JP3785200B2 - Carbon-containing basic refractories - Google Patents

Carbon-containing basic refractories Download PDF

Info

Publication number
JP3785200B2
JP3785200B2 JP04260295A JP4260295A JP3785200B2 JP 3785200 B2 JP3785200 B2 JP 3785200B2 JP 04260295 A JP04260295 A JP 04260295A JP 4260295 A JP4260295 A JP 4260295A JP 3785200 B2 JP3785200 B2 JP 3785200B2
Authority
JP
Japan
Prior art keywords
parts
carbon
less
magnesia clinker
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04260295A
Other languages
Japanese (ja)
Other versions
JPH08217529A (en
Inventor
壽志 中村
幸次 河野
敬輔 浅野
泰次郎 松井
初雄 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP04260295A priority Critical patent/JP3785200B2/en
Publication of JPH08217529A publication Critical patent/JPH08217529A/en
Application granted granted Critical
Publication of JP3785200B2 publication Critical patent/JP3785200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、転炉等の溶融金属精錬炉の内張りに用いられる炭素含有塩基性耐火物に関するものである。
【0002】
【従来の技術】
溶融金属精錬炉の内張りに用いられる耐火物としては、耐スラグ性、耐熱衝撃性に優れたMgO−炭素系の塩基性耐火物が多用され、かなりの高成績をあげている。さらに、耐スラグ性を向上させるためには電融マグネシアクリンカーを原料として用いられることが効果的とされている。MgO−炭素系の塩基性耐火物の損耗は、スラグがマグネシアの結晶粒界に浸透し、粒界生成物と反応して低融点物質を形成し、マグネシア結晶粒界を分断することにより促進される。
【0003】
そこで、焼結マグネシアクリンカーに比べて結晶粒界および粒界生成物の少ない電融マグネシアクリンカーを適用することにより、粒界へのスラグ浸透の割合が少なくなり、高耐食性が得られることになる。一般に電融マグネシアクリンカーは、海水を原料とした酸化マグネシウムを電融することにより得られるが、電融する工程に加えて海水から酸化マグネシウムを得る工程が加わるため価格が非常に高くなる。そこで、安価で高耐食性を有するMgO−炭素系の塩基性耐火物を得るために、天然マグネサイトを原料とする安価な電融マグネシアクリンカーを使用したものも提案されている(特開平6−107453号公報参照)。
【0004】
【発明が解決しようとする課題】
本発明では、不純物成分を比較的多く含む安価なマグネシアクリンカーを有効活用することにより、安価で高耐食性を有するMgO−炭素系の塩基性耐火物を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明による炭素含有塩基性耐火物は、MgO含有量が94重量%以上97.58重量%以下であり、残りの不純物成分のうちCaOとSiO2の合計が3重量%未満であって、かつ、2300℃以上の高温で製造してAl23およびFe23成分をペリクレース粒内に固溶させたマグネシアクリンカー60部以上94部以下と、炭素源6部以上40部以下とからなる耐火物原料100部に、さらに外掛けでバインダー、および酸化防止剤を添加して得られる
【0006】
また、本発明における炭素含有塩基性耐火物の製造方法は、MgO含有量が94重量%以上97.58重量%以下であり、残りの不純物成分のうちCaOとSiO2の合計が3重量%未満であるマグネシア原料を2300℃以上の高温で処理を施して、Al23及びFe23成分をペリクレース粒内に固溶させたマグネシアクリンカーを製造し、該マグネシアクリンカー60部以上94部以下と、炭素源6部以上40部以下に、さらに外掛けでバインダー、及び酸化防止剤を添加配合して混練した後、成形、乾燥することを特徴とする。
【0007】
【作用】
以下、本発明について作用とともに詳細に説明する。
本発明者らは、マグネシアクリンカーを詳細に解析して以下の事項を見出した。マグネシアクリンカーには、主成分であるMgOの他に不純物成分としてCaO、SiO2 、Al2 3 、Fe2 3 等が含まれる。アーク炉、あるいは、タングステンヒーター等を熱源とする超高温加熱炉で、約2300℃以上の高温過程を経て製造したマグネシアクリンカーでは、これらの成分のうちCaO、およびSiO2 はMgOの結晶粒界に存在して粒界生成物を形成する。また、Al2 3 、Fe2 3 、および一部のCaOはMgO粒内に粒内析出物として固定される。
【0008】
前述したように、MgO−炭素系の塩基性耐火物の損耗は、スラグとマグネシアクリンカー中の粒界生成物とが反応してMgO結晶粒界を分断することにより促進される。マグネシアクリンカー中の不純物成分の総量が多くても粒界生成物を形成するCaO、およびSiO2 の合計量が少ない粒界生成物の量が少なくなり、このマグネシアクリンカーを使用したMgO−炭素系の塩基性耐火物の損耗は抑制される。
【0009】
そこで、本発明で使用するマグネシアクリンカーを以下のように定めた。すなわち、マグネシアクリンカー中に含まれるCaO、およびSiO2 の合計量を3重量%未満とし、かつ、約2300℃以上の高温で熱処理を施してAl2 3 およびFe2 3 成分をペリクレース粒内に固溶させたものとした。不純物成分がこの範囲であると、マグネシアクリンカー中に形成される粒界生成物の量が少なくなり、このマグネシアクリンカーを使用したMgO−炭素系の塩基性耐火物の耐食性は優れているからである。
【0010】
もし、マグネシアクリンカー中に含まれるCaO、およびSiO2 の合計量が3重量%以上になると、マグネシアクリンカー中の結晶粒界および粒界生成物の生成量が多くなり、これを使用したMgO−炭素系の塩基性耐火物の耐食性は劣り好ましくない。また、約2300℃以上の高温処理を施さないマグネシアクリンカーでは、含まれている不純物のほとんどが粒界生成物を形成するため粒界生成物の量が多くなり、このマグネシアクリンカーを使用したMgO−炭素系の塩基性耐火物のスラグによる損耗は大きくなる。
【0011】
ところで、マグネシアクリンカー中に含まれるCaOとSiO2 のモル比により形成される粒界生成物の鉱物層が異なる。CaO/SiO2 の値が小さく、特に約1〜2の範囲では生成する鉱物層の融点が低くなって耐食性が悪くなる傾向があるため、CaO/SiO2 の値が2以上のマグネシアクリンカーがよく用いられてきた。しかし、本発明では、電融マグネシアクリンカー中に含まれるCaO、およびSiO2 の合計量を3重量%未満とし、かつ、Al2 3 およびFe2 3 成分をペリクレース粒内に固溶させたマグネシアクリンカーを用いることによって、粒界生成物の生成量が少なくなるため、融点が低い粒界生成物が形成されても高い耐食性を有する。
【0012】
MgO含有量を94重量%以上97.58重量%以下としたのは、この範囲であるとマグネシアクリンカー中のMgO粒内に形成される粒内析出物の量はさほど多くなく、これを使用したMgO−炭素系の塩基性耐火物の高温強度が優れているからである。従って、MgO含有量が94重量%未満であると、マグネシアクリンカー中のMgO粒内に形成される粒内析出物が多くなり、これを使用したMgO−炭素系の塩基性耐火物の高温強度が劣る。
【0013】
本発明の炭素含有塩基性耐火物において、用いるマグネシアクリンカー含有量を60部以上94部以下としたのは、この範囲で耐食性、耐熱衝撃性に優れるからである。すなわち、マグネシアクリンカー含有量が60部未満になると、耐酸化性が著しく低下し、94部を超えると耐熱衝撃性、耐食性、特に耐スラグ浸潤性が著しく低下する。
【0014】
炭素源としては、天然または人造黒鉛、メンフェーズカーボン、コークス、カーボンブラック等を用い、できるだけ高純度のものが望ましい。バインダーとしては、フェノール樹脂、フラン樹脂、ピッチ等を用い、添加量はマグネシアクリンカーと炭素源との合計を100部として外掛けで2〜5部程度が望ましい。酸化防止剤としては、金属Al、金属Si、Al−MgO合金等を用い、添加量はマグネシアクリンカーと炭素源との合計を100部として外掛けで5部以下が望ましい。
【0015】
【実施例】
以下、実施例に基づき本発明を説明する。但し、本発明はこれらの実施例に限定されるものではない。
【0016】
表1に示すような組成の2300℃以上の温度で製造したマグネシア(MgO)クリンカーを用い、表中に示す原料配合組成で混練、真空フリクション形成、乾燥(90℃×24hrs.)、硬化処理(250℃×10hrs.)を実施してMgO−炭素系の塩基性耐火物を得た。
【0017】
表1に示してあるように、本発明の実施例1〜8のMgO−炭素系の塩基性耐火物は溶損指数が115以下で耐食性に優れている。
【0018】
また、表2の比較例1〜4には、本発明の範囲から外れた組成の天然マグネサイトを原料とする電融マグネシアクリンカーを使用した場合のMgO−炭素系の塩基性耐火物の特性を示す。表1の本発明の実施例に比較して耐食性、あるいはそれに加えて高温強度が劣る。
【0019】
比較例およびは、本発明と同じ組成であるが、1800℃の熱処理を経て製造されたマグネシアクリンカーを使用した場合のMgO−炭素系の塩基性耐火物の特性を示す。ここでも表1の実施例に比較して耐食性が劣る。
【0020】
さらに、表2の比較例およびには、マグネシアクリンカーと炭素の配合割合が本発明の範囲から外れたMgO−炭素系の塩基性耐火物の特性を示す。実施例に比較して高温強度、耐食性、耐酸化性、あるいは耐熱衝撃性で劣る。なお、表2において、比較例および以外の熱処理温度は、2300℃以上である。
【0021】
【表1A】

Figure 0003785200
【0022】
【表1B】
Figure 0003785200
【0023】
【表2A】
Figure 0003785200
【0024】
【表2B】
Figure 0003785200
【0025】
【発明の効果】
本発明によって、従来の海水を原料とした酸化マグネシウムを電融して得られる不純物成分の総量が少ないマグネシアクリンカーを使用した場合のMgO−炭素系の塩基性耐火物と耐食性、耐熱衝撃性、耐酸化性が同等で、従来品に比べて安価なMgO−炭素系の塩基性耐火物が得られる。このことにより炉材コストの削減が可能となる。[0001]
[Industrial application fields]
The present invention relates to a carbon-containing basic refractory used for the lining of a molten metal refining furnace such as a converter.
[0002]
[Prior art]
As a refractory used for the lining of a molten metal refining furnace, an MgO-carbon basic refractory excellent in slag resistance and thermal shock resistance is frequently used, and has achieved considerably high results. Furthermore, in order to improve the slag resistance, it is considered effective to use an electrofused magnesia clinker as a raw material. The wear of MgO-carbon based refractories is accelerated by slag penetrating into the magnesia grain boundaries, reacting with the grain boundary products to form a low melting point material and breaking up the magnesia grain boundaries. The
[0003]
Therefore, by applying an electrofused magnesia clinker with fewer crystal grain boundaries and grain boundary products than the sintered magnesia clinker, the ratio of slag penetration into the grain boundary is reduced, and high corrosion resistance can be obtained. Generally, an electrofused magnesia clinker is obtained by electromelting magnesium oxide using seawater as a raw material. However, since the process of obtaining magnesium oxide from seawater is added to the process of electromelting, the price becomes very high. Therefore, in order to obtain an inexpensive MgO-carbon basic refractory having high corrosion resistance, a material using an inexpensive electrofused magnesia clinker made of natural magnesite has been proposed (Japanese Patent Laid-Open No. 6-107453). No. publication).
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an inexpensive MgO-carbon basic refractory having high corrosion resistance by effectively utilizing an inexpensive magnesia clinker containing a relatively large amount of impurity components.
[0005]
[Means for Solving the Problems]
The carbon-containing basic refractory according to the present invention has a MgO content of 94 wt% or more and 97.58 wt% or less , and the total of CaO and SiO 2 among the remaining impurity components is less than 3 wt%, and It consists of 60 parts to 94 parts of magnesia clinker prepared at a high temperature of 2300 ° C. or higher and having Al 2 O 3 and Fe 2 O 3 components dissolved in the periclase grains, and 6 parts to 40 parts of carbon source. It is obtained by adding a binder and an antioxidant as an outer shell to 100 parts of a refractory raw material.
Further, in the method for producing a carbon-containing basic refractory according to the present invention, the MgO content is 94 wt% or more and 97.58 wt% or less , and among the remaining impurity components, the total of CaO and SiO 2 is less than 3 wt%. A magnesia clinker in which Al 2 O 3 and Fe 2 O 3 components are solid-dissolved in periclase grains is processed by treating the magnesia raw material at a high temperature of 2300 ° C. or more, and the magnesia clinker is 60 parts or more and 94 parts or less. In addition, a binder and an antioxidant are further added and blended with 6 parts or more and 40 parts or less of a carbon source, and then molded and dried.
[0007]
[Action]
Hereinafter, the present invention will be described in detail together with the operation.
The present inventors have analyzed magnesia clinker in detail and found the following matters. The magnesia clinker includes CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 and the like as impurity components in addition to MgO as a main component. In the magnesia clinker manufactured through a high temperature process of about 2300 ° C or higher in an arc furnace or an ultra-high temperature heating furnace using a tungsten heater as a heat source, among these components, CaO and SiO 2 are present at the grain boundaries of MgO. Present to form grain boundary products. Al 2 O 3 , Fe 2 O 3 , and a part of CaO are fixed as intragranular precipitates in the MgO grains.
[0008]
As described above, the wear of the MgO-carbon basic refractory is promoted by the slag and the grain boundary product in the magnesia clinker reacting to break the MgO crystal grain boundary. Even if the total amount of impurity components in the magnesia clinker is large, the amount of CaO forming the grain boundary product and the grain boundary product having a small total amount of SiO 2 is reduced, and the MgO-carbon system using this magnesia clinker is reduced. Wear of the basic refractory is suppressed.
[0009]
Therefore, the magnesia clinker used in the present invention was determined as follows. That is, the total amount of CaO and SiO 2 contained in the magnesia clinker is set to less than 3% by weight, and heat treatment is performed at a high temperature of about 2300 ° C. or higher so that the Al 2 O 3 and Fe 2 O 3 components are contained in the periclase grains. It was assumed to be a solid solution. If the impurity component is within this range, the amount of grain boundary products formed in the magnesia clinker is reduced, and the corrosion resistance of the MgO-carbon basic refractory using this magnesia clinker is excellent. .
[0010]
If the total amount of CaO and SiO 2 contained in the magnesia clinker is 3% by weight or more, the production amount of crystal grain boundaries and grain boundary products in the magnesia clinker increases, and MgO-carbon using this increases. The corrosion resistance of the basic refractories is not preferable. In addition, in the magnesia clinker that is not subjected to a high temperature treatment of about 2300 ° C. or higher, most of the impurities contained therein form a grain boundary product, so that the amount of the grain boundary product increases, and the MgO − using this magnesia clinker Wear due to slag of carbon-based basic refractories increases.
[0011]
By the way, the mineral layer of the grain boundary product formed by the molar ratio of CaO and SiO 2 contained in the magnesia clinker is different. Since the value of CaO / SiO 2 is small, especially in the range of about 1-2, the melting point of the resulting mineral layer tends to be low and the corrosion resistance tends to be poor. Therefore, magnesia clinker with a CaO / SiO 2 value of 2 or more is good. Has been used. However, in the present invention, the total amount of CaO and SiO 2 contained in the electrofused magnesia clinker is less than 3% by weight, and the Al 2 O 3 and Fe 2 O 3 components are dissolved in the periclase grains. By using a magnesia clinker, the amount of grain boundary products is reduced, so that even if a grain boundary product having a low melting point is formed, it has high corrosion resistance.
[0012]
If the MgO content is 94 wt% or more and 97.58 wt% or less , the amount of intragranular precipitates formed in the MgO grains in the magnesia clinker is not so large, and this was used. This is because the high-temperature strength of the MgO-carbon basic refractory is excellent. Accordingly, when the MgO content is less than 94% by weight, the intragranular precipitates formed in the MgO grains in the magnesia clinker increase, and the high temperature strength of the MgO-carbon basic refractory using this is high. Inferior.
[0013]
The reason why the magnesia clinker content used in the carbon-containing basic refractory of the present invention is 60 parts or more and 94 parts or less is that in this range, the corrosion resistance and the thermal shock resistance are excellent. That is, when the magnesia clinker content is less than 60 parts, the oxidation resistance is remarkably reduced, and when it exceeds 94 parts, the thermal shock resistance and corrosion resistance, particularly the slag infiltration resistance are remarkably lowered.
[0014]
As the carbon source, natural or artificial graphite, menphase carbon, coke, carbon black, etc. are used, and those having the highest possible purity are desirable. As the binder, phenol resin, furan resin, pitch, or the like is used, and the addition amount is preferably about 2 to 5 parts as an outer coating with the total of magnesia clinker and carbon source being 100 parts. As the antioxidant, metal Al, metal Si, Al—MgO alloy or the like is used, and the addition amount is desirably 5 parts or less as an outer coating with the total of the magnesia clinker and the carbon source being 100 parts.
[0015]
【Example】
Hereinafter, the present invention will be described based on examples. However, the present invention is not limited to these examples.
[0016]
Using a magnesia (MgO) clinker having a composition as shown in Table 1 manufactured at a temperature of 2300 ° C. or higher, kneading, vacuum friction formation, drying (90 ° C. × 24 hrs.), Curing treatment with the raw material composition shown in the table ( 250 ° C. × 10 hrs.) Was performed to obtain an MgO-carbon basic refractory.
[0017]
As shown in Table 1, the MgO-carbon basic refractories of Examples 1 to 8 of the present invention have a corrosion index of 115 or less and excellent corrosion resistance.
[0018]
Further, Comparative Examples 1 to 4 in Table 2 show the characteristics of MgO-carbon basic refractories when using an electrofused magnesia clinker made of natural magnesite having a composition outside the scope of the present invention. Show. Compared with the Example of this invention of Table 1, it is inferior in corrosion resistance, or in addition, high temperature strength.
[0019]
Comparative Examples 5 and 6 have the same composition as the present invention, but show the properties of MgO-carbon based basic refractories when using magnesia clinker manufactured through heat treatment at 1800 ° C. Again, the corrosion resistance is inferior to the examples in Table 1.
[0020]
Further, Comparative Examples 7 and 8 in Table 2 show the characteristics of MgO-carbon based refractories in which the blending ratio of magnesia clinker and carbon is out of the scope of the present invention. It is inferior in high temperature strength, corrosion resistance, oxidation resistance, or thermal shock resistance as compared with the examples. In Table 2, the heat treatment temperature other than Comparative Examples 5 and 6 is 2300 ° C. or higher.
[0021]
[Table 1A]
Figure 0003785200
[0022]
[Table 1B]
Figure 0003785200
[0023]
[Table 2A]
Figure 0003785200
[0024]
[Table 2B]
Figure 0003785200
[0025]
【The invention's effect】
According to the present invention, MgO-carbon basic refractory and corrosion resistance, thermal shock resistance, acid resistance when using a magnesia clinker with a small total amount of impurity components obtained by electromelting magnesium oxide from seawater as a raw material. It is possible to obtain a basic refractory based on MgO-carbon that has the same chemical conversion properties and is cheaper than conventional products. This makes it possible to reduce the furnace material cost.

Claims (2)

MgO含有量が94重量%以上97.58重量%以下であり、残りの不純物成分のうちCaOとSiO2の合計が3重量%未満であって、かつ、2300℃以上の高温で製造してAl23およびFe23成分をペリクレース粒内に固溶させたマグネシアクリンカー60部以上94部以下と、炭素源6部以上40部以下とからなる耐火物原料100部に、さらに外掛けでバインダー、および酸化防止剤を添加して得られる炭素含有塩基性耐火物。The MgO content is 94 wt% or more and 97.58 wt% or less , and among the remaining impurity components, the total of CaO and SiO 2 is less than 3 wt%, and is manufactured at a high temperature of 2300 ° C. or higher. Further, it is further applied to 100 parts of a refractory raw material comprising 60 parts or more and 94 parts or less of a magnesia clinker in which 2 O 3 and Fe 2 O 3 components are dissolved in the periclase grains, and 6 parts or more and 40 parts or less of a carbon source. A carbon-containing basic refractory obtained by adding a binder and an antioxidant. MgO含有量が94重量%以上97.58重量%以下であり、残りの不純物成分のうちCaOとSiO2の合計が3重量%未満であるマグネシア原料を2300℃以上の高温で処理を施して、Al23及びFe23成分をペリクレース粒内に固溶させたマグネシアクリンカーを製造し、該マグネシアクリンカー60部以上94部以下と、炭素源6部以上40部以下に、さらに外掛けでバインダー、及び酸化防止剤を添加配合して混した後、成形、乾燥することを特徴とする炭素含有塩基性耐火物の製造方法。A magnesia raw material having a MgO content of 94% by weight or more and 97.58% by weight or less and a total of CaO and SiO 2 of less than 3% by weight among the remaining impurity components is treated at a high temperature of 2300 ° C. A magnesia clinker in which Al 2 O 3 and Fe 2 O 3 components are solid-dissolved in periclase grains is produced, and the magnesia clinker is 60 parts or more and 94 parts or less, and the carbon source is 6 parts or more and 40 parts or less. binder, and it was mixed kneaded by adding an antioxidant, molding method of producing a carbon-containing basic refractory, characterized by drying.
JP04260295A 1995-02-08 1995-02-08 Carbon-containing basic refractories Expired - Lifetime JP3785200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04260295A JP3785200B2 (en) 1995-02-08 1995-02-08 Carbon-containing basic refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04260295A JP3785200B2 (en) 1995-02-08 1995-02-08 Carbon-containing basic refractories

Publications (2)

Publication Number Publication Date
JPH08217529A JPH08217529A (en) 1996-08-27
JP3785200B2 true JP3785200B2 (en) 2006-06-14

Family

ID=12640606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04260295A Expired - Lifetime JP3785200B2 (en) 1995-02-08 1995-02-08 Carbon-containing basic refractories

Country Status (1)

Country Link
JP (1) JP3785200B2 (en)

Also Published As

Publication number Publication date
JPH08217529A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
JP5777561B2 (en) Brick for stainless steel refining ladle and stainless steel refining ladle
JP6215409B1 (en) Mug carbon brick and molten steel pan using this
JP3785200B2 (en) Carbon-containing basic refractories
JPH05330904A (en) Highly spalling-resistant magnesia carbon brick
JP3053225B2 (en) Magnesia carbon refractory brick
JPH0317782B2 (en)
EP0116194A1 (en) A carbon-containing refractory
JPH0733513A (en) Magnesia-carbon brick and its production
JPH05262559A (en) Unburned carbon-containing brick
JP3124799B2 (en) Refractory brick containing low silica fused magnesia clinker
JP2868809B2 (en) Magnesia carbon brick
JP3124809B2 (en) Refractory brick containing low siliceous magnesia clinker
JP3201678B2 (en) High spalling resistant magnesia carbonaceous brick and method for producing the same
JP2711398B2 (en) Magnesia carbonaceous refractory composition
JPH07108804B2 (en) Process for producing unfired magnesia-carbon brick
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH05301772A (en) Carbon-containing brick
JP3201679B2 (en) High spalling resistant magnesia carbon brick and its manufacturing method
KR19990059266A (en) High Magnesium-Carbon Refractory
JPH078738B2 (en) Refractory brick for refining molten metal containing graphite
JP3400494B2 (en) Basic refractories for molten metal
JPH08319151A (en) Refractory containing carbon
JPS63166751A (en) Carbon-containing basic refractory brick
JPS6395156A (en) Manufacture of silicon carbide-carbon base brick for ore reduction furnace wall
JPS62168629A (en) Casting mold

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term