JP3785740B2 - Method and apparatus for measuring secondary electron emission ability - Google Patents

Method and apparatus for measuring secondary electron emission ability Download PDF

Info

Publication number
JP3785740B2
JP3785740B2 JP13638297A JP13638297A JP3785740B2 JP 3785740 B2 JP3785740 B2 JP 3785740B2 JP 13638297 A JP13638297 A JP 13638297A JP 13638297 A JP13638297 A JP 13638297A JP 3785740 B2 JP3785740 B2 JP 3785740B2
Authority
JP
Japan
Prior art keywords
secondary electron
electron emission
measured
gas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13638297A
Other languages
Japanese (ja)
Other versions
JPH10332609A (en
Inventor
伸昭 古谷
彰 金子
由雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13638297A priority Critical patent/JP3785740B2/en
Publication of JPH10332609A publication Critical patent/JPH10332609A/en
Application granted granted Critical
Publication of JP3785740B2 publication Critical patent/JP3785740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、荷電粒子による物質からの2次電子放出能の測定方法および装置に関するものであり、放電や荷電粒子を扱う技術分野に関するものである。
【0002】
【従来の技術】
荷電粒子が物質に入射すると二次電子が放出される。この二次電子放出能を知ることは、放電現象、荷電粒子ビーム等を扱うデバイスにとって非常に重要なことである。特に、放電管、蛍光灯、プラズマ・ディスプレイ等、ガス封入デバイスにとって、荷電粒子による構成材料からの二次電子放出の有無は、その特性に大きな影響を与える重要な問題である。それ故、デバイス構成材料の二次電子放出能を知ることは、デバイス設計の段階で性能予測ができ、有益な効果を持つ。
【0003】
従来、荷電粒子による二次電子放出能の測定は、電子による二次電子放出能の測定と類似の方法で行っていた。即ち、電子による二次電子放出能の測定は、電子銃により発生させた電子を被測定物質に照射し、その時に発生する二次電子の量を入射電子量と比較して二次電子放出能を求めていた。一方、荷電粒子による二次電子放出能の測定は、電子による測定の時の電子銃の代わりに、イオン銃を用いてイオンを発生させ、そのイオンを被測定物に照射して被測定物質の二次電子放出能を求めていた。例えば、テレビジョン学会技術報告IPU95−71、51ページ(1995年)に記載されている構成の測定方法である。
【0004】
この従来の荷電粒子による二次電子放出能の測定方法について、図4を用いて説明する。図4において、101はチャンバー、102はイオン銃、103は陰極電極、104はコレクター電極、105は開口部、106は加速電源、107はコレクター電源、108は試料、109〜111は電流計を示す。
【0005】
測定系は、図4に示すように、チャンバー101の中にイオン銃102と、陰極電極103と、陰極電極103を囲むように形成され、試料108に荷電粒子が入射できるように開口部105を持った二次電子捕獲用コレクター電極104で構成されている。さらに、加速電源106によりイオン銃102と陰極電極103の間に加速電圧を、またコレクター電源107によりコレクター電極104に電子捕獲用コレクター電圧を印加し、各回路系に流れる電流量を電流計109〜111で測定する構成となっている。
【0006】
そして、二次電子放出能の測定は、求めたい元素の荷電粒子をイオン源102から放射し、電極間の電場で加速して試料108に照射し、試料108から放出される二次電子を陰極電極103より電位の高いコレクター電極104によって捕獲する。すると、電流計110に二次電子電流Ieが流れ、電流計109には荷電粒子電流Ipと二次電子電流Ieの合算した電流Ikが流れ、電流計111には荷電粒子電流Ipが流れる。このようにして得られた各電流値を用いて、荷電粒子による二次電子放出能γを、
【0007】
【数1】

Figure 0003785740
【0008】
として求めていた。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の技術では、低真空度環境での二次電子放出能を測定しようとすると、放出された二次電子は陰極電極103とコレクター電極104との間に存在するガス分子や入射荷電粒子との相互作用により、二次電子放出電流量を正確に測定できなくなる。そのため、荷電粒子ビームを照射して二次電子放出能を求めるために、チャンバー101の内部を真空に排気して測定する必要がある。よって、ガス封入デバイスと同様の低真空度環境での二次電子放出能を求めることができないという課題がある。
【0010】
本発明は、ガス封入デバイスと同様の低真空度環境での二次電子放出能の値を容易に、かつ正確に測定することができる方法および装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
この課題を解決するために本発明は、所定のガス雰囲気中において、対向して配置された陽極電極と被測定物質を配した複数に分割された陰極電極とに電圧を印加し、両電極間の空間内でガスをイオン化させ、分割された複数の陰極電極に流れる電荷量により、二次電子放出能を測定するものである。
【0012】
さらに、複数の陰極電極上に異なった被測定物質を配置することにより、また複数の被測定物質のうち1種類を二次電子放出能の既知な物質とし、分割された複数の陰極電極に流れる電荷量により、二次電子放出能を測定するものである。
【0013】
この本発明によれば、ガス封入デバイスと同様の低真空度環境での二次電子放出能の値を容易に、かつ正確に測定する方法および装置を提供することができる。
【0014】
【発明の実施の形態】
本発明の第1の発明は、所定のガス雰囲気中において、対向して配置された陽極電極と被測定物質を配し複数に分割された陰極電極とに電圧を印加し、両電極間の空間内でガスをイオン化させ、分割された複数の陰極電極に流れる電荷量により、二次電子放出能を測定するもので、実デバイスと同様なガス封入(低真空度)環境で測定可能で、真のデバイス動作に近い二次電子放出能の値を容易に、かつ正確に測定することができるという作用を有する。
【0015】
第本発明の2の発明は、複数の陰極電極上に異なった被測定物質を配置して、各電極に流れる電荷量を測定することにより、イオン電流と二次電子放射が同一時刻に起こる現象として、かつ同時刻での電流として得られるために、正確に二次電子放出能の値を測定することができるという作用を有する。
【0016】
本発明の第3の発明は、複数の被測定物のうち、1種類が二次電子放出能の既知な物質とすることにより、未知の物質の二次電子放出能は両者により容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0017】
本発明の第4の発明は、イオン化電極を用いてガスのイオン化を行えば、従来のように高価なイオン銃を用いることなく安価で容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0018】
本発明の第5の発明は、レーザ光を用いてガスのイオン化を行えば、内部の電界(陽極−陰極間)を乱すことなくイオン化ができるために容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0019】
本発明の第6の発明は、測定したいイオン種元素を含むガスを所定の雰囲気ガスとすれば、実デバイスと同様のガス雰囲気での二次電子放出能を求めることができるために容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0020】
本発明の第7の発明は、各被測定物質面に開口部を有する視野制限板を設けたもので、開口部の面積を調整することにより容易に既知の被測定物と未知の被測定物との整合性をとることができ、二次電子放出能の値の測定を容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0021】
本発明の第8の発明は、所定の雰囲気ガスをHe、Ne、Xe、Ar、Krあるいはこれらのガスを主とする混合ガスとすることにより、PDPや放電管などの実デバイスと同じ環境で二次電子放出能を求めることができるために容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0022】
本発明の第9の発明は、所定のガス雰囲気中に、対向して配置された陽極電極と被測定物質を配した複数に分割された陰極電極と、陽極電極および陰極電極に電圧を印加する電圧印加手段と、両電極間の空間内でガスをイオン化させるイオン化手段と、各電極に流れる電荷量を測定する電荷量測定手段と、分割された複数の陰極電極に流れる電荷量により二次電子放出能を測定する二次電子測定部とを備えたもので、実デバイスと同様なガス封入(低真空度)環境で測定可能で、真のデバイス動作に近い二次電子放出能の値を容易に、かつ正確に測定することができるという作用を有する。
【0023】
本発明の第10の発明は、複数の陰極電極上に異なった被測定物質を配置して、各電極に流れる電荷量を測定することにより、イオン電流と二次電子放射が同一時刻に起こる現象として、かつ同時刻での電流として得られるために、正確に二次電子放出能の値を測定することができるという作用を有する。
【0024】
本発明の第11の発明は、複数の被測定物のうち、1種類が二次電子放出能の既知な物質とすることにより、未知の物質の二次電子放出能は両者により容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0025】
本発明の第12の発明は、イオン化電極を用いてガスのイオン化を行えば、従来のように高価なイオン銃を用いることなく安価で容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0026】
本発明の第13の発明は、レーザ光を用いてガスのイオン化を行えば、内部の電界(陽極−陰極間)を乱すことなくイオン化ができるために容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0027】
本発明の第14の発明は、測定したいイオン種元素を含むガスを所定の雰囲気ガスとすれば、実デバイスと同様のガス雰囲気での二次電子放出能を求めることができるために容易に、かつ正確に二次電子放出能の値を測定することができるという作用を有する。
【0028】
以下、本発明の実施の形態について、図1から図3を用いて説明する。
(実施の形態1)
図1は本発明の実施の形態1における荷電粒子による二次電子放出能測定装置を示す構成図である。図1において、1はチャンバー、2は陽極電極、3は陰極電極A、4は陰極電極B、5はイオン化部、6、7、8は電荷量測定部、9は電圧印加部、10は被測定物質A、11は被測定物質B、12は二次電子測定部、13は端子、14は視野制限板を示す。
【0029】
図1に示すように、チャンバー1の中に陽極電極2と、複数の陰極電極A3と陰極電極B4と、陽極−陰極電極間の空間で封入されたガスをイオン化するイオン化部5を備え、かつ陽極電極2と陰極電極3および4間に電圧印加できる電圧印加部9と、各電極に流れる電荷量を測定する電荷量測定部6〜8とを備えた構成となっている。そして、被測定物A10と被測定物B11をそれぞれ陰極電極A3と陰極電極B4の上にセットし、イオン化部5によってガスをイオン化し、陽イオンの荷電粒子を被測定物質10および11上に照射させる。すると各被測定物質10および11から二次電子が放出され、荷電粒子と合算した電荷が各電荷量測定部6、7に流れ、全電荷量が電荷量測定部8に流れる。二次電子測定部12は、電荷量測定部6、7および8からの電荷量から二次電子放出能γを求め、端子13に出力する。
【0030】
陽極電極および陰極電極間の空間で、ガスを放電させてプラズマ化し、被測定物質に流入する荷電粒子の電荷量をQi、陰極電極に流れる電荷量(荷電粒子量+二次電子量)をQkとすると、二次電子放出能γは、簡単に表すと、
【0031】
【数2】
Figure 0003785740
【0032】
と書くことができる。
ここで、電荷量測定部6および7に流れる総電荷量をそれぞれQaおよびQb、被測定物質A10および被測定物質B11に流入する荷電粒子の電荷量をそれぞれQiaおよびQibまた二次電子放出能をそれぞれγaおよびγbとすると、
【0033】
【数3】
Figure 0003785740
【0034】
の関係が成り立つ。
また、ガスがイオン化される部分から、複数の陰極電極A3と陰極電極B4のそれぞれの電極が等価に見込めるように配すると、例えば複数の陰極電極A3と陰極電極B4のそれぞれの総面積を等しくすると、陰極電極A3と陰極電極B4への流入荷電粒子量、即ち被測定物質A10および被測定物質B11に流入する荷電粒子の電荷量QiaおよびQibが等しくなる。よって、γaとγbとの間には次の関係が成り立つ。
【0035】
【数4】
Figure 0003785740
【0036】
ここで、例えば被測定物質A10の二次電子放出能γaの値が既知とすると、二次電子放出能の値が未知な物質である被測定物質B11の二次電子放出能γbの値を、電荷量測定部6および7に流れる総電荷量QaおよびQbを測定することにより、二次電子測定部12で(数4)を用いて二次電子放出能γbを求めることができる。二次電子測定部12で求めた二次電子放出能γbは、端子13を介して出力される。
【0037】
なお、ここで複数の陰極電極として、2つの陰極電極を用いて説明したが、その数は2つに限定されるものでないことは無論である。また、本発明では、複数の陰極電極上に異なった被測定物質を配置して、各電極に流れる電流を測定するようにしたもので、イオン電流と二次電子放射が同一時刻に起こる現象として、かつ同時刻での電流として得ることができる。これは、従来、イオン電流と二次電子電流の測定は陰極電極と二次電子電流を集めるコレクター電極とにより別電極で測定していたために、その間を電子が走行する時間だけ、イオン電流と二次電子電流に時間的な差があり誤差を招いていたものを改善することができる。
【0038】
さらに、ガスのイオン化部分から各被測定物質に荷電粒子が等価に照射されるように、各測定物質面に開口部を有する視野制限板14を設け、開口部の面積を調整することにより、被測定物質A10および被測定物質B11に流入する荷電粒子の電荷量QiaおよびQibが等しくまたは校正することができ、より精度の高い二次電子放射能を求めることができることは無論である。また、開口部の形状は特に限定するものではなく、円形でも矩形でも良く、視野制限板14の材質は二次電子放出の小さいものが良い。
【0039】
また、陰極電極Aおよび陰極電極Bの総面積を等しい場合で説明したが、面積比率によって、それぞれの陰極電極に入射する荷電粒子量および陰極電極に流れる総電荷量を較正すれば同様に二次電子放射能を求めることができることは無論である。
【0040】
さらに、3種類以上の複数の被測定物質を同時に陰極電極上に配すれば、同時に同じ条件下で、それぞれの二次電子放射能を求めることができることは無論である。
【0041】
上述のように、本発明によって、ガス封入デバイスと同様の低真空度環境での二次電子放出能の値を容易に、かつ正確に測定することができる方法および装置を提供することができる。
【0042】
また、本発明は低真空度環境でなく高真空度下においても、求めたい荷電粒子を等価に、あるいは既知の配分比率で、被測定物質に照射することにより、同様に二次電子放射能を求めることができることは無論である。
【0043】
(実施の形態2)
図2は本発明の実施の形態2の荷電粒子による二次電子放出能測定装置を示す構成図である。図2に示すように、チャンバー21の中に例えばHe、Ne、Xe、Ar、Krあるいはこれらを主とする混合ガスを封入し、陽極電極22と、複数の陰極電極A23と陰極電極B24との間に、電圧印加部29によって、例えば100V〜3KV程の電圧を印加し、陽極電極22と陰極電極23および24の間の空間で、イオン化電極25に数十KVの高電圧パルスを印加することにより、封入したガスをイオン化する。イオン化された陽イオン粒子が陰極電極A23および陰極電極B24上の既知の値の被測定物A30、例えばSi、Au、Pt等と被測定物B31、例えばMgO、SiO2、WまたはMoに照射され、各被測定物質30および31から二次電子が放出される。
【0044】
各被測定物質30および31から放出された二次電子量および荷電粒子量と合算した電荷量QaおよびQbが各電荷量測定部26、27に流れる。この流れる電荷量を、例えば電流計、ストレージ・オシロあるいはコンピュータへの取り込み機能を備えた電荷量測定部26〜28で測定し、二次電子測定部32で(数4)を用いて未知の物質の二次電子放出能γbを求めることができる。
【0045】
(実施の形態3)
図3は本発明の実施の形態の荷電粒子による二次電子放出能測定装置を示す構成図である。図3に示すように、チャンバー41の中に例えばAr、He、NeあるいはXeを封入し、陽極電極42と、複数の陰極電極A43と陰極電極B44との間に、電圧印加部49によって、例えば50V〜5KV程の電圧を印加し、陽極電極42と陰極電極43および44の間の空間で、例えばCO2レーザあるいはエキシマ・レーザ45をチャンバー41に設けた窓53からレンズ52により集光して、封入したガスをイオン化する。すると、イオン化された陽イオン粒子が陰極電極A43および陰極電極B44上の既知の値の被測定物質A50、例えばC、Ni、Au、Pt等と被測定物B51、例えばMgO、SiO2、Al2O3またはMoに照射され、各被測定物質50および51から二次電子が放出される。
【0046】
各被測定物質50および51から放出された二次電子量および荷電粒子量と合算した電荷量QaおよびQbが各電荷量測定部46、47に流れる。この流れる電荷量を、例えば電流計、ストレージ・オシロあるいはコンピュータへの取り込み機能を備えた電荷量測定部46〜48で測定し、二次電子測定部52で(数4)を用いて未知の物質の二次電子放出能γbを求めることができる。
【0047】
【発明の効果】
以上のように本発明によれば、対向して配置された陽極電極と被測定物質を設けた複数に分割された陰極電極とに電圧を印加し、両電極間の空間内でガスをイオン化させ、分割された複数の陰極電極に流れる電荷量により、二次電子放出能を測定するもので、低真空度環境での二次電子放出能の値を容易に、かつ正確に測定することができるという有利な効果が得られる。
【0048】
また、同時に本発明の電極構成にすれば、低真空度環境でなく、従来の高真空度下においても、求めたい荷電粒子を等価に、あるいは既知の配分比率で、被測定物質に照射することにより、同様に容易に二次電子放射能を求めることができるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による二次電子放出能測定装置を示す構成図
【図2】本発明の実施の形態2による二次電子放出能測定装置を示す構成図
【図3】本発明の実施の形態3による二次電子放出能測定装置を示す構成図
【図4】従来の技術による二次電子放出能測定方法を示す構成図
【符号の説明】
1、21、41 チャンバー
2、22、42 陽極電極
3、23、43 陰極電極A
4、24、44 陰極電極B
5 イオン化部
6、7、8、26、27、28、46、47、48 電荷量測定部
9、29、49 電圧印加部
10、30、50 被測定物質A
11、31、51 被測定物質B
12、32、52 二次電子測定部
13、33、53 端子
14 視野制限板
25 イオン化電極
45 レーザ光
52 レンズ
53 窓[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring the ability of secondary electrons to be emitted from a substance by charged particles, and relates to the technical field of handling discharges and charged particles.
[0002]
[Prior art]
When charged particles enter the material, secondary electrons are emitted. Knowing this secondary electron emission capability is very important for devices that handle discharge phenomena, charged particle beams, and the like. In particular, for gas-filled devices such as discharge tubes, fluorescent lamps, and plasma displays, the presence or absence of secondary electrons emitted from constituent materials by charged particles is an important problem that greatly affects the characteristics. Therefore, knowing the secondary electron emission ability of the device constituent material has a beneficial effect because performance can be predicted at the device design stage.
[0003]
Conventionally, measurement of secondary electron emission ability by charged particles has been performed by a method similar to measurement of secondary electron emission ability by electrons. That is, the secondary electron emission ability is measured by irradiating the material to be measured with electrons generated by an electron gun, and comparing the amount of secondary electrons generated at that time with the amount of incident electrons. I was looking for. On the other hand, the measurement of secondary electron emission ability using charged particles is performed by generating ions using an ion gun instead of an electron gun at the time of measurement by electrons, and irradiating the object to be measured with the ions. We wanted secondary electron emission ability. For example, it is a measuring method of the structure described in Television Society Technical Report IPU95-71, 51 pages (1995).
[0004]
A conventional method for measuring the secondary electron emission ability using charged particles will be described with reference to FIG. In FIG. 4, 101 is a chamber, 102 is an ion gun, 103 is a cathode electrode, 104 is a collector electrode, 105 is an opening, 106 is an acceleration power source, 107 is a collector power source, 108 is a sample, and 109 to 111 are ammeters. .
[0005]
As shown in FIG. 4, the measurement system is formed in a chamber 101 so as to surround the ion gun 102, the cathode electrode 103, and the cathode electrode 103, and has an opening 105 so that charged particles can enter the sample 108. It has a collector electrode 104 for capturing secondary electrons. Further, an acceleration voltage is applied between the ion gun 102 and the cathode electrode 103 by the acceleration power source 106, and a collector voltage for electron capture is applied to the collector electrode 104 by the collector power source 107. 111 is configured to measure.
[0006]
The secondary electron emission ability is measured by emitting charged particles of the element to be obtained from the ion source 102, accelerating the electric field between the electrodes and irradiating the sample 108, and discharging the secondary electrons emitted from the sample 108 to the cathode. Captured by the collector electrode 104 having a higher potential than the electrode 103. Then, the secondary electron current Ie flows through the ammeter 110, the current Ik obtained by adding the charged particle current Ip and the secondary electron current Ie flows through the ammeter 109, and the charged particle current Ip flows through the ammeter 111. Using each current value obtained in this way, the secondary electron emission ability γ by the charged particles,
[0007]
[Expression 1]
Figure 0003785740
[0008]
Was asking.
[0009]
[Problems to be solved by the invention]
However, in the conventional technique described above, when the secondary electron emission ability in a low vacuum environment is measured, the emitted secondary electrons are gas molecules existing between the cathode electrode 103 and the collector electrode 104 or incident charge. The amount of secondary electron emission current cannot be measured accurately due to the interaction with the particles. Therefore, in order to obtain the secondary electron emission ability by irradiating the charged particle beam, the inside of the chamber 101 needs to be evacuated and measured. Therefore, there is a problem that the secondary electron emission ability in a low vacuum environment similar to that of the gas-sealed device cannot be obtained.
[0010]
An object of the present invention is to provide a method and an apparatus capable of easily and accurately measuring a secondary electron emission ability value in a low vacuum environment similar to that of a gas-sealed device.
[0011]
[Means for Solving the Problems]
In order to solve this problem, the present invention applies a voltage to an anode electrode arranged oppositely and a plurality of divided cathode electrodes provided with a substance to be measured in a predetermined gas atmosphere. The secondary electron emission ability is measured by ionizing a gas in the space and measuring the amount of charge flowing through the plurality of divided cathode electrodes.
[0012]
Further, by disposing different substances to be measured on the plurality of cathode electrodes, one kind of the substances to be measured is made a known substance having a secondary electron emission ability and flows to the plurality of divided cathode electrodes. The secondary electron emission ability is measured by the amount of charge.
[0013]
According to the present invention, it is possible to provide a method and an apparatus for easily and accurately measuring the value of secondary electron emission ability in a low vacuum environment similar to that of a gas-sealed device.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, in a predetermined gas atmosphere, a voltage is applied to an anode electrode arranged opposite to a cathode electrode divided into a plurality of substances to be measured and a space between the electrodes. The secondary electron emission ability is measured by the amount of charge flowing through the divided cathode electrodes, and the gas can be measured in the same gas-filled (low vacuum) environment as the actual device. The secondary electron emission ability value close to the device operation can be easily and accurately measured.
[0015]
The second invention of the present invention is a phenomenon in which ion current and secondary electron emission occur at the same time by disposing different substances to be measured on a plurality of cathode electrodes and measuring the amount of charge flowing through each electrode. As a current obtained at the same time, the secondary electron emission ability value can be measured accurately.
[0016]
According to a third invention of the present invention , one of a plurality of objects to be measured is a known substance having a secondary electron emission ability, so that the secondary electron emission ability of an unknown substance can be easily determined by both. The secondary electron emission ability value can be accurately measured.
[0017]
According to a fourth aspect of the present invention , if ionization of a gas is performed using an ionization electrode, the value of secondary electron emission ability is measured easily and accurately at low cost without using an expensive ion gun as in the prior art. It has the effect of being able to.
[0018]
According to the fifth aspect of the present invention, if ionization of gas is performed using laser light, ionization can be performed easily and accurately without disturbing the internal electric field (between the anode and the cathode). The value of can be measured.
[0019]
In the sixth aspect of the present invention, if the gas containing the ion species element to be measured is a predetermined atmosphere gas, the secondary electron emission ability in the same gas atmosphere as the actual device can be obtained easily. And it has the effect | action that the value of secondary electron emission ability can be measured correctly.
[0020]
According to a seventh aspect of the present invention, there is provided a field-limiting plate having an opening on each surface of the substance to be measured, and the known object and the unknown object can be easily measured by adjusting the area of the opening. And the value of the secondary electron emission ability can be measured easily and accurately.
[0021]
In an eighth aspect of the present invention, the predetermined atmosphere gas is He, Ne, Xe, Ar, Kr, or a mixed gas mainly composed of these gases, so that it can be used in the same environment as an actual device such as a PDP or a discharge tube. Since the secondary electron emission ability can be obtained, the secondary electron emission ability can be measured easily and accurately.
[0022]
According to a ninth aspect of the present invention , in a predetermined gas atmosphere, a voltage is applied to the anode electrode and the cathode electrode which are divided into a plurality of cathode electrodes which are arranged to face each other and an anode electrode which is arranged opposite to the substance to be measured. Secondary electrons by voltage application means, ionization means for ionizing gas in the space between both electrodes, charge amount measurement means for measuring the amount of charge flowing to each electrode, and the amount of charge flowing to the plurality of divided cathode electrodes Equipped with a secondary electron measuring unit that measures the emission ability, and can be measured in the same gas-filled (low vacuum) environment as the actual device, making it easy to obtain a secondary electron emission ability value close to true device operation In addition, it has the effect of being able to measure accurately.
[0023]
The tenth aspect of the present invention is a phenomenon in which ion current and secondary electron emission occur at the same time by disposing different substances to be measured on a plurality of cathode electrodes and measuring the amount of charge flowing through each electrode. As a current obtained at the same time, the secondary electron emission ability value can be measured accurately.
[0024]
In an eleventh aspect of the present invention , one of a plurality of objects to be measured is a known substance having a secondary electron emission ability, so that the secondary electron emission ability of an unknown substance can be easily determined by both. The secondary electron emission ability value can be accurately measured.
[0025]
In the twelfth aspect of the present invention, if ionization of gas is performed using an ionization electrode, the value of secondary electron emission ability can be measured easily and accurately at low cost without using an expensive ion gun as in the prior art. It has the effect of being able to.
[0026]
In the thirteenth aspect of the present invention, if ionization of gas is performed using laser light, ionization can be performed easily and accurately without disturbing the internal electric field (between the anode and the cathode). The value of can be measured.
[0027]
In the fourteenth aspect of the present invention, if the gas containing an ion species element to be measured is a predetermined atmosphere gas, the secondary electron emission ability in a gas atmosphere similar to that of an actual device can be easily obtained. And it has the effect | action that the value of secondary electron emission ability can be measured correctly.
[0028]
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.
(Embodiment 1)
FIG. 1 is a configuration diagram showing a secondary electron emission capacity measuring apparatus using charged particles according to Embodiment 1 of the present invention. In FIG. 1, 1 is a chamber, 2 is an anode electrode, 3 is a cathode electrode A, 4 is a cathode electrode B, 5 is an ionization section, 6, 7 and 8 are charge amount measurement sections, 9 is a voltage application section, and 10 is a cover. Measured substances A and 11 are measured substances B, 12 is a secondary electron measuring unit, 13 is a terminal, and 14 is a field limiting plate.
[0029]
As shown in FIG. 1, the chamber 1 includes an anode electrode 2, a plurality of cathode electrodes A 3 and cathode electrodes B 4, and an ionization unit 5 that ionizes a gas sealed in a space between the anode and the cathode electrode, and The voltage application unit 9 that can apply a voltage between the anode electrode 2 and the cathode electrodes 3 and 4 and the charge amount measurement units 6 to 8 that measure the amount of charge flowing through each electrode are provided. Then, the object to be measured A10 and the object to be measured B11 are set on the cathode electrode A3 and the cathode electrode B4, respectively, the gas is ionized by the ionization unit 5, and the charged substances of the cation are irradiated onto the substances to be measured 10 and 11. Let Then, secondary electrons are emitted from each of the substances to be measured 10 and 11, the charge combined with the charged particles flows to the charge amount measuring units 6 and 7, and the total charge amount flows to the charge amount measuring unit 8. The secondary electron measuring unit 12 obtains the secondary electron emission ability γ from the charge amount from the charge amount measuring units 6, 7 and 8, and outputs it to the terminal 13.
[0030]
In the space between the anode electrode and the cathode electrode, the gas is discharged into plasma, the charge amount of charged particles flowing into the substance to be measured is Qi, and the charge amount flowing to the cathode electrode (charged particle amount + secondary electron amount) is Qk Then, the secondary electron emission ability γ is simply expressed as follows:
[0031]
[Expression 2]
Figure 0003785740
[0032]
Can be written.
Here, the total charge amount flowing through the charge amount measuring units 6 and 7 is Qa and Qb, the charge amount of charged particles flowing into the measured substance A10 and the measured substance B11 is Qia and Qib, respectively, and the secondary electron emission ability is If γa and γb, respectively,
[0033]
[Equation 3]
Figure 0003785740
[0034]
The relationship holds.
Further, when the electrodes are arranged so that the respective electrodes of the plurality of cathode electrodes A3 and B4 can be equivalently expected from the portion where the gas is ionized, for example, the total area of each of the plurality of cathode electrodes A3 and cathode electrodes B4 is made equal. The amount of charged particles flowing into the cathode electrode A3 and the cathode electrode B4, that is, the amount of charges Qia and Qib of charged particles flowing into the substance to be measured A10 and the substance to be measured B11 become equal. Therefore, the following relationship is established between γa and γb.
[0035]
[Expression 4]
Figure 0003785740
[0036]
Here, for example, when the value of the secondary electron emission ability γa of the substance A10 to be measured is known, the value of the secondary electron emission ability γb of the substance B11 to be measured, which is a substance whose secondary electron emission value is unknown, By measuring the total charge amounts Qa and Qb flowing in the charge amount measuring units 6 and 7, the secondary electron measuring unit 12 can obtain the secondary electron emission ability γb using (Equation 4). The secondary electron emission ability γb obtained by the secondary electron measuring unit 12 is output via the terminal 13.
[0037]
In addition, although demonstrated using two cathode electrodes here as a some cathode electrode, it cannot be overemphasized that the number is not limited to two. In the present invention, different substances to be measured are arranged on a plurality of cathode electrodes, and the current flowing through each electrode is measured. As a phenomenon in which ion current and secondary electron emission occur at the same time And can be obtained as a current at the same time. Conventionally, the measurement of the ion current and the secondary electron current has been performed with a separate electrode by the cathode electrode and the collector electrode that collects the secondary electron current. It is possible to improve the secondary electron current which has a time difference and causes an error.
[0038]
Furthermore, a field limiting plate 14 having an opening on each measurement substance surface is provided so that charged particles are equivalently irradiated from the ionized portion of the gas to each measurement substance, and by adjusting the area of the opening, Of course, the charge amounts Qia and Qib of the charged particles flowing into the measurement substance A10 and the measurement substance B11 can be equal or calibrated, and more accurate secondary electron radioactivity can be obtained. The shape of the opening is not particularly limited, and may be circular or rectangular, and the material for the field limiting plate 14 is preferably a material that emits a small amount of secondary electrons.
[0039]
In addition, although the case where the total areas of the cathode electrode A and the cathode electrode B are equal is described, if the amount of charged particles incident on each cathode electrode and the total amount of charge flowing to the cathode electrode are calibrated according to the area ratio, the secondary area is similarly obtained. Of course, it is possible to obtain electron radioactivity.
[0040]
Furthermore, if three or more kinds of substances to be measured are simultaneously arranged on the cathode electrode, it is needless to say that the secondary electron radioactivity can be obtained simultaneously under the same conditions.
[0041]
As described above, according to the present invention, it is possible to provide a method and an apparatus capable of easily and accurately measuring a secondary electron emission ability value in a low vacuum environment similar to that of a gas-sealed device.
[0042]
Further, the present invention irradiates the substance to be measured with the charged particles to be obtained equivalently or at a known distribution ratio even in a high vacuum degree but not in a low vacuum environment, thereby similarly increasing the secondary electron radioactivity. Of course, it can be sought.
[0043]
(Embodiment 2)
FIG. 2 is a block diagram showing a secondary electron emission capacity measuring apparatus using charged particles according to Embodiment 2 of the present invention. As shown in FIG. 2, for example, He, Ne, Xe, Ar, Kr or a mixed gas mainly containing these is sealed in the chamber 21, and the anode electrode 22, the plurality of cathode electrodes A23, and the cathode electrode B24 In the meantime, a voltage of about 100 V to 3 KV is applied by the voltage application unit 29, and a high voltage pulse of several tens of KV is applied to the ionization electrode 25 in the space between the anode electrode 22 and the cathode electrodes 23 and 24. To ionize the enclosed gas. The ionized cation particles are irradiated to the measured object A30 having a known value on the cathode electrode A23 and the cathode electrode B24, for example, Si, Au, Pt, and the measured object B31, for example, MgO, SiO2, W, or Mo. Secondary electrons are emitted from each of the substances to be measured 30 and 31.
[0044]
Charge amounts Qa and Qb added to the amount of secondary electrons and the amount of charged particles emitted from the measured substances 30 and 31 flow to the charge amount measuring units 26 and 27, respectively. The flowing charge amount is measured by, for example, an ammeter, a storage oscilloscope, or a charge amount measuring unit 26 to 28 having a function of taking in a computer, and the secondary electron measuring unit 32 uses (Expression 4) to determine an unknown substance. The secondary electron emission ability γb can be obtained.
[0045]
(Embodiment 3)
FIG. 3 is a block diagram showing a secondary electron emission capacity measuring apparatus using charged particles according to an embodiment of the present invention. As shown in FIG. 3, for example, Ar, He, Ne, or Xe is enclosed in a chamber 41, and a voltage applying unit 49 is provided between the anode electrode 42, the plurality of cathode electrodes A 43, and the cathode electrode B 44, for example. A voltage of about 50 V to 5 KV is applied, and in the space between the anode electrode 42 and the cathode electrodes 43 and 44, for example, a CO 2 laser or excimer laser 45 is condensed by the lens 52 from the window 53 provided in the chamber 41, The enclosed gas is ionized. Then, the ionized cation particles become a measured substance A50 having a known value on the cathode electrode A43 and the cathode electrode B44, for example, C, Ni, Au, Pt and the like, and a measured object B51, for example, MgO, SiO2, Al2O3 or Mo. , And secondary electrons are emitted from each of the substances to be measured 50 and 51.
[0046]
Charge amounts Qa and Qb added to the amount of secondary electrons and the amount of charged particles emitted from the measured substances 50 and 51 flow to the charge amount measuring units 46 and 47, respectively. The flowing charge amount is measured by, for example, an ammeter, a storage oscilloscope, or a charge amount measuring unit 46 to 48 having a function of taking in a computer, and the secondary electron measuring unit 52 uses (Equation 4) to determine an unknown substance. The secondary electron emission ability γb can be obtained.
[0047]
【The invention's effect】
As described above, according to the present invention, a voltage is applied to the anode electrode arranged oppositely and the plurality of divided cathode electrodes provided with the substance to be measured, and the gas is ionized in the space between both electrodes. The secondary electron emission ability is measured by the amount of charge flowing through the divided cathode electrodes, and the secondary electron emission ability value in a low vacuum environment can be easily and accurately measured. The advantageous effect is obtained.
[0048]
At the same time, if the electrode configuration of the present invention is used, the charged substance to be obtained is irradiated equivalently or at a known distribution ratio to the substance to be measured not in a low vacuum environment but also in a conventional high vacuum degree. Thus, an advantageous effect that the secondary electron radioactivity can be easily obtained in the same manner can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a secondary electron emission capacity measuring apparatus according to Embodiment 1 of the present invention. FIG. 2 is a block diagram showing a secondary electron emission capacity measuring apparatus according to Embodiment 2 of the present invention. FIG. 4 is a block diagram showing a secondary electron emission capacity measuring apparatus according to Embodiment 3 of the present invention. FIG. 4 is a block diagram showing a secondary electron emission capacity measuring method according to the prior art.
1, 2, 41 Chamber 2, 22, 42 Anode electrode 3, 23, 43 Cathode electrode A
4, 24, 44 Cathode electrode B
5 Ionization unit 6, 7, 8, 26, 27, 28, 46, 47, 48 Charge amount measurement unit 9, 29, 49 Voltage application unit 10, 30, 50 Measured substance A
11, 31, 51 Measured substance B
12, 32, 52 Secondary electron measuring unit 13, 33, 53 Terminal 14 Field-of-view restriction plate 25 Ionization electrode 45 Laser beam 52 Lens 53 Window

Claims (11)

所定のガス雰囲気中において、対向して配置された陽極電極と被測定物質を配し複数に分割された陰極電極とに電圧を印加し、両電極間の空間内でガスをイオン化させ、分割された複数の前記陰極電極上に異なった被測定物質を配置して、各電極に流れる電荷量により、二次電子放出能を測定する二次電子放出能測定方法。In a predetermined gas atmosphere, a voltage is applied to the anode electrode arranged oppositely and the cathode electrode divided into a plurality of substances to be measured, and the gas is ionized in the space between the two electrodes. a plurality of the arranged differently measured substance on the cathode electrode, the amount of charge flowing through the respective electrodes, the secondary electron emission capability measuring how to measure the secondary electron emission capability was. 複数の被測定物のうち1種類が二次電子放出能の既知な物質である請求項1記載の二次電子放出能測定方法。One secondary electron emission capability measurement method of claim 1 wherein Ru known substances der of the secondary electron emission capability of the plurality of the object to be measured. イオン化電極を用いてガスのイオン化を行う請求項1又は2記載の二次電子放出能測定方法。Secondary electron emission capability measurement method of row intends claim 1 or 2, wherein the ionization of the gas by using an ionization electrode. レーザ光を用いてガスのイオン化を行う請求項1または2記載の二次電子放出能測定方法。Secondary electron emission capability measurement method of row intends claim 1 or 2, wherein the ionization of the gas by using a laser beam. 測定したいイオン種元素を含むガスを所定の雰囲気ガスとする請求項1乃至4のいずれか記載の二次電子放出能測定方法。Secondary electron emission capability measurement method according to any one of claims 1 to 4 gas shall be the predetermined atmospheric gas containing ionic species element to be measured. 各被測定物質面に開口部を有する視野制限板を設ける請求項1または2記載の二次電子放出能測定方法。Secondary electron emission capability measurement method according to claim 1 or 2, wherein Ru is provided a view restrictor plate having an opening in the substance to be measured surface. 所定の雰囲気ガスをHe、Ne、Xe、Ar、Knあるいはこれらのガスを主とした混合ガスとする請求項1乃至5のいずれか記載の二次電子放出能測定方法。A predetermined atmospheric gas He, Ne, Xe, Ar, Kn or secondary electron emission capability measurement method according to any one of claims 1 to 5 shall be the mixed gas mainly these gases. 所定のガス雰囲気中に、対向して配置された陽極電極と、二次電子放出能は少なくとも1つが既知である複種類の被測定物質を配し複数に分割された陰極電極と、前記陽極電極および前記陰極電極に電圧を印加する電圧印加手段と、両電極間の空間内でガスをイオン化させるイオン化手段と、各電極に流れる電荷量を測定する電荷量測定手段と、複数の前記陰極電極に流れる電荷量および前記既知の二次電子放出能を用いて二次電子放出能を測定する二次電子測定部とを備えた二次電子放出能測定装置。During a predetermined gas atmosphere, and the oppositely disposed anode electrode, a cathode electrode divided into a plurality of arranged substance to be measured of the double type is known at least one secondary electron emission capability, the anode voltage applying means for applying a voltage to the electrode and the cathode electrode, an ionization means for ionizing the gas in the space between the electrodes, a charge quantity measuring means for measuring the amount of charge flowing through the respective electrodes, a plurality of the cathode electrode A secondary electron emission capacity measuring device comprising: a secondary electron measuring section that measures the secondary electron emission capacity using the amount of charge flowing in the first electrode and the known secondary electron emission capacity. イオン化電極を用いてガスのイオン化を行う請求項8記載の二次電子放出能測定装置。Secondary electron emission capability measurement device row intends claim 8, wherein the ionization of the gas by using an ionization electrode. レーザ光を用いてガスのイオン化を行う請求項8または9記載の二次電子放出能測定装置。Secondary electron emission capability measurement device row intends claim 8 or 9, wherein the ionization of the gas by using a laser beam. 測定したいイオン種元素を含むガスを所定の雰囲気ガスとする請求項8乃至10のいずれか記載の二次電子放出能測定装置。Secondary electron emission capability measurement device according to any one of claims 8 to 10 you gas containing ionic species element to be measured with a predetermined atmospheric gas.
JP13638297A 1997-05-27 1997-05-27 Method and apparatus for measuring secondary electron emission ability Expired - Fee Related JP3785740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13638297A JP3785740B2 (en) 1997-05-27 1997-05-27 Method and apparatus for measuring secondary electron emission ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13638297A JP3785740B2 (en) 1997-05-27 1997-05-27 Method and apparatus for measuring secondary electron emission ability

Publications (2)

Publication Number Publication Date
JPH10332609A JPH10332609A (en) 1998-12-18
JP3785740B2 true JP3785740B2 (en) 2006-06-14

Family

ID=15173854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13638297A Expired - Fee Related JP3785740B2 (en) 1997-05-27 1997-05-27 Method and apparatus for measuring secondary electron emission ability

Country Status (1)

Country Link
JP (1) JP3785740B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013021A (en) * 2009-06-30 2011-01-20 Sumitomo Electric Ind Ltd Material evaluation method

Also Published As

Publication number Publication date
JPH10332609A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
CN206471309U (en) Electron multiplier and the mass spectrograph using electron multiplier
Chait et al. A time-of-flight mass spectrometer for measurement of secondary ion mass spectra
Goetze et al. Field‐enhanced secondary electron emission from films of low density
Hazama et al. Construction of a novel stigmatic MALDI imaging mass spectrometer
CN105826159B (en) Time-of-flight measuring type quality analysis apparatus
JP3785740B2 (en) Method and apparatus for measuring secondary electron emission ability
Miyajima et al. A self-triggered liquid xenon drift chamber by the use of proportional ionization or proportional scintillation
US7385188B2 (en) Linear electric field time-of-flight ion mass spectrometer
US3107295A (en) Device for determining the masses of charge carriers
Abd El Rahim et al. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments
EP1012587A1 (en) Charged particle analysis
Yoshimura et al. Evaluation of a delay-line detector combined with analog-to-digital converters as the ion detection system for stigmatic imaging mass spectrometry
JP2615396B2 (en) Method for counting charged particles
Veloso et al. Application of a Microstrip Gas Counter in Energy‐Dispersive X‐Ray Fluorescence Analysis
Westheide Investigation on the pseudospark electron beam and its application for the generation of soft X-rays
JPH11230923A (en) Method and apparatus for measurement of secondary electron emission capability
Vogel et al. Gas Flow Proportional Counter for Electron Probe Light Element Analysis
JP3481031B2 (en) Double cylindrical open counter
JP2006221876A (en) Ion detector, mass spectrometer having the same, and method for operating ion detector
Hale et al. An electrostatic electron energy analyser for 3-20 keV electrons
US3546577A (en) Apparatus for nondestructively measuring the position and particle-density profile of an accelerator beam
Hasted et al. Reactions of metastable atoms and resonance photons
JP3581269B2 (en) Vertical acceleration time-of-flight mass spectrometer
Almen et al. Fast rise time, high sensitivity MCP ion detector for low-energy ion spectroscopy
JPWO2007049357A1 (en) Secondary electron emission rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees