JP3785467B2 - Method for producing oil and fat composition - Google Patents

Method for producing oil and fat composition Download PDF

Info

Publication number
JP3785467B2
JP3785467B2 JP19979396A JP19979396A JP3785467B2 JP 3785467 B2 JP3785467 B2 JP 3785467B2 JP 19979396 A JP19979396 A JP 19979396A JP 19979396 A JP19979396 A JP 19979396A JP 3785467 B2 JP3785467 B2 JP 3785467B2
Authority
JP
Japan
Prior art keywords
oil
fatty acid
melting point
triglyceride
unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19979396A
Other languages
Japanese (ja)
Other versions
JPH1025491A (en
Inventor
一昭 鈴木
悟 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP19979396A priority Critical patent/JP3785467B2/en
Publication of JPH1025491A publication Critical patent/JPH1025491A/en
Application granted granted Critical
Publication of JP3785467B2 publication Critical patent/JP3785467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Storage Of Fruits Or Vegetables (AREA)
  • Fats And Perfumes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油脂組成物の製造方法に関する。更に詳しくは、1,2−飽和−3−不飽和トリグリセライドを高濃度で含有する油脂組成物の製造方法に関する。
本明細書において、「1,2−飽和−3−不飽和トリグリセライド」とは、グリセリンの1,2位に飽和脂肪酸基がエステル結合し、3位に不飽和脂肪酸基がエステル結合しているトリグリセライドであり、1位と2位の飽和脂肪酸基は同じでも異なってもよい。また、本明細書においては、トリグリセライドの1位と3位の脂肪酸を区別しない。すなわち、1,2−飽和−3−不飽和トリグリセライドは、1−不飽和−2,3−飽和トリグリセライドを包含する。こうした「トリグリセライド」を、以下、トリグリセライドの1位、2位及び3位に結合している飽和脂肪酸基(S)及び不飽和脂肪酸基(U)によって順に標記して表し、例えば、前記の「1,2−飽和−3−不飽和トリグリセライド」を、「SSU」と略称する。
【0002】
【従来の技術】
SSUは、天然油脂中に含まれているトリグリセライドの一種である。SSUを比較的高濃度で含む油脂としては、例えば、豚脂が挙げられ、その含有率はおよそ25重量%である。
そこで、SSUを高含量で含む油脂組成物を調製するためには、豚脂中のSSUを分別法により、濃縮することが考えられる。しかし、その際、SSU以外のトリグリセライドが大量に副生する。副生したトリグリセライドはそのままではSSUの製造原料として用いることができない上、同程度のヨウ素価を有する植物油と比較すると、著しく酸化安定性に劣ることから商品価値が低く、結果としてSSUが高価になっていた。従って、分別の際に副生するトリグリセライドを効率良く利用する技術の開発が待たれていた。
【0003】
同様に、SSUを比較的高濃度で含む油脂である牛脂(SSU含有率=19重量%)、パーム油(SSU含有率=6重量%)中のSSUを分別法により濃縮する場合は、更に大量のSSU以外のトリグリセライドが副生する。また、牛脂やパーム油は、同時に1,3−飽和−2−不飽和対称型トリグリセライド、すなわち「SUS」(1位と3位の飽和脂肪酸は同じでも異なってもよい)を含む。そのSUSの含有率は、牛脂で20重量%、パーム油で41重量%であり、SSUとSUSは、その結晶化温度が近いため、一般の分別では分離は困難かつ低収率であり、SUSをほとんど含まずにSSUの濃度を高めることは困難である。
従って、SSUを高濃度で含み、かつ、SUSの含有率が低い油脂を、SSU以外の油脂の副生を抑えつつ、安価に製造する方法の開発が待望されていた。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、SSUを高濃度で含み、かつ、SUSをほとんど含まない油脂を、SSU以外の油脂の副生を抑えつつ、効率よく製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
前記の目的は、本発明による、
(I)(A)(1)(a)主な構成脂肪酸が炭素数16〜24の脂肪酸である油脂から得た極度硬化油と、(b)炭素数16〜24の不飽和脂肪酸、及び/又は炭素数16〜24の不飽和脂肪酸部分と炭素数1〜4の直鎖アルキル部分とからなる不飽和脂肪酸アルキルエステルとを混合し、1,3位置特異性を有するリパーゼを用いてエステル交換反応させる工程、
(2)工程(1)の反応生成物からトリグリセライド混合物を分離する工程、及び
(3)工程(2)で分離されたトリグリセライド混合物から、分別により、高融点油と低融点油とを除去し、中融点油として1,2−飽和−3−不飽和トリグリセライドを含む油脂組成物を分離する工程
における、工程(3)で得られた低融点油と、(B)1,2,3−飽和トリグリセライドを主成分とする油脂組成物とを混合し、1,3位置特異性を有するリパーゼを用いてエステル交換反応させる工程、並びに
(II)工程(I)で得られたトリグリセライド混合物から、分別により、高融点油と低融点油とを除去し、中融点油として1,2−飽和−3−不飽和トリグリセライドを含む油脂組成物を分離する工程
を含むことを特徴とする、1,2−飽和−3−不飽和トリグリセライドを含有する油脂組成物の製造方法によって達成することができる。
【0006】
【発明の実施の形態】
以下、本発明の油脂組成物の製造方法について詳述する。
本発明で用いられる「主な構成脂肪酸が炭素数16〜24の脂肪酸である油脂から得た極度硬化油」は、前記の油脂を水素添加して得た生成物である。
水素添加される油脂(原料油脂)は、主な構成脂肪酸が炭素数16〜24の脂肪酸である油脂であれば特に限定されない。ここで「主な構成脂肪酸」とは、原料油脂中のトリグリセライドに含まれる脂肪酸の内、80モル%以上を占める脂肪酸であり、飽和脂肪酸又は不飽和脂肪酸のいずれであることもできる。このような原料油脂としては、例えば、大豆油、ナタネ油、ひまわり油、コーン油、綿実油、サフラワー油、ピーナッツ油、パーム油、カカオ脂、又はシア脂等の植物油、牛脂、又は豚脂等の動物油脂等、及び、これらの分別油、あるいはエステル交換油等を挙げることができる。一般にラウリン油脂と呼ばれる油脂、例えばヤシ油、パーム核油、又はババス油等や短鎖脂肪酸を多く含む油脂、例えば乳脂は、前記の原料油脂に含まれず、本発明方法では使用することができない。
【0007】
前記の原料油脂を水素添加して極度硬化油とする方法は特に限定されず、原料油脂内のトリグリセライドに含まれる不飽和脂肪酸基のほぼ全てを飽和脂肪酸基に変えることのできる公知の任意の方法を用いることができる。例えば、オートクレーブに原料油脂とニッケル触媒を加え、系内に水素を送り込みながら180〜220℃として、原料油脂内のトリグリセライドに含まれる不飽和脂肪酸基のほぼ全てを飽和脂肪酸基に変える方法を挙げることができる。
【0008】
「炭素数16〜24の不飽和脂肪酸」(以下、単に不飽和高級脂肪酸と称することがある)は、炭素数が16〜24で、不飽和結合1個以上を含めば、不飽和結合の数、不飽和結合の位置、又は油糧原料等については、特に限定されない。具体的には、パルミトオレイン酸、オレイン酸、リノール酸、α−リノレン酸、γ−リノレン酸、アラキドン酸、エイコサペンタエン酸、又はドコサヘキサエン酸等を挙げることができる。油脂からこれら不飽和高級脂肪酸を得る場合、その方法は特に限定されず、公知の方法、例えば酵素法、又は化学法による加水分解等を用いることができる。なお、これら不飽和高級脂肪酸を、単独で、又は同時に2種以上の混合物として用いることができる。また、不飽和高級脂肪酸を含んでいる限り、飽和脂肪酸との混合物を用いることができるが、飽和脂肪酸の含有率は可能な限り低いことが望ましい。
【0009】
「炭素数16〜24の不飽和脂肪酸部分と炭素数1〜4の直鎖アルキル部分とからなる不飽和脂肪酸アルキルエステル」(以下、単に不飽和高級脂肪酸エステルと称することがある)は、特に限定されず、上記不飽和高級脂肪酸のメチルエステル、エチルエステル、プロピルエステル、又はブチルエステル等を挙げることができる。これら不飽和高級脂肪酸エステルを得る方法も特に限定されない。
本発明方法では、前記の「炭素数16〜24の不飽和脂肪酸」(不飽和高級脂肪酸)1種又はそれ以上と「炭素数16〜24の不飽和脂肪酸部分と炭素数1〜4の直鎖アルキル部分とからなる不飽和脂肪酸アルキルエステル」(不飽和高級脂肪酸エステル)1種又はそれ以上との混合物も使用することができる。
【0010】
本発明方法の一態様では、極度硬化油と不飽和高級脂肪酸及び/又は不飽和高級脂肪酸エステルとを混合して、エステル交換を実施する。
本発明方法の別の態様では、後述の分別により除去された高融点油及び低融点油を混合して、エステル交換を実施する。
本発明方法の更に別の態様では、後述の分別により除去された高融点油及び/又は低融点油と、極度硬化油及び/又は不飽和高級脂肪酸及び/又は不飽和高級脂肪酸エステルとを混合して、エステル交換を実施する。
混合の方法はいずれの態様でも任意の公知の方法で行うことができる。
極度硬化油、不飽和高級脂肪酸、又は不飽和高級脂肪酸エステルが固化している場合は、任意の方法で融解して(例えば、加温して)用いることができる。
【0011】
混合の比率は、特に限定されないが、前記の極度硬化油1モルに対し、不飽和高級脂肪酸又は不飽和高級脂肪酸エステルが、好ましくは1〜4モルである。これより不飽和高級脂肪酸又は不飽和高級脂肪酸エステルの比が大きいと、エステル交換後に得られる生成物中のSSUの割合が減少し、1,3−不飽和−2−飽和トリグリセライド、すなわちUSU(1位と3位の不飽和脂肪酸基は同じであっても異なっていてもよい)の割合が増加する。その比が小さいとSSUの割合が減少し1,2,3−飽和トリグリセライド、すなわちSSS(1位、2位、及び3位の飽和脂肪酸基はそれぞれ同じであっても異なっていてもよい)の割合が増加する。
【0012】
極度硬化油と、不飽和高級脂肪酸及び/又は不飽和高級脂肪酸エステルとのエステル交換反応は、リパーゼを用いて実施する。このエステル交換方法としては、例えば、反応槽に極度硬化油と、不飽和高級脂肪酸及び/又は不飽和高級脂肪酸エステルと、リパーゼとを加えて攪拌することによりエステル交換を行う回分法と、担体に固定化したリパーゼをあらかじめカラムに充填し、そこに極度硬化油と不飽和高級脂肪酸及び/又は不飽和高級脂肪酸エステルとの混合物を流すことによりエステル交換を行う連続法を挙げることができる。本発明ではどちらの方法を用いてもよいが、リパーゼの有効利用の面から連続法がより好ましい。
【0013】
本発明方法で用いるリパーゼは、1,3位置特異性を有するリパーゼであれば特に限定されない。ここで「1,3位置特異性」とは、トリグリセライドの1位及び/又は3位に結合している脂肪酸基に対して選択的にエステル交換を行う性質を意味する。このような1,3位置特異性を有するリパーゼとしては、例えば、リゾプス属(Rhizopus)に属するリゾプス・デレマール(Rhizopus delemar)由来のリパーゼ、又はムコール属(Mucor)に属するムコール・ミエヘイ(Mucor miehei)由来のリパーゼ、ムコール・ジャブニクス(Mucor javanics)由来のリパーゼ等を挙げることができる。これらの酵素は、修飾されていてもよく、また、粉末状でも担体に固定化されていてもよい。なお、連続法では担体に固定化されているものが好ましい。この際の担体は、材質又は形状等について特に限定されず、例えば、ケイ藻土を用いることができる。
【0014】
エステル交換反応の温度や時間等の条件は、反応方法、反応に用いる油脂(すなわち、極度硬化油、不飽和高級脂肪酸又は不飽和高級脂肪酸エステル)の融点、又は酵素活性等を考慮し、適宜設定することができる。
なお、上記エステル交換反応を実施する際に、有機溶媒を加えて反応温度を下げることができる。用いることのできる有機溶媒は、リパーゼのエステル交換活性を極端に低下させなければ特に限定されず、例えばノルマルヘキサン、ノルマルヘプタン、シクロヘキサン、イソオクタン、又はジイソプロピルエーテル等を挙げることができる。用いる有機溶媒の量は、リパーゼのエステル交換活性を極端に低下させなければ特に限定されない。
得られた反応物から、必要に応じて有機溶媒を除去する。溶媒の除去方法は、用いた溶媒に対応した公知の任意の方法(例えば、減圧留去)によって行うことができる。
【0015】
場合により溶媒を除去した後、エステル交換に不飽和高級脂肪酸及び/又は不飽和高級脂肪酸エステルを使用した場合は、エステル交換反応生成物から、トリグリセライド混合物以外の不飽和高級脂肪酸又は不飽和高級脂肪酸エステルを分離する。分離の方法としては、例えば、水蒸気蒸留法などの方法を用いることができるが、流下薄膜式分子蒸留装置がこれらの分離効率に優れているので好ましい。
【0016】
エステル交換反応生成物から不飽和高級脂肪酸及び/又は不飽和高級脂肪酸エステルを分離し、こうして回収されたトリグリセライド混合物は、そのほとんどが目的とするSSUと、それ以外のSSS及びUSUとからなるので、トリグリセライド混合物からSSS及びUSUを分別により除く。
【0017】
分別の方法としては、例えば、溶媒を加えずにトリグリセライド混合物を冷却して、分離する自然分別法と、有機溶媒とトリグリセライド混合物とを混合してから冷却して、分離する溶剤分別法とを挙げることができる。目的画分中のSSUの濃度を高める点で、溶剤分別法がより好ましい。この溶剤分別法で用いる有機溶剤は、特に限定されず、例えば、アセトン、又はノルマルヘキサン等を挙げることができる。温度等の分別条件は、目的とするSSUの脂肪酸組成、又は分別の方法等により異なり、適宜設定する必要がある。上記手順により、トリグリセライド混合物を温度により高融点油、中融点油及び低融点油の3つの画分に分画する。この中融点油が、本発明方法による目的の油脂組成物である。
各分画の温度は、エステル交換した油脂、不飽和高級脂肪酸及び不飽和高級脂肪酸エステルの脂肪酸組成により適宜設定することができる。
【0018】
分別により除かれた高融点油及び低融点油は、それぞれSSS及びUSUを高率で含有する。これらの各画分は、本発明の別の態様において、エステル交換反応の原料として使用することができる。この場合、エステル交換反応の原料としては、高融点油及び/又は低融点油のみとしてもよいし、高融点油及び/又は低融点油の他に、前記の極度硬化油、前記の不飽和高級脂肪酸又は前記の不飽和高級脂肪酸エステルの1種又は2種以上を混合して用いてもよい。いずれの場合も、高融点油及び/又は低融点油を更に水素添加する必要はない。エステル交換反応を実施した後は、前記と同様の操作によって以下の工程を実施することにより、目的とするSSUを高含有量で含む油脂組成物を得ることができる。
【0019】
本発明方法により製造される油脂組成物は、SSUを一般に70重量%以上の高含有量で含み、しかもSUSの含有率は一般に5重量%未満である。
また、本発明方法では、用いる極度硬化油の脂肪酸組成、あるいは不飽和高級脂肪酸及び/又は不飽和高級脂肪酸エステルの脂肪酸の種類を適宜変更することにより、所望の脂肪酸組成をもつ油脂組成物を得ることができる。
また、本発明方法では、前記の一連の工程を繰り返すことにより、最初に原料として用いた極度硬化油とほぼ同量の、SSUを高濃度で含む油脂組成物を得ることができ、SSUを安価に製造することができる。
【0020】
本発明の油脂組成物は、例えば、ショートニング、マーガリン、ファットスプレッド、フライ油、ハードバター等の全量若しくは一部に配合して使用することができる。
【0021】
【実施例】
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
実施例1
(1)大豆油1.5kgを水素添加し、極度硬化大豆油を得た。すなわち、大豆油(ヨウ素価=128.3)1.5kgとニッケル触媒〔SO−110;堺化学(株)製)〕7.5gをオートクレーブに入れ、水素添加(反応温度=200℃;攪拌速度=600rpm;水素圧=4kg/cm2;硬化時間=1時間)を行った。触媒をろ過した後、ヨウ素価を測定したところ、0.2であった。これを常法により、脱色・脱臭して精製極度硬化大豆油を得た。
【0022】
(2)この精製極度硬化大豆油1kgと、オレイン酸(炭素数18で二重結合1つを含む不飽和脂肪酸)メチルエステル0.9kg(すなわち、精製極度硬化大豆油1モルに対し、オレイン酸メチルエステル2.7モル)と、ノルマルヘキサン3.8kgとを55℃に保った反応槽に仕込み、撹拌羽根によって撹拌しながら1,3特異性粉末リパーゼ(リゾプス属起源;担体はケイ藻土)100gを加え、24時間エステル交換反応を行った。
濾過によりリパーゼを除き、ノルマルヘキサンをエバポレータによって除いた後、流下薄膜式分子蒸留装置(蒸留温度=200℃;真空度=0.008Torr)により油脂と脂肪酸メチルエステルとを分離し、油脂1kgを得た。
次に、上記で得られた油脂のアセトンによる溶剤分別を行った。油脂(1kg)と油脂の3倍量のアセトン(3kg)とをガラス製フラスコに入れ、分別温度を25℃として高融点油の分別を行い、高融点油(205g)を除いた。アセトンを追加し、残った油脂に対して4倍量(重量比)とし、分別温度を5℃として低融点油の分別を行い、低融点油(385g)を除いた。このようにして中融点油、すなわち本発明による油脂組成物(S−1)を410g得た。
【0023】
(3)得られた油脂組成物(S−1)は、高速液体クロマトグラフィーでトリグリセライド組成を調べたところ、SSU又はSUS(以下S2Uと表わす)を78%含んでいた。更に、S2Uの2位置の脂肪酸組成を調べたところ、ほぼすべてが飽和脂肪酸であった。従って、本発明による油脂組成物(S−1)に占めるSSUの割合は78%という高率で、かつ、SUSをほとんど含んでいなかった。
【0024】
実施例2
(1)実施例1(1)と同様の工程を行い、精製極度硬化大豆油を得た。
(2)この精製極度硬化大豆油1kgとオレイン酸(炭素数18で二重結合1つを含む不飽和脂肪酸)メチルエステル0.9kg(すなわち、精製極度硬化大豆油1モルに対し、オレイン酸メチルエステル2.7モル)とノルマルヘキサン1.9kgを加温下で混合し、1,3特異性固定化リパーゼ(リゾプス属起源;担体はケイ藻土)100gを充填して55℃に保ったカラムに通してエステル交換反応を行った。
ノルマルヘキサンをエバポレータによって除いた後、流下薄膜式分子蒸留装置(蒸留温度=200℃;真空度=0.008Torr)により油脂と脂肪酸メチルエステルを分離し、油脂1kgを得た。
次に上記油脂のアセトンによる溶剤分別を行った。油脂(1kg)と油脂の3倍量のアセトン(3kg)をガラス製フラスコに入れ、分別温度を25℃として高融点油の分別を行い、高融点油(205g)を除いた。アセトンを追加し、残った油脂に対して4倍量(重量比)とし、分別温度を5℃として低融点油の分別を行い、低融点油(385g)を除いた。このようにして中融点油、すなわち本発明による油脂組成物(S−2A)420gを得た。
実施例1(3)と同様の方法でトリグリセライド組成及び2位置脂肪酸組成を分析したところ、得られた本発明による油脂組成物(S−2A)は、高速液体クロマトグラフィーでトリグリセライド組成を調べたところ、S2Uを76%含んでいた。また、S2Uの2位置の脂肪酸組成を調べたところ、ほぼすべてが飽和脂肪酸であった。従って、本発明による油脂組成物(S−2A)に占めるSSUの割合は76%という高率で、かつ、SUSをほとんど含んでいなかった。
【0025】
(3)次に、実施例2(2)の分別により除いた高融点油と低融点油を混合し(混合比は1:1.9)、ノルマルヘキサンを等量(重量比)加え、1,3特異性固定化リパーゼ(リゾプス属起源;担体はケイ藻土)100gを充填して55℃に保った実施例2(1)で用いたカラムに通してエステル交換反応を行った。
ノルマルヘキサンをエバポレータにより除いた後、実施例2(2)のアセトンによる溶剤分別と同様の操作で、この油脂のアセトンによる溶剤分別を行い、高融点油及び低融点油を除去した。このようにして中融点油、すなわち本発明による油脂組成物(S−2B)250gを得た。
【0026】
(4)得られた本発明による油脂組成物(S−2B)は、高速液体クロマトグラフィーでトリグリセライド組成を調べたところ、S2Uを81%含んでいた。また、S2Uの2位置の脂肪酸組成を調べたところ、ほぼすべてが飽和脂肪酸であった。従って、本発明による油脂組成物(S−2B)に占めるSSUの割合は81%という高率で、かつ、SUSをほとんど含んでいなかった。
【0027】
(5)このとき溶剤分別により除去された高融点油及び低融点油は再度SSUの製造に使用が可能であり、前記実施例2(3)と同様の操作を繰り返すことで、原料とした極度硬化油とほぼ同量の,SSUを高濃度で含む油脂を得ることができた。
【0028】
実施例3
(1)大豆油をハイエルシン菜種油(ヨウ素価=113.1)に変更すること以外は、実施例1(1)と同様の操作によって水素添加、触媒ろ過及び脱色・脱臭を行い、精製極度硬化ハイエルシン菜種油(ヨウ素価=1.0)を得た。
【0029】
(2)この精製極度硬化ハイエルシン菜種油1kgとオレイン酸メチルエステル0.8kg(すなわち、精製極度硬化ハイエルシン菜種油1モルに対し、オレイン酸メチルエステル2.6モル)とノルマルヘキサン1.8kgを加温下で混合し、1,3特異性固定化リパーゼ(リゾプス起源;担体はケイ藻土)100gを充填して55℃に保ったカラムに通してエステル交換反応を行った。
ノルマルヘキサンをエバポレータにより除去し、油脂と脂肪酸メチルエステルを流下薄膜式分子蒸留装置(蒸留温度=200℃;真空度=0.008Torr)により分離し、油脂1kgを得た。
次にアセトンによる溶剤分別を行った。油脂(1kg)と油脂の3倍量のアセトン(3kg)をガラス製フラスコに入れ、分別温度を27℃として高融点油の分別を行い、高融点油(215g)を除いた。アセトンを追加し、残った油脂に対して4倍量(重量比)とし、分別温度を6℃として低融点油の分別を行い、低融点油(370g)を除いた。このようにして中融点油、すなわち本発明による油脂組成物(S−3A)415gを得た。
【0030】
(3)実施例1(3)と同様の操作でトリグリセライド組成及び2位置脂肪酸組成を分析したところ、この油脂組成物はSSUを72%含み、SUSをほとんど含んでいなかった。
【0031】
(4)更に、実施例3(2)の分別により除いた高融点油と低融点油を混合(混合比は1:1.9)し、ノルマルヘキサンを等量(重量比)加え、55℃に保った実施例3(2)のカラムに通してエステル交換反応を行った。エステル交換反応後、ノルマルヘキサンをエバポレータによって除いた。
次いで、実施例3(2)のアセトンによる溶剤分別と同様の操作でアセトンによる溶剤分別を行い、高融点油及び低融点油を除き、中融点油すなわち本発明による油脂組成物(S−3B)245gを得た。
【0032】
(5)実施例1(3)と同様の操作でトリグリセライド組成及び2位置脂肪酸組成を分析したところ、この油脂組成物はSSUを73%含み、SUSをほとんど含んでいなかった。
【0033】
(6)このとき溶剤分別により除去された高融点油及び低融点油は再度SSUの製造に使用が可能であり、前記操作を繰り返すことで、原料とした極度硬化油とほぼ同量の、SSUを高濃度で含む油脂を得ることができた。
【0034】
実施例4
(1)実施例1(1)と同様の操作により得た精製極度硬化大豆油1kgとドコサヘキサエン酸1kg(すなわち、精製極度硬化大豆油1モルに対し、ドコサヘキサエン酸2.7モル)とノルマルヘキサン2kgとを加温下で混合し、1,3特異性固定化リパーゼ(リゾプス属起源;担体はケイ藻土)100gを充填して55℃に保ったカラムに通してエステル交換反応を行った。
ノルマルヘキサンをエバポレータにより除去し、流下薄膜式分子蒸留装置(蒸留温度=210℃;真空度=0.007Torr)により油脂と脂肪酸の分離を行い、油脂1kgを得た。
次に上記油脂のアセトンによる溶剤分別を行った。油脂(1kg)と油脂の3倍量のアセトン(3kg)をガラス製フラスコに入れ、分別温度を24℃として高融点油の分別を行い、高融点油(190g)を除いた。アセトンを追加し、残った油脂に対して4倍量(重量比)とし、分別温度を−19℃として低融点油の分別を行い、低融点油(375g)を除いた。このようにして本発明による油脂組成物(S−4A)435gを得た。
【0035】
(2)実施例1(3)と同様の操作でトリグリセライド組成及び2位置脂肪酸組成を分析したところ、この油脂組成物はSSUを73%含み、SUSをほとんど含んでいなかった。
【0036】
(3)更に、本実施例4(1)の分別により除いた高融点油と低融点油を混合(混合比は1:2.0)し、ノルマルヘキサンを等量(重量比)加え、1,3特異性固定化リパーゼ(リゾプス起源;担体はケイ藻土)100gを充填して55℃に保ったカラムに通してエステル交換反応を行った。
エステル交換反応後、ノルマルヘキサンをエバポレータによって除いた。
次いで、実施例4(1)のアセトンによる溶剤分別と同様の操作によってアセトンによる溶剤分別を行い、高融点油及び低融点油を除き、中融点油すなわち本発明による油脂組成物(S−4B)255gを得た。
【0037】
(4)実施例1(3)と同様の操作でトリグリセライド組成及び2位置脂肪酸組成を分析したところ、この油脂組成物はSSUを73%含み、SUSをほとんど含んでいなかった。
【0038】
(5)このとき溶剤分別により除去された高融点油及び低融点油は再度SSUの製造に使用が可能な組成であり、前記操作を繰り返すことで、原料とした極度硬化油とほぼ同量の、SSUを高濃度で含む油脂を得ることができた。
【0039】
比較例1
1,3特異性のない固定化リパーゼ(カンディダ属起源;担体はケイ藻土)を用いたこと以外は実施例2(1),(2)と同様の工程を行い、中融点油である油脂組成物(C−1)320gを得た。
【0040】
得られた油脂組成物(C−1)は、そのトリグリセライド組成を実施例1(3)と同様に調べたところ、S2Uを76%含んでいた。しかし、S2Uの2位置の脂肪酸組成を調べたところ、不飽和脂肪酸(オレイン酸)を33%含んでいた。従って油脂組成物(C−1)に占めるSSUの割合は51%であった。また、分別温度を変化させても、SSUの割合は51%以上とはならなかった。
これに対し、本発明方法(実施例1)によって得られる油脂組成物(S−2A)のSSUの割合は76%であり、著しく高く、優れていた。
【0041】
更に、このとき溶剤分別により除去された高融点油及び低融点油に対して、1,3特異性のない固定化リパーゼ(カンディダ属起源;担体はケイ藻土)を用いたこと以外は実施例2(3)と同様の工程を行ったが、SSUを高濃度で含む油脂を得ることはできなかった。
【0042】
比較例2
精製極度硬化大豆油1kgに対して、オレイン酸メチルエステルを0.2kg〔精製極度硬化大豆油:オレイン酸メチルエステル=1:0.6(モル比)〕とし、n−ヘキサンを1.2kgとしたこと以外は実施例2(2)と同様の工程を行い、中融点油である油脂組成物(C−2A)360gを得た。
【0043】
得られた油脂組成物(C−2A)のトリグリセライド組成を調べたところ、S2Uが52%しか含まれていなかった。これに対して、本発明方法(実施例2)によって得られる油脂組成物(S−2A)のSSUの割合は76%であり、著しく高く、優れていた。
また、アセトンを油脂に対して8倍量(重量比)とし、分別温度を25℃として高融点油の分別を行ったこと以外は実施例2(2)と同様の操作を行い、中融点油である油脂組成物(C−2B)を得た。この油脂組成物(C−2B)はS2Uを71%含んでいたが、230gしか得られなかった。これに対して、実施例2に記載の本発明方法によれば、油脂組成物(S−2A)のSSUの割合は76%、生成量は420gと、効率が著しく高く、優れていた。
【0044】
比較例3
実施例1(1)と同様の操作を行って得られた精製極度硬化大豆油1kgとオレイン酸メチルエステル2kg〔精製極度硬化大豆油:オレイン酸メチルエステル=1:6(モル比)〕、n−ヘキサン3kgを加温下で混合し、実施例2(2)と同様の条件でエステル交換反応及び脱溶剤、分子蒸留を行い、油脂1kgを得た。更に実施例2(2)の溶剤分別と同様の操作で溶剤分別を行い、中融点油である油脂組成物(C−3)を得た。油脂組成物(C−3)はS2Uを77%含んでいたが、235gしか得られなかった。これに対し、本発明の実施例1によれば油脂組成物(S−1)の生成量は410gであり、明らかに効率が高く、優れていた。
なお、溶剤分別の条件を変えても、S2Uの割合を下げずに中融点油を増やすことはできなかった。
【0045】
実施例5
(1)パーム油(ヨウ素価=49.2)を実施例1(1)と同様の方法で水素添加してから、精製を行い、精製極度硬化パーム油とした。ヨウ素価は0.5であった。
【0046】
(2)この精製極度硬化パーム油1kgとリノール酸0.5kg〔精製極度硬化パーム油:リノール酸=1:1.5(モル比)〕、イソオクタン1.5kgとを加温下で混合して油脂溶媒混合物とし、1,3特異性固定化リパーゼ(ムコール属起源;担体はケイ藻土)100gを充填して55℃に保ったカラムに通してエステル交換反応を行った。
エバポレータによりイソオクタンを除去し、流下薄膜式分子蒸留装置(蒸留温度=210℃;真空度=0.009Torr)により油脂と脂肪酸の分離を行い、油脂1kgを得た。
次に上記油脂のアセトンによる溶剤分別を行った。油脂(1kg)と5倍量のアセトン(5kg)をガラス製フラスコに入れ、分別温度を23℃として高融点油の分別を行い、高融点油(390g)を除いた。アセトンを油脂に対して3倍量(重量比)とし、分別温度を−2℃として低融点油の分別を行い、低融点油(210g)を除き、中融点油、すなわち本発明による油脂組成物(S−5A)400gを得た。
【0047】
(3)実施例1(3)と同様の操作でトリグリセライド組成及び2位置脂肪酸組成を分析したところ、この油脂組成物(S−5A)はSSUを75%含み、SUSをほとんど含んでいなかった。
【0048】
(4)次に上記(2)の分別により除いた高融点油390g、低融点油210g、精製極度硬化パーム油400g、リノール酸240g、及びイソオクタン1.2kgを加温下で混合して油脂溶媒混合物とし、1,3特異性固定化リパーゼ(ムコール属起源;担体はケイ藻土)100gを充填して55℃に保ったカラムに通してエステル交換反応を行った。
イソオクタンをエバポレータによって除いた後、流下薄膜式分子蒸留装置(蒸留温度=210℃;真空度=0.009Torr)により油脂と脂肪酸の分離を行い、油脂を得た。次に、実施例5(2)のアセトンによる溶剤分別と同様の操作でアセトンによる溶剤分別を行い、高融点油及び低融点油を除き、中融点油、すなわち本発明による油脂組成物(S−5B)400gを得た。
【0049】
(5)実施例1(3)と同様の操作でトリグリセライド組成及び2位置脂肪酸組成を分析したところ、この油脂組成物(S−5B)はSSUを75%含み、SUSをほとんど含んでいなかった。
【0050】
(6)上記の分別により再度除いた高融点油及び低融点油と、精製極度硬化パーム油及びリノール酸を混合し、エステル交換以下の工程を繰り返すことにより、ほぼ同一組成かつ同量の油脂組成物を繰り返し製造することが可能であった。
【0051】
実施例6
(1)実施例5(1)と同様にして得た精製極度硬化パーム油1kgとα−リノレン酸0.5kg〔精製極度硬化パーム油:α−リノレン酸=1:1.5(モル比)〕、イソオクタン1.5kgとを加温下で混合して油脂溶媒混合物とし、1,3特異性固定化リパーゼ(ムコール属起源;担体はケイ藻土)100gを充填した45℃に保ったカラムに通してエステル交換反応を行った。イソオクタンをエバポレータにより除いた後、流下薄膜式分子蒸留装置(蒸留温度=200℃;真空度=0.008Torr)により油脂と脂肪酸を分離し、油脂1kgを得た。
次に上記油脂のアセトンによる溶剤分別を行った。油脂(1kg)と3倍量のアセトン(3kg)をガラス製フラスコに入れ、分別温度を23℃として高融点油の分別を行い、高融点油(365g)を除いた。アセトンを追加して油脂に対して4倍量(重量比)とし、分別温度を−7℃として低融点油の分別を行い、低融点油(215g)を除き、中融点油、すなわち本発明による油脂組成物(S−6A)を420g得た。
【0052】
(2)実施例1(3)と同様の操作でトリグリセライド組成及び2位置脂肪酸組成を分析したところ、この油脂組成物(S−6A)はSSUを75%含み、SUSをほとんど含んでいなかった。
【0053】
(3)次に上記の操作を別に更に2組行い、3組の合計で、中融点油、すなわち本発明による油脂組成物(S−6A)を1255g、高融点油を1100g、低融点油を645g得た。
【0054】
(4)この高融点油、低融点油及びイソオクタン1.8kgを加温下で混合して油脂溶媒混合物とし、1,3特異性固定化リパーゼ(ムコール属起源;担体はケイ藻土)100gを充填して45℃に保ったカラムに通してエステル交換反応を行った。
イソオクタンをエバポレータによって除いた後、実施例6(1)のアセトンによる溶剤分別と同様の操作でアセトンによる溶剤分別を行い、高融点油及び低融点油を除き、中融点油、すなわち本発明による油脂組成物(S−6B)715gを得た。
【0055】
(5)実施例1(3)と同様の操作でトリグリセライド組成及び2位置脂肪酸組成分析したところ、この油脂組成物はSSUを77%含み、SUSをほとんど含んでいなかった。
【0056】
(6)上記の分別により再度除いた高融点油と低融点油を混合し、エステル交換以下の工程を繰り返し、SSUに富む油脂組成物を得ることが可能であった。
【0057】
実施例7
(1)豚脂(ヨウ素価=62.6)を実施例1(1)と同様の方法で水素添加してから、精製を行い、精製極度硬化豚脂とした。ヨウ素価は0.2であった。ナタネ(カノーラ)油2kg、水2kg及び1,3特異性のない粉末リパーゼ(ンディダ属起源)40gを、30℃に保った反応槽に仕込み、撹拌しながら24時間反応させた。ろ過によりリパーゼを除き、グリセリン水を分離した後、流下薄膜式分子蒸留装置(蒸留温度=190℃;真空度=0.010Torr)により脂肪酸を得た。この脂肪酸の組成を表3に示す。
【0058】
(2)次に精製極度硬化豚脂1kgと前述のナタネ脂肪酸1.2kg〔精製極度硬化豚脂:ナタネ脂肪酸=1:3.6(モル比)〕を加温下で混合し、1,3特異性耐熱固定化リパーゼ(アルカリゲネス属起源;担体はケイ藻土)100gを充填して75℃に保ったカラムに通してエステル交換反応を行った。これを流下薄膜式分子蒸留装置(蒸留温度=200℃;真空度=0.008Torr)により油脂と脂肪酸に分離し、油脂1kgを得た。
次に上記油脂をアセトンにより溶剤分別した。油脂(1kg)と3倍量のアセトン(3kg)をガラス製フラスコに入れ、分別温度を25℃として高融点油の分別を行い、高融点油を除いた。アセトンを追加し、油脂に対して4倍量(重量比)とし、分別温度を−6℃として低融点油の分別を行い、低融点油を除き、中融点油、すなわち本発明による油脂組成物(S−7A)390gを得た。
【0059】
(3)得られた油脂組成物を液体クロマトグラフィーにかけてトリグリセライド組成を調べたところ、S2Uを76%含んでいた。この画分を分取して更に詳しく調べたところ、SSL(S:ステアリン酸、L:リノール酸)とOSO(O:オレイン酸)が分離できていなかったため、USUを4%含んでいた。更に、この油脂の2位置の脂肪酸組成を調べたところ、不飽和脂肪酸を1.1%含んでいた。よって、この油脂はSUSを1%、SSUを71%含んでいた。
【0060】
(4)次に、実施例7(2)の分別によって除いた高融点油(185g)と低融点油(425g)を混合し、75℃に保った前述のカラムに通してエステル交換反応を行った。
次いで、実施例7(2)のアセトンによる溶剤分別と同様の操作でアセトンによる溶剤分別を行い、高融点油及び低融点油を除き、中融点油、すなわち本発明による油脂組成物(S−7B)を240g得た。
【0061】
(5)得られた油脂組成物を液体クロマトグラフィーにかけ、トリグリセライド組成を調べたところ、S2Uと思われる画分を78%含んでいた。この画分を分取して更に詳しく調べたところ、USUを4%含んでいた。更に、この油脂の2位置脂肪酸組成を調べたところ、不飽和脂肪酸を1.3%含んでいた。よって、この油脂はSUSを1%、SSUを73%含んでいた。
【0062】
(6)なお、上記の分別により再度除いた高融点油と低融点油を混合し、エステル交換反応以下の工程を繰り返すことで、原料とした極度硬化油とほぼ同量の、SSUを高濃度で含む油脂を得ることができた。
【0063】
比較例4
豚脂1kgを実施例5(2)と同様の条件で溶剤分別した。中融点油(C−4A)は230gしか得られなかった。実施例5では(S−5A)が400g得られており、本発明は従来の溶剤分別法に比して、著しく優れていた。
また中融点油(C−4A)はS2Uを78%含んでいたが、S2U画分を分取して2位置脂肪酸組成を調べたところ、不飽和脂肪酸を12%含んでいた。つまり、この中融点油(C−4A)はSSUを69%しか含まない一方、SUSを9%も含んでいた。このように、本発明の油脂組成物は従来の溶剤分別法に比して、SSUの含有率は高い一方、SUSの含有率は低く、優れていた。
次に前述の分別によって除いた高融点油(80g)と低融点油(690g)を混合し、実施例5(4)と同様にしてエステル交換反応を行った。次いで、実施例5(4)と同様の条件で溶剤分別した。中融点油(C−4B)は185g得られ、S2Uを78%含んでいた。この油脂の2位置脂肪酸組成を調べたところ、26%が不飽和脂肪酸だった。また、分別条件を変えてもSSUの割合が増加することはなかった。
このように、豚脂を分別した高融点油と低融点油を用いてSSUを製造してもその効率は低く、本発明は高い効率でSSUを製造することができ、はるかに優れている。
【0064】
前記の実施例1〜7及び比較例1〜4で調製した各油脂組成物のトリグリセライドの組成(重量%)を表1に示し、それらの各油脂組成物の2位置脂肪酸組成(重量%)及び全脂肪酸組成(重量%)を表2に示す。更に、前記実施例7で調製したナタネ脂肪酸の脂肪酸組成(重量%)を表3に示す。表2及び表3において、脂肪酸の種類を炭素数(C)と二重結合の数(U)により、「C:U」の形式で示す。例えば、オレイン酸は、炭素数が18個で、二重結合数は1個であるので、「18:1」と示し、リノール酸は、炭素数が18個で、二重結合数は2個であるので、「18:2」と示す。
【0065】
【表1】

Figure 0003785467
【0066】
【表2】
Figure 0003785467
【0067】
【表3】
Figure 0003785467
【0068】
【発明の効果】
本発明方法では、構成脂肪酸基が実質的に全て飽和脂肪酸基からなるトリグリセライドに対して、1,3位置特異性を有するリパーゼを用いて、1,3位置のみに選択的に不飽和脂肪酸基をエステル交換反応によって導入してトリグリセライド混合物を生成し、このトリグリセライド混合物から目的とするSSUを分離する。従って、前記のトリグリセライド混合物には、目的とするSSUと近い結晶化温度を有するSUSが実質的に含まれていない。従って、SSUを高濃度で含み、かつSUSをほとんど含まない油脂組成物を、SSU以外の油脂の副生を抑えつつ、効率よく製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an oil and fat composition. More specifically, the present invention relates to a method for producing an oil and fat composition containing 1,2-saturated-3-unsaturated triglyceride at a high concentration.
In the present specification, “1,2-saturated-3-unsaturated triglyceride” means a triglyceride in which a saturated fatty acid group is ester-bonded to the 1,2-position of glycerol and an unsaturated fatty acid group is ester-bonded to the 3-position. The saturated fatty acid groups at the 1-position and the 2-position may be the same or different. Moreover, in this specification, the fatty acid of the 1st position and the 3rd position of triglyceride is not distinguished. That is, 1,2-saturated-3-unsaturated triglycerides include 1-unsaturated-2,3-saturated triglycerides. These “triglycerides” are represented by the saturated fatty acid groups (S) and unsaturated fatty acid groups (U) bonded to the 1-position, 2-position and 3-position of the triglyceride in order, for example, “1” , 2-saturated-3-unsaturated triglyceride "is abbreviated as" SSU ".
[0002]
[Prior art]
SSU is a kind of triglyceride contained in natural fats and oils. Examples of the fat containing SSU at a relatively high concentration include pork fat, and the content thereof is approximately 25% by weight.
Then, in order to prepare the fat and oil composition which contains SSU in high content, it is possible to concentrate SSU in pork fat by a fractionation method. However, at that time, a large amount of triglycerides other than SSU are by-produced. The triglyceride produced as a by-product cannot be used as a raw material for producing SSU as it is, and compared with a vegetable oil having the same iodine value, the product value is low because it is remarkably inferior in oxidative stability. As a result, SSU becomes expensive. It was. Therefore, the development of a technique for efficiently using triglyceride produced as a by-product during sorting has been awaited.
[0003]
Similarly, when concentrating SSU in beef tallow (SSU content = 19% by weight) and palm oil (SSU content = 6% by weight), which are fats and oils containing SSU at a relatively high concentration, by a fractionation method, a larger amount Triglycerides other than SSU are by-produced. Moreover, beef tallow and palm oil simultaneously contain 1,3-saturated-2-unsaturated symmetric triglycerides, that is, “SUS” (the saturated fatty acids at the 1st and 3rd positions may be the same or different). The content of SUS is 20% by weight for beef tallow and 41% by weight for palm oil. Since SSU and SUS have close crystallization temperatures, separation is difficult and low yield by general fractionation. It is difficult to increase the concentration of SSU without containing almost any amount.
Accordingly, there has been a demand for the development of a method for producing an oil containing SSU at a high concentration and having a low SUS content at a low cost while suppressing by-products of the oil other than SSU.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for efficiently producing fats and oils containing SSU at a high concentration and containing almost no SUS while suppressing the by-production of fats and oils other than SSU.
[0005]
[Means for Solving the Problems]
  Said object is according to the invention,
(I) (A)(1) (a) Extremely hardened oil obtained from an oil whose main constituent fatty acid is a fatty acid having 16 to 24 carbon atoms, (b) an unsaturated fatty acid having 16 to 24 carbon atoms, and / or 16 to 24 carbon atoms. A step of mixing an unsaturated fatty acid alkyl ester consisting of an unsaturated fatty acid moiety of 1 and a C 1-4 straight chain alkyl moiety and subjecting it to a transesterification reaction using a lipase having 1,3-position specificity,
(2) separating the triglyceride mixture from the reaction product of step (1), and
(3) Oil composition comprising 1,2-saturated-3-unsaturated triglyceride as medium-melting oil by removing high melting point oil and low melting point oil from the triglyceride mixture separated in step (2) by fractionation The process of separating
Low melting point oil obtained in step (3)And (B) a fat and oil composition containing 1,2,3-saturated triglyceride as a main component, and a transesterification reaction using a lipase having 1,3-position specificity,And
(II) Oil composition containing 1,2-saturated-3-unsaturated triglyceride as medium melting point oil by removing high melting point oil and low melting point oil by fractionation from triglyceride mixture obtained in step (I) The process of separating
It can achieve by the manufacturing method of the oil-fat composition containing a 1, 2- saturated -3 unsaturated triglyceride characterized by including this.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the oil-fat composition of this invention is explained in full detail.
The “extremely hardened oil obtained from fats and oils whose main constituent fatty acids are fatty acids having 16 to 24 carbon atoms” used in the present invention is a product obtained by hydrogenating the fats and oils.
The fats and oils (raw fats and oils) to be hydrogenated are not particularly limited as long as the main constituent fatty acids are fats and oils having 16 to 24 carbon atoms. Here, the “main constituent fatty acid” is a fatty acid occupying 80 mol% or more of the fatty acids contained in the triglyceride in the raw oil and fat, and can be either a saturated fatty acid or an unsaturated fatty acid. Examples of such raw oils and fats include vegetable oils such as soybean oil, rapeseed oil, sunflower oil, corn oil, cottonseed oil, safflower oil, peanut oil, palm oil, cocoa butter, or shea butter, beef tallow, or pork tallow Animal oils and fats thereof, fractionated oils thereof, or transesterified oils. Oils and fats generally referred to as lauric fats and oils, such as coconut oil, palm kernel oil, Babas oil and the like, and fats and oils containing a large amount of short chain fatty acids, such as milk fat, are not included in the raw material fats and oils and cannot be used in the method of the present invention.
[0007]
There is no particular limitation on the method of hydrogenating the raw oil and fat to make it an extremely hardened oil, and any known method that can change almost all of the unsaturated fatty acid groups contained in the triglyceride in the raw oil and fat to saturated fatty acid groups. Can be used. For example, a method of adding raw material fat and nickel catalyst to an autoclave, changing the temperature to 180 to 220 ° C. while feeding hydrogen into the system, and changing almost all unsaturated fatty acid groups contained in triglyceride in the raw material fat to saturated fatty acid groups Can do.
[0008]
The “unsaturated fatty acid having 16 to 24 carbon atoms” (hereinafter sometimes simply referred to as an unsaturated higher fatty acid) has 16 to 24 carbon atoms and includes at least one unsaturated bond. The position of the unsaturated bond or the oil raw material is not particularly limited. Specific examples include palmitooleic acid, oleic acid, linoleic acid, α-linolenic acid, γ-linolenic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. When these unsaturated higher fatty acids are obtained from fats and oils, the method is not particularly limited, and a known method such as hydrolysis by an enzymatic method or a chemical method can be used. These unsaturated higher fatty acids can be used alone or as a mixture of two or more at the same time. Moreover, a mixture with a saturated fatty acid can be used as long as it contains an unsaturated higher fatty acid, but the content of the saturated fatty acid is desirably as low as possible.
[0009]
The “unsaturated fatty acid alkyl ester comprising an unsaturated fatty acid moiety having 16 to 24 carbon atoms and a linear alkyl moiety having 1 to 4 carbon atoms” (hereinafter sometimes simply referred to as an unsaturated higher fatty acid ester) is particularly limited. Examples thereof include methyl esters, ethyl esters, propyl esters, and butyl esters of the above unsaturated higher fatty acids. The method for obtaining these unsaturated higher fatty acid esters is not particularly limited.
In the method of the present invention, one or more of the aforementioned “unsaturated fatty acids having 16 to 24 carbon atoms” (unsaturated higher fatty acids) and “unsaturated fatty acid portion having 16 to 24 carbon atoms and linear chain having 1 to 4 carbon atoms” Mixtures with one or more of “unsaturated fatty acid alkyl esters comprising an alkyl moiety” (unsaturated higher fatty acid esters) can also be used.
[0010]
In one embodiment of the method of the present invention, an extremely hardened oil and an unsaturated higher fatty acid and / or an unsaturated higher fatty acid ester are mixed to perform transesterification.
In another embodiment of the method of the present invention, the high melting point oil and the low melting point oil removed by the fractionation described below are mixed and the transesterification is performed.
In still another aspect of the method of the present invention, a high melting point oil and / or a low melting point oil removed by fractionation described later is mixed with an extremely hardened oil and / or an unsaturated higher fatty acid and / or an unsaturated higher fatty acid ester. To carry out the transesterification.
The mixing method can be carried out by any known method in any embodiment.
When the extremely hardened oil, the unsaturated higher fatty acid, or the unsaturated higher fatty acid ester is solidified, it can be melted by any method (for example, heated) and used.
[0011]
The mixing ratio is not particularly limited, but the unsaturated higher fatty acid or unsaturated higher fatty acid ester is preferably 1 to 4 mol per 1 mol of the extremely hardened oil. If the ratio of unsaturated higher fatty acid or unsaturated higher fatty acid ester is larger than this, the proportion of SSU in the product obtained after transesterification decreases, and 1,3-unsaturated-2-saturated triglyceride, ie USU (1 And the unsaturated fatty acid group at the 3-position may be the same or different). If the ratio is small, the proportion of SSU decreases and 1,2,3-saturated triglycerides, ie SSS (the saturated fatty acid groups at the 1-position, 2-position and 3-position may be the same or different). The rate increases.
[0012]
The transesterification reaction between the extremely hardened oil and the unsaturated higher fatty acid and / or unsaturated higher fatty acid ester is carried out using lipase. Examples of the transesterification method include a batch method in which transesterification is performed by adding extremely hardened oil, unsaturated higher fatty acid and / or unsaturated higher fatty acid ester, and lipase to a reaction tank and stirring, An example is a continuous method in which transesterification is performed by preliminarily filling a column with immobilized lipase and flowing a mixture of extremely hardened oil and unsaturated higher fatty acid and / or unsaturated higher fatty acid ester. In the present invention, either method may be used, but the continuous method is more preferable from the viewpoint of effective use of lipase.
[0013]
The lipase used in the method of the present invention is not particularly limited as long as it has a 1,3 position specificity. Here, “1,3 position specificity” means a property of selectively transesterifying a fatty acid group bonded to the 1-position and / or 3-position of triglyceride. Examples of the lipase having 1,3 position specificity include, for example, a lipase derived from Rhizopus delmar belonging to Rhizopus, or Mucor miehei belonging to the genus Mucor. Examples thereof include lipases derived from lipases, lipases derived from Mucor javanics, and the like. These enzymes may be modified, and may be powdered or immobilized on a carrier. In the continuous method, those immobilized on a carrier are preferred. The carrier at this time is not particularly limited in terms of material or shape, and for example, diatomaceous earth can be used.
[0014]
Conditions such as the temperature and time of the transesterification reaction are appropriately set in consideration of the reaction method, the melting point of the fat and oil used in the reaction (that is, extremely hardened oil, unsaturated higher fatty acid or unsaturated higher fatty acid ester), enzyme activity, and the like. can do.
In carrying out the transesterification reaction, an organic solvent can be added to lower the reaction temperature. The organic solvent that can be used is not particularly limited as long as the transesterification activity of the lipase is not extremely lowered. Examples thereof include normal hexane, normal heptane, cyclohexane, isooctane, and diisopropyl ether. The amount of the organic solvent to be used is not particularly limited as long as the transesterification activity of the lipase is not extremely lowered.
The organic solvent is removed from the obtained reaction product as necessary. The method for removing the solvent can be performed by any known method corresponding to the solvent used (for example, distillation under reduced pressure).
[0015]
If an unsaturated higher fatty acid and / or unsaturated higher fatty acid ester is used for transesterification after removing the solvent in some cases, an unsaturated higher fatty acid or unsaturated higher fatty acid ester other than the triglyceride mixture is obtained from the transesterification reaction product. Isolate. As the separation method, for example, a method such as a steam distillation method can be used, but a falling film type molecular distillation apparatus is preferable because of its excellent separation efficiency.
[0016]
The triglyceride mixture obtained by separating the unsaturated higher fatty acid and / or unsaturated higher fatty acid ester from the transesterification reaction product and recovered in this way mostly consists of the target SSU and the other SSS and USU. SSS and USU are removed by fractionation from the triglyceride mixture.
[0017]
Examples of the separation method include a natural fractionation method in which a triglyceride mixture is cooled and separated without adding a solvent, and a solvent fractionation method in which an organic solvent and a triglyceride mixture are mixed and then cooled and separated. be able to. The solvent fractionation method is more preferable in terms of increasing the concentration of SSU in the target fraction. The organic solvent used by this solvent fractionation method is not specifically limited, For example, acetone, normal hexane, etc. can be mentioned. Fractionation conditions such as temperature vary depending on the fatty acid composition of the target SSU, the separation method, and the like, and need to be set as appropriate. According to the above procedure, the triglyceride mixture is fractionated according to temperature into three fractions of high melting point oil, medium melting point oil and low melting point oil. This medium melting point oil is the target oil composition according to the method of the present invention.
The temperature of each fraction can be appropriately set according to the fatty acid composition of the transesterified oil, unsaturated higher fatty acid and unsaturated higher fatty acid ester.
[0018]
The high melting point oil and low melting point oil removed by fractionation contain SSS and USU at a high rate, respectively. Each of these fractions can be used as a raw material for the transesterification reaction in another embodiment of the present invention. In this case, the raw material for the transesterification reaction may be only a high melting point oil and / or a low melting point oil, or in addition to the high melting point oil and / or the low melting point oil, the above extremely hardened oil, the above unsaturated high grade oil. A fatty acid or one or more of the above unsaturated higher fatty acid esters may be mixed and used. In either case, it is not necessary to further hydrogenate the high melting point oil and / or the low melting point oil. After carrying out the transesterification reaction, the following steps are carried out by the same operation as described above, whereby an oil / fat composition containing a desired SSU in a high content can be obtained.
[0019]
The oil and fat composition produced by the method of the present invention generally contains SSU at a high content of 70% by weight or more, and the SUS content is generally less than 5% by weight.
In the method of the present invention, an oil composition having a desired fatty acid composition is obtained by appropriately changing the fatty acid composition of the extremely hardened oil used or the type of unsaturated higher fatty acid and / or unsaturated higher fatty acid ester. be able to.
Moreover, in the method of the present invention, by repeating the above-described series of steps, it is possible to obtain an oil and fat composition containing SSU at a high concentration, which is almost the same amount as the extremely hardened oil used as a raw material at the beginning. Can be manufactured.
[0020]
The oil and fat composition of the present invention can be used, for example, by blending it with all or part of shortening, margarine, fat spread, frying oil, hard butter and the like.
[0021]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
Example 1
(1) Hydrogenated 1.5 kg of soybean oil to obtain extremely hardened soybean oil. That is, 1.5 kg of soybean oil (iodine value = 128.3) and 7.5 g of nickel catalyst (SO-110; manufactured by Sakai Chemical Co., Ltd.) were placed in an autoclave and hydrogenated (reaction temperature = 200 ° C; stirring speed) = 600 rpm; hydrogen pressure = 4 kg / cm2Curing time = 1 hour). After filtering the catalyst, the iodine value was measured and found to be 0.2. This was decolorized and deodorized by a conventional method to obtain a purified extremely hardened soybean oil.
[0022]
(2) 1 kg of this refined extremely hardened soybean oil and 0.9 kg of oleic acid (unsaturated fatty acid having 18 carbon atoms and one double bond) methyl ester (that is, oleic acid per mole of refined extremely hardened soybean oil) Methyl ester (2.7 mol) and normal hexane (3.8 kg) were charged into a reaction vessel maintained at 55 ° C., and stirred with a stirring blade, 1,3-specific powder lipase (from Rhizopus sp .; carrier is diatomaceous earth) 100g was added and transesterification was performed for 24 hours.
After removing lipase by filtration and removing normal hexane by an evaporator, fats and oils and fatty acid methyl esters are separated by a falling film type molecular distillation apparatus (distillation temperature = 200 ° C .; degree of vacuum = 0.008 Torr) to obtain 1 kg of fats and oils. It was.
Next, solvent fractionation of the fats and oils obtained above with acetone was performed. Fats and oils (1 kg) and acetone (3 kg) three times the amount of oils and fats were placed in a glass flask, and the high melting point oil was separated at a fractionation temperature of 25 ° C. to remove the high melting point oil (205 g). Acetone was added, the amount was 4 times the weight (weight ratio) with respect to the remaining oil and fat, the low-melting oil was fractionated at a fractionation temperature of 5 ° C., and the low-melting oil (385 g) was removed. In this way, 410 g of a medium melting point oil, that is, an oil and fat composition (S-1) according to the present invention was obtained.
[0023]
(3) When the obtained oil-fat composition (S-1) examined the triglyceride composition by the high performance liquid chromatography, it contained 78% of SSU or SUS (hereinafter referred to as S2U). Furthermore, when the fatty acid composition at the 2-position of S2U was examined, almost all were saturated fatty acids. Therefore, the proportion of SSU in the oil and fat composition (S-1) according to the present invention is as high as 78% and hardly contains SUS.
[0024]
Example 2
(1) The same process as in Example 1 (1) was performed to obtain a purified extremely hardened soybean oil.
(2) 1 kg of this refined extremely hardened soybean oil and 0.9 kg of oleic acid (unsaturated fatty acid having 18 carbon atoms and one double bond) methyl ester (that is, 1 mole of refined extremely hardened soybean oil, methyl oleate) 2.7 mol of ester) and 1.9 kg of normal hexane were mixed under heating, packed with 100 g of 1,3-specific immobilized lipase (from Rhizopus sp .; carrier was diatomaceous earth) and kept at 55 ° C. The transesterification reaction was carried out.
After removing normal hexane by an evaporator, the oil and fat and fatty acid methyl ester were separated by a falling film type molecular distillation apparatus (distillation temperature = 200 ° C .; degree of vacuum = 0.008 Torr) to obtain 1 kg of oil and fat.
Next, solvent separation of the fats and oils with acetone was performed. Oil and fat (1 kg) and acetone (3 kg) three times the amount of oil and fat were placed in a glass flask, and the high-melting oil was fractionated at a fractionation temperature of 25 ° C. to remove the high-melting oil (205 g). Acetone was added, the amount was 4 times the weight (weight ratio) with respect to the remaining oil and fat, the low-melting oil was fractionated at a fractionation temperature of 5 ° C., and the low-melting oil (385 g) was removed. Thus, 420 g of medium melting point oil, that is, the oil and fat composition (S-2A) according to the present invention was obtained.
When the triglyceride composition and the 2-position fatty acid composition were analyzed in the same manner as in Example 1 (3), the obtained oil and fat composition (S-2A) according to the present invention was examined for the triglyceride composition by high performance liquid chromatography. , 76% S2U. Further, when the fatty acid composition at the 2-position of S2U was examined, almost all were saturated fatty acids. Therefore, the ratio of SSU in the oil and fat composition (S-2A) according to the present invention is as high as 76% and hardly contains SUS.
[0025]
(3) Next, the high melting point oil and the low melting point oil removed by fractionation in Example 2 (2) were mixed (mixing ratio was 1: 1.9), and equal amount (normal weight ratio) of normal hexane was added. The transesterification was carried out through the column used in Example 2 (1) packed with 100 g of 3-specific immobilized lipase (originating Rhizopus; carrier is diatomaceous earth) and kept at 55 ° C.
After the normal hexane was removed by an evaporator, the oil and fat were subjected to solvent fractionation with acetone in the same manner as the solvent fractionation with acetone in Example 2 (2) to remove the high melting point oil and the low melting point oil. In this way, 250 g of a medium melting point oil, that is, an oil and fat composition (S-2B) according to the present invention was obtained.
[0026]
(4) When the obtained oil-fat composition (S-2B) according to the present invention was examined for triglyceride composition by high performance liquid chromatography, it contained 81% of S2U. Further, when the fatty acid composition at the 2-position of S2U was examined, almost all were saturated fatty acids. Therefore, the ratio of SSU in the oil and fat composition (S-2B) according to the present invention is as high as 81% and hardly contains SUS.
[0027]
(5) At this time, the high-melting oil and low-melting oil removed by solvent fractionation can be used again for the production of SSU. By repeating the same operation as in Example 2 (3), it was extremely used as a raw material. Oils and fats containing SSU at a high concentration almost the same amount as the hardened oil could be obtained.
[0028]
Example 3
(1) Except that soybean oil is changed to Hyelsin rapeseed oil (iodine number = 113.1), hydrogenation, catalytic filtration, decolorization and deodorization are carried out by the same operations as in Example 1 (1), and purified extremely hardened Hyelsin Rapeseed oil (iodine value = 1.0) was obtained.
[0029]
(2) 1 kg of this refined extremely hardened Hyelsin rapeseed oil and 0.8 kg of oleic acid methyl ester (that is, 2.6 moles of oleic acid methyl ester to 1 mole of refined extremely hardened Hyelsin rapeseed oil) and 1.8 kg of normal hexane are heated. And transesterified through a column packed with 100 g of 1,3-specific immobilized lipase (Rhizopus origin; carrier is diatomaceous earth) and kept at 55 ° C.
Normal hexane was removed by an evaporator, and the fats and oils and fatty acid methyl esters were separated by a falling film-type molecular distillation apparatus (distillation temperature = 200 ° C .; degree of vacuum = 0.008 Torr) to obtain 1 kg of fats and oils.
Next, solvent fractionation with acetone was performed. Oil and fat (1 kg) and acetone (3 kg) three times the amount of oil and fat were placed in a glass flask, and the high melting point oil was fractionated at a fractionation temperature of 27 ° C. to remove the high melting point oil (215 g). Acetone was added, the amount was 4 times (weight ratio) with respect to the remaining oil and fat, the fractionation temperature was 6 ° C., and the low melting point oil was fractionated to remove the low melting point oil (370 g). In this way, 415 g of a medium melting point oil, that is, an oil and fat composition (S-3A) according to the present invention was obtained.
[0030]
(3) The triglyceride composition and the 2-position fatty acid composition were analyzed in the same manner as in Example 1 (3). As a result, the oil and fat composition contained 72% of SSU and hardly contained SUS.
[0031]
(4) Further, the high melting point oil and the low melting point oil removed by the fractionation in Example 3 (2) were mixed (mixing ratio was 1: 1.9), and an equal amount of normal hexane (weight ratio) was added, and 55 ° C. The transesterification reaction was carried out through the column of Example 3 (2) kept at the same temperature. After the transesterification reaction, normal hexane was removed by an evaporator.
Next, solvent fractionation with acetone was performed in the same manner as solvent fractionation with acetone in Example 3 (2), except for high-melting oil and low-melting oil, medium-melting oil, that is, the oil and fat composition according to the present invention (S-3B). 245 g was obtained.
[0032]
(5) The triglyceride composition and the 2-position fatty acid composition were analyzed in the same manner as in Example 1 (3). As a result, the oil and fat composition contained 73% of SSU and hardly contained SUS.
[0033]
(6) At this time, the high-melting oil and low-melting oil removed by solvent fractionation can be used again for the production of SSU. By repeating the above operation, the SSU of the same amount as the extremely hardened oil used as a raw material is obtained. Was obtained at a high concentration.
[0034]
Example 4
(1) 1 kg of refined extremely hardened soybean oil and 1 kg of docosahexaenoic acid obtained by the same operation as in Example 1 (1) (that is, 2.7 moles of docosahexaenoic acid to 1 mole of refined extremely hardened soybean oil) and 2 kg of normal hexane Were mixed under heating, and transesterification was carried out through a column packed with 100 g of 1,3-specific immobilized lipase (from Rhizopus sp .; carrier is diatomaceous earth) and kept at 55 ° C.
Normal hexane was removed by an evaporator, and fat and fatty acid were separated by a falling film type molecular distillation apparatus (distillation temperature = 210 ° C .; degree of vacuum = 0.007 Torr) to obtain 1 kg of fat and oil.
Next, solvent separation of the fats and oils with acetone was performed. Oil and fat (1 kg) and acetone (3 kg) three times the amount of oil and fat were placed in a glass flask, and the high-melting oil was fractionated at a fractionation temperature of 24 ° C. to remove the high-melting oil (190 g). Acetone was added, the amount was 4 times the weight (weight ratio) with respect to the remaining oil and fat, the low melting point oil was separated at a fractionation temperature of −19 ° C., and the low melting point oil (375 g) was removed. In this way, 435 g of an oil and fat composition (S-4A) according to the present invention was obtained.
[0035]
(2) The triglyceride composition and the 2-position fatty acid composition were analyzed in the same manner as in Example 1 (3). As a result, the oil and fat composition contained 73% of SSU and hardly contained SUS.
[0036]
(3) Further, the high melting point oil and the low melting point oil removed by the fractionation in Example 4 (1) are mixed (mixing ratio is 1: 2.0), and equal amount (weight ratio) of normal hexane is added. , Trispecific immobilized lipase (Rhizopus origin; carrier is diatomaceous earth) 100 g and passed through a column maintained at 55 ° C. for transesterification.
After the transesterification reaction, normal hexane was removed by an evaporator.
Next, solvent fractionation with acetone was carried out in the same manner as the solvent fractionation with acetone in Example 4 (1), except for high-melting oil and low-melting oil, medium-melting oil, that is, the oil / fat composition according to the present invention (S-4B). 255 g was obtained.
[0037]
(4) When the triglyceride composition and the 2-position fatty acid composition were analyzed in the same manner as in Example 1 (3), the oil and fat composition contained 73% of SSU and hardly contained SUS.
[0038]
(5) At this time, the high melting point oil and the low melting point oil removed by the solvent fractionation are compositions that can be used for the production of SSU again. By repeating the above operation, the amount is almost the same as the extremely hardened oil used as a raw material. , Fats and oils containing SSU at a high concentration could be obtained.
[0039]
Comparative Example 1
1 and 3 The same process as in Examples 2 (1) and (2) was performed except that immobilized lipase having no specificity (Candida origin; carrier was diatomaceous earth) was used. 320 g of composition (C-1) was obtained.
[0040]
When the obtained oil-fat composition (C-1) was examined for the triglyceride composition in the same manner as in Example 1 (3), it contained 76% of S2U. However, when the fatty acid composition at the 2-position of S2U was examined, it contained 33% of unsaturated fatty acid (oleic acid). Therefore, the ratio of SSU in the oil and fat composition (C-1) was 51%. Moreover, even if the fractionation temperature was changed, the SSU ratio did not exceed 51%.
On the other hand, the SSU ratio of the oil and fat composition (S-2A) obtained by the method of the present invention (Example 1) was 76%, which was remarkably high and excellent.
[0041]
Furthermore, for the high melting point oil and the low melting point oil removed by solvent fractionation at this time, an immobilized lipase (Candida origin; carrier is diatomaceous earth) having no 1,3 specificity was used. Although the process similar to 2 (3) was performed, the fats and oils which contain SSU in high concentration were not able to be obtained.
[0042]
Comparative Example 2
0.2 kg of refined extremely hardened soybean oil: methyl oleate = 1: 0.6 (molar ratio) with respect to 1 kg of refined extremely hardened soybean oil, and 1.2 kg of n-hexane Except having carried out, the process similar to Example 2 (2) was performed, and the oil-fat composition (C-2A) 360g which is medium melting | fusing point oil was obtained.
[0043]
When the triglyceride composition of the obtained oil and fat composition (C-2A) was examined, it contained only 52% of S2U. On the other hand, the SSU ratio of the oil and fat composition (S-2A) obtained by the method of the present invention (Example 2) was 76%, which was remarkably high and excellent.
Further, the same operation as in Example 2 (2) was carried out except that acetone was used in an amount 8 times (weight ratio) with respect to fats and oils, the separation temperature was 25 ° C., and the high melting point oil was fractionated. An oil and fat composition (C-2B) was obtained. This oil and fat composition (C-2B) contained 71% of S2U, but only 230 g was obtained. On the other hand, according to the method of the present invention described in Example 2, the ratio of SSU in the oil and fat composition (S-2A) was 76% and the production amount was 420 g, which was very high and excellent.
[0044]
Comparative Example 3
1 kg of refined extremely hardened soybean oil and 2 kg of oleic acid methyl ester obtained by performing the same operation as in Example 1 (1) [refined extremely hardened soybean oil: methyl oleate = 1: 6 (molar ratio)], n -3 kg of hexane was mixed under heating, and transesterification, solvent removal, and molecular distillation were performed under the same conditions as in Example 2 (2) to obtain 1 kg of fats and oils. Furthermore, solvent fractionation was performed in the same manner as in the solvent fractionation of Example 2 (2) to obtain an oil and fat composition (C-3) which is a medium melting point oil. The oil and fat composition (C-3) contained 77% of S2U, but only 235 g was obtained. On the other hand, according to Example 1 of this invention, the production amount of the oil-fat composition (S-1) was 410g, and it was clear that efficiency was high and was excellent.
Even if the solvent fractionation conditions were changed, it was not possible to increase the middle melting point oil without reducing the S2U ratio.
[0045]
Example 5
(1) Palm oil (iodine value = 49.2) was hydrogenated in the same manner as in Example 1 (1) and then refined to obtain a refined extremely hardened palm oil. The iodine value was 0.5.
[0046]
(2) 1 kg of this refined extremely hardened palm oil, 0.5 kg of linoleic acid [refined extremely hardened palm oil: linoleic acid = 1: 1.5 (molar ratio)], and 1.5 kg of isooctane were mixed under heating. The mixture was made into an oil / fat solvent mixture, and transesterification was carried out through a column packed with 100 g of 1,3-specific immobilized lipase (mucor genus source; carrier is diatomaceous earth) and kept at 55 ° C.
Isooctane was removed by an evaporator, and fat and fatty acid were separated by a falling film type molecular distillation apparatus (distillation temperature = 210 ° C .; degree of vacuum = 0.09 Torr) to obtain 1 kg of fat and oil.
Next, solvent separation of the fats and oils with acetone was performed. Fats and oils (1 kg) and 5 times the amount of acetone (5 kg) were placed in a glass flask, and the high melting point oil was separated by setting the fractionation temperature to 23 ° C. to remove the high melting point oil (390 g). A low melting point oil is separated by setting the amount of acetone to 3 times the weight (weight ratio) with respect to fats and oils, a fractionation temperature of −2 ° C., and the low melting point oil (210 g) is removed. 400 g of (S-5A) was obtained.
[0047]
(3) The triglyceride composition and the 2-position fatty acid composition were analyzed in the same manner as in Example 1 (3). As a result, this oil composition (S-5A) contained 75% of SSU and contained almost no SUS. .
[0048]
(4) Next, 390 g of the high melting point oil, 210 g of the low melting point oil, 400 g of the refined extremely hardened palm oil, 240 g of linoleic acid, and 1.2 kg of isooctane, which were removed by the fractionation in (2) above, The mixture was subjected to a transesterification reaction through a column packed with 100 g of 1,3-specific immobilized lipase (Mucol genus; carrier is diatomaceous earth) and kept at 55 ° C.
After isooctane was removed by an evaporator, fats and oils were separated from each other by a falling film molecular distillation apparatus (distillation temperature = 210 ° C .; degree of vacuum = 0.09 Torr) to obtain fats and oils. Next, solvent fractionation with acetone was carried out in the same manner as solvent fractionation with acetone in Example 5 (2), except for high-melting oil and low-melting oil, medium-melting oil, that is, the oil and fat composition (S- 5B) 400 g was obtained.
[0049]
(5) The triglyceride composition and the 2-position fatty acid composition were analyzed in the same manner as in Example 1 (3). As a result, this oil composition (S-5B) contained 75% of SSU and contained almost no SUS. .
[0050]
(6) The high melting point oil and low melting point oil removed again by the above-mentioned fractionation, refined extremely hardened palm oil and linoleic acid are mixed, and the steps of transesterification are repeated to obtain almost the same composition and the same amount of fat and oil composition. It was possible to produce the product repeatedly.
[0051]
Example 6
(1) 1 kg of purified extremely hardened palm oil obtained in the same manner as in Example 5 (1) and 0.5 kg of α-linolenic acid [refined extremely hardened palm oil: α-linolenic acid = 1: 1.5 (molar ratio) ], 1.5 kg of isooctane was mixed under heating to obtain an oil / fat solvent mixture, and a column kept at 45 ° C. packed with 100 g of 1,3-specific immobilized lipase (mucor genus; carrier was diatomaceous earth). The transesterification reaction was carried out. After isooctane was removed by an evaporator, fats and oils and fatty acids were separated by a falling film molecular distillation apparatus (distillation temperature = 200 ° C .; vacuum degree = 0.008 Torr) to obtain 1 kg of fats and oils.
Next, solvent separation of the fats and oils with acetone was performed. Oil and fat (1 kg) and 3 times the amount of acetone (3 kg) were placed in a glass flask, and the high-melting oil was fractionated at a fractionation temperature of 23 ° C. to remove the high-melting oil (365 g). Acetone is added to make it 4 times the weight (weight ratio) with respect to fat and oil, fractionation temperature is set to -7 ° C., low-melting oil is fractionated, low-melting oil (215 g) is removed, medium-melting oil, ie according to the present invention 420 g of oil-fat composition (S-6A) was obtained.
[0052]
(2) The triglyceride composition and the 2-position fatty acid composition were analyzed in the same manner as in Example 1 (3). As a result, this fat composition (S-6A) contained 75% of SSU and contained almost no SUS. .
[0053]
(3) Next, the above operation is further performed in two sets, and a total of three sets of medium melting point oil, that is, 1255 g of oil composition (S-6A) according to the present invention, 1100 g of high melting point oil, and low melting point oil. 645 g was obtained.
[0054]
(4) This high-melting oil, low-melting oil and 1.8 kg of isooctane are mixed under heating to obtain an oil-and-fat solvent mixture, and 100 g of 1,3-specific immobilized lipase (from Mucor genus; carrier is diatomaceous earth) The transesterification was carried out through a packed column maintained at 45 ° C.
After isooctane was removed with an evaporator, solvent fractionation with acetone was performed in the same manner as the solvent fractionation with acetone in Example 6 (1) to remove high and low melting point oils. 715 g of composition (S-6B) was obtained.
[0055]
(5) The triglyceride composition and the 2-position fatty acid composition were analyzed in the same manner as in Example 1 (3). As a result, the oil and fat composition contained 77% of SSU and hardly contained SUS.
[0056]
(6) The high melting point oil and the low melting point oil removed again by the above fractionation were mixed, and the steps after the transesterification were repeated to obtain an oil composition rich in SSU.
[0057]
Example 7
(1) Pork fat (iodine value = 62.6) was hydrogenated in the same manner as in Example 1 (1) and then purified to obtain a refined extremely hardened pork fat. The iodine value was 0.2. 2 kg of rapeseed (canola) oil, 2 kg of water and powder lipase without 1,3 specificity (Mosquito40 g) was charged in a reaction vessel maintained at 30 ° C. and reacted for 24 hours with stirring. After removing the lipase by filtration and separating the glycerin water, the fatty acid was obtained by a falling film type molecular distillation apparatus (distillation temperature = 190 ° C .; vacuum = 0.010 Torr). Table 3 shows the composition of this fatty acid.
[0058]
(2) Next, 1 kg of purified extremely hardened pork fat and 1.2 kg of the above-mentioned rapeseed fatty acid [refined extremely hardened pork fat: rapeseed fatty acid = 1: 3.6 (molar ratio)] were mixed under heating, and 1,3 The transesterification reaction was carried out through a column packed with 100 g of a specific heat-resistant immobilized lipase (originating from Algenigenes; carrier is diatomaceous earth) and kept at 75 ° C. This was separated into fats and oils and fatty acids by a falling film type molecular distillation apparatus (distillation temperature = 200 ° C .; degree of vacuum = 0.008 Torr) to obtain 1 kg of fats and oils.
Next, the fats and oils were subjected to solvent fractionation with acetone. Fats and oils (1 kg) and 3 times the amount of acetone (3 kg) were put into a glass flask, and the high melting point oil was fractionated at a fractionation temperature of 25 ° C. to remove the high melting point oil. Acetone is added, the amount is 4 times (weight ratio) with respect to the oil and fat, the low-melting oil is fractionated at a fractionation temperature of −6 ° C., and the low-melting oil is removed. 390 g of (S-7A) was obtained.
[0059]
(3) When the obtained oil and fat composition was subjected to liquid chromatography to examine the triglyceride composition, it contained 76% of S2U. This fraction was collected and examined in more detail. As a result, SSL (S: stearic acid, L: linoleic acid) and OSO (O: oleic acid) could not be separated, and contained 4% of USU. Further, when the fatty acid composition at two positions of the fat was examined, it contained 1.1% of unsaturated fatty acid. Therefore, this fat / oil contained 1% of SUS and 71% of SSU.
[0060]
(4) Next, the high melting point oil (18) removed by fractionation in Example 7 (2).5g) And low melting point oil (425g) And passed through the above-mentioned column maintained at 75 ° C. to carry out a transesterification reaction.
Subsequently, the solvent fractionation with acetone was carried out in the same manner as the solvent fractionation with acetone in Example 7 (2), except for the high melting point oil and the low melting point oil, the medium melting point oil, that is, the oil and fat composition according to the present invention (S-7B). ) Was obtained 240g.
[0061]
(5) When the obtained oil and fat composition was subjected to liquid chromatography and the triglyceride composition was examined, it contained 78% of a fraction considered to be S2U. When this fraction was collected and examined in more detail, it contained 4% of USU. Furthermore, when the two-position fatty acid composition of this fat was investigated, it contained 1.3% of unsaturated fatty acids. Therefore, this fat / oil contained 1% SUS and 73% SSU.
[0062]
(6) The high melting point oil and the low melting point oil removed again by the above fractionation are mixed, and the steps below the transesterification reaction are repeated to obtain a high concentration of SSU in the same amount as the extremely hardened oil used as a raw material. The fats and oils contained in can be obtained.
[0063]
Comparative Example 4
1 kg of pork fat was subjected to solvent fractionation under the same conditions as in Example 5 (2). Only 230 g of medium melting point oil (C-4A) was obtained. In Example 5, 400 g of (S-5A) was obtained, and the present invention was remarkably superior to the conventional solvent fractionation method.
The medium melting point oil (C-4A) contained 78% of S2U, but when the S2U fraction was collected and the 2-position fatty acid composition was examined, it contained 12% of unsaturated fatty acid. That is, this medium melting point oil (C-4A) contained only 69% of SSU and 9% of SUS. As described above, the oil and fat composition of the present invention was excellent in that the SSU content was high while the SUS content was low as compared with the conventional solvent fractionation method.
Next, the high melting point oil (80g) And low melting point oil (690g) And the ester interchange reaction was carried out in the same manner as in Example 5 (4). Subsequently, the solvent was separated under the same conditions as in Example 5 (4). 185 g of medium melting point oil (C-4B) was obtained and contained 78% of S2U. When the two-position fatty acid composition of this fat was examined, 26% was unsaturated fatty acid. Moreover, even if the sorting conditions were changed, the SSU ratio did not increase.
Thus, even if SSU is produced using high melting point oil and low melting point oil obtained by separating pork fat, the efficiency is low, and the present invention can produce SSU with high efficiency and is far superior.
[0064]
The composition (% by weight) of the triglyceride of each oil composition prepared in Examples 1 to 7 and Comparative Examples 1 to 4 is shown in Table 1, and the 2-position fatty acid composition (% by weight) of each oil composition. Table 2 shows the total fatty acid composition (% by weight). Furthermore, Table 3 shows the fatty acid composition (% by weight) of the rapeseed fatty acid prepared in Example 7. In Tables 2 and 3, the type of fatty acid is shown in the form of “C: U” by the number of carbon atoms (C) and the number of double bonds (U). For example, since oleic acid has 18 carbon atoms and one double bond, it indicates “18: 1”, and linoleic acid has 18 carbon atoms and 2 double bonds. Therefore, “18: 2” is indicated.
[0065]
[Table 1]
Figure 0003785467
[0066]
[Table 2]
Figure 0003785467
[0067]
[Table 3]
Figure 0003785467
[0068]
【The invention's effect】
In the method of the present invention, an unsaturated fatty acid group is selectively added only to the 1,3-positions using a lipase having 1,3-position specificity with respect to triglycerides whose constituent fatty acid groups are substantially all saturated fatty acid groups. The triglyceride mixture is introduced by transesterification to form a triglyceride mixture, and the target SSU is separated from the triglyceride mixture. Therefore, the triglyceride mixture is substantially free of SUS having a crystallization temperature close to that of the target SSU. Therefore, an oil and fat composition containing SSU at a high concentration and containing almost no SUS can be efficiently produced while suppressing by-products of oils and fats other than SSU.

Claims (4)

(I)(A)(1)(a)主な構成脂肪酸が炭素数16〜24の脂肪酸である油脂から得た極度硬化油と、(b)炭素数16〜24の不飽和脂肪酸、及び/又は炭素数16〜24の不飽和脂肪酸部分と炭素数1〜4の直鎖アルキル部分とからなる不飽和脂肪酸アルキルエステルとを混合し、1,3位置特異性を有するリパーゼを用いてエステル交換反応させる工程、
(2)工程(1)の反応生成物からトリグリセライド混合物を分離する工程、及び
(3)工程(2)で分離されたトリグリセライド混合物から、分別により、高融点油と低融点油とを除去し、中融点油として1,2−飽和−3−不飽和トリグリセライドを含む油脂組成物を分離する工程
における、工程(3)で得られた低融点油と、
(B)1,2,3−飽和トリグリセライドを主成分とする油脂組成物と
を混合し、1,3位置特異性を有するリパーゼを用いてエステル交換反応させる工程、並びに
(II)工程(I)で得られたトリグリセライド混合物から、分別により、高融点油と低融点油とを除去し、中融点油として1,2−飽和−3−不飽和トリグリセライドを含む油脂組成物を分離する工程
を含むことを特徴とする、1,2−飽和−3−不飽和トリグリセライドを含有する油脂組成物の製造方法。
(I) (A) (1) (a) Extremely hardened oil obtained from an oil whose main constituent fatty acid is a fatty acid having 16 to 24 carbon atoms, (b) an unsaturated fatty acid having 16 to 24 carbon atoms, and / or Or an unsaturated fatty acid alkyl ester composed of an unsaturated fatty acid moiety having 16 to 24 carbon atoms and a linear alkyl moiety having 1 to 4 carbon atoms is mixed, and transesterification is performed using a lipase having 1,3-position specificity. The process of
(2) separating the triglyceride mixture from the reaction product of step (1), and
(3) Oil composition comprising 1,2-saturated-3-unsaturated triglyceride as medium-melting oil by removing high melting point oil and low melting point oil from the triglyceride mixture separated in step (2) by fractionation The process of separating
A low melting point oil obtained in step (3) ,
(B) 1,2,3-saturated triglyceride by mixing the fat composition as a main component, the step of transesterification using lipase having 1,3 position specificity, and (II) the step (I) From the triglyceride mixture obtained in Step 1, by separating the high melting point oil and the low melting point oil, and separating the fat composition containing 1,2-saturated-3-unsaturated triglyceride as a medium melting point oil. A method for producing an oil and fat composition containing 1,2-saturated-3-unsaturated triglyceride, characterized in that
工程(I)において、工程(II)で得られた高融点油及び/又は低融点油を更に混合する、請求項1に記載の方法。  The method according to claim 1, wherein in step (I), the high melting point oil and / or the low melting point oil obtained in step (II) is further mixed. 工程(I)で用いる油脂組成物(B)が、
(1)(a)主な構成脂肪酸が炭素数16〜24の脂肪酸である油脂から得た極度硬化油と、(b)炭素数16〜24の不飽和脂肪酸、及び/又は炭素数16〜24の不飽和脂肪酸部分と炭素数1〜4の直鎖アルキル部分とからなる不飽和脂肪酸アルキルエステルとを混合し、1,3位置特異性を有するリパーゼを用いてエステル交換反応させる工程、
(2)工程(1)の反応生成物からトリグリセライド混合物を分離する工程、及び
(3)工程(2)で分離されたトリグリセライド混合物から、分別により、高融点油と低融点油とを除去し、中融点油として1,2−飽和−3−不飽和トリグリセライドを含む油脂組成物を分離する工程
における、工程(3)で得られた高融点油であるか、及び/又は、主な構成脂肪酸が炭素数16〜24の脂肪酸である油脂から得た極度硬化油である、請求項1又は2に記載の方法。
The oil and fat composition (B) used in step (I)
(1) (a) Extremely hardened oil obtained from an oil whose main constituent fatty acid is a fatty acid having 16 to 24 carbon atoms, (b) an unsaturated fatty acid having 16 to 24 carbon atoms, and / or 16 to 24 carbon atoms. A step of mixing an unsaturated fatty acid alkyl ester consisting of an unsaturated fatty acid moiety of 1 and a C 1-4 straight chain alkyl moiety and subjecting it to a transesterification reaction using a lipase having 1,3-position specificity,
(2) separating the triglyceride mixture from the reaction product of step (1), and (3) removing the high melting point oil and the low melting point oil from the triglyceride mixture separated in step (2) by fractionation, In the step of separating an oil or fat composition containing 1,2-saturated-3-unsaturated triglyceride as a medium melting point oil, it is the high melting point oil obtained in step (3) and / or the main constituent fatty acid is The method of Claim 1 or 2 which is the extremely hardened oil obtained from the fats and oils which are a C16-C24 fatty acid.
工程(1)において、工程(3)で得られた高融点油及び/又は低融点油を更に混合する、請求項1〜3のいずれか一項に記載の方法。The method according to any one of claims 1 to 3, wherein in the step (1), the high-melting oil and / or the low-melting oil obtained in the step (3) is further mixed.
JP19979396A 1996-07-10 1996-07-10 Method for producing oil and fat composition Expired - Fee Related JP3785467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19979396A JP3785467B2 (en) 1996-07-10 1996-07-10 Method for producing oil and fat composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19979396A JP3785467B2 (en) 1996-07-10 1996-07-10 Method for producing oil and fat composition

Publications (2)

Publication Number Publication Date
JPH1025491A JPH1025491A (en) 1998-01-27
JP3785467B2 true JP3785467B2 (en) 2006-06-14

Family

ID=16413719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19979396A Expired - Fee Related JP3785467B2 (en) 1996-07-10 1996-07-10 Method for producing oil and fat composition

Country Status (1)

Country Link
JP (1) JP3785467B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4210437B2 (en) * 2000-09-27 2009-01-21 池田食研株式会社 Method for producing sterol fatty acid ester for food
NO319194B1 (en) * 2002-11-14 2005-06-27 Pronova Biocare As Lipase-catalyzed esterification process of marine oils
ATE525913T2 (en) * 2004-10-08 2011-10-15 Aarhuskarlshamn Denmark As FAT COMPOSITIONS
JP5154110B2 (en) * 2006-03-16 2013-02-27 株式会社カネカ Method for producing oil and fat composition
JP5557457B2 (en) 2009-03-06 2014-07-23 日清オイリオグループ株式会社 Oil and fat manufacturing method
WO2012032945A1 (en) 2010-09-10 2012-03-15 株式会社カネカ Method for producing tri-saturated fatty acid glyceride-containing fat compositions
BR112018070146B1 (en) * 2016-04-13 2021-11-16 Fuji Oil Holdings Inc. CHOCOLATE CONTAINING A COMPOSITION OF OIL OR FAT FOR LAURIC CHOCOLATES

Also Published As

Publication number Publication date
JPH1025491A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
JP2761293B2 (en) Method for producing human milk fat substitute
JP5289051B2 (en) Method for producing dioleoyl palmitoyl glyceride
JP4530311B2 (en) Method for producing glyceride using lipase
EP0069599B1 (en) Edible fat process
US20130045321A1 (en) Liquid oil and fat, and production method therefor
EP1928988B1 (en) Triglyceride process
JP3785467B2 (en) Method for producing oil and fat composition
JPH01312995A (en) Modification of oil and fat with enzyme
JP4079516B2 (en) Method for producing triglyceride
AU628644B2 (en) Enzymatic transesterification of tryglycerides
KR102520377B1 (en) Method for preparing triglyceride with high purity by using short path distillation or wet fractionation
JPH0730352B2 (en) Enzymatic purification of fats and oils
JP6557798B1 (en) Oil and fat manufacturing method
JP2011225778A (en) Method for producing solid fat
KR20210047991A (en) Method for preparing triglyceride with high yield through wet fractionation using solvent mixture
US20230323245A1 (en) A process for making a vegetable fat composition with an increased amount of sn2 positioned palmitic acid
KR20210031014A (en) Method for preparing triglyceride utilizing distillation byproduct
KR20210035942A (en) Method for preparing triglyceride utilizing fractionation byproduct
JPH0412113B2 (en)
EP0688505A1 (en) Behenic-rich triglycerides

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees