JP3784753B2 - Air conditioner wind direction adjusting device - Google Patents
Air conditioner wind direction adjusting device Download PDFInfo
- Publication number
- JP3784753B2 JP3784753B2 JP2002186592A JP2002186592A JP3784753B2 JP 3784753 B2 JP3784753 B2 JP 3784753B2 JP 2002186592 A JP2002186592 A JP 2002186592A JP 2002186592 A JP2002186592 A JP 2002186592A JP 3784753 B2 JP3784753 B2 JP 3784753B2
- Authority
- JP
- Japan
- Prior art keywords
- wind direction
- air
- deflection angle
- main body
- direction deflecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Air-Flow Control Members (AREA)
- Air Conditioning Control Device (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、吹出口に設けられる空気調和装置の風向調整装置に関するものである。
【0002】
【従来の技術】
図19〜図21は、例えば実開昭58−69735号公報に示された従来の空気調和装置の風向調整装置を示す図で、図19は空気調和装置本体の斜視図、図20は図19の横断面図、図21は同じく図19の縦断面図である。
図中、(1)は空気調和装置本体、(2)は本体(1)の前面を覆い吸込口(3)を有する前面パネル、(4)は本体(1)の前面下部に開口を有する吹出口、(5)は吸込口(3)に面して配置された熱交換器、(6)は本体(1)内に設けられ、風路(13)を形成するケーシング、(7)は吹出口(4)に設けられ左右端部に装着された軸(16)により前面パネル(2)の左右側壁(11)(15)に枢着され風向を水平、直下および斜めの各方向に変換するチェンジベーン、(8)は吹出ノズル(9)の左右辺部の壁(10)(14)間に複数枚並設され枢軸(17)で枢持され、風向を左右に変換するガイドベーン、(9)はケーシング(6)の下方に配置され、ケーシング(6)と共に風路を形成する吹出ノズル、(12)は風路(13)の吹出口(4)側に設置され、電動機(18)で駆動される送風機、(19)は軸(16)に係止されたコイルばねである。
また、図22は図21の右側ガイドベーン付近の詳細説明図、図23は図22に示したガイドベーンの斜視図である。
図中、(20)は軸(21)でガイドベーン(8)に枢着され、複数のガイドベーン(8)を同時に左右の任意角度に向けるための左右変更ロッドである。
【0003】
次に動作について説明する。従来の空気調和装置は上記のように構成され、送風機(12)が駆動されると、室内空気は吸込口(3)から吸い込まれ、熱交換器(5)を通過して冷房時は冷却、暖房時は昇温され、風路(13)を下降して吹出口(4)から室内へ吹出される。この風の流れを矢印Uで示す。この風の上下方向の向きはチェンジベーン(7)で、左右方向の向きはガイドベーン(8)で調整される。ここで、ガイドベーン(8)と左右変更ロッド(20)を枢持している軸(21)とガイドベーン(8)を枢持している軸(17)とは、各々一定の間隔を成して固定されているため、全てのガイドベーン(8)は左右変更ロッド(20)に与えた変位量+Aのために同一の方向に向くように制御される。
ここに、チェンジベーン(7)およびガイドベーン(8)は意匠上の制約から前面パネル(2)より外部に露出させることができず、さらにチェンジベーン(7)は吹出し口を閉塞するカバーを兼用するため吹出し口最外部に配置する必要がある。従って、ガイドベーン(8)はチェンジベーン(7)よりさらに吹出し口より奥側に配置せざるを得ない。この場合の風向調整装置の作用は、図22に示すように、例えば左右変更ロッド(20)を右へ変位量+Aだけ変更させ、右方向に風が吹出すようにガイドベーン(8)を向けた場合、一番右側のノズル(9)の右辺部の壁面(14)および前面パネル(2)の右側壁面(15)に当たって反射するか、または前方への直進流に偏向されて吹出される。ここで、ガイドベーンを向けた方向への風の流れをW2、右側壁面(15)に当たって反射するかまたは前方への直進流に偏向されて吹出される風の流れをV2とする。ガイドベーン(8)によって設定された吹出し流れW2は、最右端部において右側壁面(15)に反射しながら吹出される流れV2の影響を受けて、(V2+W2)のベクトル合成方向に偏向される。そのため、空気調和機の左右の斜め方向へ吹出し風向を設定しても、この(V2+W2)の合成方向の流れの影響を受けて、空気調和機の正面方向に偏向され、正確に吹出し方向を設定できなかった。
【0004】
また、図24及び図25は、例えば実開昭63−147650号公報に示された他の従来の空気調和機の風向変更装置を示す図で、図24は横断面図、図25は図24の装置の動作状態を説明した図である。図において、(201)は吹出口、(202)は吹出口(201)の内壁、(203)は吹出口(201)に複数枚がほぼ等間隔で配置されて風向を変更するベーンで、図24に示すように図24における左右にそれぞれ複数枚からなる一組がそれぞれ設けられている。
(204)は内壁(202)に立設されてベーン(203)のそれぞれに配置され、ベーン(203)の一側の縁部の一端寄りを枢持した軸である。
【0005】
(205)は一組のベーン(203)を連結した連結腕で、それぞれのベーン(203)の軸(204)が配置された縁部の他端寄りを枢持した連結軸(206)が設けられ、また、図24における中心寄りのベーン(203)の軸(204)と連結軸(206)の間隔は、図24における外側寄りのベーン(203)の軸(204)と連結軸(206)の間隔よりも短く設定され、図24に示すように各ベーン(203)の軸(204)を結ぶ線に対して傾斜して配置されている。
【0006】
図24及び図25に示す他の従来の空気調和機の風向変更装置は上記のように構成され、図25に示すように左右それぞれ一組のベーン(203)を互いに図25において下側が広がる向きに配置して使用される。この状態で図25の中心寄りのベーン(203)の傾斜は、外側寄りのベーン(203)よりも水平に近づくので、それぞれのベーン(203)によって偏向する風向角も図25に実線で示す矢印のように、中心寄りのベーン(203)の傾斜は外側寄りのベーン(203)よりも水平に近づく。
また、一組のベーン(203)の相互の中間部は狭い隙間が形成されるので、この隙間から吹出す風(207)は円滑に流れないため弱くなり、周囲の二次空気(208)を巻き込みベーン(203)に露(209)が生成される。
【0007】
【発明が解決しようとする課題】
上記のような従来の空気調和装置の風向調整装置では、左右偏向ロッド(20)を大きく変位させるとガイドベーン(8)による圧力損失が増大して、風路(13)を通り吹き出し口(4)から吹き出す風量が著しく低下する。これにより、特に暖房時において温風が舞い上がって居室の床面に到達しなくなる。
また、冷房時に吹き出し風の温度が低下することから吹き出し口(4)各部や本体(1)に露が付着して運転中の居室内へ滴下したり、居室内の黴の発生の原因になったりする。そして、吹き出し気流は正面に吹き出しているときに比べて空気調和装置に近い床面に落ちて気流方向制御の精度を低下させる。
【0008】
また、ガイドベーン(8)により風向きを大きく規制していることから、気流が剥離して冷房時に吹き出し口(4)各部に着露する。さらに、空気調和装置を居室の壁際に据付けた場合に、吹き出し気流が壁に反射して吸込口(3)から吸い込まれるため居室内に気流が循環せず快適な環境が得られなくなる。
以上のような不具合を防止するために左右風向偏向板の偏向角度を規制することが必要になる。これに対して、従来は左右風向偏向板の偏向角度が規制角度以上に回動しない構造になっている。このため、例えば着露しない暖房時においても冷房時の左右風向偏向板の偏向角度規制によって、この偏向角度以上の送風ができなくなる。
【0009】
また、左右風向偏向板の偏向角度規制によって空気調和装置の壁際据付時において、壁のない方向に送風する角度が制約される。
以上のような理由から、左右方向の送風可能領域が制約されて狭くなるため居室全体への送風が困難となって、温度の不均一が発生して快適性が損なわれるという問題点があった。
【0010】
本発明は上記のような問題点を解消するためになされたものであり、この発明の目的は左右方向の送風可能領域を拡大して居室の快適性を向上する空気調和装置の風向調整装置を得ることにある。
【0011】
【課題を解決するための手段】
また、この発明の請求項1記載の発明に係る空気調和装置の風向調整装置においては、本体に設けられたクロスフローファンと、本体の吹出口に設けられてクロスフローファンからの吹き出し風を上下に偏向させる上下風向偏向板及び複数枚が相互に連結されて左右に偏向させる左右風向偏向板と、本体に設けられて左右風向偏向板の偏向角度を変化させる駆動手段と、この駆動手段による偏向角度の変化量を制御し左右風向偏向板の偏向角度が所定値よりも大きいときに冷房時には上下風向偏向板を下向き制御し、暖房時には上下風向偏向板を上向き制御する制御装置とが設けられる。
【0012】
また、この発明の請求項2記載の発明に係る空気調和装置の風向調整装置においては、本体に設けられたクロスフローファンと、本体の吹出口に設けられてクロスフローファンからの吹き出し風を上下に偏向させる上下風向偏向板及び複数枚が相互に連結されて左右に偏向させる左右風向偏向板と、本体に設けられて左右風向偏向板の偏向角度を変化させる駆動手段と、この駆動手段による偏向角度の変化量を制御し冷房時には左右風向偏向板の偏向角度を縮小制御し、暖房時には左右風向偏向板の偏向角度を拡大制御する制御装置とが設けられる。
【0013】
また、この発明の請求項3記載の発明に係る空気調和装置の風向調整装置においては、本体に設けられたクロスフローファンと、本体の吹出口に設けられてクロスフローファンからの吹き出し風を上下に偏向させる上下風向偏向板及び複数枚が相互に連結されて左右に偏向させる左右風向偏向板と、本体に設けられて左右風向偏向板の偏向角度を変化させる駆動手段と、この駆動手段による偏向角度の変化量を制御し冷房時に左右風向偏向板の偏向角度が所定値よりも大きいときは冷房運転開始から所定時間経過後に左右風向偏向板の偏向角度を縮小制御する制御装置とが設けられる。
【0014】
【作用】
また、上記のように構成されたこの発明の請求項2記載の発明の空気調和装置の風向調整装置では、左右風向偏向板の偏向角度が所定値よりも大きいときに冷房時には上下風向偏向板が規定状態よりも下向きになり、暖房時には上下風向偏向板が規定状態よりも上向きになる。これにより、吹き出し気流の到達方向精度が向上する。
【0015】
また、上記のように構成されたこの発明の請求項3記載の発明の空気調和装置の風向調整装置では、冷房時には左右風向偏向板の偏向角度が縮小され、暖房時には左右風向偏向板の偏向角度が拡大される。これにより、冷房時は冷風による着露が防止でき、暖房時は温風が居室の必要箇所に到達する。
【0016】
また、上記のように構成されたこの発明の請求項4記載の発明の空気調和装置の風向調整装置では、冷房時に左右風向偏向板の偏向角度が所定値よりも大きいときは冷房運転開始から所定時間経過後に左右風向偏向板の偏向角度が縮小される。これにより、冷房運転開始時には居室の中央を避けて送風され次第に中央寄りに送風される。
【実施例】
【0017】
実施例1.
図1〜図5は、この発明の一実施例を示す図で、図1は空気調和装置の斜視図、図2は図1の縦断側面拡大図、図3は図1の空気調和装置の送風制御装置の模式図、図4は図1の空気調和装置の送風制御体系図、図5は図1の空気調和装置の動作を説明するフローチャートである。図において、(1)は本体、(2)は本体(1)の前面を覆い吸い込み口(3)を有する前面パネル、(4)は本体(1)の前面下部に開口する吹き出し口、(5)は吸い込み口(3)に面して配置された熱交換器、(6)は本体(1)内に設けられて風路(13)を形成するケーシングである。
【0018】
(7)は吹き出し口(4)に設けられ左右端部に装着された軸により吹き出し口(4)の左右側壁に枢着されて風向を水平、直下及び斜めの方向に変換するチェンジベーンからなる上下風向偏向板、(8)は吹き出し口(4)の左右端部の壁の間に複数枚が並設されてそれぞれ枢持され風向を左右方向に変換するガイドベーンからなる左右風向偏向板、(12a)は風路(13)の吹き出し口(4)側に設けられて電動機(18)により駆動されるクロスフローファンである。
【0019】
(119)は左右風向偏向板(8)の傾斜角度を変化させるステッピングモータからなる駆動手段、(120)は上下風向偏向板(7)の傾斜角度を変化させるステッピングモータからなる駆動手段である。
(121)は制御装置で、電動機(18)の回転速度指令部(122)と、駆動手段(119),(120)の駆動量検出部(123)及び駆動量指令部(124) が設けられている。
【0020】
上記のように構成された空気調和装置の風向調整装置においては、クロスフローファン(12a)から送り出される気流は左右風向偏向板(8)及び上下風向偏向板(7)によって気流方向が制御される。そして、左右風向偏向板(8)及び上下風向偏向板(7)は駆動手段(119),(120)によって偏向角度が変化し、また電動機(18)の回転速度は回転速度指令部(122)によって制御され、駆動手段(119),(120)の運動量は駆動量検出部(123)及び駆動量指令部(124)によって制御される。
また、図4に制御装置(121)における上記各指令部の指令内容の決定体系を示す。
【0021】
すなわち、冷房、暖房及び除湿等の運転条件選択、上下風向偏向角度選択、左右風向偏向角度選択及びクロスフローファン(12a)の回転速度選択、すなわち、運転モードの選択は、図示が省略してあるが各選択スイッチにより手動で選択される。なお、図4中に示す破線で囲まれた選択スイッチは自動選択も可能である。
そして、選択された各条件によって次に述べるような補正を加え、上下風向偏向角度、左右風向偏向角度及びクロスフローファン(12a)の回転速度が決定し各指令部から入力される。
【0022】
そして、実施例1の空気調和装置の風向調整装置の動作を図5に示すフローチャートによって説明する。すなわち、ステップS11で左右風向偏向板(8)偏向角度選択が行れ、右風向偏向板(8)は右方向、左風向偏向板(8)は左方向に最大に偏向したときを0パルスとして駆動手段(119),(120)によって駆動されて偏向角度が設定される。
次いでステップS12へ進み、駆動手段(119),(120)の入力値が160パルス以下又は420パルス以上のとき、すなわち、左右風向偏向板(8)の偏向角度が25°以上のときはステップS14へ進み、クロスフローファン(12a)の回転速度を規定よりも増速する。また、左右風向偏向板(8)の偏向角度が25°以下のときはステップS13へ進んで、クロスフローファン(12a)の回転速度が規定値に設定される。
【0023】
なお、左右風向偏向板(8)の偏向角度を25°以上偏向させたときには吹き出し気流が剥離して居室の空気が吹き出し口(4)内に流入するため、冷房時に着露が起こり易くなる。
また、吹き出し風量が少ない程、風速の低下から吹き出し口(4)内に高温の空気が流入し易くなる。また、吹き出し風量が少ない、すなわち本体(1)内部の熱交換器(5)を通過する風量が少ないと吹き出し気流温度が低下することは明らかであり、吹き出し気流温度の低下は吹き出し口(4)各部への着露を促進する。
このため、左右風向偏向板(8)の偏向角度が25°以上になったときはクロスフローファン(12a)の回転速度を規定よりも増速して、吹き出し気流温度を高くして居室の空気が吹き出し口(4)内に流入しないようにする。なお、以上の制御は特別な検出素子を要せず構成部品の追加を要することなく得ることができる。
【0024】
以上のような構成によって、左右方向の送風可能領域が制約されて狭くなることにより居室全体への送風が困難となって、温度の不均一が発生して快適性が損なわれるという問題点が解消される。そして、左右方向の送風可能領域が拡大することにより居室の快適性を向上することができる。
また、上記の制御は暖房時の風量低下を抑制して居室の床面への気流到達を可能にするので、居室の快適性を向上することができる。
【0025】
実施例2.
図6〜図8は、この発明の他の実施例を示す図で、図6はこの実施例の空気調和装置の風向調整装置の動作を説明するフローチャート、図7は図6の空気調和装置の送風状態を説明する斜視図、図8は図6の空気調和装置の他の送風状態を説明する斜視図であり、空気調和装置の風向調整装置は前述の図1〜図5と同様に構成されている。
上記のように構成された空気調和装置の風向調整装置の動作を図5に示すフローチャートによって説明する。
【0026】
すなわち、ステップS21で左右風向偏向板(8)の偏向角度が選択されてステップS22へ進み、左右風向偏向板(8)の偏向角度がy°以上でなければ、ステップS23へ進んでクロスフローファン(12a)の回転速度が規定値に設定される。
また、左右風向偏向板(8)の偏向角度がy°以上の場合は、ステップS24へ進み運転モードが暖房でなければステップS25へ進んで上下風向偏向板(7)の角度が規定値よりも下向きにされる。そして、ステップS24において運転モードが暖房であればステップS26へ進んで上下風向偏向板(7)の角度が規定値よりも上向きにされる。
【0027】
例えば、暖房時に一般的には温風が下向きに吹き出され、このときに上下風向偏向板(7)の角度が規定値であれば図7に示すように吹き出し気流の居室床面における到達位置は本体(1)から等距離、すなわち本体(1)を中心とする円弧上に配置される。
そして、図7から判るとおり吹き出し気流の居室床面における到達位置は左右風向偏向角度が大きいほど本体(1)据付面寄りに配置される。
【0028】
また、実施例2の構成において人体検知センサを用いて空気調和装置を基準として人のいる方向と、空気調和装置の据付面から人までの距離を検知して人のいる場所での快適性を向上させることが可能である。このような状況で左右風向偏向板(8)の偏向角度が大きいときに上下風向偏向板(7)の角度を上向きにして、吹き出し気流の到達位置精度を向上させて快適性を改善することができる。
なお、実施例2の構成では人体検知センサの検知エリアを考慮して左右風向偏向板(8)の偏向角度y°の値を30°と設定している。
【0029】
また、実施例2は人体検知センサを用いて空気調和装置の他、人体検知センサが搭載されていない空気調和装置においても気流方向制御精度の向上のために有効な作用を得ることができる。
さらに、運転モードに関わらず上下風向偏向角度が所定値よりも下向きである場合に、左右風向偏向板(8)の偏向角度を大きくして上下風向偏向板(7)の角度を上向きにして、吹き出し気流の到達位置精度を向上させて快適性を改善することができる。また、空気調和装置の特性を考慮した上で、左右風向偏向板(8)の偏向角度が所定値以上のときは、常に上下風向偏向板(7)の角度を上向きに補正することにより、吹き出し気流の到達位置精度を向上させて快適性を改善することができる。
【0030】
また、冷房時は一般的には上下風向偏向板(7)が上向きにして使用され、左右風向偏向角度が大きいときは吹き出し風量が減少し吹き出し風速が低下する。このため図8に示す矢印aのように吹き出された気流が居室内を循環せず、吸い込み口(3)から本体(1)内に吸い込まれ易くなる。この状態では吹き出し気流温度が低下して吹き出し口(4)各部への着露が発生し居室内の快適性が阻害される。
このような不具合を解決するため、上下風向偏向板(7)の角度を下向きに補正することにより吹き出し気流の吸い込み口(3)への流入を防止する。これにより、吹き出し気流が居室内を循環して快適環境を維持することができると共に、吹き出し口(4)各部の着露も防止できる。
【0031】
実施例3.
図9〜図12も、この発明の他の実施例を示す図で、図9はこの実施例の空気調和装置の風向調整装置の冷暖房時の左右風向偏向板の駆動領域を示す概念図、図10は図9に対応した左右風向偏向板の左右風向偏向例を示す概念図、図11は図9に対応して暖房時における居室床面上50cm温度分布を示す分布図、図12は図9に対応した左右風向偏向角度と風量の関係を示す特性図であり、空気調和装置の風向調整装置は前述の図1〜図5と同様に構成されている。
図9に示すように左右風向偏向板(8)が複数枚により構成された空気調和装置の風向調整装置において、図9に示す吹き出し口(4)に垂直な基準線Aを中心に、暖房時は居室内全域に送風可能な左右偏向角度40°まで左右風向偏向板(8)が駆動される。
【0032】
そして、暖房時の左右風向偏向板(8)の偏向駆動角度に対して、冷房時は吹き出し口(4)に着露が発生しない左右角度25°の範囲内で左右風向偏向板(8)が偏向駆動される。
これによって、冷房時は冷風の気流循環の良さから着露防止を重視して左右風向偏向板(8)の偏向駆動範囲を制限した場合においても充分快適な居室環境が得られる。また、暖房時においては居室内を循環しにくい温風が、偏向駆動範囲を広くした左右風向偏向板(8)によって居室内の必要な箇所に到達し迅速に加温することができる。
【0033】
また、図9〜図12の実施例は左右風向偏向板(8)の駆動体系が2系統であるので、吹き出し気流が拡散されることにより居室内の快適性を更に向上することができる。なお、図11aに左右風向偏向板(8)を異角度に設定して吹き出し気流を拡散させた場合と、図11bに左右風向偏向板(8)を等角度に設定した場合の、それぞれの居室床面上50cm温度分布を示す。
図11中に黒く塗りくぶされた位置に本体(1)が設置してあり、図10に対応させて本体(1)から右方向に送風した状態が示されている。また、図11中の斜線部分は温度分布の上から快適と判断される範囲であり、図11から明らかなように気流を拡散して送風したほうがより広範囲の快適空間が得られる。
【0034】
また、図12に左右風向偏向板(8)角度を等角度に設定した場合の気流の主流角度とクロスフローファン(12a)の同一回転速度における風量の関係を示す。図12から明らかなように左右を異角度に設定すると風向変化に対する風量低下が少ない。すなわち、左右風向偏向板(8)角度を等角度に設定するよりも温風の吹き出し風量が増し、性能面でも快適性の面からも優れているといえる。
なお、図9〜図12の実施例の場合は吹き出し気流を拡散したが、制御装置(121)の特性から吹き出し気流の縮流が効果的なときもある。
【0035】
実施例4.
図13及び図14も、この発明の他の実施例を示す図で、図13はこの実施例の空気調和装置の風向調整装置の動作を説明するフローチャート、図14は図13の空気調和装置の動作を示す左右風向偏向板の模式図であり、空気調和装置の風向調整装置は前述の図1〜図5と同様に構成されている。
すなわち、図9〜図12の実施例を次に述べる手法により冷房時の左右風向偏向板(8)の偏向駆動領域を拡大することが可能である。
上記のような空気調和装置の風向調整装置の動作を図13に示すフローチャートによって説明する。
【0036】
すなわち、ステップS31で運転モードが選択されてステップS32へ進み、冷房が選択されなければ、ステップS33へ進んで左右風向偏向板(8)の偏向角度が規定値に設定される。
また、冷房が選択されればステップS34へ進み左右風向偏向板(8)の偏向角度が25°以上でなければステップS33へ戻る。
また、ステップS34で左右風向偏向板(8)の偏向角度が25°以上であればステップS35へ進み、空気調和装置の起動から所定時間経過後に左右風向偏向板(8)の偏向角度を25°に設定する。
【0037】
例えば、左の左右風向偏向板(8)を左に、右の左右風向偏向板(8)を右に偏向した場合に空気調和装置の起動時においては、居室温度が高いため低温の吹き出し気流は人体に不快感を与えるため、居室の人を避けて送風することが望ましい。
また、逆に居室温度が設定温度付近になった安定時においては、吹き出し気流温度と居室温度の差が少ないために気流が人体に触れると快適感が増す。
【0038】
また、空気調和装置の起動時における快適性を増すため左右風向偏向板(8)の偏向角度を大きくし、その角度を維持して運転を継続した場合には左右風向偏向板(8)が障害となって吹き出し気流の剥離が発生する。これによって、吹き出し口(4)各部の着露の原因となるが、左右風向偏向板(8)の偏向角度を小さくすることにより着露を防止することができる。これによって吹き出し気流の剥離を解消し吹き出し口(4)各部の着露を防止することができる。
【0039】
以上のような理由から空気調和装置の起動時には、居室にいる人に不快感を与えないよう居室の壁に沿うように送風する。そして、居室温度が低下する所定時間経過後に左右風向偏向板(8)の偏向角度を25°に小さくすることにより、居室にいる人に気流感を与えると共に、吹き出し口(4)各部の着露を防止する。
なお、このような作用は、左右風向偏向板(8)が同一方向に偏向された場合、すなわち本体(1)の右方向又は左方向に送風されたときについても同様に得ることができる。
【0040】
実施例5.
図15〜図18も、この発明の他の実施例を示す図で、図15はこの実施例の空気調和装置の風向調整装置の動作を説明するフローチャート、図16は図15の空気調和装置の壁際据付例を示す平面図、図17は図15における送風状態を示す平面図、図18は図17における左右風向偏向板の偏向角度補正例を概念的に示す平面図であり、空気調和装置の風向調整装置は前述の図1〜図5と同様に構成されている。
すなわち、図9〜図12の実施例を次に述べる手法により本体(1)の据付位置による図9における基準線Aを補正することができる。
上記のような空気調和装置の風向調整装置の動作を図15に示すフローチャートによって説明する。
【0041】
すなわち、ステップS41において図16に示すように本体(1)の据付位置が左壁際か、右壁際か、それ以外かの据付状況を設定する。そして、ステップS42へ進み、左壁際又は右壁際でなければステップS43へ進んで左右風向偏向板(8)の偏向駆動基準線を0°に設定する。
また、ステップS42で左壁際又は右壁際であればステップS44へ進み図18に示すように左右風向偏向板(8)の偏向駆動基準線を壁のない方向に35°補正する。
【0042】
すなわち、本体(1)の左側面に壁があるか又は右側面に壁がある場合に壁方向への送風角が大きいと吹き出し気流は図17に実線で示すように流れ、居室内を循環せず吸い込み口(3)から吸い込まれる。また、本体(1)に図示が省略してあるが室温センサを有する場合は吹き出し口(4)から吹き出された冷温風が室温センサに直接当たって室温の誤検知を生じる可能性がある。このような状態では快適性並びに冷却及び加熱性能の両方の低下が発生することになる。
【0043】
これに対して、壁方向への送風角度を図17に破線で示すように壁面に、吹き出し気流が反射しない角度以下にすることによって気流の壁面反射を防止して吹き出し気流を居室内に循環させることができる。
これによって、快適性が向上すると共に、冷却及び加熱性能の両方の低下を防ぐことができる。
また、送風可能領域を壁のない方向へ拡大することができ、居室の隅々まで送風が可能となり本体(1)の据付位置に関わらずつねに居室のどの箇所へも送風することができる。
【0044】
【発明の効果】
この発明の請求項1記載の発明は以上説明したように、本体に設けられたクロスフローファンと、本体の吹出口に設けられてクロスフローファンからの吹き出し風を上下に偏向させる上下風向偏向板及び複数枚が相互に連結されて左右に偏向させる左右風向偏向板と、本体に設けられて左右風向偏向板の偏向角度を変化させる駆動手段と、この駆動手段による偏向角度の変化量を制御し左右風向偏向板の偏向角度が所定値よりも大きいときに冷房時には上下風向偏向板を下向き制御し、暖房時には上下風向偏向板を上向き制御する制御装置とを設けたものである。
【0045】
これによって、左右風向偏向板の偏向角度が所定値よりも大きいときに冷房時には上下風向偏向板が規定状態よりも下向きになり、暖房時には上下風向偏向板が規定状態よりも上向きになる。したがって、吹き出し気流の到達方向精度が向上し、また冷却、加熱性能の低下を防ぎ居室の快適性を向上する効果がある。
【0046】
また、この発明の請求項2記載の発明は以上説明したように、本体に設けられたクロスフローファンと、本体の吹出口に設けられてクロスフローファンからの吹き出し風を上下に偏向させる上下風向偏向板及び複数枚が相互に連結されて左右に偏向させる左右風向偏向板と、本体に設けられて左右風向偏向板の偏向角度を変化させる駆動手段と、この駆動手段による偏向角度の変化量を制御し冷房時には左右風向偏向板の偏向角度を縮小制御し、暖房時には左右風向偏向板の偏向角度を拡大制御する制御装置とを設けたものである。
【0047】
これによって、冷房時には左右風向偏向板の偏向角度が縮小され、暖房時には左右風向偏向板の偏向角度が拡大される。したがって、冷房時は冷風による着露が防止でき快適な居室環境が得られ、暖房時は温風が居室の必要箇所に到達して迅速に加温することができ居室の快適性を向上する効果がある。
【0048】
また、この発明の請求項3記載の発明は以上説明したように、本体に設けられたクロスフローファンと、本体の吹出口に設けられてクロスフローファンからの吹き出し風を上下に偏向させる上下風向偏向板及び複数枚が相互に連結されて左右に偏向させる左右風向偏向板と、本体に設けられて左右風向偏向板の偏向角度を変化させる駆動手段と、この駆動手段による偏向角度の変化量を制御し冷房時に左右風向偏向板の偏向角度が所定値よりも大きいときは冷房運転開始から所定時間経過後に左右風向偏向板の偏向角度を縮小制御する制御装置とを設けたものである。
【0049】
これによって、冷房時に左右風向偏向板の偏向角度が所定値よりも大きいときは冷房運転開始から所定時間経過後に左右風向偏向板の偏向角度が縮小される。これにより、冷房運転開始時には居室の中央を避けて送風され次第に中央寄りに送風される。したがって、冷房運転開始時には低温の吹き出し気流が人体に不快感を与えるため居室の人を避けて送風され、居室温度が設定温度付近になる安定時に吹き出し気流が人体にふれ、また、吹き出し口各部の着露が減少して居室の快適性を向上する効果がある。
【図面の簡単な説明】
【図1】 この発明の実施例1を示す空気調和装置の斜視図。
【図2】 図1の縦断側面拡大図。
【図3】 図1の空気調和装置の送風制御装置の模式図。
【図4】 図1の空気調和装置の送風制御体系図。
【図5】 図1の空気調和装置の動作を説明するフローチャート。
【図6】 この発明の実施例2を示す図で、空気調和装置の風向調整装置の動作を説明するフローチャート。
【図7】 図6の空気調和装置の送風状態を説明する斜視図。
【図8】 図6の空気調和装置の他の送風状態を説明する斜視図。
【図9】 この発明の実施例3を示す図で、空気調和装置の風向調整装置の冷暖房時の左右風向偏向板の偏向駆動領域を示す概念図。
【図10】 図9に対応した左右風向偏向板の左右風向偏向例を示す概念図。
【図11】 図9の構成における暖房時の居室床面上50cmの温度分布を示す分布図。
【図12】 図9に対応した左右風向偏向角度と風量の関係を示す特性図。
【図13】 この発明の実施例4を示す図で、空気調和装置の風向調整装置の動作を説明するフローチャート。
【図14】 図13の空気調和装置の動作を示す左右風向偏向板の模式図。
【図15】 この発明の実施例5を示す図で、空気調和装置の風向調整装置の動作を説明するフローチャート。
【図16】 図15の空気調和装置の壁際据付例を示す平面図。
【図17】 図15における送風状態を示す平面図。
【図18】 図17における左右風向偏向板の角度補正例を概念的に示す平面図。
【図19】 従来の空気調和装置を示す斜視図。
【図20】 従来の空気調和装置を示す横断面図。
【図21】 従来の空気調和装置を示す縦断面図。
【図22】 従来の風向調整装置の右側ガイドベーン付近の詳細説明図。
【図23】 従来の風向調整装置のガイドベーンの斜視図。
【図24】 従来の空気調和機の風向変更装置を示す横断面図。
【図25】 図24の装置の動作状態を説明した図。
【符号の説明】
4 吹出口、 7 上下風向偏向板、 8 ガイドベーン、左右風向偏向板、 12a クロスフローファン、 119 駆動手段、 120 駆動手段、 121 制御装置。[0001]
[Industrial application fields]
The present invention relates to a wind direction adjusting device for an air conditioner provided at an outlet.
[0002]
[Prior art]
19 to 21 are views showing a conventional air direction adjusting device of an air conditioner disclosed in Japanese Utility Model Publication No. 58-69735, for example. FIG. 19 is a perspective view of the air conditioner main body, and FIG. FIG. 21 is a longitudinal sectional view of FIG.
In the figure, (1) is the air conditioner main body, (2) is a front panel that covers the front of the main body (1) and has a suction port (3), and (4) is a blower that has an opening at the lower front of the main body (1). (5) is a heat exchanger disposed facing the suction port (3), (6) is a casing provided in the main body (1) and forms an air passage (13), (7) is a blower It is pivotally attached to the left and right side walls (11) and (15) of the front panel (2) by the shaft (16) provided at the left and right ends provided at the outlet (4) to convert the wind direction into horizontal, right below and diagonal directions. Change vanes, (8) are guide vanes that are arranged in parallel between the walls (10), (14) on the left and right sides of the blowing nozzle (9) and are pivotally supported by the pivot shaft (17), 9) is disposed below the casing (6) and forms an air passage with the casing (6), and (12) is installed on the air outlet (4) side of the air passage (13), and the electric motor (18) The blower driven by (19) is a coil spring locked to the shaft (16).
22 is a detailed explanatory view of the vicinity of the right guide vane of FIG. 21, and FIG. 23 is a perspective view of the guide vane shown in FIG.
In the drawing, (20) is a left / right changing rod pivotally attached to a guide vane (8) by a shaft (21) and directing a plurality of guide vanes (8) to left and right arbitrary angles at the same time.
[0003]
Next, the operation will be described. The conventional air conditioner is configured as described above, and when the blower (12) is driven, the indoor air is sucked from the suction port (3), passes through the heat exchanger (5), and is cooled during cooling. During heating, the temperature is raised, and the air passage (13) is lowered and blown out into the room through the outlet (4). This wind flow is indicated by an arrow U. The vertical direction of the wind is adjusted by the change vane (7), and the horizontal direction is adjusted by the guide vane (8). Here, the guide vane (8), the shaft (21) pivotally supporting the left / right changing rod (20), and the shaft (17) pivotally supporting the guide vane (8) each form a fixed distance. Therefore, all the guide vanes (8) are controlled to face in the same direction because of the displacement amount + A applied to the left / right changing rod (20).
Here, the change vane (7) and guide vane (8) cannot be exposed to the outside from the front panel (2) due to design restrictions, and the change vane (7) also serves as a cover that closes the outlet. In order to do so, it is necessary to arrange it at the outermost outlet. Therefore, the guide vane (8) has to be arranged further to the rear side than the outlet port than the change vane (7). As shown in FIG. 22, the action of the wind direction adjusting device in this case is, for example, changing the left / right changing rod (20) to the right by the displacement amount + A and directing the guide vane (8) so that the wind blows to the right. In this case, the light hits the wall surface (14) on the right side of the rightmost nozzle (9) and the right wall surface (15) of the front panel (2), or is deflected into a straight forward flow and blown out. Here, the flow of wind in the direction toward the guide vane is W 2 The flow of the wind that is reflected by hitting the right wall surface (15) or deflected in a straight forward flow is blown 2 And Blowing flow W set by guide vane (8) 2 Is the flow V that is blown off while reflecting off the right wall surface (15) at the rightmost end. 2 Under the influence of (V 2 + W 2 ) In the vector composition direction. Therefore, even if the blowing air direction is set to the left and right diagonal directions of the air conditioner, this (V 2 + W 2 ), It was deflected in the front direction of the air conditioner, and the blowing direction could not be set accurately.
[0004]
FIGS. 24 and 25 show another conventional air conditioner air direction change device disclosed in Japanese Utility Model Publication No. 63-147650, for example. FIG. 24 is a cross-sectional view, and FIG. It is the figure explaining the operation state of the apparatus of. In the figure, (201) is an air outlet, (202) is an inner wall of the air outlet (201), (203) is a vane in which a plurality of sheets are arranged at substantially equal intervals on the air outlet (201) to change the wind direction. As shown in FIG. 24, a set of a plurality of sheets is provided on the left and right in FIG.
Reference numeral (204) denotes a shaft that is erected on the inner wall (202) and disposed on each of the vanes (203), and pivots near one end of the edge on one side of the vane (203).
[0005]
(205) is a connecting arm that connects a pair of vanes (203), provided with a connecting shaft (206) that supports the other end of the edge where the shaft (204) of each vane (203) is disposed. 24, the distance between the shaft (204) of the vane (203) near the center and the connecting shaft (206) in FIG. 24 is the same as the shaft (204) and the connecting shaft (206) of the outer vane (203) in FIG. 24, and is inclined with respect to the line connecting the axes (204) of the vanes (203) as shown in FIG.
[0006]
Other conventional air conditioner wind direction changing devices shown in FIGS. 24 and 25 are configured as described above. As shown in FIG. 25, a pair of left and right vanes (203) are arranged so that the lower side in FIG. Used to arrange. In this state, the inclination of the vane (203) closer to the center in FIG. 25 is closer to the horizontal than the vane (203) closer to the outer side, so the wind direction angle deflected by each vane (203) is also indicated by the solid line in FIG. Thus, the inclination of the vane (203) closer to the center is closer to the horizontal than the vane (203) closer to the outer side.
In addition, since a narrow gap is formed in the middle part of the pair of vanes (203), the wind (207) blown out from this gap does not flow smoothly and becomes weak, and the surrounding secondary air (208) is reduced. Dew (209) is generated in the entrainment vane (203).
[0007]
[Problems to be solved by the invention]
In the wind direction adjusting device of the conventional air conditioner as described above, when the left and right deflection rod (20) is largely displaced, the pressure loss due to the guide vane (8) increases, and the air outlet (4 ) Significantly reduces the amount of air blown out. Thereby, especially at the time of heating, the warm air rises and does not reach the floor of the living room.
In addition, since the temperature of the blowing air decreases during cooling, dew adheres to each part of the air outlet (4) and the main body (1) and drops into the operating room, or it may cause wrinkles in the room. Or Then, the blown airflow falls on the floor surface near the air conditioner as compared with the case where the blowout airflow is blown to the front, thereby reducing the accuracy of the airflow direction control.
[0008]
In addition, since the wind direction is largely regulated by the guide vanes (8), the air flow is separated and dewed on each part of the air outlet (4) during cooling. Furthermore, when the air conditioner is installed near the wall of the living room, the airflow is reflected from the wall and sucked from the suction port (3), so that the airflow does not circulate in the living room and a comfortable environment cannot be obtained.
In order to prevent the above problems, it is necessary to regulate the deflection angle of the right and left wind direction deflecting plates. On the other hand, the conventional structure has a structure in which the deflection angle of the right and left wind direction deflecting plates does not rotate more than the regulation angle. For this reason, for example, even during heating without dew condensation, it becomes impossible to blow air beyond this deflection angle by regulating the deflection angle of the right and left wind direction deflecting plates during cooling.
[0009]
Further, the angle of air blowing in the direction of no wall is restricted when the air conditioner is installed near the wall by the restriction of the deflection angle of the right and left wind direction deflecting plates.
For the above reasons, the air blowing area in the left and right direction is restricted and narrowed, so that it is difficult to blow air to the entire room, and there is a problem that the temperature is uneven and the comfort is impaired. .
[0010]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a wind direction adjusting device for an air conditioner that expands the air blowing area in the left-right direction and improves the comfort of the room. There is to get.
[0011]
[Means for Solving the Problems]
In addition, this
[0012]
In addition, this
[0013]
In addition, this
[0014]
[Action]
In the air direction adjusting device for an air conditioner according to
[0015]
In the air direction adjusting device of the air conditioner according to
[0016]
In the air conditioner of the air conditioner according to
【Example】
[0017]
Example 1.
1 to 5 are views showing an embodiment of the present invention. FIG. 1 is a perspective view of the air conditioner, FIG. 2 is an enlarged vertical side view of FIG. 1, and FIG. 3 is a blower of the air conditioner of FIG. FIG. 4 is a schematic diagram of the control device, FIG. 4 is a ventilation control system diagram of the air conditioner of FIG. 1, and FIG. 5 is a flowchart for explaining the operation of the air conditioner of FIG. In the figure, (1) is the main body, (2) is a front panel that covers the front of the main body (1) and has a suction port (3), (4) is a blowout port that opens at the lower front of the main body (1), (5 ) Is a heat exchanger disposed facing the suction port (3), and (6) is a casing provided in the main body (1) to form an air passage (13).
[0018]
(7) consists of a change vane which is provided at the outlet (4) and pivotally attached to the left and right side walls of the outlet (4) by means of shafts attached to the left and right ends to convert the wind direction into horizontal, directly below and diagonal directions. Up and down wind direction deflecting plate, (8) is a left and right wind direction deflecting plate consisting of guide vanes that are arranged in parallel between the walls of the left and right end portions of the outlet (4) and are respectively supported and convert the wind direction to the left and right direction, (12a) is a cross-flow fan that is provided on the air outlet (4) side of the air passage (13) and is driven by the electric motor (18).
[0019]
(119) is a driving means comprising a stepping motor for changing the inclination angle of the right and left wind direction deflecting plate (8), and (120) is a driving means comprising a stepping motor for changing the inclination angle of the up and down air direction deflecting plate (7).
(121) is a control device, which includes a rotation speed command unit (122) of the electric motor (18), a drive amount detection unit (123) and a drive amount command unit (124) of the drive means (119) and (120). ing.
[0020]
In the air direction adjustment device of the air conditioner configured as described above, the air flow direction of the air flow sent from the cross flow fan (12a) is controlled by the left and right wind direction deflecting plate (8) and the upper and lower air direction deflecting plate (7). . The left and right wind direction deflecting plates (8) and the upper and lower wind direction deflecting plates (7) have their deflection angles changed by driving means (119) and (120), and the rotational speed of the electric motor (18) is the rotational speed command section (122). The momentums of the drive means (119) and (120) are controlled by the drive amount detection unit (123) and the drive amount command unit (124).
FIG. 4 shows a system for determining the command contents of each command unit in the control device (121).
[0021]
That is, selection of operating conditions such as cooling, heating and dehumidification, selection of the vertical and vertical wind direction deflection angles, selection of the right and left wind direction deflection angles, and selection of the rotational speed of the cross flow fan (12a), i.e., selection of the operation mode are omitted. Are manually selected by each selection switch. Note that the selection switch surrounded by a broken line shown in FIG. 4 can be automatically selected.
Then, the following correction is made according to each selected condition, and the vertical and horizontal wind direction deflection angles, the left and right wind direction deflection angles, and the rotational speed of the cross flow fan (12a) are determined and input from each command unit.
[0022]
And operation | movement of the wind direction adjustment apparatus of the air conditioning apparatus of Example 1 is demonstrated with the flowchart shown in FIG. That is, in step S11, the left / right wind direction deflector (8) deflection angle is selected, the right wind direction deflector (8) is deflected to the right, and the left wind direction deflector (8) is deflected to the left in the maximum direction as 0 pulse. Driven by the driving means (119), (120), the deflection angle is set.
Next, the process proceeds to step S12, and when the input value of the driving means (119), (120) is 160 pulses or less or 420 pulses or more, that is, when the deflection angle of the left and right wind direction deflecting plate (8) is 25 ° or more, step S14. Proceed to, and increase the rotational speed of the cross flow fan (12a) more than specified. When the deflection angle of the left and right wind direction deflecting plate (8) is 25 ° or less, the routine proceeds to step S13, where the rotational speed of the cross flow fan (12a) is set to a specified value.
[0023]
Note that when the deflection angle of the right and left wind direction deflecting plate (8) is deflected by 25 ° or more, the blown airflow is separated and the air in the room flows into the blowout port (4), so that dew condensation is likely to occur during cooling.
In addition, the smaller the amount of blown air, the easier it is for hot air to flow into the blowout port (4) due to a decrease in the wind speed. In addition, it is clear that the blowing air temperature decreases when the blowing air volume is small, that is, when the air flow passing through the heat exchanger (5) inside the main body (1) is small. Promote dew condensation on each part.
For this reason, when the deflection angle of the right and left wind direction deflecting plate (8) becomes 25 ° or more, the rotational speed of the cross flow fan (12a) is increased more than specified, and the blowing air temperature is increased to increase the air in the room. Does not flow into the outlet (4). In addition, the above control can be obtained without requiring a special detection element and without adding a component.
[0024]
With the configuration as described above, the air blowing area in the left-right direction is restricted and narrowed, making it difficult to blow air to the entire room, resulting in non-uniform temperature and loss of comfort. Is done. And the comfort of a living room can be improved by expanding the ventilation possible area | region of the left-right direction.
Moreover, since said control suppresses the air volume fall at the time of heating and enables the airflow arrival to the floor surface of a living room, the comfort of a living room can be improved.
[0025]
Example 2
6 to 8 are diagrams showing other embodiments of the present invention, FIG. 6 is a flowchart for explaining the operation of the air direction adjusting device of the air conditioner of this embodiment, and FIG. 7 is a flowchart of the air conditioner of FIG. FIG. 8 is a perspective view illustrating another air blowing state of the air conditioner of FIG. 6, and the air direction adjusting device of the air conditioner is configured in the same manner as in FIGS. 1 to 5 described above. ing.
The operation of the wind direction adjusting device of the air conditioner configured as described above will be described with reference to the flowchart shown in FIG.
[0026]
That is, in step S21, the deflection angle of the right and left wind direction deflecting plate (8) is selected and the process proceeds to step S22. The rotation speed of (12a) is set to a specified value.
If the deflection angle of the left and right wind direction deflecting plate (8) is y ° or more, the process proceeds to step S24, and if the operation mode is not heating, the process proceeds to step S25 and the angle of the up and down wind direction deflecting plate (7) is larger than the specified value. Be faced down. Then, if the operation mode is heating in step S24, the process proceeds to step S26, and the angle of the up / down wind direction deflecting plate (7) is set higher than the specified value.
[0027]
For example, generally when warm air is blown downward during heating, and the angle of the vertical wind direction deflecting plate (7) is a specified value at this time, the arrival position of the blown airflow on the floor surface of the room is as shown in FIG. They are arranged equidistant from the main body (1), that is, on an arc centered on the main body (1).
Then, as can be seen from FIG. 7, the arrival position of the blown airflow on the floor surface of the room is arranged closer to the main body (1) installation surface as the right and left wind direction deflection angle is larger.
[0028]
Further, in the configuration of the second embodiment, the human body detection sensor is used to detect the direction of the person with respect to the air conditioner and the distance from the installation surface of the air conditioner to the person to improve the comfort in the place where the person is present. It is possible to improve. In such a situation, when the deflection angle of the right and left wind direction deflecting plate (8) is large, the angle of the up and down wind direction deflecting plate (7) is directed upward to improve the arrival position accuracy of the blown airflow and improve comfort. it can.
In the configuration of the second embodiment, the value of the deflection angle y ° of the left and right wind direction deflecting plate (8) is set to 30 ° in consideration of the detection area of the human body detection sensor.
[0029]
In addition, the second embodiment can obtain an effective action for improving the airflow direction control accuracy even in an air conditioner using a human body detection sensor, as well as an air conditioner in which no human body detection sensor is mounted.
Furthermore, regardless of the operation mode, when the vertical wind direction deflection angle is downward than a predetermined value, the deflection angle of the left and right wind direction deflection plate (8) is increased to make the vertical wind direction deflection plate (7) angle upward, Comfortability can be improved by improving the arrival position accuracy of the blowout airflow. Also, taking into account the characteristics of the air conditioner, when the deflection angle of the left and right wind direction deflecting plate (8) is greater than or equal to a predetermined value, the angle of the vertical wind direction deflecting plate (7) is always corrected upward to Comfortability can be improved by improving the accuracy of the arrival position of the airflow.
[0030]
Further, during cooling, the vertical wind direction deflecting plate (7) is generally used upward, and when the left and right wind direction deflection angle is large, the amount of blown air is reduced and the blown air velocity is lowered. For this reason, the airflow blown out as shown by the arrow a shown in FIG. 8 does not circulate in the living room, and is easily sucked into the main body (1) from the suction port (3). In this state, the temperature of the blowout airflow is reduced, and dew condensation occurs on each part of the blowout port (4), thereby impairing the comfort in the room.
In order to solve such a problem, the inflow of the blown airflow into the suction port (3) is prevented by correcting the angle of the vertical wind direction deflecting plate (7) downward. Thereby, the blowing airflow can circulate in the room and maintain a comfortable environment, and also the dew condensation on each part of the blowing port (4) can be prevented.
[0031]
Example 3
FIGS. 9 to 12 are also diagrams showing another embodiment of the present invention. FIG. 9 is a conceptual diagram showing a driving region of the left and right wind direction deflecting plates during cooling and heating of the air direction adjusting device of the air conditioner of this embodiment. 10 is a conceptual diagram showing an example of left and right wind direction deflection of the left and right wind direction deflecting plate corresponding to FIG. 9, FIG. 11 is a distribution diagram showing a 50 cm temperature distribution on the floor of the room during heating, corresponding to FIG. 9, and FIG. Is a characteristic diagram showing the relationship between the right and left wind direction deflection angle and the air volume corresponding to the above, and the air direction adjusting device of the air conditioner is configured in the same manner as in FIGS.
As shown in FIG. 9, in a wind direction adjusting device of an air conditioner comprising a plurality of right and left wind direction deflecting plates (8), the heating is performed around a reference line A perpendicular to the outlet (4) shown in FIG. The right and left wind direction deflecting plate (8) is driven up to a right and left deflection angle of 40 ° capable of blowing air over the entire room.
[0032]
The left and right wind direction deflecting plates (8) are within a range of 25 ° in the left and right angle where no dew condensation occurs at the air outlet (4) during cooling with respect to the deflection driving angle of the left and right wind direction deflecting plates (8) during heating. Driven by deflection.
As a result, a sufficiently comfortable room environment can be obtained even when the deflection drive range of the right and left wind direction deflecting plates (8) is limited with an emphasis on prevention of dew condensation due to the good circulation of the cool air during cooling. In addition, warm air, which is difficult to circulate in the room during heating, can reach a required location in the room and be quickly heated by the right and left wind direction deflecting plates (8) having a wide deflection drive range.
[0033]
Moreover, since the embodiment of FIGS. 9-12 has two drive systems of the right-and-left wind direction deflection | deviation plate (8), the comfort in a living room can further be improved by diffusing blowing airflow. 11a, the left and right wind direction deflecting plates (8) are set at different angles to diffuse the blown air flow, and the left and right wind direction deflecting plates (8) are set at the same angle in FIG. 11b. The temperature distribution on the floor is 50 cm.
In FIG. 11, the main body (1) is installed at a position painted black, and a state in which air is blown rightward from the main body (1) is shown corresponding to FIG. In addition, the shaded area in FIG. 11 is a range that is determined to be comfortable from the temperature distribution, and as is clear from FIG.
[0034]
FIG. 12 shows the relationship between the mainstream angle of the airflow and the airflow at the same rotational speed of the crossflow fan (12a) when the left and right wind direction deflecting plate (8) angles are set to be equal. As can be seen from FIG. 12, when the left and right are set at different angles, there is little decrease in the air volume with respect to changes in the wind direction. That is, it can be said that the amount of warm air blown out is larger than that of setting the right and left wind direction deflecting plate (8) at an equal angle, which is superior in terms of both performance and comfort.
9 to 12, the blown airflow is diffused. However, in some cases, the flow of the blown airflow is effective due to the characteristics of the control device (121).
[0035]
Example 4
FIGS. 13 and 14 also show another embodiment of the present invention. FIG. 13 is a flowchart for explaining the operation of the wind direction adjusting device of the air conditioner of this embodiment. FIG. 14 is a flowchart of the air conditioner of FIG. It is a schematic diagram of the right and left wind direction deflecting plate showing the operation, and the wind direction adjusting device of the air conditioner is configured in the same manner as in FIGS.
That is, it is possible to expand the deflection drive region of the left and right wind direction deflecting plate (8) during cooling by the method described below in the embodiment of FIGS.
The operation of the air direction adjusting device for an air conditioner as described above will be described with reference to the flowchart shown in FIG.
[0036]
That is, if the operation mode is selected in step S31, the process proceeds to step S32, and if the cooling is not selected, the process proceeds to step S33, and the deflection angle of the left and right wind direction deflecting plates (8) is set to a specified value.
If cooling is selected, the process proceeds to step S34, and if the deflection angle of the left and right wind direction deflecting plate (8) is not 25 ° or more, the process returns to step S33.
If the deflection angle of the left and right wind direction deflecting plate (8) is 25 ° or more in step S34, the process proceeds to step S35, and after a predetermined time has elapsed since the start of the air conditioner, the deflection angle of the left and right wind direction deflecting plate (8) is 25 °. Set to.
[0037]
For example, if the left and right wind direction deflector plate (8) is deflected to the left and the right and left wind direction deflector plate (8) is deflected to the right, when the air conditioner starts up, the room temperature is high, so the cold blowout airflow is In order to give an unpleasant feeling to the human body, it is desirable to blow away from people in the room.
On the contrary, when the room temperature is close to the set temperature, the difference between the blowout airflow temperature and the room temperature is small, so that the comfortable feeling increases when the airflow touches the human body.
[0038]
In order to increase the comfort when starting the air conditioner, if the deflection angle of the right and left wind direction deflecting plate (8) is increased and the operation is continued while maintaining that angle, the left and right wind direction deflecting plate (8) will be obstructed. As a result, separation of the blown airflow occurs. This causes dew condensation on each part of the air outlet (4), but dew condensation can be prevented by reducing the deflection angle of the right and left wind direction deflecting plates (8). As a result, peeling of the blowout airflow can be eliminated, and dew condensation on each part of the blowout port (4) can be prevented.
[0039]
For the reasons described above, when the air conditioner is activated, air is blown along the wall of the living room so as not to cause discomfort to the people in the living room. Then, by reducing the deflection angle of the right and left wind direction deflecting plate (8) to 25 ° after a lapse of a predetermined time during which the room temperature decreases, a feeling of airflow is given to the person in the room and the air outlet (4) is exposed to each part. To prevent.
Such an action can be similarly obtained when the left and right wind direction deflecting plates (8) are deflected in the same direction, that is, when the air is blown rightward or leftward of the main body (1).
[0040]
FIGS. 15 to 18 are diagrams showing another embodiment of the present invention. FIG. 15 is a flowchart for explaining the operation of the air direction adjusting device of the air conditioner of this embodiment. FIG. 16 is a flowchart of the air conditioner of FIG. FIG. 17 is a plan view showing an air blowing state in FIG. 15, FIG. 18 is a plan view conceptually showing an example of deflection angle correction of the left and right wind direction deflecting plates in FIG. The wind direction adjusting device is configured in the same manner as in FIGS.
That is, the reference line A in FIG. 9 according to the installation position of the main body (1) can be corrected by the method described below in the embodiments of FIGS.
The operation of the air direction adjusting device of the air conditioner as described above will be described with reference to the flowchart shown in FIG.
[0041]
That is, in step S41, as shown in FIG. 16, the installation status is set to determine whether the installation position of the main body (1) is near the left wall, near the right wall, or the other. Then, the process proceeds to step S42, and if it is not near the left wall or the right wall, the process proceeds to step S43, and the deflection drive reference line of the left and right wind direction deflector plate (8) is set to 0 °.
If it is near the left wall or the right wall in step S42, the process proceeds to step S44, and the deflection drive reference line of the left and right wind direction deflecting plate (8) is corrected by 35 ° in the direction without a wall as shown in FIG.
[0042]
That is, if there is a wall on the left side of the main body (1) or a wall on the right side and the air blowing angle in the wall direction is large, the blown airflow will flow as shown by the solid line in FIG. It is sucked from the suction port (3). Further, although not shown in the figure, the main body (1) may have a room temperature sensor, and cold / warm air blown from the air outlet (4) may directly hit the room temperature sensor and cause erroneous detection of the room temperature. In such a situation, both comfort and cooling and heating performance will be degraded.
[0043]
On the other hand, as shown by a broken line in FIG. 17, the air blowing angle in the wall direction is made less than the angle at which the blown airflow is not reflected on the wall surface, thereby preventing the airflow from reflecting on the wall surface and circulating the blown airflow into the living room. be able to.
This improves comfort and prevents both cooling and heating performance from decreasing.
Further, the air blowing area can be expanded in a direction without a wall, and air can be blown to every corner of the living room, so that air can always be blown to any part of the living room regardless of the installation position of the main body (1).
[0044]
【The invention's effect】
Of this
[0045]
Accordingly, when the deflection angle of the left and right wind direction deflecting plates is larger than a predetermined value, the upper and lower air direction deflecting plates are directed downward from the specified state during cooling, and during heating, the upper and lower wind direction deflecting plates are directed upward from the defined state. Therefore, the direction accuracy of the blown airflow is improved, and the cooling and heating performance is prevented from being lowered and the comfort of the living room is improved.
[0046]
In addition, this
[0047]
This reduces the deflection angle of the left and right wind direction deflecting plates during cooling, and increases the deflection angle of the left and right wind direction deflecting plates during heating. Therefore, it is possible to prevent dew condensation due to cold air during cooling and to obtain a comfortable living room environment, and during heating, warm air can reach the necessary part of the room and quickly heat it, improving the comfort of the room There is.
[0048]
In addition, this
[0049]
Accordingly, when the deflection angle of the left and right wind direction deflection plates is larger than a predetermined value during cooling, the deflection angle of the left and right wind direction deflection plates is reduced after a predetermined time has elapsed since the start of the cooling operation. As a result, at the start of the cooling operation, the air is blown away from the center of the living room and gradually blown toward the center. Therefore, at the start of the cooling operation, the low temperature blown airflow causes the human body to be uncomfortable and is blown away from the people in the room. There is an effect of reducing the condensation and improving the comfort of the room.
[Brief description of the drawings]
FIG. 1 is a perspective view of an air-conditioning
FIG. 2 is an enlarged vertical side view of FIG. 1;
3 is a schematic diagram of a blower control device of the air conditioner of FIG. 1. FIG.
FIG. 4 is a ventilation control system diagram of the air conditioner of FIG. 1;
FIG. 5 is a flowchart for explaining the operation of the air conditioning apparatus of FIG. 1;
FIG. 6 is a diagram illustrating the second embodiment of the present invention, and is a flowchart for explaining the operation of the air direction adjusting device of the air conditioner.
7 is a perspective view for explaining a blowing state of the air conditioner of FIG. 6. FIG.
FIG. 8 is a perspective view for explaining another air blowing state of the air conditioner of FIG.
FIG. 9 is a diagram showing a third embodiment of the present invention, and is a conceptual diagram showing a deflection drive region of a left and right wind direction deflector plate during cooling and heating of a wind direction adjusting device of an air conditioner.
10 is a conceptual diagram showing an example of left and right wind direction deflection of a left and right wind direction deflecting plate corresponding to FIG. 9;
11 is a distribution diagram showing a temperature distribution of 50 cm above the floor of a room during heating in the configuration of FIG.
FIG. 12 is a characteristic diagram showing the relationship between the right and left wind direction deflection angles and the air volume corresponding to FIG. 9;
FIG. 13 is a
14 is a schematic diagram of a left and right wind direction deflecting plate showing the operation of the air conditioner of FIG. 13;
FIG. 15 is a
16 is a plan view showing a wall-side installation example of the air-conditioning apparatus of FIG.
FIG. 17 is a plan view showing the air blowing state in FIG. 15;
18 is a plan view conceptually showing an example of angle correction of the left and right wind direction deflecting plates in FIG. 17. FIG.
FIG. 19 is a perspective view showing a conventional air conditioner.
FIG. 20 is a cross-sectional view showing a conventional air conditioner.
FIG. 21 is a longitudinal sectional view showing a conventional air conditioner.
FIG. 22 is a detailed explanatory view of the vicinity of the right guide vane of the conventional wind direction adjusting device.
FIG. 23 is a perspective view of a guide vane of a conventional wind direction adjusting device.
FIG. 24 is a cross-sectional view showing a wind direction changing device of a conventional air conditioner.
FIG. 25 is a diagram for explaining the operating state of the apparatus shown in FIG. 24;
[Explanation of symbols]
4 air outlets, 7 vertical air direction deflecting plates, 8 guide vanes, left and right air direction deflecting plates, 12a cross flow fan, 119 driving means, 120 driving means, 121 control device.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002186592A JP3784753B2 (en) | 1992-08-26 | 2002-06-26 | Air conditioner wind direction adjusting device |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22728092 | 1992-08-26 | ||
JP4-227280 | 1992-08-26 | ||
JP5-45142 | 1993-03-05 | ||
JP4514293 | 1993-03-05 | ||
JP2002186592A JP3784753B2 (en) | 1992-08-26 | 2002-06-26 | Air conditioner wind direction adjusting device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20941993A Division JP3446255B2 (en) | 1992-08-26 | 1993-08-24 | Air conditioner wind direction adjustment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003014287A JP2003014287A (en) | 2003-01-15 |
JP3784753B2 true JP3784753B2 (en) | 2006-06-14 |
Family
ID=27292129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002186592A Expired - Lifetime JP3784753B2 (en) | 1992-08-26 | 2002-06-26 | Air conditioner wind direction adjusting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3784753B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007247947A (en) * | 2006-03-15 | 2007-09-27 | Matsushita Electric Ind Co Ltd | Control method of air conditioner |
JP6085998B2 (en) * | 2013-03-07 | 2017-03-01 | 株式会社富士通ゼネラル | Air conditioner |
CN108679723A (en) * | 2018-06-15 | 2018-10-19 | 珠海格力电器股份有限公司 | Air conditioner with movable air outlet |
CN109668257B (en) * | 2018-12-20 | 2021-04-09 | 广东美的制冷设备有限公司 | Control method of air conditioner, air conditioner and storage medium |
CN111637600B (en) * | 2019-03-01 | 2022-04-19 | 青岛海尔空调器有限总公司 | Air conditioner parameter optimization method |
CN110296471B (en) * | 2019-07-31 | 2023-09-26 | 广东美的制冷设备有限公司 | Shutter assembly, air conditioner indoor unit with shutter assembly and air conditioner |
JP2022053293A (en) * | 2020-09-24 | 2022-04-05 | ダイキン工業株式会社 | Floor-standing air conditioner |
-
2002
- 2002-06-26 JP JP2002186592A patent/JP3784753B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003014287A (en) | 2003-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107314452B (en) | Wall-mounted indoor unit and air conditioner | |
JP6137254B2 (en) | Air conditioning indoor unit | |
EP0825390B1 (en) | Air conditioner indoor unit | |
JP6702255B2 (en) | Air conditioning indoor unit | |
JP3432022B2 (en) | Air conditioner | |
CN108027165B (en) | Indoor unit of air conditioner | |
JP2017125678A5 (en) | ||
JPH06313614A (en) | Air direction adjustment device for air conditioner | |
JP3784753B2 (en) | Air conditioner wind direction adjusting device | |
JPH0650595A (en) | Air conditioner | |
WO2024159766A1 (en) | Air conditioner indoor unit | |
JP3137042B2 (en) | Airflow control method and airflow control device for indoor unit of air conditioner | |
JPH06159786A (en) | Wind direction control device for air conditioner | |
JPH0421100B2 (en) | ||
JP2953457B2 (en) | Air conditioner | |
KR19990042899A (en) | Wind direction control method of air conditioner | |
JP4729874B2 (en) | Air conditioner | |
JPH04356628A (en) | Air conditioner | |
JP2000337692A (en) | Air conditioner | |
JP2000193301A (en) | Wind direction regulator for air conditioner | |
JPH07158907A (en) | Air-conditioning machine | |
JPH0960949A (en) | Air conditioner and its actuation method | |
JPH0468258A (en) | Operation control device for air conditioning apparatus | |
JP2545590Y2 (en) | Air conditioner wind direction deflector | |
JPH06193900A (en) | Room machine of air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060315 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140324 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |