JP3785645B2 - Toner for developing electrostatic image and image forming method - Google Patents

Toner for developing electrostatic image and image forming method Download PDF

Info

Publication number
JP3785645B2
JP3785645B2 JP25539194A JP25539194A JP3785645B2 JP 3785645 B2 JP3785645 B2 JP 3785645B2 JP 25539194 A JP25539194 A JP 25539194A JP 25539194 A JP25539194 A JP 25539194A JP 3785645 B2 JP3785645 B2 JP 3785645B2
Authority
JP
Japan
Prior art keywords
toner
image
oxide
pigment
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25539194A
Other languages
Japanese (ja)
Other versions
JPH08119668A (en
Inventor
凱昭 木村
弘 山崎
広子 古沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP25539194A priority Critical patent/JP3785645B2/en
Publication of JPH08119668A publication Critical patent/JPH08119668A/en
Application granted granted Critical
Publication of JP3785645B2 publication Critical patent/JP3785645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、陶器、磁器、及び各種セラミック等に着色する新しい技術に関する。
【0002】
【従来の技術】
従来、セラミック板に対して無機顔料を固着し画像を形成する方法は古くから陶磁器等で知られている。また、近年になり板上のセラミック板上へスクリーン印刷により顔料を含有するインクを用いて印刷しその後に焼き付けを行い画像を形成する方法が知られてきた。しかし、本方法では画像を形成する際にスクリーン印刷を用いることから4色の版が必要となる。このために印刷の工程が複雑となり画像の乱れを発生することがある。
【0003】
一方、電子写真の方法に於いて、カラートナーを用いてカラー画像を形成する方法が知られている。この方法では4色のトナーを用いてフルカラー画像を容易に形成することが可能である。しかし、本画像形成方法で形成された画像は、例えばフタロシアニン顔料、アゾ系顔料、キナクリドン系顔料等の有機顔料やカーボンブラック等を使用していることから、セラミック板上へ画像を形成した後に焼き付けを行った場合では、高温度のため顔料の変色等が発生し目的とする画像を形成することができない。色彩のみについて言えば無機顔料を用いることにより改善を行うことは可能であるが、トナーバインダー自体も焼き付けの熱で分解されてしまうことから、無機顔料をセラミック板へ定着することができない。この様に簡便にセラミック板上へカラー画像を形成する方法については種々の問題により実現されていないのが現状である。
【0004】
【発明が解決しようとする課題】
本発明の目的は、新規な静電荷像現像用トナーを開発し、簡便にセラミック体上へ画像を形成する方法を提案することにある。さらに別の目的は、色の変化が無く、接着性に優れ耐久性の高い画像を形成することにある。さらに、上記顔料の発色性の極めて高い静電荷像現像用トナーを開発することにある。
【0005】
【課題を解決するための手段】
本発明の目的は、少なくとも結着樹脂及び窯業用顔料を含有することを特徴とする静電荷像現像用トナー(以下本発明のトナーと称する)によって達成される。
【0006】
本発明のトナーはさらにガラス質の物質を含有し、ガラス質の物質は上記窯業用顔料と高温溶融して得た溶融物として含有されている。
即ち、少なくとも結着樹脂及び窯業用顔料とガラス質の物質とを高温溶融して得られる転写紙に加熱定着させるための溶融物を含有することを特徴とする静電荷像現像用トナーである。
【0007】
又、本発明のトナーは、像担持体上の静電潜像を現像して顕像化し、当該トナー顕像をセラミック体上に転写後、加熱して焼き付け窯業用顔料を固着することを特徴とする画像形成方法に好適に使用される。
即ち、第2の本発明としては、像担持体上の静電潜像を、少なくとも結着樹脂及び窯業用顔料とガラス質の物質とを高温溶融して得られる溶融物を含有する静電荷像現像用トナーで現像して、トナー画像を形成し、該トナー画像を、転写紙へ転写して前記溶融物を結着樹脂とともに定着し、ついで該定着物をセラミック体へ貼り付けた後、加熱して焼き付け窯業用顔料をセラミック体へ固着することを特徴とする画像形成方法である。
【0008】
即ち、本発明ではスクリーン印刷を用いることがないため、簡易に色ずれの無い画像を形成することが出来る。又、窯業用顔料を色材として用いることから、焼き付けにより容易にセラミック板にたいして接着させ、画像形成後も熱などによる変色の問題を生じない。
【0009】
さらに、本発明に於いて、ガラス質と窯業用顔料とを均一に溶融させて使用すれば、窯業用顔料のセラミック体に対する定着性及び発色性を改良することができ、環境変動に於けるセラミック体に対する接着性の向上を達成することができる。
【0010】
【作用】
以下本発明をより具体的に説明する。
【0011】
(セラミック体)
セラミック体とは、一般にセラミックと呼ばれる物質の範囲よりは広く、400〜1200℃にて焼き付け可能な物質をいい、例えば通常板状の土器や陶器等があり、素地が密のものとして炉器、磁器などがある。さらに、ガラス、琺瑯鉄器等があげられる。
【0012】
(窯業用顔料)
本発明における窯業用顔料は、いわゆる陶磁器に対する着色をするための顔料示し、更には陶磁器に使用される釉薬に対して溶解或いは反応して発色するものを示す。ここで釉薬とは、陶磁器表面に施すガラス質をさす。
【0013】
窯業用顔料としては、例えば、酸化ジルコニウム、ウラン酸ウラン、酸化鉄、酸化マンガン、酸化モリブデン、酸化ニッケル、酸化トリウム、酸化コバルト、酸化銅、酸化クロム、酸化チタン、酸化タングステン、酸化バナジン、金、酸化アンチモン、酸化スズ、硫化カドミウム、セレニウムなどが本発明の窯業用顔料として使用される。本発明では、これら顔料を用いて高温で焼き付けを行い発色させるものである。例えば、セラミック板が陶磁器の場合、白は酸化ジルコニウム、黒はウラン酸ウラン(還元焔)、青は酸化鉄、酸化マンガン(酸化焔)、酸化モリブデン(酸化焔)、酸化ニッケル、(酸化焔)、酸化トリウム、酸化コバルト、酸化銅、酸化クロム(還元焔)、酸化チタン、酸化タングステン、酸化バナジンなどがあり、緑は酸化鉄(還元焔)、酸化マンガン、酸化ニッケル、酸化トリウム(還元焔)、酸化コバルト(酸化焔)、酸化銅、酸化チタン、酸化クロム、酸化バナジンなどがあり、黄色は酸化鉄、酸化マンガン、酸化ニッケル、酸化銅(酸化焔)、酸化クロム、酸化バナジン(酸化焔)などがあり、赤は酸化鉄(酸化焔)、酸化マンガン、酸化ニッケル、酸化銅(還元焔)、酸化クロム、酸化チタン、酸化タングステン、酸化バナジン、金(還元焔)などがあり、紫は酸化マンガン、酸化モリブデン、酸化ニッケル、酸化クロム、酸化チタン、酸化タングステン、金などがあり、茶は酸化ニッケル(還元焔)、酸化マンガン、桃色は酸化コバルト(還元焔)、橙色は酸化クロムなどがある。
【0014】
これらは、後述するガラス質の物質である珪酸、アルミナなどと反応し珪酸塩、アルミ酸塩、アルミ珪酸塩などを形成し発色し定着され、組み合わせて使用することもできる。なお、発色の色は加熱する際の条件、即ち、還元雰囲気或いは酸化雰囲気によっても変化する。
【0015】
さらに、酸化アルミニウム、酸化亜鉛などを添加し、色調を調整してもよい。
【0016】
一方、セラミック体がガラス質の場合は、白色にする場合は酸化チタン、酸化アンチモン、酸化ジルコニウム、酸化スズなどがあり、黒は酸化鉄と二酸化マンガンと酸化コバルトの混合物を高温下に焼成したものがあげられ、赤はセレニウムに少量の硫化カドミウムを加えたものがあげられ、紺色は酸化コバルト、黄色は硫化カドミウム、橙色は硫化カドミウムに少量のセレニウムを加えたものなどがあげられる。
【0017】
尚、この場合は下地自体がガラス質であるため特にガラス質の物質を添加する必要が無いが、添加する場合にはホウ珪酸ガラスがよい。
【0018】
これら窯業用顔料の粒径は熔融させて形成される色ガラス自体の発色性に影響を与える。即ち、色ガラスを形成する時点で粒径の大きいものを用いた場合には窯業用顔料の色ガラス中の分散及び発色性が不均一となり、色の再現性が低下する。また、窯業用顔料の粒径が小さい場合には均一性は高くなるが、発色に於ける色の濃度が低下する問題を発生する。このため、顔料の粒径は、数平均粒子径で0.1〜8μmであることが好ましい。
【0019】
数平均粒径の測定方法は、レーザー散乱方式の粒度分布測定装置「HELOS」(SIMPATIC社製)により測定された数平均粒径を示す。なお、試料は測定の前に超音波により界面活性剤を含有した水溶液に分散させたものを用いる。
【0020】
また、窯業用顔料のトナーに対する添加量は、5〜60重量%であることが好ましい。この理由は、添加量が過小であると画像濃度が低下する問題を発生し、添加量が過多であると、顔料がトナー粒子表面に露出することが発生し、帯電性に影響をあたえ好ましくない。
【0021】
(ガラス質の物質)
ガラス質の物質としては特に限定されるものではないが、ホウ珪酸ガラス、鉛ガラス、アルカリガラスなどがよい。特に酸化鉛を添加するとガラス質の融点が低下し、接着性が向上し良好な皮膜を形成し、好適である。
【0022】
ガラス質の物質は接着性を向上する観点及び色調の調整の観点で添加される。
【0023】
両者を溶融する方法としては、ガラス質の物質と窯業用顔料を所定の割合で混合した後に加熱し、ガラス質の物質を溶融させ、均一ないわゆる色ガラスを形成し、そのものを粉砕し使用することがよい。この場合、窯業用顔料とガラス質とが混合されたいわゆる色ガラス自体を粉砕し、体積平均粒径で0.1〜10μm、好ましくは0.2〜8.0μmのものがよい。粉砕する場合には、通常の粉砕法では困難であり、ボールミルを用いて粉砕する方法がよい。
【0024】
この粒径が小さい場合には隠ぺい性の低下が発生し、粒径が大きい場合には画像の色再現性が低下する問題や遊離する色ガラス粒子の発生を引き起こし、画像欠陥の問題が発生する。
【0025】
なお、ここで、体積平均粒径の測定方法は、上記のレーザー散乱方式の粒度分布測定装置を用い、測定用試料は測定の前に超音波により界面活性剤を含有した水溶液に分散させたものである。
【0026】
また、本発明に於いては色ガラス中での窯業用顔料とガラス質の物質の比率は窯業用顔料:ガラス質の物質=1:0.1〜5.0が好ましい。さらに好ましくは、窯業用顔料:ガラス質=1:0.2〜4.0である。この比率が過小であると窯業用顔料の接着性が低下し、過多であると発色性が低下する。さらに、本発明に於いて、窯業用顔料自体はトナー中に5〜60重量%添加されていることが好ましい。即ち、この量が過小であると発色性が低下し、色再現性が低下する。一方過多であると窯業用顔料の遊離が発生し、感光体に対する傷の付きやすさ等の問題を発生する。
【0027】
(結着樹脂)
本発明のトナーを構成する結着樹脂としては特に限定されず、従来公知の種々の樹脂が用いることができる。しかし、焼き付けを行う工程が必須であることから、熱分解により残留するものが無い樹脂を用いることがよい。このためには、例えば、スチレン系樹脂・アクリル酸エステル系樹脂・スチレン-アクリル酸エステル系樹脂・ポリエステル樹脂等が挙げられる。
【0028】
本発明のトナーは結着樹脂と、窯業用顔料と望ましくはガラス質の物質とを溶融して得られた粒子と必要に応じて使用されるその他の添加剤とを含有したトナーである。
【0029】
その平均粒径は体積平均粒径で4〜20μm、好ましくは5〜15μmである。
【0030】
その他の添加剤としては例えばサリチル酸誘導体・アゾ系金属錯体等の荷電制御剤、低分子量ポリオレフィン・カルナウバワックス等の定着性改良剤等が挙げられる。また、流動性の向上や帯電性の向上のために、無機微粒子を添加してもよい。無機微粒子としてはシリカ、酸化チタン、酸化アルミニウム、チタン酸バリウム、チタン酸ストロンチウム等の数平均一次粒子径が5〜1000nmのものが使用され、これらは疎水化されていてもよい。
【0031】
さらに、トナーにはクリーニング助剤として数平均一次粒子径が0.1〜2.0μmのスチレン-アクリル樹脂微粒子やステアリン酸亜鉛の如き高級脂肪酸金属塩を添加してもよい。
【0032】
無機微粒子の添加量としてはトナーに対して0.1〜5.0重量%添加するとよい。また、クリーニング助剤は着色粒子に対して0.01〜1.0重量%程度がよい。
【0033】
本発明で望ましく用いられる二成分現像剤を構成するキャリアとしては鉄・フェライト等の磁性材料粒子表面を樹脂等によって被覆した樹脂被覆キャリア或いは、樹脂と磁性粉とを混合して得られる樹脂分散型キャリアの何れを使用してもよい。このキャリアの平均粒径は体積平均粒径で20〜150μmが好ましく、さらに好ましくは30〜100μmである。また、本発明で使用されるキャリアは体積抵抗が1010Ωcm以上のものが好適に使用される。即ち、交番電界を作用して現像する方式であり、キャリアの抵抗の低い場合には抵抗の低い磁性粒子と同様に画像欠陥を発生する原因となり、ある抵抗値以上のものが必要となる。
【0034】
(現像及び画像形成方法)
本発明の画像形成方法は、通常の電子写真方式で感光体上或いは感光体上から中間転写体等へフルカラー画像を形成し、その画像を転写紙上へ転写し、定着する。ついで、セラミック体上へ転写紙を張り付け、その後に焼き付けを行い転写紙及びトナーバインダーを除去し、無機の窯業用顔料をガラス質の物質を用いてセラミック体へ定着するものである。
【0035】
画像を感光体上へ形成する現像方式としては現像剤を接触状態で現像してもよく、カラー画像を形成する場合には、非接触状態で感光体上へ繰り返し画像を形成し、フルカラー画像を形成する方式でもよい。さらに接触或いは非接触状態で1色ずつ感光体上へ色画像を形成し逐次感光体より中間転写体へ転写し、その中間転写体でフルカラー画像を形成する方法でもよい。
【0036】
感光体或いは中間転写体へ形成されたフルカラー画像は転写紙へ転写され、ついで転写紙へ定着される。この定着は通常の熱ロール定着等現在知られている定着方式の何れでもよく、転写紙へ一時的に接着させる。また、トナーのガラス転移温度以上、軟化点以下に加熱して一時的に転写紙へ付着させる方法でもよい。この場合にはトナーが転写された転写紙をオーブンなどにいれ、加熱する方法などを用いることができる。その後にフルカラー画像が接着或いは付着した状態で画像が形成された転写紙をセラミック体上へ張り付け、その後に焼き付けを行う。或いは予め転写紙より画像部分を剥離可能な如く、特殊な層を転写紙上に形成しておき、画像を剥離後、セラミック体上に張り付けてもよい。
【0037】
(焼き付け)
焼き付けを行う方法は、まず100℃程度に保持した後に200〜400℃までゆっくり昇温、ついで400〜1200℃の温度にて焼き付けを行い、セラミック体上へ定着させるものである。この時点でガラス質の物質が熔解し、窯業用顔料が発色すると同時にガラス質の物質によりセラミック板へ定着させることができる。
【0038】
尚、ガラス質の物質を予めトナーに加えていない場合には、焼き付け作業を行う前に、これらをセラミック体に塗布する必要があり、通常、上記転写紙の上から塗布せざるをえない
【0039】
(セラミック体)
セラミック体としては、通常はセラミック板であり、素地の多孔質のものとして土器や陶器等があり、素地が密のものとして炉器、磁器などがある。さらに、ガラス、琺瑯鉄器等があげられる。これらは板状でもよいし、いわゆる器状、筒状等の板状以外のものであってもよい。さらに、これらについては互いに組み合わせた構成のものであってもよい。
【0040】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。尚本発明の実施例、比較例における「部」とは、「重量部」を表す。
【0041】
(窯業用顔料とガラス質の溶融物製造例)
製造例1
酸化コバルト(数平均粒子径=0.5μm)30部とホウ珪酸ガラス15部と酸化鉛15部とを混合し、900℃で熔融した後に粗粉砕し、ボールミルで粉砕した後に分級し、体積平均粒径が0.8μmの熔融物を得た。これを「熔融顔料1」とする。
【0042】
製造例2
酸化マンガン(数平均粒子径=2.1μm)30部とホウ珪酸ガラス25部と酸化鉛35部とを製造例1と同様に熔融し、粉砕・分級した後に体積平均粒径が1.2μmの熔融物を得た。これを「熔融顔料2」とする。
【0043】
製造例3
酸化ニッケル(数平均粒子径=1.6μm)60部とホウ珪酸ガラス25部と酸化鉛35部とを製造例1と同様に熔融し粉砕・分級した後に、体積平均粒径が1.5μmの熔融物を得た。これを「熔融顔料3」とする。
【0044】
製造例4
ウラン酸ウラン(数平均粒子径=1.6μm)60部とホウ珪酸ガラス25部と酸化鉛35部とを製造例1と同様に熔融し粉砕・分級した後に、体積平均粒径が1.7μmの熔融物を得た。これを「熔融顔料4」とする。
【0045】
製造例5
製造例1に於いて、酸化コバルトの量を100部とした他は同様にして体積平均粒径が1.2μmの熔融顔料を得た。これを「熔融顔料5」とする。
【0046】
製造例6
製造例1に於いて、酸化コバルトの量を10部とした他は同様にして体積平均粒径が1.1μmの熔融顔料を得た。これを「熔融顔料6」とする。
【0047】
製造例7
酸化コバルト(数平均粒子径=2.2μm)60部と酸化アルミニウム(数平均粒子径=2.3μm)25部とホウ珪酸ガラス25部と酸化鉛35部とを製造例1と同様に熔融し粉砕・分級した後に、体積平均粒径が2.1μmの熔融顔料を得た。これを「熔融顔料7」とする。
【0048】
製造例8
硫化カドミウムとセレニウム混合物(硫化カドミウム:セレニウム=99:1)(数平均粒子径=2.1μm)80部とホウ珪酸ガラス25部と酸化鉛35部とを製造例1と同様に熔融し粉砕・分級した後に、体積平均粒径が1.7μmの熔融顔料を得た。これを「熔融顔料8」とする。
【0049】
製造例9
硫化カドミウム(数平均粒子径=1.9μm)60部とホウ珪酸ガラス25部と酸化鉛35部とを製造例1と同様に熔融し粉砕・分級した後に、体積平均粒径が2.5μmの熔融顔料を得た。これを「熔融顔料9」とする。
【0050】
製造例10
酸化鉄とに酸化マンガンと酸化コバルトとを高温で焼成した粒子(数平均粒子径=2.4μm)60部とホウ珪酸ガラス25部と酸化鉛35部とを製造例1と同様に熔融し粉砕・分級した後に、体積平均粒径が2.3μmの熔融顔料を得た。これを「熔融顔料10」とする。
【0051】
(トナー製造例)
トナー製造例1
ポリエステル樹脂(ガラス転移点=56℃・軟化点=125℃)100部と「溶融顔料1」25部とを常法に従い予備混合した後に溶融混練し、粉砕した後に体積平均粒径が13.1μmの着色粒子を得た。ついで、このものに、疎水性シリカを0.5%添加し、本発明のトナーを得た。これを「青トナー1」とする。
【0052】
トナー製造例2
ポリエステル樹脂(ガラス転移点=56℃・軟化点=125℃)100部と「溶融顔料2」30部とを常法に従い予備混合した後に溶融混練し、粉砕した後に体積平均粒径が12.7μmの着色粒子を得た。ついで、このものに、疎水性シリカを0.5%添加し、本発明のトナーを得た。これを「赤トナー1」とする。
【0053】
トナー製造例3
ポリエステル樹脂100部(ガラス転移点=56℃・軟化点=125℃)と「熔融顔料3」40部を常法に従い予備混合した後に溶融混練し、粉砕した後に体積平均粒径が13.1μmの着色粒子を得た。ついで、このものに、疎水性シリカを0.5%添加し、本発明のトナーを得た。これを「黄トナー1」とする。
【0054】
トナー製造例4
ポリエステル樹脂100部(ガラス転移点=56℃・軟化点=125℃)と「熔融顔料4」50部を常法に従い予備混合した後に溶融混練し、粉砕した後に体積平均粒径が12.8μmの着色粒子を得た。ついで、このものに、疎水性シリカを0.5%添加し、本発明のトナーを得た。これを「黒トナー1」とする。
【0055】
トナー製造例5
トナー製造例1に於いて、「熔融顔料1」の代わりに「熔融顔料5」を10部用いた他は同様にして体積平均粒径が11.9μmの着色粒子を得、ついで疎水性シリカを0.8%添加し、本発明のトナーを得た。これを「青トナー2」とする。
【0056】
トナー製造例6
トナー製造例1に於いて、「熔融顔料1」の代わりに「熔融顔料6」を25部用いた他は同様にして体積平均粒径が12.8μmの着色粒子を得、ついで疎水性シリカを0.6%添加し、本発明のトナーを得た。これを「青トナー3」とする。
【0057】
トナー製造例7
スチレン-アクリル酸エステル樹脂100部(ガラス転移点=54℃・軟化点=135℃)と「熔融顔料7」60部とを常法に従い予備混合した後に溶融混練し、粉砕した後に体積平均粒径が12.7μmの着色粒子を得た。ついで、このものに、疎水性シリカを0.5%添加し、本発明のトナーを得た。これを「青トナー4」とする。
【0058】
トナー製造例8
スチレン-アクリル酸エステル樹脂100部(ガラス転移点=54℃・軟化点=135℃)と「熔融顔料8」55部を常法に従い予備混合した後に溶融混練し、粉砕した後に体積平均粒径が12.7μmの着色粒子を得た。ついで、このものに、疎水性シリカを0.5%添加し、本発明のトナーを得た。これを「赤トナー2」とする。
【0059】
トナー製造例9
スチレン-アクリル酸エステル樹脂100部(ガラス転移点=54℃・軟化点=135℃)と「熔融顔料9」80部を常法に従い予備混合した後に溶融混練し、粉砕した後に体積平均粒径が12.7μmの着色粒子を得た。ついで、このものに、疎水性シリカを0.5%添加し、本発明のトナーを得た。これを「黄トナー2」とする。
【0060】
トナー製造例10
スチレン-アクリル酸エステル樹脂100部(ガラス転移点=54℃・軟化点=135℃)と「熔融顔料10」100部を常法に従い予備混合した後に溶融混練し、粉砕した後に体積平均粒径が12.7μmの着色粒子を得た。ついで、このものに、疎水性シリカを0.5%添加し、本発明のトナーを得た。これを「黒トナー2」とする。
【0061】
トナー製造例11(参考用トナー)
トナー製造例1に於いて「熔融顔料1」の代わりに酸化コバルトを25部添加した他は同様にして製造例トナーを得た。これを「製造例青トナー5」とする。
【0062】
比較用トナー製造例1
トナー製造例1に於いて「熔融顔料1」の代わりに銅フタロシアニンを10部用いた他は同様にして比較用トナーを得た。これを「比較用青トナー1」とする。
【0063】
現像剤調整例
上記トナーをフェライト粒子表面をスチレン-アクリル酸エステル樹脂で被覆した体積平均粒径が45μmの樹脂被覆フェライトキャリアに添加してトナー濃度が7%の現像剤を調整した。下記表に現像剤の一覧表を示す。
【0064】
【表1】

Figure 0003785645
【0065】
(評価条件等)
評価は、コニカ製カラー複写機Konica 9028を改造して使用した。条件は下記に示す条件である。感光体としては積層型有機感光体を使用した。
【0066】
感光体表面電位=−550V
DCバイアス =−250V
ACバイアス =Vp-p:−50〜−450V
交番電界周波数=1800Hz
Dsd =300μm
押圧規制力 =10gf/mm
押圧規制棒 =SUS416(磁性ステンレス製)/直径3mm
現像剤層厚 =150μm
現像スリーブ =20mm
また、転写紙として、シクロデキストリンを表面にコートした紙を用い、画像を転写した。その後に、転写紙を120℃のオーブンへ投入し、約5分放置し、転写紙へ一時的に付着させた。ついで、シクロデキストリン膜を水により剥離させ、厚さ5mmのセラミック板(磁器の板或いはガラス板)へこの膜を付着させる。
【0067】
(画像形成及び画像評価)
上記方法に従いトナーを磁器板或いはガラス板へシクロデキストリン膜に付着させた状態で接着した。
【0068】
現像剤1〜6、現像剤11(参考用現像剤)及び比較用現像剤1を用いて形成されたトナー像は磁器の板へ付着させ、現像剤7〜10についてはガラス板に対して付着させた。なお、現像剤11(参考用現像剤)では磁器の板へ付着した後にホウ珪酸鉛ガラス微粒子を表面にまぶしたのちに焼き付けを行った。
【0069】
まずシクロデキストリン膜の付着している板を100℃の条件で10分間焼き、ついで0.5℃/分の条件で300℃まで加熱する。ついで、1℃/分の昇温条件で850℃の温度まで昇温し、15分間焼いたのち、室温まで冷却し画像を形成させた。この状態ではシクロデキストリン膜及びトナーに用いたポリエステル樹脂及びスチレン-アクリル酸エステル樹脂は分解して、無機顔料のみが残留して発色した。
【0070】
評価は目視にて発色性を評価した。耐候性はフェードメーターにて30日間の紫外線の照射を行い、色の劣化状態を目視で比較した。
【0071】
【表2】
Figure 0003785645
【0072】
以上の結果に示す様に、本発明の現像剤1〜10では、良好なガラス板及び陶磁器などの様なセラミック板に対する接着性及び耐候性に優れ、さらに画像欠陥を発生することの無い画像を形成することができることが理解される。
【0073】
【発明の効果】
本発明により、簡便にセラミック体上にカラー画像を形成することができる。又、形成された画像の耐久性の極めて高い静電荷像現像用トナーを得ることができる。[0001]
[Industrial application fields]
The present invention relates to a new technique for coloring ceramics, porcelain, and various ceramics.
[0002]
[Prior art]
Conventionally, a method for forming an image by fixing an inorganic pigment to a ceramic plate has been known for ceramics and the like for a long time. In recent years, there has been known a method for forming an image by printing on a ceramic plate on a plate using an ink containing a pigment by screen printing and then printing it. However, since this method uses screen printing when forming an image, a four-color plate is required. This complicates the printing process and may cause image distortion.
[0003]
On the other hand, as an electrophotographic method, a method of forming a color image using a color toner is known. In this method, a full color image can be easily formed using four color toners. However, the images formed by this image forming method use organic pigments such as phthalocyanine pigments, azo pigments, quinacridone pigments, carbon black, etc., and are baked after images are formed on a ceramic plate. In this case, the pigment is discolored due to the high temperature, and the intended image cannot be formed. In terms of color alone, it is possible to improve by using an inorganic pigment, but since the toner binder itself is also decomposed by the heat of baking, the inorganic pigment cannot be fixed to the ceramic plate. As described above, the method of simply forming a color image on a ceramic plate has not been realized due to various problems.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to develop a new toner for developing an electrostatic image and propose a method for easily forming an image on a ceramic body. Still another object is to form an image having no color change and excellent adhesion and high durability. Another object of the present invention is to develop a toner for developing an electrostatic image having a very high color developability of the pigment.
[0005]
[Means for Solving the Problems]
The object of the present invention is achieved by a toner for developing an electrostatic charge image (hereinafter referred to as a toner of the present invention) characterized by containing at least a binder resin and a pigment for ceramics.
[0006]
The toner of the present invention further contains a glassy substance, and the glassy substance is contained as a melt obtained by high-temperature melting with the ceramic pigment.
That is, the toner for developing an electrostatic charge image contains a melt for heating and fixing onto a transfer paper obtained by melting at least a binder resin, a ceramic pigment and a glassy substance at a high temperature.
[0007]
The toner of the present invention is characterized in that the electrostatic latent image on the image bearing member is developed and visualized, and the toner visible image is transferred onto the ceramic body and then heated to fix the baking ceramic pigment. The image forming method is preferably used.
That is, the second aspect of the present invention, an electrostatic image containing an electrostatic latent image on the image bearing member, the molten material obtained by hot melt and at least a binder resin and ceramic pigments and glassy material Developing with a developing toner to form a toner image, transferring the toner image to transfer paper, fixing the melt together with a binder resin, and then affixing the fixed material to a ceramic body, followed by heating Then, the image forming method is characterized in that the baking ceramic pigment is fixed to the ceramic body.
[0008]
That is, in the present invention, since screen printing is not used, an image without color misregistration can be easily formed. Further, since the ceramic pigment is used as a coloring material, it is easily bonded to the ceramic plate by baking, and there is no problem of discoloration due to heat or the like after image formation.
[0009]
Further, in the present invention, if the glassy material and the ceramic pigment are melted and used uniformly, the fixing property and color developability of the ceramic pigment for the ceramic body can be improved. Improved adhesion to the body can be achieved.
[0010]
[Action]
Hereinafter, the present invention will be described more specifically.
[0011]
(Ceramic body)
The ceramic body is a material that is wider than the range of materials generally called ceramics and can be baked at 400 to 1200 ° C. For example, there are usually plate-like earthenware and ceramics, There are porcelain. Further examples include glass and pig ironware.
[0012]
(Pigment for ceramics)
The ceramic pigments in the present invention are so-called pigments for coloring ceramics, and further, those that are colored by dissolving or reacting with glazes used in ceramics. Here, glaze refers to the glass material applied to the ceramic surface.
[0013]
Examples of ceramic pigments include zirconium oxide, uranium uranate, iron oxide, manganese oxide, molybdenum oxide, nickel oxide, thorium oxide, cobalt oxide, copper oxide, chromium oxide, titanium oxide, tungsten oxide, vanadium oxide, gold, Antimony oxide, tin oxide, cadmium sulfide, selenium, etc. are used as the ceramic pigments of the present invention. In the present invention, these pigments are baked at a high temperature to cause color development. For example, when the ceramic plate is ceramic, white is zirconium oxide, black is uranium uranate (reduced soot), blue is iron oxide, manganese oxide (sodium oxide), molybdenum oxide (sodium oxide), nickel oxide, (oxidized soot) , Thorium oxide, cobalt oxide, copper oxide, chromium oxide (reduced soot), titanium oxide, tungsten oxide, vanadium oxide, etc., green is iron oxide (reduced soot), manganese oxide, nickel oxide, thorium oxide (reduced soot) , Cobalt oxide (sodium oxide), copper oxide, titanium oxide, chromium oxide, vanadium oxide, etc., yellow is iron oxide, manganese oxide, nickel oxide, copper oxide (oxidized soot), chromium oxide, vanadium oxide (oxidized soot) Red is iron oxide (oxidized soot), manganese oxide, nickel oxide, copper oxide (reduced soot), chromium oxide, titanium oxide, tungsten oxide, vanadium oxide And purple (manganese oxide, molybdenum oxide, nickel oxide, chromium oxide, titanium oxide, tungsten oxide, gold etc.) tea is nickel oxide (reduced straw), manganese oxide, pink Cobalt oxide (reduced soot), orange is chromium oxide.
[0014]
These react with silicic acid, alumina and the like which are glassy substances to be described later to form silicates, aluminates, aluminum silicates, etc., and are colored and fixed, and can be used in combination. Note that the color of the color changes also depending on the heating conditions, that is, the reducing atmosphere or the oxidizing atmosphere.
[0015]
Further, the color tone may be adjusted by adding aluminum oxide, zinc oxide or the like.
[0016]
On the other hand, when the ceramic body is glassy, there are titanium oxide, antimony oxide, zirconium oxide, tin oxide, etc. to make white, black is a mixture of iron oxide, manganese dioxide and cobalt oxide fired at high temperature Red is a selenium added with a small amount of cadmium sulfide, amber is cobalt oxide, yellow is cadmium sulfide, and orange is a cadmium sulfide added with a small amount of selenium.
[0017]
In this case, it is not necessary to add a vitreous substance because the base itself is vitreous, but borosilicate glass is preferable when it is added.
[0018]
The particle size of these ceramic pigments affects the color developability of the colored glass itself formed by melting. That is, when a glass having a large particle size is used at the time of forming the colored glass, the dispersion and color developability of the ceramic pigment in the colored glass are not uniform, and the color reproducibility is lowered. In addition, when the particle size of the ceramic pigment is small, the uniformity is high, but there is a problem that the color density in color development is lowered. For this reason, it is preferable that the particle diameter of a pigment is 0.1-8 micrometers in a number average particle diameter.
[0019]
The method for measuring the number average particle diameter indicates the number average particle diameter measured by a laser scattering type particle size distribution measuring apparatus “HELOS” (manufactured by SIMPATIC). In addition, the sample used what was disperse | distributed to the aqueous solution containing surfactant by the ultrasonic wave before a measurement.
[0020]
The amount of ceramic pigment added to the toner is preferably 5 to 60% by weight. The reason for this is that if the amount added is too small, the image density will be lowered. If the amount added is too large, the pigment will be exposed on the surface of the toner particles, which will adversely affect the chargeability. .
[0021]
(Glassy substance)
Although it does not specifically limit as a vitreous substance, Borosilicate glass, lead glass, alkali glass, etc. are good. In particular, when lead oxide is added, the melting point of the glassy material is lowered, the adhesiveness is improved, and a good film is formed.
[0022]
The glassy substance is added from the viewpoint of improving adhesiveness and adjusting the color tone.
[0023]
As a method of melting both, a vitreous substance and a ceramic pigment are mixed at a predetermined ratio and then heated to melt the vitreous substance to form a uniform so-called colored glass, which is crushed and used. It is good. In this case, a so-called colored glass in which a ceramic pigment and glass are mixed is pulverized, and a volume average particle size of 0.1 to 10 μm, preferably 0.2 to 8.0 μm is preferable. In the case of pulverization, it is difficult to use a normal pulverization method, and a pulverization method using a ball mill is preferable.
[0024]
When this particle size is small, the hiding property is lowered, and when the particle size is large, the color reproducibility of the image is lowered and the generation of free colored glass particles is caused. .
[0025]
Here, the volume average particle diameter is measured using the above-mentioned laser scattering type particle size distribution measuring apparatus, and the measurement sample is dispersed in an aqueous solution containing a surfactant by ultrasonic waves before the measurement. It is.
[0026]
In the present invention, the ratio of the ceramic pigment and glassy substance in the colored glass is preferably ceramic pigment: glassy substance = 1: 0.1 to 5.0. More preferably, it is a pigment for ceramics: glass quality = 1: 0.2-4.0. If this ratio is too small, the adhesiveness of the ceramic pigment will be lowered, and if it is too much, the color developability will be lowered. Further, in the present invention, it is preferable that the ceramic pigment itself is added in an amount of 5 to 60% by weight in the toner. That is, if this amount is too small, the color developability is lowered and the color reproducibility is lowered. On the other hand, if it is excessive, the pigment for ceramics will be liberated and problems such as easy scratching on the photoreceptor will occur.
[0027]
(Binder resin)
The binder resin constituting the toner of the present invention is not particularly limited, and various conventionally known resins can be used. However, since the step of baking is essential, it is preferable to use a resin that does not remain due to thermal decomposition. For this purpose, for example, a styrene resin, an acrylate resin, a styrene-acrylate resin, a polyester resin, and the like can be given.
[0028]
The toner of the present invention is a toner containing a binder resin, particles obtained by melting a ceramic pigment and desirably a glassy substance, and other additives used as necessary.
[0029]
The average particle diameter is 4 to 20 μm, preferably 5 to 15 μm in terms of volume average particle diameter.
[0030]
Examples of other additives include charge control agents such as salicylic acid derivatives and azo metal complexes, and fixability improving agents such as low molecular weight polyolefin and carnauba wax. In addition, inorganic fine particles may be added to improve fluidity and chargeability. As the inorganic fine particles, those having a number average primary particle diameter of 5 to 1000 nm such as silica, titanium oxide, aluminum oxide, barium titanate and strontium titanate are used, and these may be hydrophobized.
[0031]
Further, a higher fatty acid metal salt such as styrene-acrylic resin fine particles having a number average primary particle size of 0.1 to 2.0 μm or zinc stearate may be added to the toner as a cleaning aid.
[0032]
The addition amount of the inorganic fine particles is preferably 0.1 to 5.0% by weight based on the toner. The cleaning aid is preferably about 0.01 to 1.0% by weight with respect to the colored particles.
[0033]
As a carrier constituting the two-component developer desirably used in the present invention, a resin-coated carrier obtained by coating the surface of a magnetic material particle such as iron or ferrite with a resin or the like, or a resin dispersion type obtained by mixing a resin and magnetic powder Any of the carriers may be used. The average particle size of this carrier is preferably 20 to 150 μm, more preferably 30 to 100 μm in terms of volume average particle size. The carrier used in the present invention is preferably one having a volume resistance of 10 10 Ωcm or more. That is, the developing is performed by applying an alternating electric field. When the resistance of the carrier is low, it causes image defects as in the case of magnetic particles having a low resistance, and a certain resistance value or more is required.
[0034]
(Development and image forming method)
In the image forming method of the present invention, a full-color image is formed on a photosensitive member or from the photosensitive member to an intermediate transfer member or the like by an ordinary electrophotographic method, and the image is transferred onto a transfer sheet and fixed. Next, transfer paper is pasted onto the ceramic body, and then baking is performed to remove the transfer paper and the toner binder, and an inorganic ceramic pigment is fixed to the ceramic body using a glassy substance.
[0035]
As a developing method for forming an image on a photoreceptor, a developer may be developed in a contact state. When a color image is formed, an image is repeatedly formed on a photoreceptor in a non-contact state, and a full color image is formed. It may be formed. Further, a method may be used in which a color image is formed on the photoconductor one by one in a contact or non-contact state, sequentially transferred from the photoconductor to the intermediate transfer member, and a full color image is formed on the intermediate transfer member.
[0036]
The full-color image formed on the photosensitive member or intermediate transfer member is transferred to transfer paper and then fixed to the transfer paper. This fixing may be performed by any of the currently known fixing methods such as normal heat roll fixing, and is temporarily adhered to the transfer paper. Alternatively, a method of heating the toner to a temperature not lower than the glass transition temperature and not higher than the softening point to temporarily adhere to the transfer paper may be used. In this case, a method of heating the transfer paper on which the toner has been transferred into an oven or the like can be used. Thereafter, the transfer paper on which the image is formed in a state where the full-color image is adhered or adhered is pasted onto the ceramic body, and then printing is performed. Alternatively, a special layer may be formed on the transfer paper in advance so that the image portion can be peeled off from the transfer paper, and the image may be peeled off and pasted on the ceramic body.
[0037]
(Bake)
In the method of baking, the temperature is first kept at about 100 ° C., then slowly raised to 200 to 400 ° C., and then baked at a temperature of 400 to 1200 ° C. to fix it on the ceramic body. At this point, the vitreous material melts and the ceramic pigment develops color, and at the same time it can be fixed to the ceramic plate by the vitreous material.
[0038]
In the case where a glassy substance has not been added to the toner in advance, it is necessary to apply them to the ceramic body before performing the baking operation, and it is usually necessary to apply them from above the transfer paper.
[0039]
(Ceramic body)
The ceramic body is usually a ceramic plate. Examples of the porous body include earthenware and ceramics, and examples of a dense base include furnace and porcelain. Further examples include glass and pig ironware. These may be plate-shaped, or may be other than plate-shaped such as so-called vessel shape and cylindrical shape. Further, these may be combined with each other.
[0040]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this. In the examples and comparative examples of the present invention, “part” represents “part by weight”.
[0041]
(Production example of pigment and glassy melt for ceramics)
Production Example 1
30 parts of cobalt oxide (number average particle size = 0.5 μm), 15 parts of borosilicate glass and 15 parts of lead oxide are mixed, melted at 900 ° C, coarsely pulverized, pulverized with a ball mill, classified, and volume averaged particles A melt having a diameter of 0.8 μm was obtained. This is referred to as “molten pigment 1”.
[0042]
Production Example 2
30 parts of manganese oxide (number average particle diameter = 2.1 μm), 25 parts of borosilicate glass and 35 parts of lead oxide were melted in the same manner as in Production Example 1, ground and classified, and then melted with a volume average particle diameter of 1.2 μm. Got. This is referred to as “molten pigment 2”.
[0043]
Production Example 3
60 parts of nickel oxide (number average particle size = 1.6 µm), 25 parts of borosilicate glass and 35 parts of lead oxide were melted, ground and classified in the same manner as in Production Example 1, and then melted with a volume average particle size of 1.5 µm. Got. This is referred to as “molten pigment 3”.
[0044]
Production Example 4
60 parts of uranium uranate (number average particle diameter = 1.6 μm), 25 parts of borosilicate glass and 35 parts of lead oxide were melted, ground and classified in the same manner as in Production Example 1, and then melted with a volume average particle diameter of 1.7 μm. I got a thing. This is designated as “Fused Pigment 4”.
[0045]
Production Example 5
A fused pigment having a volume average particle size of 1.2 μm was obtained in the same manner as in Production Example 1 except that the amount of cobalt oxide was 100 parts. This is designated as “Fused Pigment 5”.
[0046]
Production Example 6
A fused pigment having a volume average particle size of 1.1 μm was obtained in the same manner as in Production Example 1 except that the amount of cobalt oxide was 10 parts. This is designated as “Fused Pigment 6”.
[0047]
Production Example 7
60 parts of cobalt oxide (number average particle diameter = 2.2 μm), 25 parts of aluminum oxide (number average particle diameter = 2.3 μm), 25 parts of borosilicate glass and 35 parts of lead oxide were melted and ground as in Production Example 1. After classification, a molten pigment having a volume average particle diameter of 2.1 μm was obtained. This is designated as “Fused Pigment 7”.
[0048]
Production Example 8
A mixture of cadmium sulfide and selenium (cadmium sulfide: selenium = 99: 1) (number average particle size = 2.1 μm), 25 parts of borosilicate glass and 35 parts of lead oxide were melted and ground and classified in the same manner as in Production Example 1. After that, a molten pigment having a volume average particle diameter of 1.7 μm was obtained. This is designated as “Fused Pigment 8”.
[0049]
Production Example 9
60 parts of cadmium sulfide (number average particle size = 1.9 µm), 25 parts of borosilicate glass and 35 parts of lead oxide were melted, ground and classified in the same manner as in Production Example 1, and then a molten pigment having a volume average particle size of 2.5 µm. Got. This is designated as “Fused Pigment 9”.
[0050]
Production Example 10
60 parts of iron oxide and particles of manganese oxide and cobalt oxide fired at high temperature (number average particle size = 2.4 μm), 25 parts of borosilicate glass and 35 parts of lead oxide are melted and ground as in Production Example 1. After classification, a molten pigment having a volume average particle size of 2.3 μm was obtained. This is referred to as “molten pigment 10”.
[0051]
(Example of toner production)
Toner production example 1
100 parts of a polyester resin (glass transition point = 56 ° C./softening point = 125 ° C.) and 25 parts of “molten pigment 1” are premixed according to a conventional method, melt-kneaded, pulverized, and then have a volume average particle size of 13.1 μm Colored particles were obtained. Subsequently, 0.5% of hydrophobic silica was added to this product to obtain a toner of the present invention. This is referred to as “blue toner 1”.
[0052]
Toner production example 2
100 parts of a polyester resin (glass transition point = 56 ° C., softening point = 125 ° C.) and 30 parts of “molten pigment 2” are premixed according to a conventional method, melt-kneaded, pulverized, and then have a volume average particle diameter of 12.7 μm Colored particles were obtained. Subsequently, 0.5% of hydrophobic silica was added to this product to obtain a toner of the present invention. This is referred to as “red toner 1”.
[0053]
Toner production example 3
100 parts of polyester resin (glass transition point = 56 ° C, softening point = 125 ° C) and 40 parts of "Melting Pigment 3" are premixed according to a conventional method, then melt-kneaded, pulverized, and then colored with a volume average particle size of 13.1 µm Particles were obtained. Subsequently, 0.5% of hydrophobic silica was added to this product to obtain a toner of the present invention. This is referred to as “yellow toner 1”.
[0054]
Toner production example 4
100 parts of a polyester resin (glass transition point = 56 ° C., softening point = 125 ° C.) and 50 parts of “Melting Pigment 4” are premixed according to a conventional method, then melt-kneaded, pulverized, and then colored with a volume average particle size of 12.8 μm Particles were obtained. Subsequently, 0.5% of hydrophobic silica was added to this product to obtain a toner of the present invention. This is referred to as “black toner 1”.
[0055]
Toner production example 5
In Toner Production Example 1, colored particles having a volume average particle diameter of 11.9 μm were obtained in the same manner except that 10 parts of “Fused Pigment 5” was used instead of “Fused Pigment 1”, and then 0.8% of hydrophobic silica was obtained. % To obtain the toner of the present invention. This is referred to as “blue toner 2”.
[0056]
Toner Production Example 6
In Toner Production Example 1, colored particles having a volume average particle size of 12.8 μm were obtained in the same manner except that 25 parts of “molten pigment 6” was used instead of “molten pigment 1”, and then hydrophobic silica was 0.6 % To obtain the toner of the present invention. This is referred to as “blue toner 3”.
[0057]
Toner production example 7
100 parts of styrene-acrylic ester resin (glass transition point = 54 ° C., softening point = 135 ° C.) and 60 parts of “Fused Pigment 7” are premixed according to a conventional method, melt-kneaded, pulverized, and then volume-average particle size Gave 12.7 μm colored particles. Subsequently, 0.5% of hydrophobic silica was added to this product to obtain a toner of the present invention. This is referred to as “blue toner 4”.
[0058]
Toner production example 8
100 parts of styrene-acrylic ester resin (glass transition point = 54 ° C./softening point = 135 ° C.) and 55 parts of “Fused Pigment 8” were premixed in a conventional manner, melt-kneaded, pulverized, and volume average particle size 12.7 μm colored particles were obtained. Subsequently, 0.5% of hydrophobic silica was added to this product to obtain a toner of the present invention. This is referred to as “red toner 2”.
[0059]
Toner Production Example 9
100 parts of styrene-acrylic acid ester resin (glass transition point = 54 ° C., softening point = 135 ° C.) and 80 parts of “Fused Pigment 9” were premixed according to a conventional method, then melt-kneaded, and after pulverization, the volume average particle size was 12.7 μm colored particles were obtained. Subsequently, 0.5% of hydrophobic silica was added to this product to obtain a toner of the present invention. This is referred to as “yellow toner 2”.
[0060]
Toner production example 10
100 parts of styrene-acrylic ester resin (glass transition point = 54 ° C, softening point = 135 ° C) and 100 parts of "Melting Pigment 10" are premixed according to a conventional method, then melt-kneaded, and after pulverization, the volume average particle size is 12.7 μm colored particles were obtained. Subsequently, 0.5% of hydrophobic silica was added to this product to obtain a toner of the present invention. This is referred to as “black toner 2”.
[0061]
Toner production example 11 (reference toner)
A toner of Production Example was obtained in the same manner as in Toner Production Example 1 except that 25 parts of cobalt oxide was added instead of “Fused Pigment 1”. This is referred to as “Production Example Blue Toner 5”.
[0062]
Comparative toner production example 1
A comparative toner was obtained in the same manner as in Toner Production Example 1 except that 10 parts of copper phthalocyanine was used instead of “Fused Pigment 1”. This is referred to as “comparative blue toner 1”.
[0063]
Developer Preparation Example The above toner was added to a resin-coated ferrite carrier having a volume average particle diameter of 45 μm, the surface of which was coated with styrene-acrylate resin on the ferrite particle surface, to prepare a developer having a toner concentration of 7%. The following table shows a list of developers.
[0064]
[Table 1]
Figure 0003785645
[0065]
(Evaluation conditions, etc.)
For the evaluation, a Konica 9028 color copier, modified, was used. The conditions are as shown below. As the photoconductor, a laminated organic photoconductor was used.
[0066]
Photoconductor surface potential = -550V
DC bias = -250V
AC bias = Vp-p: -50 to -450V
Alternating electric field frequency = 1800Hz
Dsd = 300μm
Pressing restriction force = 10 gf / mm
Pressure regulating rod = SUS416 (made of magnetic stainless steel) / diameter 3mm
Developer layer thickness = 150μm
Development sleeve = 20mm
In addition, the image was transferred using a paper coated with cyclodextrin on the surface as the transfer paper. Thereafter, the transfer paper was put into an oven at 120 ° C., left for about 5 minutes, and temporarily adhered to the transfer paper. Next, the cyclodextrin film is peeled off with water, and this film is adhered to a ceramic plate (a porcelain plate or a glass plate) having a thickness of 5 mm.
[0067]
(Image formation and image evaluation)
In accordance with the above method, the toner was adhered to a porcelain plate or glass plate in a state where it was adhered to the cyclodextrin film.
[0068]
Toner images formed using Developers 1 to 6, Developer 11 (reference developer) and Comparative Developer 1 are attached to a porcelain plate, and Developers 7 to 10 are attached to a glass plate. I let you. For developer 11 (reference developer) , after adhering to the porcelain plate, lead borosilicate glass fine particles were coated on the surface and then baked.
[0069]
First, the plate on which the cyclodextrin film is attached is baked at 100 ° C. for 10 minutes, and then heated to 300 ° C. at 0.5 ° C./min. Subsequently, the temperature was raised to a temperature of 850 ° C. under a temperature raising condition of 1 ° C./minute, baked for 15 minutes, and then cooled to room temperature to form an image. In this state, the cyclodextrin film and the polyester resin and styrene-acrylic acid ester resin used for the toner were decomposed, and only the inorganic pigment remained to develop a color.
[0070]
The evaluation was performed by visually evaluating the color developability. As for weather resistance, ultraviolet light was irradiated for 30 days with a fade meter, and the state of color deterioration was visually compared.
[0071]
[Table 2]
Figure 0003785645
[0072]
As shown in the above results, the developers 1 to 10 of the present invention are excellent in adhesion and weather resistance to a ceramic plate such as a glass plate and ceramic, and further, do not cause image defects. It is understood that it can be formed.
[0073]
【The invention's effect】
According to the present invention, a color image can be easily formed on a ceramic body. In addition, it is possible to obtain a toner for developing an electrostatic image having extremely high durability of the formed image.

Claims (2)

少なくとも結着樹脂及び窯業用顔料とガラス質の物質とを高温溶融して得られる転写紙に加熱定着させるための溶融物をトナー中に含有することを特徴とする静電荷像現像用トナー。  A toner for developing an electrostatic charge image, wherein the toner contains at least a binder, a pigment for ceramics, and a glassy substance, and a melt for heat-fixing it on transfer paper obtained by high-temperature melting. 像担持体上の静電潜像を、少なくとも結着樹脂及び窯業用顔料とガラス質の物質とを高温溶融して得られる溶融物を含有する静電荷像現像用トナーで現像して、トナー画像を形成し、該トナー画像を、転写紙へ転写して、前記溶融物を結着樹脂とともに定着し、ついで該定着物をセラミック体へ貼り付けた後、加熱して焼き付け窯業用顔料をセラミック体へ固着することを特徴とする画像形成方法。An electrostatic latent image on the image bearing member is developed with a toner for developing electrostatic images containing a melt obtained by hot melt and at least a binder resin and ceramic pigments and vitreous material, the toner image The toner image is transferred to a transfer paper, the melt is fixed together with a binder resin, and the fixed material is attached to the ceramic body, and then heated to bake the ceramic pigment for the ceramic body. An image forming method characterized by adhering to an image.
JP25539194A 1994-10-20 1994-10-20 Toner for developing electrostatic image and image forming method Expired - Fee Related JP3785645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25539194A JP3785645B2 (en) 1994-10-20 1994-10-20 Toner for developing electrostatic image and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25539194A JP3785645B2 (en) 1994-10-20 1994-10-20 Toner for developing electrostatic image and image forming method

Publications (2)

Publication Number Publication Date
JPH08119668A JPH08119668A (en) 1996-05-14
JP3785645B2 true JP3785645B2 (en) 2006-06-14

Family

ID=17278117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25539194A Expired - Fee Related JP3785645B2 (en) 1994-10-20 1994-10-20 Toner for developing electrostatic image and image forming method

Country Status (1)

Country Link
JP (1) JP3785645B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9614494D0 (en) * 1996-07-10 1996-09-04 Cookson Matthey Ceramics Plc Improvements in printing
FR2756942B1 (en) * 1996-12-05 1999-10-01 Ricoh Kk DEVELOPER COMPOSITION, IMAGE FORMING METHOD, SHEET MATERIAL, AND SINTERED ARTICLE
JP3871099B2 (en) * 1999-01-21 2007-01-24 株式会社リコー Transfer sheet having toner image and toner image printing method using the same
JP4725518B2 (en) * 2004-07-09 2011-07-13 旭硝子株式会社 Conductive toner and method for producing glass plate with conductive printed wire
US20080254268A1 (en) * 2007-04-03 2008-10-16 Asahi Glass Company Limited Color toner for electro printing, and process for producing glass plate provided with ceramic color print, employing it
JP5912412B2 (en) * 2011-10-26 2016-04-27 ゼネラル株式会社 Cover sheet for ceramic image forming system, ceramic image forming system, and ceramic image forming method

Also Published As

Publication number Publication date
JPH08119668A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
JP3415909B2 (en) Toner composition suitable for fixing by non-contact melting
EP0751434B1 (en) Method of forming colored image by use of inorganic toner, inorganic toner for developing latent electrostatic image, and colored toner image bearing image transfer medium
JP3785645B2 (en) Toner for developing electrostatic image and image forming method
JP3871099B2 (en) Transfer sheet having toner image and toner image printing method using the same
JP3259026B2 (en) Method for producing colorant for toner for developing electrostatic image
JPH08146819A (en) Image forming method
JPH10217596A (en) Method for electrostatic photographic manufacture of master image for decoration of ceramic object
JP3397543B2 (en) Two-component developer, developing method and image forming method
EP1698945A2 (en) Resin-coated carrier for electrophotographic developing agent, process for producing the same and electrophotographic developing agent utilizing the resin-coated carrier
US6165655A (en) Toner composition and use thereof for forming sintered pattern on solid surface
JP3482453B2 (en) Electrostatic image developing toner, image forming sheet using the same, and painting ceramic products
JP3849355B2 (en) Dry toner for printing ceramic products and image forming method
JP3277068B2 (en) Developer and image forming apparatus
JP4255226B2 (en) Film-forming transfer sheet and film resin liquid
JPH11105493A (en) Transfer sheet and printing method of toner image
JPH11105494A (en) Transfer sheet and printing method of toner image
JPH1178206A (en) Transfer sheet
JP3463084B2 (en) Painting method for heat resistant solid surface
JP3520890B2 (en) Color toner for developing electrostatic images, image forming body thereof, and method for painting ceramic products using the same
JPH10301339A (en) Method for image forming
JPH1178207A (en) Transfer sheet
JP2930183B2 (en) Developing device
JP2003140382A (en) Electrophotographic developer and method for forming image by using the same
JP2002278135A (en) Toner, and image forming method using the same
JPH08194331A (en) Electrophotographic color toner and image forming method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees