0023】
【発明の効果】
本発明に基づくターボ型圧縮機の不安定作動領域感知装置は、構成が極めて簡単であり製造が安価かつ容易であるという効果がある。また、この感知装置は複雑で高価な電気装置及び電子装置ではないので、保守・点検・取扱いが容易でそのために大きな費用も必要でなく信頼性も高いという効果もある。更に、圧縮機の容量や大きさ、インペラの回転数に関わりなく、本発明の感知装置をいずれの圧縮機にも用いることができ、同一の特性で圧縮機が安定作動領域にあるか不安定作動領域にあるかを検出することができるという効果もある。加えて、モニタやディスプレーを用いて、又はランプやブザーの警報手段を用いて、圧縮機が不安定状態になったとき、そのことを迅速に検出して圧縮機を安定状態にセットし直すことが可能で、圧縮機の性能低下を防止し、圧縮機システムを致命的な機械的損傷から防止できるという効果もある。
【図面の簡単な説明】
【図1】本発明に基づくターボ型圧縮機の不安定作動領域感知装置に一実施形態の正面図である。
【図2】図1の感知装置の側面図である。
【図3】図1の感知装置を作動流体の入口側に装着したターボ型圧縮機の縦断面図である。
【図4】図3の圧縮機の横断面図である。
【図5】作動流体の流体速度毎の感知装置の感知機回転角度−標準圧力差特性曲線図である。
【図6】圧縮機の安定作動領域と不安定作動領域を流量係数−静圧上昇係数特性図で示す図である。
【図7】(A)は、圧縮機の安定作動領域における感知装置の感知機回転角度−標準圧力差特性曲線図であり、(B)は、圧縮機の安定作動領域において感知機の回転角を0°とした時の感知機のインペラに対する配置関係を示す図である。
【図8】(A)は、圧縮機の不安定作動領域における感知装置の感知機回転角度−標準圧力差特性曲線図であり、(B)は、圧縮機の不安定作動領域において感知機の回転角を0°とした時の感知機のインペラに対する配置関係を示す図である。
【図9】図1の感知装置を作動流体の出口側に装着したターボ型圧縮機の実施形態の縦断面図である。
【図10】図9の圧縮機の横断面図である。
【符号の説明】
7 ターボ型圧縮機
吸入管
9 安定作動領域
10 不安定作動領域
12 インペラ
14 ディフューザ
20 感知機
22 感知機体
25 第1の圧力管
25a 第1の圧力取出し孔
26 第2の圧力管
26a 第2の圧力取出し孔
28 分割膜
30 出口
31 ボリュート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensing device for quickly and easily sensing a rotating stall and a surge that frequently occur during operation of a turbo compressor.
[0002]
[Prior art]
In general, in a turbo type compressor, the working flow rate of the working fluid gradually decreases, and when the flow rate is below a predetermined flow rate, a rotating stall and a surge are generated. These occurrences can degrade the performance of the compressor system and in the worst case can cause catastrophic mechanical damage to the compressor system. Therefore, it is most important to detect the turning stall and the occurrence of a surge quickly and accurately and eliminate them.
[0003]
Conventionally, a sensing device including a high-frequency pressure sensor or a vibration sensor and a signal analysis system is used to detect the rotation stall and the surge region. However, since these sensors are expensive, the manufacturing cost of the sensing device increases. In addition, the operation of the signal analysis system requires advanced techniques, and the maintenance and maintenance of the system is expensive. In order to overcome these problems, there is a need for a novel turbo compressor type sensing device and sensing method that is simple, reliable, reliable, and economical in structure, operation, maintenance, and maintenance. Yes.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to replace a conventional sensing device using an expensive high-frequency pressure sensor or vibration sensor and a complicated analysis system, with a simple configuration and operation, low manufacturing cost, maintenance and management costs, and reliability. It is an object of the present invention to provide a highly novel turbo-type compressor unstable operation region sensing device.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, an unstable operation region sensing device for a turbo compressor according to the present invention includes a sensor body, and a first pressure pipe and a second pressure pipe penetrating the sensor body. A first pressure extraction hole and a second pressure extraction hole formed at the end of the same side of both pressure pipes and opened at one flat end surface of the sensor body at a predetermined interval, and on the flat end surface of the sensor body An unstable operation area sensor having a dividing film provided across both extraction holes, and the unstable operation area sensor is connected to a turbocharger so that the longitudinal direction of the division film is parallel to the rotation axis of the impeller. The first and second pressure extraction holes are provided on the inlet side of the impeller in the mold compressor or in the diffuser on the outlet side of the impeller so that the longitudinal direction of the divided membrane is parallel to the flow direction of the fluid flowing out of the impeller The turbo compressor becomes unstable due to the pressure difference between Configured to detect whether or not the operation in the region.
[0006]
It is desirable to connect a pressure sensor to a monitor that monitors the pressure between the first and second pressure outlet holes to detect the stability and instability of the turbo compressor.
[0007]
When the pressure difference between the first and second pressure outlet holes indicates that the turbo compressor is operating in an unstable operation region, warning means for immediately warning the driver of the turbo compressor is provided. It is desirable to connect to a sensor.
[0008]
The sensor 20 is provided in a diffuser on the inlet side of the impeller or on the outlet side of the impeller . In any case, when the turbo compressor is operating in the stable operation region, the flow direction of the working fluid entering the inlet side of the impeller substantially coincides with the longitudinal direction of the divided membrane. There is no pressure difference between the second pressure extraction holes. On the other hand, when a rotating stall or surge occurs and the turbo compressor is operating in an unstable operation region, the flow direction of the working fluid does not coincide with the longitudinal direction of the divided membrane. A pressure difference is generated between the two pressure extraction holes. When this pressure difference is directly connected to the U pipe or converted into an electrical signal and displayed on the monitor, it is possible to recognize that this pressure difference has occurred and the turbo compressor is operating in an unstable operation region. The driver can be warned by a monitor, display, lamp or buzzer.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an unstable operation region sensing device for a turbo compressor according to the present invention will be described in detail with reference to the drawings.
[0010]
1 and 2 are a front view and a side view, respectively, of an embodiment of an unstable operation region sensing device for a turbo compressor according to the present invention.
[0011]
The turbo-type compressor unstable operation region sensor 20 (hereinafter simply referred to as the sensor 20) is provided in the turbo-type compressor 7 as shown in the longitudinal sectional view of FIG. 3 and the transverse sectional view of FIG. . The turbo compressor 7 (hereinafter simply referred to as the compressor 7) includes an impeller 12, a diffuser 14 on the outlet side thereof, a suction pipe 8 at the inlet of the compressor 7, and a volute 31 having an outlet 30. The diffuser 14 is located on the outlet side of the impeller 12 and continues to the outlet 30. The sensor 20 is disposed at the inlet of the impeller 12 in the suction pipe 8. The working fluid is introduced into the compressor 7 from the suction pipe 8, enters the diffuser 14 rotates the impeller 1 2, and is discharged from the outlet 30 of volute 31. At this time, the sensor 20 detects the pressure difference according to the flow direction of the working fluid.
[0012]
As shown in FIGS. 1 and 2, the sensor 20 includes a sensor body 22, a first pressure pipe 25, a second pressure pipe 26 that penetrates the sensor body 22 in the axial direction, and a sensing gas 22. A first pressure extraction hole 25a and a second pressure extraction hole 26a forming one end of the first and second pressure pipes 25 and 26, which are opened at a predetermined interval on the flat surface (flat end surface) of the tip; A dividing film 28 is provided across the pressure take-out holes 25a and 26a.
[0013]
The other ends of the first and second pressure pipes 25 and 26 are connected to a pressure sensor or a U-shaped pressure pipe (not shown), and the pressure generated in the pressure take-out holes 25a and 26a is an electrical signal or a visual signal. It can be displayed as.
[0014]
3 and 4, the working fluid of the impeller 12 in the suction pipe 8 of the compressor 7 is arranged so that the longitudinal direction of the dividing film 28 is parallel to the axial direction of the impeller 12, as shown in FIGS. Arranged on the inlet side.
[0015]
The flow rate (output speed) of the working fluid at the outlet 30 of the compressor 7 is variously set and the sensor 20 is rotated in the direction indicated by the arrow A in FIG. 4 to create a sensor rotation angle-standard pressure difference characteristic curve. did. This characteristic curve is shown in FIG. There are four output speeds of 13 m / s, 29 m / s, 48 m / s, and 81 m / s, and the rotation angle of the sensor 20 in the direction of arrow A is −180 ° to 180 °. The standard pressure difference is (P1-P2) / (Pt-Ps) (where P1 is the pressure of the first pressure extraction hole 25a, P2 is the pressure of the second pressure extraction hole 26a, Pt is the total pressure, Ps Is a static pressure) and is a dimensionless value.
[0016]
As is apparent from FIG. 5, the characteristic curves of the respective output speeds have the same shape, and the standard pressure differences are substantially equal at the same rotation angle. That is, the sensor rotation angle-standard pressure difference characteristic indicates a characteristic dependent on the sensor rotation angle regardless of the output speed. Accordingly, the sensor 20 can be used for the compressor 7 irrespective of the capacity / size of the compressor and the rotational speed of the impeller.
[0017]
FIG. 6 is a characteristic curve of the flow coefficient-static pressure increase coefficient of the compressor 7. When the flow coefficient is 1.3 or less, the compressor 7 is operated in the unstable operation region 10 and exceeds 1.3. The compressor 7 operates in the stable operating area 9. Here, the flow rate coefficient and the flow rate / (Paix impeller diameter x impeller output width x impeller speed), also the static pressure rise coefficient is defined as the pressure difference / {fluid density x (impeller speed) 2/2} . In the drawing, A, B, and C show examples of operating points in the stable operating region 9 of the compressor 7, and D and E show examples of operating points in the unstable operating region 10 of the compressor 7.
[0018]
FIG. 7A shows the sensor rotation angle-standard pressure difference characteristic when the compressor 7 operates at operating points A, B, and C within the stable operating region 9. Also in this characteristic diagram, as long as the operating point is within the stable operating region 9, it changes in a sine curve shape corresponding to the rotation angle of the sensor 20 regardless of the operating point. That is, as is clear from FIG. 7 (A), when the rotation angle of the sensing unit 20 is 0 °, the standard pressure difference is substantially zero. This means that when the rotation angle of the sensor 20 is 0 °, the pressure difference between the first and second pressure extraction holes 25a and 25b is substantially zero. As shown in FIG. 7B , this is because the working fluid flows in parallel to the divided film 28 set parallel to the rotation axis of the impeller 12, and therefore the first and second pressure extraction holes 25a and 25b. This is because no pressure difference occurs between them. As is clear from this, when the rotation angle of the sensor 20 is 0 ° and the standard pressure difference is 0, the compressor 7 is operating normally in the stable operation region 9.
[0019]
FIG. 8A shows the sensor rotation angle-standard pressure difference characteristic when the compressor 7 operates at the operating points D and E in the unstable operating region 10. Also in this characteristic diagram, when the operating point is in the unstable operating region 10, the operating point substantially changes regardless of the operating point and changes in a cosine curve shape corresponding to the rotation angle of the sensor 20. That is, as apparent from FIG. 8A, when the rotation angle of the sensor 20 is 0 °, the standard pressure difference is maximized. This means that the pressure difference between the first and second pressure extraction holes 25a and 25b is substantially maximized when the rotation angle of the sensor 20 is 0 °. As shown in FIG. 8B, this is because the working fluid flows substantially perpendicularly into the dividing film 28 set parallel to the rotation axis of the impeller 12, so that the first and second pressure extraction holes are formed. This is because the maximum pressure difference occurs between 25a and 25b. As is clear from this, when the rotation angle of the sensor 20 is 0 °, when the standard pressure difference is maximized, the compressor 7 is operated in the unstable operation region 10. It is indicated that a turning stall or a surge is generated.
[0020]
The sensor 20 is set so that its rotation angle is 0 °, and a U-tube for pressure measurement or other appropriate pressure measuring device is connected to the first and second pressure pipes 25 and 26 of the sensor 20. Then, the pressures in the first and second pressure extraction holes 25a and 26a are processed electronically or theoretically, and these pressure differences are displayed electronically or visually on a monitor or display. When the standard pressure difference is at or near the maximum value in FIG. 8A, it indicates that the compressor 7 is unstable, so the compressor 7 is returned to the normal state. In this way, it is possible to avoid the occurrence of turning stall and surge.
[0021]
When the pressure difference between the first and second pressure extraction holes 25a, 26a is displayed on the monitor or on the display, or when the operation state of the compressor 7 is in the unstable operation region 10, a lamp as a warning means is lit. Or buzzer sounds. Thus, it is possible to detect whether the current operating state of the compressor is operating in the stable operation region or in the unstable operation region.
[0022]
FIGS. 9 and 10 show a longitudinal sectional view and a transverse sectional view, respectively, of an embodiment in which the sensor 20 is provided in the diffuser 14 on the outlet side of the impeller 12. The sensor 20 is arranged so that the longitudinal direction of the dividing film 28 is parallel to the flow direction of the working fluid flowing out of the impeller 12, and the rotation angle of the sensor 20 in this state is set to 0 °. This embodiment also shows a characteristic diagram equivalent to the characteristic diagrams of FIGS. 5, 7 (A) and 8 (A), and the same operation as the embodiment of FIGS. 3 and 4 is achieved.
[0023]
【The invention's effect】
The unstable operation region sensing device for a turbo compressor according to the present invention has the advantage that the structure is extremely simple and the manufacture is inexpensive and easy. In addition, since this sensing device is not a complicated and expensive electric device and electronic device, it is easy to maintain, inspect, and handle, so that there is an effect that a large cost is not required and reliability is high. Furthermore, the sensing device of the present invention can be used for any compressor regardless of the capacity and size of the compressor and the rotational speed of the impeller, and the compressor is in the stable operating range with the same characteristics. There is also an effect that it can be detected whether it is in the operating region. In addition, when a compressor becomes unstable using a monitor or display, or using a warning means such as a lamp or buzzer, quickly detect this and reset the compressor to a stable state. It is possible to prevent deterioration of the compressor performance and to prevent the compressor system from fatal mechanical damage.
[Brief description of the drawings]
FIG. 1 is a front view of an embodiment of an unstable operation region sensing device for a turbo compressor according to the present invention.
FIG. 2 is a side view of the sensing device of FIG.
FIG. 3 is a longitudinal sectional view of a turbo compressor in which the sensing device of FIG. 1 is mounted on the inlet side of a working fluid.
4 is a cross-sectional view of the compressor of FIG.
FIG. 5 is a sensor rotation angle-standard pressure difference characteristic curve diagram of a sensing device for each fluid velocity of a working fluid.
FIG. 6 is a diagram showing a stable operation region and an unstable operation region of a compressor in a flow coefficient-static pressure increase coefficient characteristic diagram.
7A is a sensor rotation angle-standard pressure difference characteristic curve diagram of the sensing device in the stable operation region of the compressor, and FIG. 7B is a rotation angle of the sensor in the stable operation region of the compressor. It is a figure which shows the arrangement | positioning relationship with respect to the impeller of a sensor when making is 0 degree.
8A is a sensor rotation angle-standard pressure difference characteristic curve diagram of the sensing device in the unstable operation region of the compressor, and FIG. 8B is a sensor curve of the sensor in the unstable operation region of the compressor. It is a figure which shows the arrangement | positioning relationship with respect to the impeller of a sensor when a rotation angle is 0 degree.
FIG. 9 is a longitudinal sectional view of an embodiment of a turbo compressor in which the sensing device of FIG. 1 is mounted on the outlet side of a working fluid.
10 is a cross-sectional view of the compressor of FIG.
[Explanation of symbols]
7 Turbo type compressor 8 Suction pipe 9 Stable operation area 10 Unstable operation area 12 Impeller 14 Diffuser 20 Sensor 22 Sensor body 25 First pressure pipe 25a First pressure extraction hole 26 Second pressure pipe 26a Second Pressure extraction hole 28 Dividing membrane 30 Outlet 31 volute

Claims (3)

インペラ(12)とこの出口側のディフューザ(14)とを有するターボ型圧縮機(7)の不安定作動領域感知装置において、
感知機体(22)と、
該感知機体(22)内に貫設された第1の圧力管(25)と第2の圧力管(26)と、
両圧力管(25,26)の同じ側の端部に形成され所定の間隔を置いて該感知機体(22)の一平端面で開口する第1の圧力取出し孔(25a)と第2の圧力取出し孔(26a)と、
該感知機体(22)の該平端面に両取出し孔(25a,26a)間を横切って設けられた分割膜(28)と
を有する不安定作動領域感知機(20)より成り、
該感知機(20)を、該分割膜(28)の長手方向が該インペラ(12)の回転軸に平行になるように該ターボ型圧縮機(7)内の該インペラ(12)の入口側に、又は該分割膜(28)の長手方向が該インペラ(12)から流出する流体の流れ方向と平行になるように該インペラ(12)の出口側のディフューザ(14)に設け、該第1及び第2の圧力取出し孔(25a,26a)間の圧力差が該ターボ型圧縮機(7)が該不安定作動領域(10)で作動しているか否かを検出することを特徴とするターボ型圧縮機の不安定作動領域感知装置。
In the unstable operation region sensing device for a turbo compressor (7) having an impeller (12) and a diffuser (14) on the outlet side,
A sensing body (22);
A first pressure pipe (25) and a second pressure pipe (26) penetrating the sensor body (22);
A first pressure extraction hole (25a) formed at the same end of both pressure pipes (25, 26) and opened at a flat end surface of the sensor body (22) at a predetermined interval, and a second pressure extraction A hole (26a);
An unstable operation area sensor (20) having a dividing film (28) provided across the two extraction holes (25a, 26a) on the flat end surface of the sensor body (22),
The sensor (20) is placed on the inlet side of the impeller (12) in the turbo compressor (7) so that the longitudinal direction of the dividing membrane (28) is parallel to the rotation axis of the impeller (12). Or in the diffuser (14) on the outlet side of the impeller (12) so that the longitudinal direction of the divided membrane (28) is parallel to the flow direction of the fluid flowing out of the impeller (12), And a pressure difference between the second pressure extraction holes (25a, 26a) and detecting whether or not the turbo compressor (7) is operating in the unstable operation region (10). An unstable operating area sensing device for a compressor.
前記第1及び第2の圧力取出し孔(25a,26a)間の圧力をモニタして前記ターボ型圧縮機の安定性及び非安定性を検出するモニタを前記圧力感知機(20)に接続したことを特徴とする請求項1に記載のターボ型圧縮機の不安定作動領域感知装置。A monitor for monitoring the pressure between the first and second pressure outlet holes (25a, 26a) and detecting the stability and instability of the turbo compressor is connected to the pressure sensor (20). The unstable operation region sensing device for a turbo compressor according to claim 1. 前記第1及び第2の圧力取出し孔(25a,26a)間の圧力差が前記ターボ型圧縮機(7)が不安定作動領域で作動していることを示す場合は、それを運転者に直ちに警告する警告手段を前記圧力感知機(20)に接続することを特徴とする請求項1又は2に記載のターボ型圧縮機の不安定作動領域感知装置。If the pressure difference between the first and second pressure extraction holes (25a, 26a) indicates that the turbo compressor (7) is operating in an unstable operating region, this is immediately indicated to the driver. 3. An unstable operating region sensing device for a turbo compressor according to claim 1, wherein a warning means for warning is connected to the pressure sensor (20).
JP2001228880A 2001-01-17 2001-07-30 Unstable operating area sensing device for turbo compressor Expired - Fee Related JP3787078B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0002697A KR100390862B1 (en) 2001-01-17 2001-01-17 Instability detector of turbo compressor
KR2001-2697 2001-01-17

Publications (2)

Publication Number Publication Date
JP2002242879A JP2002242879A (en) 2002-08-28
JP3787078B2 true JP3787078B2 (en) 2006-06-21

Family

ID=19704759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228880A Expired - Fee Related JP3787078B2 (en) 2001-01-17 2001-07-30 Unstable operating area sensing device for turbo compressor

Country Status (4)

Country Link
US (1) US20020094267A1 (en)
JP (1) JP3787078B2 (en)
KR (1) KR100390862B1 (en)
DE (1) DE10134021A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454892B2 (en) 2002-10-30 2008-11-25 Georgia Tech Research Corporation Systems and methods for detection and control of blowout precursors in combustors using acoustical and optical sensing
US7905102B2 (en) * 2003-10-10 2011-03-15 Johnson Controls Technology Company Control system
US7356999B2 (en) * 2003-10-10 2008-04-15 York International Corporation System and method for stability control in a centrifugal compressor
US7194382B2 (en) 2004-02-06 2007-03-20 Georgia Tech Research Corporation Systems and methods for detection of combustor stability margin
KR101171894B1 (en) 2005-12-17 2012-08-07 현대자동차주식회사 System for controling active surge and stall for compressor
US7996183B2 (en) * 2006-04-18 2011-08-09 Mitsubishi Heavy Industries, Ltd. Performance monitoring apparatus and system for fluid machinery
US20080034753A1 (en) * 2006-08-15 2008-02-14 Anthony Holmes Furman Turbocharger Systems and Methods for Operating the Same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK139916B (en) * 1975-08-12 1979-05-14 Nordisk Ventilator Apparatus for detecting stall condition for an axial fan.
US4103544A (en) * 1977-08-18 1978-08-01 United Technologies Corporation Turbine engine surge detector
FR2488696A1 (en) * 1980-08-13 1982-02-19 Snecma METHOD AND APPARATUS FOR DETECTING ROTATING FLASHING APPEARING IN A TURBOMACHINE WITH TWO ROTATING BODIES
JPH0819918B2 (en) * 1990-04-05 1996-03-04 ダイキン工業株式会社 Surging prevention device for turbo refrigerator
JPH0617788A (en) * 1992-07-01 1994-01-25 Daikin Ind Ltd Surging occurrence predicting device
JPH06147189A (en) * 1992-11-11 1994-05-27 Hitachi Ltd Propagating stall preventing device of compressor

Also Published As

Publication number Publication date
KR100390862B1 (en) 2003-07-10
DE10134021A1 (en) 2002-07-25
US20020094267A1 (en) 2002-07-18
JP2002242879A (en) 2002-08-28
KR20020061751A (en) 2002-07-25

Similar Documents

Publication Publication Date Title
US8152496B2 (en) Continuing compressor operation through redundant algorithms
JP3787078B2 (en) Unstable operating area sensing device for turbo compressor
JP6154600B2 (en) Method and apparatus for detecting rotational stall and compressor
US6241463B1 (en) Method for determining the operating level of a fan and fan
CN106678069B (en) The detection method that centrifugal compressor anti-surge occurs
CN115523143B (en) Operation monitoring method and system for vacuum pump using temperature sensor
US4749331A (en) Method and apparatus of detecting pumping surges on turbocompressors
JPWO2015002275A1 (en) Turbo compressor flow measuring device and turbo compressor
KR910012552A (en) Surging prevention device for centrifugal compressor
CN110382878B (en) Method and device for determining an indicator for predicting instability in a compressor and use thereof
JP4565282B2 (en) Surge detection method for centrifugal compressor
JP5765855B2 (en) Rotation speed detector
CN113482959B (en) Centrifugal compressor capable of identifying working conditions and early warning and working condition identification method
JPS6339800B2 (en)
CN107014444B (en) Fan dynamic performance parameter measurement system
Jin et al. Excitation of blade vibration due to surge of centrifugal compressors
JPH11351651A (en) Air conditioner
US20090027214A1 (en) Fuel filter monitor
CN109738712A (en) Line phase sequence detection device and method of compressor and detection system
JPH03269325A (en) Capacity type flow meter
CN216048407U (en) Wind speed measuring mechanism, fan and water heater
JPS60216098A (en) Performance monitor for hydraulic machine
TWM545906U (en) Flow rate detection device of air sampling detector
JPS6219694B2 (en)
EP4332359A1 (en) Pump limit distance detection for a turbocharger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees