JP3786841B2 - Self-propelled vehicle - Google Patents

Self-propelled vehicle Download PDF

Info

Publication number
JP3786841B2
JP3786841B2 JP2001080716A JP2001080716A JP3786841B2 JP 3786841 B2 JP3786841 B2 JP 3786841B2 JP 2001080716 A JP2001080716 A JP 2001080716A JP 2001080716 A JP2001080716 A JP 2001080716A JP 3786841 B2 JP3786841 B2 JP 3786841B2
Authority
JP
Japan
Prior art keywords
battery
state
engine
charge
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001080716A
Other languages
Japanese (ja)
Other versions
JP2002281604A (en
Inventor
政純 伊瀬
勝之 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2001080716A priority Critical patent/JP3786841B2/en
Publication of JP2002281604A publication Critical patent/JP2002281604A/en
Application granted granted Critical
Publication of JP3786841B2 publication Critical patent/JP3786841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/003Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind solar power driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/90Energy harvesting concepts as power supply for auxiliaries' energy consumption, e.g. photovoltaic sun-roof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-propelled vehicle capable of making the most of generating capability of a solar battery, without causing complication of a structure while decreasing a risk of over-discharge of a battery. SOLUTION: In this self-propelled vehicle comprising an electric motor 4 for driving running, a battery 17 for supplying driving power to the electric motor 4, an engine 2 of outputting power for driving running, and a vehicle control part 6 for controlling the driving status of the vehicle, the power generated by the solar battery 30 is formed so as to charge the battery 17, and the operation of the electric motor 4 and the operation of the engine 2 are controlled, so that the charging status of a battery 17 reaches the target charging status, if the charging status of the battery 17 is lower than the high charging status, and the output of the engine 2 is reduced so as to discharge the battery 17, if the charging status of the battery 17 is higher than the high charging status.

Description

【0001】
【発明の属する技術分野】
本発明は、走行駆動用の電動モータと、その電動モータに駆動用電力を供給するバッテリーと、走行駆動用の動力を出力するエンジンと、車両の運転を管理する運転制御手段とが備えられた自走車両に関する。
【0002】
【従来の技術】
上記構成の自走車両は、例えば、走行駆動用の電動モータと走行駆動用の動力を出力するエンジンとを備えて、エンジンの動力と電動モータの動力とを併用して走行駆動するようなパラレル方式のハイブリッド車両や、前記発電手段として、エンジンの動力により駆動されるエンジン駆動式の発電機を備えて、その発電機により前記バッテリーを充電し、そのバッテリーからの電力により走行駆動用の電動モータを駆動するシリーズ方式のハイブリッド車両、及び、前記発電手段として燃料電池を搭載し、その燃料電池からの電力により走行駆動用の電動モータを駆動する燃料電池式電動車両等がある。因みに、これらのいずれのタイプの車両でも、走行減速時には、電動モータによる回生電力を利用してバッテリーに充電を行うようになっている。
【0003】
そして、このような自走車両において、従来より、太陽電池を備えて、発電手段の負荷を軽減させるようにする技術が提案されている。
例えば、特開平8−251711号公報に示されるように、電動モータとエンジンとを備えたハイブリッド車両において、太陽電池にて発電した充電電流をバッテリーに充電することができるように構成され、バッテリーの充電電圧が設定値よりも低いときには、太陽電池からの充電が行われるが、バッテリーの充電電圧が設定値を越えると、太陽電池からバッテリーへの充電は行われないように電流制御する構成のものがあった(以下、第1の従来技術という)。
つまり、この第1の従来技術では、バッテリーの充電電圧が設定値よりも低いときには、バッテリーに対する充電を太陽電池でも行うようにして、バッテリーの充電電圧が設定値を越えているときは、太陽電池が発電する発電電流は充電用の電流として流れない構成となっている。
【0004】
ところで、上記第1の従来技術においては、バッテリーの充電電圧が設定値よりも低いときは太陽電池による充電が行われるので、太陽電池による発電電力を有効に活用できるが、バッテリーの充電電圧が高いときには太陽電池の発電電力を利用しないので、太陽電池の発電能力を有効に活用できないという不利な面がある。
【0005】
尚、上記第1の従来技術の構成において、太陽電池による充電を行うか否かの判定基準となる前記設定値を予め低めの値に設定して、太陽電池の発電能力をできるだけ有効に利用することも考えられるが、このように構成しておくと、車両の走行運転が行われるときに、バッテリーの充電電圧が低すぎて電力が不足することがある。そうすると、例えば、エンジンにて発電機を駆動してバッテリーに充電する構成等において、発電機を駆動するエンジンにおける燃料消費量が多くなる等の不利な面がある。
【0006】
そこで、上述したような不利を解消する構成として、例えば、特開2000−253504号公報に示されるものがあった。
すなわち、バッテリーの充電量が予め設定された目標充電量になるように、発電手段の一例である発電機の起動・停止を制御するように構成されているハイブリッド車両において、太陽電池にて発電した充電電流を常にバッテリーに充電することができるように構成され、太陽電池の発電状態、具体的には、時刻の情報、その日の湿度や大気圧などの天候情報、及び、車両の方角や傾斜角などの姿勢情報等の各種の情報に基づいて、前記目標充電量を変更させるようにしている。例えば、太陽電池の出力が低いと予測されるときには目標充電量を高い値にさせ、太陽電池の出力が高いと予測されるときには目標充電量を低い値にさせる構成となっている。これは、太陽電池の出力が低くても電動モータの駆動等を適正な状態で行えるようにして、太陽電池の出力が高いときには、太陽電池による発電電力が多くなるので、バッテリーの充電量を予め低めに設定しておくことにより太陽電池による発電電力を適正に充電できるようにしたものである。(以下、第2の従来技術という)。
【0007】
【発明が解決しようとする課題】
上記第2の従来技術は、太陽電池が発電する発電電流は常に充電用の電流として流れることになり、太陽電池の発電能力を最大限に活用することにより、発電手段における燃料消費量を抑制するようにしたものであるが、この第2の従来技術においても次のような面で未だ改善の余地がある。
すなわち、上記構成によれば、太陽電池の出力を予測するために、時刻の情報、その日の湿度や大気圧などの天候情報、及び、車両の方角や傾斜角などの姿勢情報等の各種の情報を検出して、それら各種の検出情報に基づいて目標充電量を変更させる構成となっており、このような各種の情報を検出するための各種の検出手段が必要であり、それだけ部品点数が増加して構成が複雑になる不利がある。
【0008】
本発明はかかる点に着目してなされたものであり、その目的は、太陽電池の発電状態を検出するための構成を設けるなどの構成の複雑化を招くことなく、太陽電池の発電能力を最大限に活用することが可能となる自走車両を提供する点にある。
【0009】
【課題を解決するための手段】
請求項1によれば、走行駆動用の電動モータと、その電動モータに駆動用電力を供給するバッテリーと、走行駆動用の動力を出力するエンジンと、車両の運転を管理する運転制御手段とが備えられた自走車両において、太陽電池が備えられて、その太陽電池により発電された電力を前記バッテリーに充電するように構成され、前記運転制御手段が、前記バッテリーの充電状態が予め設定された高充電状態よりも低いときには、前記バッテリーの充電状態が前記高充電状態よりも低く設定された目標充電状態になるように、前記電動モータの作動、並びに、前記エンジンの作動を管理する目標状態維持運転制御を実行し、且つ、前記バッテリーの充電状態が前記高充電状態よりも高いときには、前記バッテリーの放電を促進させるように、走行開始直後に前記電動モータだけで駆動する車両の走行速度の上限値を前記目標状態維持運転制御における設定速度よりも速い速度に上昇させて、前記目標状態維持運転制御よりも前記エンジンの出力を減少させる状態で、前記電動モータの作動、並びに、前記エンジンの作動を管理する放電量増加運転制御を実行するように構成されていることを特徴とする。
【0010】
すなわち、太陽電池が備えられて、その太陽電池にて発電された電力はバッテリーに充電される構成となっており、光があたっている間は太陽電池は常に発電し続けるので、そのような状態ではバッテリーに対して継続して充電が行われることになる。
【0011】
そして、車両の運転を制御する運転制御手段は、バッテリーの充電状態が予め設定された高充電状態よりも低いときは、バッテリーの充電状態が高充電状態よりも低く設定された目標充電状態になるように、電動モータの作動、並びに、エンジンの作動を管理する目標状態維持運転制御を実行することになる。すなわち、バッテリーの充電状態が高充電状態よりも低いときは、太陽電池による充電電力が車両の電力消費によって適正に消費されている状態であると考えられるから、このような場合には、バッテリーの充電状態は予め設定された目標充電状態になるように車両の運転が制御され適正な充電状態が維持されるのである。
【0012】
バッテリーの充電状態が予め設定された高充電状態よりも高いときは、前記運転制御手段は、バッテリーの放電を促進させるように、目標状態維持運転制御よりもエンジンの出力を減少させる状態で、電動モータの作動、並びに、エンジンの作動を管理する放電量増加運転制御を実行するのである。すなわち、バッテリーの充電状態が高充電状態よりも高いときは、上記したような目標状態維持運転制御を実行しているだけでは太陽電池による充電が車両の電力消費に比べて過剰になっていると考えられる状況であるから、この場合には、エンジンの出力を減少させて電動モータの走行駆動力を増大させて電動モータによる電力消費を増加させことで、バッテリーからの電力消費量を増加させるのである。
このようにして、太陽電池の出力が大きい状態であっても、バッテリーからの電力消費量を多くさせた状態で運転を継続させることができる。
そして、太陽電池の出力が低下することにより、バッテリーの充電状態が高充電状態よりも低くなると、前記目標状態維持運転制御を実行する状態に戻るので、その後は、バッテリーの充電状態が目標充電状態になるように運転が制御される。
【0014】
そして、太陽電池によるバッテリーへの充電は常に実行可能な状態となっており、太陽電池の発電状態には関係なくバッテリーの充電状態によって制御状態を変更しているので、太陽電池の発電状態を検出するための構成等も不要で構成が複雑化することもない。
【0015】
従って、太陽電池の発電状態を検出するための構成を設けるなどの構成の複雑化を招くことなく、太陽電池の発電能力を最大限に活用することが可能となる自走車両を提供できるに至った。
【0016】
【発明の実施の形態】
〔参考例〕
以下、本発明に係る自走車両の一例としてのハイブリッド車両について図面に基づいて説明する。
図1に、自走車両の一例としてのハイブリッド車両のシステム構成を示している。このハイブリッド車両は、後述するような遊星ギア機構1、エンジン2、発電機3、及び、電動モータ4等が一体的に組み付けられた駆動ユニットKが設けられ、この駆動ユニットKが、走行装置としての左右の前輪5を駆動する走行用駆動力を発生するように構成されている。そして、このハイブリッド車両には太陽電池30が備えられ、この太陽電池30により、後述するように車両に搭載されるバッテリーを充電するように構成されている。尚、詳述はしないが、太陽電池30は車両のボンネット部や屋根部などに太陽光を受光可能な状態で装着される。
【0017】
次に駆動ユニットKの構成について説明する。
図2に示すように、エンジン2、電動モータ4、及び、発電機3は夫々、遊星ギア機構1を介して機械的に結合されており、遊星ギア機構1は、中央軸芯周りで回転するサンギア18、サンギア18の外周を係合して自転しながら中央軸芯周りで公転する3個の遊星ピニオンギア19、さらにその外周で各遊星ピニオンギア19に係合しながら回転するリングギア20が備えられ、前記3個の遊星ピニオンギア19はキャリア21にて軸支され一体的に中央軸芯周りで公転するように構成されている。
この遊星ギア機構1に対して、エンジン2の出力軸2aがキャリア21に結合され、発電機3の駆動軸3aがサンギア18に結合され、電動モータ4の駆動軸4aがカウンタギア22を介してリングギア20に結合されている。又、前記電動モータ4の駆動軸4aはカウンターギア22及びディファレンシャルギア23を介して左右の前輪5に結合されている。つまり、電動モータ4と各前輪5とは連動連結される状態であり常に同期して回転する状態となっている。
【0018】
上記構成の遊星ギア機構1では、前記各ギアに夫々結合されている3つの軸、つまり、エンジン2の出力軸2a、発電機3の駆動軸3a、及び、電動モータ4の駆動軸4aのうち、2つの軸の回転状態(回転速度や回転トルク等)が定まると、残りの1つの軸の回転状態は一義的に定まる特性を有している。
これらの間での回転速度の関係は、図4に示すような共線図で表すことができる。前記各ギアが停止している状態(速度ゼロ)であれば、図の特性線L1で示す状態となる。そして、エンジン2が停止している状態で電動モータ4のみにより走行駆動させるモータ走行状態では、図の特性線L2で示すように電動モータ4を前進方向側に回転駆動する。このとき、エンジン2は停止しており、発電機3は発電方向とは逆向きの自由回転状態となる。
前記モータ走行状態においてエンジン2を始動させるときには、図の特性線L3で示すように、発電機3を電動モータとして機能させて設定回転速度で駆動させてエンジン2を始動させる。エンジン2が始動すると、図の特性線L4で示すように、発電機3は回転停止状態に維持され、その後はエンジン2の動力と電動モータ4の動力により走行駆動される。バッテリー17の充電が必要なときは、図の特性線L5で示すようにエンジン2の回転速度を上げて発電機3を駆動して発電させることができる。
【0019】
このように、エンジン2の出力軸、発電機3の駆動軸、及び、電動モータ4の駆動軸の夫々の回転速度の関係は共線図上で常に一直線として規定されることになる。発電機3及び電動モータ4は、夫々、交流同期式の電動機で構成され、これらに対する駆動電流の供給方向と電流値を調節して回転方向や回転速度を制御することが可能であり、駆動ユニットKは無段階に走行速度を変更させることができる構成となっている。
【0020】
次に、このハイブリッド車両における駆動ユニットKに対する制御構成について説明する。
図3にも示すように、車両全体の動作を統括して管理する車両制御部6、この車両制御部6からの制御情報に基づいて前記電動モータ4の動作を制御するモータ制御部7、車両制御部6からの制御情報に基づいて前記発電機3の動作を制御する発電機制御部8、車両制御部6からの制御情報に基づいて前記エンジン2の出力、具体的には、電子スロットル弁9のスロットル開度及びインジェクタ(図示せず)の燃料噴射量を自動調節するエンジン制御部10夫々が備えられ、アクセル操作具11の操作量を検出するアクセル操作量検出センサS1、ブレーキ操作具13の操作量(操作圧)を検出するブレーキ操作量検出センサS2、シフトポジションレバー15の位置を検出するシフトポジションセンサS3、前輪5の車軸の回転速度に基づいて車速を検出する車速センサS4、及び、バッテリーの充電状態を検出するための充電状態検出部S5等による各種の検出情報が車両制御部6に入力される構成となっている。
【0021】
前記シフトポジションレバー15の位置としては、「P」(駐車位置)、「R」(後進走行位置)、「N」(中立位置)、「D」(前進走行位置)、「B」(制動力が大きめに作用する前進走行位置)があり、運転者により運転状況に応じて適宜、切り換え操作されることになる。
【0022】
前記電動モータ4、発電機3並びに前記各制御部に対する駆動電力は、バッテリー17から供給され、このバッテリー17は後述するように発電機3や電動モータ4からの発電電力によって充電されるとともに、太陽電池30の発電電力によっても充電される構成となっている。
【0023】
そして、前記車両制御部6が、アクセル操作具11の操作量の情報、ブレーキ操作具13の操作量の情報、シフトポジションレバー15の位置の情報、車速センサS4による検出情報等の走行用の駆動力調整情報、及び、充電状態検出部S5にて検出されるバッテリーの充電状態から求められる電池要求電力情報に基づいて、エンジンを始動させるか否かの判断処理や駆動ユニットKに対する要求駆動力を求める処理、駆動ユニットKにて要求駆動力を出力させる出力処理等を実行するように構成されている。出力処理においては、車両制御部6が、駆動ユニットKにて要求駆動力を出力させるように、モータ制御部7、発電機制御部8、及び、エンジン制御部10に制御情報を出力して、エンジン2、発電機3及び電動モータ4の出力を制御するようになっている。
【0024】
以下、車両が停車している状態から発進して走行し、その後、減速して停止するまでの各操作段階での夫々の運転モードにおける制御内容について簡単に説明する。
バッテリーが十分充電されており充電する必要がないときに、エンジン2、電動モータ4、及び、発電機3が回転を停止している停止状態(図4の特性線L1に対応)から、アクセルが踏み込み操作されると、先ず、エンジン2を停止した状態で電動モータ4に前進走行用の駆動トルクを発生させて車両を発進させる(図4の特性線L2に対応)。
走行速度が設定速度(約10km/h)を越えてエンジン2の駆動力が必要である場合には、発電機3を回転駆動させてエンジン2を始動させる(図4の特性線L3に対応)。つまり、車両制御部6がエンジン2の始動に必要な目標回転速度を求め、その目標回転速度の指令情報を発電機制御部8に指令し、発電機制御部8が、対応する目標回転速度になるように発電機3に対する駆動用の供給電流値を制御する。発電機制御部8により発電機3が駆動トルクを生じている状態から回生制動トルクを発生している状態になったことが判断されることにより、エンジン2の始動が確認されると、その後はバッテリーの充電の必要がなければ発電機3の回転を停止させる(図4の特性線L4に対応)。
【0025】
尚、車両走行中においてバッテリー17の充電状態が低下して充電が必要であると判断されると、エンジン2の動力により発電機3を駆動して発電してバッテリー17を充電する(図4の特性線L5に対応)。又、図示はしないが、車両走行停止中、すなわち、電動モータ4が駆動停止しているときに、バッテリー17の充電が必要であると判断されると、エンジン2を始動してエンジン2の動力により発電機3を駆動して発電する。
【0026】
エンジン2が始動した後において、後で詳述するように、エンジン2に対するスロットル開度及び燃料噴射量は、エンジンの回転速度の変化に対して運転効率が最も大きくなるような最適燃費ラインに沿って変化するように電子スロットル弁9やインジェクタを自動調節する構成となっている。
そして、車両走行中において、上記したような最適燃費ラインに基づくエンジンの駆動力では不足する走行駆動力を電動モータ4により出力するようになっている。車速が高速であれば、回生制動力を発生するための目標電流値を求めて、電動モータ4からバッテリー17に供給される電流が目標電流値になるように電流量を調整制御する。このとき、電動モータ4は発電機として機能し発電した電力はバッテリ17に蓄電される構成となっている。
【0027】
上述したような駆動ユニットKに対する走行駆動力の調整処理によって車両の運転が管理されることになり、車両制御部6、モータ制御部7、発電機制御部8、エンジン制御部10の夫々により、車両の運転を管理する管理制御手段としての制御手段Hが構成される。
この制御手段Hの制御内容について図面を参照しながら説明を加えると、図5に示すように、先ず、アクセル操作量検出センサS1にて検出されるアクセル操作具11の操作量の情報、ブレーキ操作量検出センサS2にて検出されるブレーキ操作具13の操作量の情報、シフトポジションセンサS3にて検出されるシフトポジションレバー15の位置の情報、車速センサS4にて検出される車速検出情報、充電状態検出部S5の検出情報の夫々を取り込み、それらの各種の情報に基づいて、現在の車両の走行状態が上述したような各種の運転モードのうちのいずれの運転モードにあるかを判断する処理や、上記各種の検出情報に基づいて、前記要求駆動力から前記スロットル目標開度、モータトルク、発電機目標回転速度を演算にて求める目標値の演算処理、エンジン2を始動させたり、停止させたりする必要があるか否かの判断処理等を含む演算処理を実行する。
【0028】
そして、前記演算処理にて演算された結果に基づいて、エンジン2を始動させるエンジン始動処理、上記したような各運転モードに応じて必要とされる駆動力になるように上記したような最適燃費ラインに従ってスロットル開度が調整される状態で、エンジン2の出力を調整するエンジン出力処理、上記したような各運転モードに応じて必要とされる運転状態になるように電動モータ4の出力を調整するモータ出力処理、及び、運転モードに応じて必要とされる運転状態になるように発電機3の出力を調整する発電機出力処理の夫々を実行するように構成されている。これらの一連の処理が走行駆動力調整処理に対応する。
【0029】
そして、前記車両制御部6は、バッテリー17の充電状態SOCが予め設定された高充電状態Yよりも低いときには、バッテリー17の充電状態SOCが高充電状態Yよりも低く設定された目標充電状態Xになるように、電動モータ4の作動及びエンジン2の作動を管理する目標状態維持運転制御を実行し、且つ、バッテリー17の 充電状態SOCが高充電状態Yよりも高いときには、目標状態維持運転制御よりもエンジン2の出力を減少させてバッテリー17を放電させるように、電動モータ4の作動及びエンジン2の作動を管理する放電量増加運転制御を実行するように構成されている。
【0030】
次に、前記目標状態維持運転制御について具体的に説明する。
図9に示すように、例えばシフトポジションレバー15が「D」位置にあるときの車速の変化に対する駆動ユニットKに対する要求駆動力の変化特性が予め設定されており、前記車両制御部6がこの特性に基づいて走行用の要求駆動力を求める構成となっている。図9(イ)に示されるラインq1は、アクセル操作量が最大(全開)になったときの値に対応する車速の変化に対する要求駆動力の変化を示しており、アクセル操作量が変化した場合の要求駆動力の変化割合が図9(ロ)に示すような特性として予め設定されている。そして、これらの特性から、そのときの車速に対応する要求駆動力は、図9(イ)に示されるラインq1から求められる車速に対する値と、アクセル操作量の検出値に基づく変化割合(%)との積により求められることになる。
【0031】
図9に示す特性において、正(+)側は、目標走行方向が前進方向であること、すなわち、前進走行用の要求駆動力であることを示し、図において上側ほど前進走行用の要求駆動力が大となることを示している。又、負(−)側は、目標走行方向が前進方向とは逆方向の要求駆動力であることを示し、図において下側ほど逆向きの要求駆動力が大となることを示している。そして、図6のラインq2は、アクセル操作量が最小(全閉)で且つブレーキ操作量が最小になったときの要求駆動力の変化特性を示しており、又、図9のラインq3はブレーキ操作量が最大になったときの要求駆動力の変化特性を示している。
【0032】
アクセル並びにブレーキが操作されていないときには、このラインq2を用いて要求駆動力が求められることになる。上記ラインq2より明らかなように、車速が設定車速より大でありアクセルが全閉であるとき負(−)側の要求駆動力、すなわち、指示されている進行方向とは逆向きの要求駆動力となることを示しており、ラインq2及びラインq3より明らかなように、ブレーキ操作量が大であるほど負(−)側の要求駆動力が大になるように設定されている。
【0033】
そして、図10に示すように、充電状態検出部S5にて検出されるバッテリーの充電状態SOCに対するバッテリー17における充電すべき電力や放電すべき電力を規定する電池要求電力の変化特性が予め設定されており、充電状態検出部S5にて検出される現在のバッテリー17の充電状態SOCからそのときの電池要求電力を求め、その電池要求電力を駆動ユニットKに対する要求動力に換算した値と、前記アクセル操作量やブレーキ操作量等に基づいて求められる走行用の要求駆動力とを合算して最終的な要求駆動力を求める。
【0034】
図10において、電池要求電力が正(+)側は上方側ほどバッテリーが大きな電力を放電させる必要があることを示し、負(−)側は下方側ほどバッテリーの充電量を大きくさせる必要があることを示しており、電池要求電力が正(+)側であれば充電の必要はないので駆動ユニット(エンジン)に対する要求動力は小さくなり、電池要求電力が負(−)側であれば充電が必要であり駆動ユニット(エンジン)に対する要求動力は大きくなる。
【0035】
前記車両制御部6は、上記したようにして求められる要求駆動力から、先ず、エンジン2を起動する必要があるか否かを判断し、必要があれば要求されるエンジン要求出力を求める。尚、バッテリー17の充電状態がSOCが目標充電状態X(電池要求電力が「0」となる充電状態)よりも大であり、車速が設定車速(10km/h)以下であれば、エンジン2を起動させずに電動モータ4による駆動を行うようになっている。
次に、図6を参照しながら、各種目標値の演算処理の手順について説明する。
バッテリー17の充電状態がSOCが目標充電状態Xより小さくなるか、又は、車速が設定車速(10km/h)を越えて、エンジン2を起動する場合には、図7に示すように予め設定されている変化特性から、前記エンジン要求出力に対して運転効率が最も大きくなるようなエンジン目標回転速度を求める。そして、図8に示すように、エンジン2の運転効率の高い点に沿うように予め設定されたエンジン2のエンジン目標回転速度に対する目標スロットル開度の変化特性、すなわち、最適燃費ラインが設定されており、前記エンジン目標回転速度とこの最適燃費ラインとからそのときの目標スロットル開度を求める。この求めた目標スロットル開度の情報はエンジン制御部10に指令される。
エンジン制御部10は、実際のスロットル開度が求めた目標スロットル開度になるように電子スロットル弁9の開度を調整する。尚、図示はしないが、吸入空気量とエンジン回転速度に対応する燃料噴射量も合わせて求められ、対応する燃料噴射量になるように自動調節されることになる。
【0036】
一方、上記したようにして求めた前記エンジン目標回転速度とそのときの車速の情報とから発電機3の目標回転速度を求め、その目標回転速度になるように発電機制御部8に制御情報を指令する。但し、ここでも求められる発電機目標回転速度が負の値、すなわち、発電機目標回転速度が図4において「0」よりも下側の値として求められた場合には電動モータとして機能するため、エンジン2を始動させる場合等の特殊な状況以外では、発電機制御部8に情報を指令することなく、発電機3の回転を機械的に阻止する油圧式制動装置31を作動させて回転停止させるようになっている。そして、回転を停止させる場合には、車速の情報から再度、エンジン目標回転速度を演算にて求めて、その求めた値と前記最適燃費ラインとから、エンジン2の運転効率の高い目標スロットル開度を求めるようにしている。
【0037】
そして、車速の変化に対する電動モータ4とエンジン2とのトルク分配比率等を設定した車両の走行性能特性が予め設定されており、前記要求駆動力の情報や車速の情報と、走行性能特性から電動モータ4が出力すべきモータトルクを算出する。例えば、設定車速以下であればすべての駆動力を電動モータ4にて出力するように、又、設定車速を越えて走行しているときエンジン2の出力では要求駆動力に対して不足する動力を電動モータ4にて出力するように、必要なモータトルクが求められ、電動モータ4の駆動制御が行われることになる。
【0038】
前記電池要求出力が負(充電)側に大であれば、走行用要求駆動力に充電に必要な駆動力が加算されるので、発電機目標回転数が正の値になり、発電機から駆動されてバッテリー17に充電が行われ、前記電池要求出力が正(放電)側に大であれば、発電機3が停止して、バッテリー17の電力により電動モータ4が駆動され、バッテリー17から電力が放電されることになる。
従って、バッテリー17の充電状態SOCが目標充電状態Xになるように、電動モータ4やエンジン2の作動が制御されることになる。
以上までの動作が目標状態維持運転制御に対応する。
【0039】
次に、放電量増加運転制御について説明する。
バッテリー17の充電状態SOCが高充電状態Yよりも高くなると、車速の状況等にかかわらず、常に、車両の走行駆動力をすべて電動モータ4にて出力させるように駆動制御する。
つまり、上記したような太陽電池30によるバッテリーへの充電は常に行われる構成となっているから、上記したような目標状態維持運転制御だけを実行している場合には、バッテリー17に対する充電状態が消費量に対して多くなり過ぎるおそれがあるが、バッテリー17の充電状態SOCが高充電状態Yよりも高くなると、車両の走行駆動力をすべて電動モータ4にて出力させエンジン2を停止させることで電動モータ4による電力消費を多くさせる運転モードで駆動することにより、電力消費量を多くさせるようにしている。
そして、放電量増加運転制御を実行することにより、バッテリーの充電状態SOCが高充電状態Yよりも低くなると、前記目標状態維持運転制御を実行することになり、バッテリー17の充電状態SOCが目標充電状態Xになるように、電動モータ4やエンジン2の作動が制御されることになる。
【0040】
以上の制御動作については、シフトポジションレバー15が「D」位置にある場合について説明したが、それ以外の指令位置、例えば、「B」位置にある場合や「R」位置にある場合であっても、同じような処理を実行することになる。但し、このように走行用の指令位置が異なると、車速の変化に対する要求駆動力の変化特性等として異なる特性が用いられることになる。例えば、「B」位置では、「D」位置に比べて、アクセルが全閉であるときの逆向き走行駆動力が大きめの値が設定されることになるが、それらの詳細については説明は省略する。
【0041】
上記構成においては、前記エンジン2は走行駆動用の動力を出力するエンジンとして機能し、且つ、前記発電機3を駆動することから、この発電機と前記エンジン2とにより、燃料にて作動して前記バッテリー17を充電する電力を発電する発電手段Gとして機能することになる。
【0042】
〔実施形態
【0043】
上記参考例では、放電量増加運転制御として、車両の走行駆動力をすべて電動モータにて出力させる構成を例示したが、本実施形態では、走行開始直後に電動モータだけで駆動する車両の走行速度の上限値が、目標状態維持運転制御における10km/hでなく、それよりも速い速度、例えば、数十km/hに上昇させる制御形態になっている
【0045】
〔別実施形態〕
)上記参考例では、駆動手段が前輪を駆動する構成としたが、これに限らず、後輪を駆動する構成や、4 輪すべてを駆動する構成でもよく、又、駆動手段として遊星ギア機構を備える構成を例示したが、このような構成に限定されるものではなく、各種の伝動機構を用いることができる。
【図面の簡単な説明】
【図1】 概略構成図
【図2】 駆動ユニットを示す図
【図3】 制御ブロック図
【図4】 駆動ユニットの動作状態を示す共線図
【図5】 制御動作のフローチャート
【図6】 目標値の演算処理手順を示す図
【図7】 エンジンの速度特性図
【図8】 最適燃費ラインを示す図
【図9】 要求駆動力を示す図
【図10】 電池要求電力の特性を示す
【符号の説明】
2 エンジン
4 電動モータ
17 バッテリー
30 太陽電
運転状態制御手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an electric motor for driving driving, a battery for supplying driving electric power to the electric motor, and an engine for outputting driving driving power.AndThe present invention also relates to a self-propelled vehicle provided with driving control means for managing driving of the vehicle.
[0002]
[Prior art]
The self-propelled vehicle having the above configuration includes, for example, an electric motor for driving driving and an engine that outputs driving power for driving, and the driving power is driven in parallel using the power of the engine and the power of the electric motor. Type hybrid vehicle and an engine-driven generator driven by the power of the engine as the power generation means, the battery is charged by the generator, and an electric motor for driving driving by the electric power from the battery There are a series type hybrid vehicle for driving the vehicle, a fuel cell type electric vehicle in which a fuel cell is mounted as the power generation means, and an electric motor for driving driving is driven by electric power from the fuel cell. Incidentally, in any of these types of vehicles, at the time of traveling deceleration, the battery is charged using regenerative electric power from the electric motor.
[0003]
And in such a self-propelled vehicle, conventionally, a technique has been proposed that includes a solar cell to reduce the load on the power generation means.
For example, as disclosed in Japanese Patent Application Laid-Open No. 8-251711, a hybrid vehicle including an electric motor and an engine is configured to charge a battery with a charging current generated by a solar cell. When the charging voltage is lower than the set value, charging from the solar cell is performed, but when the charging voltage of the battery exceeds the set value, current control is performed so that charging from the solar cell to the battery is not performed. (Hereinafter referred to as the first prior art).
That is, in the first prior art, when the charging voltage of the battery is lower than the set value, the battery is charged by the solar cell, and when the charging voltage of the battery exceeds the set value, the solar cell is charged. The power generation current generated by is not configured to flow as a charging current.
[0004]
By the way, in the said 1st prior art, since the charge by a solar cell is performed when the charge voltage of a battery is lower than a setting value, the electric power generated by a solar cell can be used effectively, but the charge voltage of a battery is high. Since the generated power of the solar cell is not used sometimes, there is a disadvantage that the power generation capability of the solar cell cannot be effectively used.
[0005]
In the configuration of the first prior art, the setting value, which is a criterion for determining whether or not to perform charging by the solar cell, is set to a low value in advance, and the power generation capacity of the solar cell is used as effectively as possible. However, with this configuration, when the vehicle is running, the battery charging voltage may be too low and power may be insufficient. Then, for example, in a configuration in which the generator is driven by the engine and the battery is charged, there are disadvantages such as an increase in fuel consumption in the engine that drives the generator.
[0006]
Therefore, as a configuration for solving the above disadvantages, for example, there is a configuration disclosed in Japanese Patent Laid-Open No. 2000-253504.
That is, in a hybrid vehicle configured to control the start / stop of a generator that is an example of power generation means so that the charge amount of the battery becomes a preset target charge amount, power is generated by a solar cell. The battery is configured so that the charging current can always be charged. The power generation state of the solar cell, specifically, time information, weather information such as humidity and atmospheric pressure of the day, and the direction and inclination of the vehicle The target charge amount is changed based on various information such as attitude information. For example, when the output of the solar cell is predicted to be low, the target charge amount is set to a high value, and when the output of the solar cell is predicted to be high, the target charge amount is set to a low value. This is because the electric motor can be driven in an appropriate state even when the output of the solar cell is low, and when the output of the solar cell is high, the power generated by the solar cell increases. By setting it low, the power generated by the solar battery can be appropriately charged. (Hereinafter referred to as the second prior art).
[0007]
[Problems to be solved by the invention]
In the second prior art, the power generation current generated by the solar cell always flows as a charging current, and the fuel consumption in the power generation means is suppressed by making maximum use of the power generation capability of the solar cell. In this second prior art, there is still room for improvement in the following aspects.
That is, according to the above configuration, in order to predict the output of the solar cell, various information such as time information, weather information such as humidity and atmospheric pressure of the day, and attitude information such as vehicle direction and inclination angle, etc. And the target charge amount is changed based on the various detection information. Various detection means for detecting such various information are necessary, and the number of parts increases accordingly. There is a disadvantage that the configuration becomes complicated.
[0008]
The present invention has been made paying attention to such a point, and its purpose is to maximize the power generation capability of the solar cell without incurring the complexity of the configuration such as providing a configuration for detecting the power generation state of the solar cell. It is to provide a self-propelled vehicle that can be used to the limit.
[0009]
[Means for Solving the Problems]
  According to the first aspect of the present invention, there is provided an electric motor for driving driving, a battery for supplying driving electric power to the electric motor, an engine for outputting driving driving power, and an operation control means for managing driving of the vehicle. In the provided self-propelled vehicle, a solar battery is provided, and the battery is configured to charge the power generated by the solar battery, and the operation control means is preset with a charge state of the battery. Maintaining the target state for managing the operation of the electric motor and the operation of the engine so that the state of charge of the battery becomes a target state of charge set lower than the state of high charge when the state is lower than the high state of charge. When the operation control is executed and the state of charge of the battery is higher than the state of high charge, the discharge of the battery is promoted.RunImmediately after starting the line, the upper limit value of the traveling speed of the vehicle driven only by the electric motor is increased to a speed faster than the set speed in the target state maintaining operation control, and the output of the engine is increased compared to the target state maintaining operation control. In the state of decreasing, the operation of the electric motor and the discharge amount increasing operation control for managing the operation of the engine are executed.
[0010]
That is, a solar cell is provided, and the power generated by the solar cell is configured to be charged to the battery, and the solar cell always generates power while it is exposed to light. Then, the battery is continuously charged.
[0011]
  The driving control means for controlling the driving of the vehicle becomes the target charging state in which the charging state of the battery is set lower than the high charging state when the charging state of the battery is lower than the preset high charging state. The operation of the electric motor as well as the engineMoveThe target state maintenance operation control to be managed is executed. That is, when the charge state of the battery is lower than the high charge state, it is considered that the power charged by the solar battery is properly consumed by the power consumption of the vehicle. The driving state of the vehicle is controlled so that the charging state becomes a preset target charging state, and an appropriate charging state is maintained.
[0012]
  When the state of charge of the battery is higher than the preset high state of charge, the operation control means reduces the engine output more than the target state maintenance operation control so as to promote battery discharge.RuOperation of the electric motor and engine operation.MoveThe discharge amount increase operation control to be managed is executed. In other words, when the state of charge of the battery is higher than the state of high charge, charging by solar cells is excessive compared to vehicle power consumption simply by executing the target state maintenance operation control as described above. In this case, the power consumption of the electric motor is increased by decreasing the engine output and increasing the driving power of the electric motor.RuThis increases the power consumption from the battery.
  In this way, even when the output of the solar cell is large, the operation can be continued in a state where the power consumption from the battery is increased.
  And when the output of the solar cell is reduced, the battery state of charge returns to the state of executing the target state maintenance operation control when the state of charge of the battery becomes lower than the high state of charge. Operation is controlled so that
[0014]
And charging to the battery by the solar cell is always in an executable state, and the control state is changed depending on the battery charging state regardless of the power generation state of the solar cell, so the power generation state of the solar cell is detected. A configuration for doing so is not necessary, and the configuration is not complicated.
[0015]
Therefore, it is possible to provide a self-propelled vehicle that can make maximum use of the power generation capability of the solar cell without complicating the configuration such as providing a configuration for detecting the power generation state of the solar cell. It was.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
[Reference example]
  Hereinafter, a hybrid vehicle as an example of a self-propelled vehicle according to the present invention will be described with reference to the drawings.
  FIG. 1 shows a system configuration of a hybrid vehicle as an example of a self-propelled vehicle. This hybrid vehicle is provided with a drive unit K in which a planetary gear mechanism 1, an engine 2, a generator 3, an electric motor 4 and the like, which will be described later, are integrally assembled, and this drive unit K is used as a traveling device. It is comprised so that the driving force for driving | running | working which drives the left and right front wheels 5 may be generated. And this hybrid vehicle is provided with the solar cell 30, and it is comprised by this solar cell 30 so that the battery mounted in a vehicle may be charged so that it may mention later. Although not described in detail, the solar cell 30 is mounted in a state where it can receive sunlight on a hood or roof of a vehicle.
[0017]
Next, the configuration of the drive unit K will be described.
As shown in FIG. 2, the engine 2, the electric motor 4, and the generator 3 are each mechanically coupled via a planetary gear mechanism 1, and the planetary gear mechanism 1 rotates around the central axis. A sun gear 18, three planetary pinion gears 19 that revolve around the central axis while rotating by engaging with the outer periphery of the sun gear 18, and a ring gear 20 that rotates while engaging with each planetary pinion gear 19 on the outer periphery thereof. The three planetary pinion gears 19 are supported by a carrier 21 and integrally revolved around a central axis.
For this planetary gear mechanism 1, the output shaft 2 a of the engine 2 is coupled to the carrier 21, the drive shaft 3 a of the generator 3 is coupled to the sun gear 18, and the drive shaft 4 a of the electric motor 4 is connected via the counter gear 22. Coupled to the ring gear 20. The drive shaft 4 a of the electric motor 4 is coupled to the left and right front wheels 5 via a counter gear 22 and a differential gear 23. That is, the electric motor 4 and each front wheel 5 are in a state of interlocking connection and are always in a state of rotating in synchronization.
[0018]
In the planetary gear mechanism 1 configured as described above, of the three shafts coupled to the gears, that is, the output shaft 2a of the engine 2, the drive shaft 3a of the generator 3, and the drive shaft 4a of the electric motor 4 When the rotational states (rotational speed, rotational torque, etc.) of the two shafts are determined, the rotational state of the remaining one shaft is uniquely determined.
The relationship between the rotational speeds of these can be represented by a collinear chart as shown in FIG. If each gear is in a stopped state (zero speed), the state shown by the characteristic line L1 in the figure is obtained. Then, in a motor running state where the engine 2 is driven only by the electric motor 4 while the engine 2 is stopped, the electric motor 4 is rotationally driven in the forward direction as indicated by a characteristic line L2 in the figure. At this time, the engine 2 is stopped and the generator 3 is in a free rotation state opposite to the power generation direction.
When the engine 2 is started in the motor running state, as indicated by a characteristic line L3 in the figure, the generator 3 is caused to function as an electric motor and is driven at a set rotational speed to start the engine 2. When the engine 2 is started, as indicated by a characteristic line L4 in the figure, the generator 3 is maintained in a rotation stopped state, and thereafter is driven to run by the power of the engine 2 and the power of the electric motor 4. When the battery 17 needs to be charged, the generator 3 can be driven to generate power by increasing the rotational speed of the engine 2 as shown by the characteristic line L5 in the figure.
[0019]
Thus, the relationship among the rotational speeds of the output shaft of the engine 2, the drive shaft of the generator 3, and the drive shaft of the electric motor 4 is always defined as a straight line on the alignment chart. The generator 3 and the electric motor 4 are each composed of an AC synchronous motor, and can control the rotation direction and the rotation speed by adjusting the supply direction and current value of the drive current to these, and the drive unit K has a configuration capable of changing the traveling speed steplessly.
[0020]
Next, a control configuration for the drive unit K in this hybrid vehicle will be described.
As shown in FIG. 3, a vehicle control unit 6 that controls the overall operation of the vehicle, a motor control unit 7 that controls the operation of the electric motor 4 based on control information from the vehicle control unit 6, a vehicle A generator control unit 8 that controls the operation of the generator 3 based on control information from the control unit 6, an output of the engine 2 based on control information from the vehicle control unit 6, specifically, an electronic throttle valve The engine control unit 10 that automatically adjusts the throttle opening 9 and the fuel injection amount of an injector (not shown) is provided, and the accelerator operation amount detection sensor S1 that detects the operation amount of the accelerator operation tool 11 and the brake operation tool 13 are provided. The brake operation amount detection sensor S2 for detecting the operation amount (operation pressure) of the vehicle, the shift position sensor S3 for detecting the position of the shift position lever 15, and the rotational speed of the axle of the front wheel 5. And a vehicle speed sensor S4, which detects the vehicle speed Te, various detection information by the charging state detector S5 or the like for detecting the state of charge of the battery are configured to be input to the vehicle control unit 6.
[0021]
The position of the shift position lever 15 includes “P” (parking position), “R” (reverse travel position), “N” (neutral position), “D” (forward travel position), and “B” (braking force). The forward traveling position where a large amount acts on) is appropriately switched by the driver according to the driving situation.
[0022]
Driving power for the electric motor 4, the generator 3, and the control units is supplied from a battery 17, and the battery 17 is charged by the generated power from the generator 3 and the electric motor 4 as described later. The battery 30 is also charged by the generated power.
[0023]
Then, the vehicle control unit 6 drives for driving such as information on the operation amount of the accelerator operation tool 11, information on the operation amount of the brake operation tool 13, information on the position of the shift position lever 15, information detected by the vehicle speed sensor S4, and the like. Based on the force adjustment information and the battery required power information obtained from the state of charge of the battery detected by the charge state detection unit S5, the determination process for determining whether or not to start the engine and the required driving force for the drive unit K are determined. It is configured to execute a required process, an output process for causing the drive unit K to output a required driving force, and the like. In the output process, the vehicle control unit 6 outputs control information to the motor control unit 7, the generator control unit 8, and the engine control unit 10 so that the drive unit K outputs the required driving force, The outputs of the engine 2, the generator 3, and the electric motor 4 are controlled.
[0024]
Hereinafter, the control contents in the respective operation modes in each operation stage from the state where the vehicle is stopped until the vehicle starts to run and then decelerates to stop will be briefly described.
When the battery is sufficiently charged and does not need to be charged, the accelerator is released from the stop state (corresponding to the characteristic line L1 in FIG. 4) in which the engine 2, the electric motor 4, and the generator 3 stop rotating. When the stepping operation is performed, first, the vehicle is started by generating a driving torque for forward traveling in the electric motor 4 with the engine 2 stopped (corresponding to the characteristic line L2 in FIG. 4).
When the traveling speed exceeds the set speed (about 10 km / h) and the driving force of the engine 2 is necessary, the generator 2 is rotationally driven to start the engine 2 (corresponding to the characteristic line L3 in FIG. 4). . That is, the vehicle control unit 6 obtains a target rotational speed necessary for starting the engine 2 and commands the target rotational speed command information to the generator control unit 8, and the generator control unit 8 sets the corresponding target rotational speed to the target rotational speed. Thus, the drive current value for the generator 3 is controlled. When it is determined by the generator control unit 8 that the generator 3 is in the state of generating regenerative braking torque from the state of generating driving torque, the start of the engine 2 is confirmed. If it is not necessary to charge the battery, the rotation of the generator 3 is stopped (corresponding to the characteristic line L4 in FIG. 4).
[0025]
When it is determined that charging is necessary due to a decrease in the state of charge of the battery 17 while the vehicle is traveling, the generator 3 is driven by the power of the engine 2 to generate power and charge the battery 17 (see FIG. 4). Corresponding to the characteristic line L5). Although not shown, when it is determined that the battery 17 needs to be charged while the vehicle is stopped, that is, when the electric motor 4 is stopped, the engine 2 is started and the power of the engine 2 is increased. To drive the generator 3 to generate electricity.
[0026]
After the engine 2 is started, as will be described in detail later, the throttle opening and the fuel injection amount with respect to the engine 2 are in line with the optimum fuel consumption line that maximizes the driving efficiency with respect to changes in the engine speed. The electronic throttle valve 9 and the injector are automatically adjusted so as to change.
During traveling of the vehicle, the electric motor 4 outputs a traveling driving force that is insufficient with the driving force of the engine based on the optimum fuel efficiency line as described above. If the vehicle speed is high, the target current value for generating the regenerative braking force is obtained, and the current amount is adjusted and controlled so that the current supplied from the electric motor 4 to the battery 17 becomes the target current value. At this time, the electric motor 4 functions as a generator, and the generated power is stored in the battery 17.
[0027]
The driving of the vehicle is managed by the adjustment processing of the driving force for the driving unit K as described above, and the vehicle control unit 6, the motor control unit 7, the generator control unit 8, and the engine control unit 10 respectively. A control means H is configured as a management control means for managing the driving of the vehicle.
The control contents of the control means H will be described with reference to the drawings. First, as shown in FIG. 5, information on the operation amount of the accelerator operating tool 11 detected by the accelerator operation amount detection sensor S1, brake operation, and the like. Information on the operation amount of the brake operating tool 13 detected by the amount detection sensor S2, information on the position of the shift position lever 15 detected by the shift position sensor S3, vehicle speed detection information detected by the vehicle speed sensor S4, charging Processing for taking in each of the detection information of the state detection unit S5 and determining which one of the various driving modes as described above is based on the various information. In addition, based on the above various detection information, the throttle target opening, motor torque, and generator target rotational speed can be obtained from the required driving force by calculation. Calculation of the value, or to start the engine 2, performs arithmetic processing including judging whether processing such as is necessary or to stop.
[0028]
Then, based on the result calculated in the calculation process, the engine start process for starting the engine 2 and the optimum fuel consumption as described above so as to obtain the driving force required according to each operation mode as described above. In the state where the throttle opening is adjusted according to the line, engine output processing for adjusting the output of the engine 2 and the output of the electric motor 4 are adjusted so that the operation state required according to each operation mode as described above is obtained. Each of the motor output process to be performed and the generator output process to adjust the output of the generator 3 so as to be in an operation state required according to the operation mode. A series of these processes corresponds to the travel driving force adjustment process.
[0029]
When the state of charge SOC of the battery 17 is lower than the preset high charge state Y, the vehicle control unit 6 sets the target state of charge X in which the state of charge SOC of the battery 17 is set lower than the high charge state Y. When the target state maintaining operation control for managing the operation of the electric motor 4 and the operation of the engine 2 is executed and the state of charge SOC of the battery 17 is higher than the high state of charge Y, the target state maintaining operation control is performed. The discharge amount increasing operation control for managing the operation of the electric motor 4 and the operation of the engine 2 is executed so that the output of the engine 2 is reduced and the battery 17 is discharged.
[0030]
Next, the target state maintaining operation control will be specifically described.
As shown in FIG. 9, for example, a change characteristic of the required driving force for the drive unit K with respect to a change in the vehicle speed when the shift position lever 15 is in the “D” position is set in advance, and the vehicle control unit 6 performs this characteristic. Based on the above, the required driving force for traveling is obtained. A line q1 shown in FIG. 9 (a) shows a change in the required driving force with respect to a change in the vehicle speed corresponding to a value when the accelerator operation amount becomes maximum (fully open), and the accelerator operation amount changes. The change rate of the required driving force is preset as a characteristic as shown in FIG. From these characteristics, the required driving force corresponding to the vehicle speed at that time is a change rate (%) based on the value for the vehicle speed obtained from the line q1 shown in FIG. 9 (a) and the detected value of the accelerator operation amount. It is calculated by the product of
[0031]
In the characteristics shown in FIG. 9, the positive (+) side indicates that the target traveling direction is the forward direction, that is, the required driving force for forward traveling, and the required driving force for forward traveling in the upper side in the figure. Indicates that it will be large. Further, the negative (−) side indicates that the target driving direction is the required driving force in the direction opposite to the forward direction, and the lower side in the figure indicates that the required driving force in the opposite direction increases. A line q2 in FIG. 6 shows a change characteristic of the required driving force when the accelerator operation amount is minimum (fully closed) and the brake operation amount is minimum, and a line q3 in FIG. The change characteristic of the required driving force when the operation amount becomes maximum is shown.
[0032]
When the accelerator and the brake are not operated, the required driving force is obtained using this line q2. As apparent from the line q2, when the vehicle speed is higher than the set vehicle speed and the accelerator is fully closed, the required driving force on the negative (−) side, that is, the required driving force in the direction opposite to the instructed traveling direction. As is clear from the lines q2 and q3, the required driving force on the negative (−) side is set to increase as the brake operation amount increases.
[0033]
Then, as shown in FIG. 10, the battery required power change characteristic that prescribes the power to be charged or the power to be discharged in the battery 17 with respect to the battery state SOC detected by the charge state detection unit S5 is set in advance. A required battery power at that time from the current state of charge SOC of the battery 17 detected by the charge state detection unit S5, a value obtained by converting the required battery power into a required power for the drive unit K, and the accelerator The final required drive force is obtained by adding together the required drive force for traveling obtained based on the operation amount, the brake operation amount, and the like.
[0034]
In FIG. 10, when the battery required power is positive (+), the upper side indicates that the battery needs to discharge more power, and on the negative (−) side, the lower battery side needs to increase the charge amount of the battery. If the battery power requirement is positive (+), charging is not necessary, so the power requirement for the drive unit (engine) is small. If the battery power requirement is negative (-), charging is not required. Necessary and required power for the drive unit (engine) increases.
[0035]
The vehicle control unit 6 first determines whether or not it is necessary to start the engine 2 from the required driving force obtained as described above, and obtains the required engine required output if necessary. If the SOC of the battery 17 is larger than the SOC in the target charging state X (the charging state where the required battery power is “0”) and the vehicle speed is equal to or lower than the set vehicle speed (10 km / h), the engine 2 is turned on. The drive by the electric motor 4 is performed without starting.
Next, the procedure of various target value calculation processing will be described with reference to FIG.
When the charge state of the battery 17 is lower than the target charge state X or when the engine 2 is started when the vehicle speed exceeds the set vehicle speed (10 km / h), the battery 17 is preset as shown in FIG. The engine target rotation speed that maximizes the operating efficiency with respect to the engine required output is obtained from the change characteristics. Then, as shown in FIG. 8, the change characteristic of the target throttle opening with respect to the engine target rotational speed of the engine 2 set in advance along the point where the operating efficiency of the engine 2 is high, that is, the optimum fuel consumption line is set. The target throttle opening at that time is obtained from the engine target rotational speed and the optimum fuel efficiency line. Information on the obtained target throttle opening degree is commanded to the engine control unit 10.
The engine control unit 10 adjusts the opening of the electronic throttle valve 9 so that the actual throttle opening becomes the calculated target throttle opening. Although not shown, the intake air amount and the fuel injection amount corresponding to the engine speed are also obtained and automatically adjusted so as to obtain the corresponding fuel injection amount.
[0036]
On the other hand, the target rotational speed of the generator 3 is obtained from the engine target rotational speed obtained as described above and the vehicle speed information at that time, and control information is sent to the generator control unit 8 so as to be the target rotational speed. Command. However, since the generator target rotation speed obtained here is a negative value, that is, when the generator target rotation speed is obtained as a value lower than “0” in FIG. 4, it functions as an electric motor. Except for special circumstances such as when the engine 2 is started, the hydraulic brake device 31 that mechanically blocks the rotation of the generator 3 is operated to stop the rotation without instructing information to the generator control unit 8. It is like that. When stopping the rotation, the engine target rotation speed is again calculated from the vehicle speed information, and the target throttle opening with high operating efficiency of the engine 2 is calculated from the calculated value and the optimum fuel consumption line. Asking for.
[0037]
Further, a running performance characteristic of the vehicle in which a torque distribution ratio between the electric motor 4 and the engine 2 with respect to a change in the vehicle speed is set in advance, and the electric power is obtained from the information on the required driving force, the information on the vehicle speed, and the running performance characteristic. A motor torque to be output by the motor 4 is calculated. For example, all the driving force is output by the electric motor 4 if the vehicle speed is lower than the set vehicle speed, or when the vehicle is traveling beyond the set vehicle speed, the output of the engine 2 is insufficient for the required driving force. The necessary motor torque is obtained so that the electric motor 4 can output, and drive control of the electric motor 4 is performed.
[0038]
If the required battery output is large on the negative (charging) side, the driving force required for charging is added to the required driving force for driving, so that the generator target rotational speed becomes a positive value and driven from the generator. If the battery 17 is charged and the battery request output is large on the positive (discharge) side, the generator 3 is stopped, and the electric motor 4 is driven by the power of the battery 17. Will be discharged.
Accordingly, the operations of the electric motor 4 and the engine 2 are controlled so that the state of charge SOC of the battery 17 becomes the target state of charge X.
The above operation corresponds to the target state maintenance operation control.
[0039]
Next, the discharge amount increasing operation control will be described.
When the state of charge SOC of the battery 17 becomes higher than the state of high charge Y, the drive control is performed so that the electric motor 4 always outputs all of the driving force of the vehicle regardless of the vehicle speed.
That is, since the battery is always charged by the solar cell 30 as described above, when only the target state maintenance operation control as described above is executed, the state of charge of the battery 17 is Although there is a possibility that it will be too much for consumption, when the state of charge SOC of the battery 17 becomes higher than the high state of charge Y, all the driving power of the vehicle is output by the electric motor 4 and the engine 2 is stopped. Power consumption is increased by driving in an operation mode that increases the power consumption by the electric motor 4.
When the battery charge state SOC is lower than the high charge state Y by executing the discharge amount increasing operation control, the target state maintaining operation control is executed, and the charge state SOC of the battery 17 is the target charge. The operation of the electric motor 4 and the engine 2 is controlled so as to be in the state X.
[0040]
The above control operation has been described with respect to the case where the shift position lever 15 is in the “D” position, but other command positions such as the “B” position and the “R” position. However, similar processing is executed. However, if the command position for traveling is different in this way, different characteristics are used as a change characteristic of the required driving force with respect to a change in the vehicle speed. For example, in the “B” position, a larger value is set for the reverse traveling driving force when the accelerator is fully closed than in the “D” position, but the details thereof are omitted. To do.
[0041]
In the above configuration, the engine 2 functions as an engine that outputs motive power for driving and drives the generator 3. Therefore, the generator and the engine 2 operate with fuel. It functions as power generation means G that generates power for charging the battery 17.
[0042]
[ActualForm]
[0043]
  Reference example aboveIn the above, as an example of the discharge amount increasing operation control, a configuration in which all the driving force of the vehicle is output by the electric motor is illustrated.In this embodiment, runningControl form in which the upper limit value of the traveling speed of the vehicle driven only by the electric motor immediately after the start of the line is raised to a speed higher than 10 km / h, for example, several tens km / h in the target state maintenance operation controlIt has become.
[0045]
[Another embodiment]
(1)the aboveReference exampleIn the above, the driving means drives the front wheels, but the invention is not limited to this. However, it is not limited to such a configuration, and various transmission mechanisms can be used.
[Brief description of the drawings]
1 is a schematic configuration diagram.
FIG. 2 is a diagram showing a drive unit
[Fig. 3] Control block diagram
FIG. 4 is a collinear diagram showing the operating state of the drive unit.
FIG. 5 is a flowchart of the control operation.
FIG. 6 is a diagram showing a target value calculation processing procedure;
[Fig. 7] Engine speed characteristics
FIG. 8 is a diagram showing an optimum fuel consumption line
FIG. 9 is a diagram showing the required driving force
FIG. 10 shows characteristics of required battery power.Figure
[Explanation of symbols]
  2 Engine
  4 Electric motor
  17 battery
  30 Taiyopond
H            Operating state control means

Claims (1)

走行駆動用の電動モータと、
その電動モータに駆動用電力を供給するバッテリーと、
走行駆動用の動力を出力するエンジンと、
車両の運転を管理する運転制御手段とが備えられた自走車両であって、
太陽電池が備えられて、その太陽電池により発電された電力を前記バッテリーに充電するように構成され、
前記運転制御手段が、
前記バッテリーの充電状態が予め設定された高充電状態よりも低いときには、
前記バッテリーの充電状態が前記高充電状態よりも低く設定された目標充電状態になるように、前記電動モータの作動、並びに、前記エンジンの作動を管理する目標状態維持運転制御を実行し、
且つ、前記バッテリーの充電状態が前記高充電状態よりも高いときには、前記バッテリーの放電を促進させるように、走行開始直後に前記電動モータだけで駆動する車両の走行速度の上限値を前記目標状態維持運転制御における設定速度よりも速い速度に上昇させて、前記目標状態維持運転制御よりも前記エンジンの出力を減少させる状態で、前記電動モータの作動、並びに、前記エンジンの作動を管理する放電量増加運転制御を実行するように構成されている自走車両。
An electric motor for driving, and
A battery for supplying electric power to the electric motor;
An engine that outputs power for driving, and
A self-propelled vehicle equipped with driving control means for managing driving of the vehicle,
A solar cell is provided, and is configured to charge the battery with electric power generated by the solar cell,
The operation control means is
When the state of charge of the battery is lower than a preset high state of charge,
The operation of the electric motor and the target state maintenance operation control for managing the operation of the engine are performed so that the state of charge of the battery becomes a target state of charge set lower than the state of high charge,
And, when the state of charge of the battery is higher than the high state of charge, so as to facilitate the discharge of the battery, the target state the upper limit of the running speed of the vehicle to be driven only by the electric motor immediately after the run line start The amount of discharge for managing the operation of the electric motor and the operation of the engine in a state in which the output of the engine is decreased more than the target state maintenance operation control by increasing to a speed faster than the set speed in the maintenance operation control. A self-propelled vehicle configured to perform increased driving control.
JP2001080716A 2001-03-21 2001-03-21 Self-propelled vehicle Expired - Fee Related JP3786841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001080716A JP3786841B2 (en) 2001-03-21 2001-03-21 Self-propelled vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001080716A JP3786841B2 (en) 2001-03-21 2001-03-21 Self-propelled vehicle

Publications (2)

Publication Number Publication Date
JP2002281604A JP2002281604A (en) 2002-09-27
JP3786841B2 true JP3786841B2 (en) 2006-06-14

Family

ID=18936951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001080716A Expired - Fee Related JP3786841B2 (en) 2001-03-21 2001-03-21 Self-propelled vehicle

Country Status (1)

Country Link
JP (1) JP3786841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653240A (en) * 2012-04-23 2012-09-05 华中科技大学 Electromobile hybrid battery-driven system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434298C (en) * 2005-11-29 2008-11-19 张大鹏 Solar car
CN101400880B (en) * 2006-10-03 2013-07-24 三菱电机株式会社 Hybrid vehicle
JP2008271619A (en) * 2007-04-16 2008-11-06 Nikkari Co Ltd Drive system for rail running vehicles
TW201427849A (en) * 2013-01-07 2014-07-16 ren-li Liao Aaa
JP2014230407A (en) * 2013-05-23 2014-12-08 弘隆 平山 Power generation and supply system, engine generator, photovoltaic generator and storage cell
CN109050230B (en) * 2018-08-28 2019-02-05 大连理工江苏研究院有限公司 Farad capacitor cell electric bus system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653240A (en) * 2012-04-23 2012-09-05 华中科技大学 Electromobile hybrid battery-driven system
CN102653240B (en) * 2012-04-23 2014-03-12 华中科技大学 Electromobile hybrid battery-driven system

Also Published As

Publication number Publication date
JP2002281604A (en) 2002-09-27

Similar Documents

Publication Publication Date Title
CN108349369B (en) Operation of a drive device of a hybrid vehicle and hybrid vehicle
JP3991975B2 (en) Shift control device for hybrid transmission
US6248036B1 (en) Transmission and vehicle and bicycle using the same
US7317259B2 (en) Power output apparatus and motor vehicle equipped with power output apparatus
JP3641244B2 (en) Shift control device for hybrid transmission
JPH0937410A (en) Drive controller for car
JP2005002989A (en) Power output device, its control method, and automobile
WO2012104922A1 (en) Drive control device for hybrid vehicle, and hybrid vehicle
JP2013119383A (en) Method of controlling torque of hybrid vehicle and system for the same
US20130304297A1 (en) Drive control apparatus and method for providing a drive control to a hybrid electric vehicle, and hybrid electric vehicle
JP4466635B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP5008353B2 (en) Control device for hybrid vehicle
JP3786841B2 (en) Self-propelled vehicle
JP3509587B2 (en) Transmission and vehicle using the same
KR20070063336A (en) Method for determining optimal drive point in series and parallel hybrid car
JP4217234B2 (en) POWER OUTPUT DEVICE, AUTOMOBILE MOUNTING THE SAME, DRIVE DEVICE, AND CONTROL METHOD FOR POWER OUTPUT DEVICE
CN207241412U (en) The dynamical system of four-drive hybrid electric vehicle
JP3938001B2 (en) Control method for hybrid transmission when abnormal
JP2003285657A (en) Transmission device, vehicle and bicycle using the same
JP3659905B2 (en) Hybrid vehicle travel control device
JP5057279B2 (en) Drive control apparatus for hybrid vehicle
CN208069394U (en) 4 wheel driven hybrid dynamic system and automobile
JP3540996B2 (en) Travel control device for hybrid vehicle
JP3948434B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND HYBRID VEHICLE
JP3703409B2 (en) Driving control system for self-propelled vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees