JP3784664B2 - Variable attenuator - Google Patents

Variable attenuator Download PDF

Info

Publication number
JP3784664B2
JP3784664B2 JP2001160699A JP2001160699A JP3784664B2 JP 3784664 B2 JP3784664 B2 JP 3784664B2 JP 2001160699 A JP2001160699 A JP 2001160699A JP 2001160699 A JP2001160699 A JP 2001160699A JP 3784664 B2 JP3784664 B2 JP 3784664B2
Authority
JP
Japan
Prior art keywords
control voltage
amount
rom
attenuation
variable attenuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001160699A
Other languages
Japanese (ja)
Other versions
JP2002353765A (en
Inventor
通明 笠原
護重 檜枝
賢一 宮口
英司 谷口
義忠 伊山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001160699A priority Critical patent/JP3784664B2/en
Publication of JP2002353765A publication Critical patent/JP2002353765A/en
Application granted granted Critical
Publication of JP3784664B2 publication Critical patent/JP3784664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は可変減衰器に関し、特に、マイクロ波帯及びミリ波帯において信号の振幅を電気的に変化させるための可変減衰器に関するものである。
【0002】
【従来の技術】
可変減衰器は、レーダーや通信装置などの送受信器において、必要とする送信電力や受信電力を得るための、高周波信号の振幅制御用に広く用いられている。一方、複数のアンテナ素子の各々に接続されている送受信器と移相器を用い、高周波信号の位相を制御することでアンテナの指向方向を変えるフェーズドアレイアンテナにおいては、移相量の誤差はアンテナの指向方向の誤差要因となるため、送受信器の構成品の一部である可変減衰器においても、減衰量を可変した場合の通過位相量の変動を極力少なくする必要がある。
【0003】
図8は、例えば特開平8−162886号公報に示された従来の可変減衰器の構成を示したものである。図において、101a及び101bは高周波信号入出力端子、102は可変減衰器、103は位相調整器、104は制御信号入力端子、105はA/D変換器、106はマイクロプロセッサユニット、107はROM、108a及び108bはD/A変換器である。
【0004】
次に動作について説明する。高周波信号入出力端子101aに入力された高周波信号は、可変減衰器102を経て位相調整器103に入力され、位相補償を与えられた後、高周波信号入出力端子101bから出力される。ここで、減衰量を制御するために制御信号入力端子104から入力される制御信号は、A/D変換器105でデジタルデータに変換され、この変換されたデジタルデータはさらにマイクロプロセッサユニット106により可変減衰器2及び位相調整器103を制御するための2種のデジタル信号にさらに変換される。この変換は、ROM107に記録された電圧―減衰特性及び電圧―位相特性の変換テーブルを用いて行われる。このようにして変換された2種のデジタル信号は、D/A変換器108a及び108bにより、アナログ信号としての直流電圧に再変換され、それぞれ可変減衰器102及び位相調整器103に印加される。このとき可変減衰器102により生じる高周波信号の通過位相量の変動を、予めROM107に記憶させておき、その通過位相量の変動を相殺させるような位相変化を、位相調整器103で行うことにより、減衰時の通過位相量の変動が少ない可変減衰器を得る。
【0005】
【発明が解決しようとする課題】
従来の可変減衰器は、可変減衰器の通過位相量の変動を補正するために位相調整器が必要であるため、回路が大型化し、高価になってしまうという問題点があった。
【0006】
この発明は、かかる問題点を解決するためになされたものであり、減衰時の通過位相量の変動が少ない、小型で安価な可変減衰器を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明は、制御電圧により抵抗値が変化する可変抵抗手段を有し、この可変抵抗手段に制御電圧を印加するようにした可変減衰器であって、前記可変抵抗手段の制御電圧と前記可変減衰器の通過減衰特性及び通過位相特性との関係を示すデータを記録したROMと、前記ROMに記録された前記データを基に、所望の通過減衰量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める計算回路と、前記制御電圧印加条件に基づき、前記可変抵抗手段に制御電圧を印加するD/A変換回路とを備え、前記ROMが、前記データに加え、さらに、前記可変抵抗手段の制御電圧と前記可変減衰器の反射特性との関係を示すデータを記録しており、前記計算回路が、前記ROMに記録された前記データを基に、所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求めることを特徴とする可変減衰器である。
【0008】
また、前記ROMが、各々の使用温度毎の、前記可変抵抗素子の制御電圧と前記可変減衰器の通過減衰特性、反射特性及び通過位相特性との関係を示すデータを記録しており、前記計算回路が、使用する温度情報を入力とし、前記ROMに記録された前記データを基に、入力された使用温度において所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める。
【0009】
また、この発明は、制御電圧により抵抗値が変化する可変抵抗手段を有し、この可変抵抗手段に制御電圧を印加するようにした可変減衰器であって、前記可変抵抗手段の制御電圧と前記可変減衰器の通過減衰特性及び通過位相特性との関係を示すデータを記録したROMと、前記ROMに記録された前記データを基に、所望の通過減衰量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める計算回路と、前記制御電圧印加条件に基づき、前記可変抵抗手段に制御電圧を印加するD/A変換回路とを備え、前記ROMが、各々の使用温度毎の、前記可変抵抗素子の制御電圧と前記可変減衰器の通過減衰特性、反射特性及び通過位相特性との関係を示すデータを記録しており、前記計算回路が、使用する温度情報を入力とし、前記ROMに記録された前記データを基に、入力された使用温度において所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求めることを特徴とする可変減衰器である
【0010】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1による可変減衰器の構成を示す図である。図1において、1a及び1bは、高周波信号の入出力が行われる高周波信号入出力端子、2a及び2bは、制御電圧により抵抗値が変化する可変抵抗素子としての働きをする第1のFET、3は同じく可変抵抗素子としての働きをする第2のFET、4は第1のFET2a,2bおよび第2のFET3から構成される減衰回路、5は、後述するROMデータを基に、外部から設定された所望の通過減衰特性を満足しし、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める計算回路、6は、第1及び第2のFET2,3の制御電圧と可変減衰器4の通過減衰特性、通過位相特性の各々の関係を変換テーブルとして記録したROM、7a及び7bは、計算回路5により得られた制御電圧印加条件に基づいて、第1及び第2のFET2,3に制御電圧を印加するD/A変換器である。
【0011】
図2は、図1に示した可変減衰器内に設けられている減衰回路4の等価回路を示す図である。図2において、8a及び8bは図1中の第1のFET2a及び2bの等価回路にあたる第1の可変抵抗、9は図1中の第2のFET3の等価回路にあたる第2の可変抵抗である。
【0012】
次に動作について説明する。第1のFET2および第2のFET3は、ゲート電極に印加する電圧を制御することで、ドレイン電極とソース電極間の抵抗値が変化し、可変抵抗素子と見なせるので、図1の減衰回路4は、図2に示すπ型減衰回路として動作する。高周波信号入出力端子1aから入力された高周波信号は、第1のFET2および第2のFET3から構成される減衰回路4で所定の減衰を受けた後、高周波信号入出力端子1bから出力される。
【0013】
次に、減衰回路4における減衰量設定方法について述べる。第1のFET2a,2b(のゲート電極)に印加される制御電圧をVg1とし、第2のFET3(のゲート電極)に印加される制御電圧をVg2とすると、ROM6には、制御電圧Vg1、Vg2をパラメータとした、予め取得された通過減衰特性および通過位相特性のデータが記録されている。図3に、制御電圧Vg1をx軸、Vg2をy軸にとった、通過減衰量の分布図の一例を示す。また、図4に、制御電圧Vg1をx軸、Vg2をy軸にとった、通過位相量の分布図の一例を示す。
【0014】
計算回路5では、これらROM6に記録された図3および図4のデータを用いて、外部から設定される所望の通過減衰量が得られ、かつ、通過位相量の変動が最小となる制御電圧条件を計算する。例えば、所望の通過減衰量が5〜20dBの範囲とした場合、通過位相量の変動が最小となるように、制御電圧印加線Aを、図3および図4のように設定する。上記のように決定され、計算回路5から出力された制御電圧データは、D/A変換器7a及び7bにて、第1のFET2および第2のFET3に印加される。このような減衰量設定を行うことで、図5に示す通過減衰量対通過位相量の特性が得られる。
【0015】
以上のように、この実施の形態1における可変減衰器によれば、ROM6に記録された、通過減衰量および通過位相量の分布データを用いて、計算回路5により、所望の通過減衰量が得られ、かつ、通過位相量の変動が最小となる制御電圧条件を計算し、この制御電圧条件を用いて減衰回路4を動作させるようにしたので、位相変動補償用の位相調整器が不要となり、通過位相変動量が小さく、かつ、小型で安価な可変減衰器を得ることができる。
【0016】
実施の形態2.
上述の実施の形態1では、ROM6に記録されたデータは、減衰回路4の制御電圧Vg1、Vg2をパラメータとした通過減衰特性及び通過位相特性であったが、本実施の形態においては、これらに加え、減衰回路4の制御電圧Vg1、Vg2をパラメータとした反射特性をROM6に記録するようにしたものである。図6に制御電圧Vg1をx軸、Vg2をy軸にとった、反射量の分布図の一例を示す。反射特性は、回路に入力する高周波信号と回路から反射されて戻ってくる高周波信号との比を表すもので、入力する高周波信号と反射される高周波信号とが重畳されるため、反射量が大きいほど、入力した高周波信号の位相の変動が増大する。なお、本実施の形態における可変減衰器の構成は、図1及び図2に示すものと基本的に同じであるため、以下の説明においては、図1及び図2を参照するものとする。
【0017】
本実施の形態の減衰回路4における減衰量設定方法について述べる。ROM6には、減衰回路4の制御電圧Vg1、Vg2をパラメータとした、予め取得された通過減衰特性、通過位相特性、反射特性のデータが記録されている。計算回路5では、ROM6に記録された図3、図4、図6のデータを用い、外部から設定される所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧条件を計算する。例えば、所望の通過減衰量が5〜20dBの範囲で、反射量が−10dB以下とした場合、通過位相量の変動が最小となるように、制御電圧印加線Bを、図3、図4、図6のように設定する。上記のように決定され、計算回路5から出力された制御電圧データは、D/A変換器7にて第1のFET2および第2のFET3に印加される。
【0018】
以上のように、この実施の形態2における可変減衰器によれば、ROM6に記録された、通過減衰量、反射量、通過位相量の分布データを用いて、所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧条件を計算し、この制御電圧条件を用いて減衰回路4を動作させるようにしたので、位相変動補償用の位相調整器が不要となり、また、高周波信号の振幅変動と位相変動の要因となる反射量を小さく抑えられるので、実施の形態1に比べ、更に通過位相変動量が小さく、かつ、小型で安価な可変減衰器が得られる。
【0019】
実施の形態3.
図7はこの発明の実施の形態3による可変減衰器の構成を示す図である。図1と同一または相当する構成については、同一の符号を付している。本実施の形態においては、計算回路5に、さらに、使用する温度情報を外部から入力するようにし、また、ROM6に、第1及び第2のFET2,3の制御電圧と可変減衰器4の通過減衰特性、反射特性、通過位相特性の各々の使用温度毎の関係を変換テーブルとして記録している点が、上述の実施の形態1と異なる。
【0020】
実施の形態3では、ROM6に記録するデータを、使用する温度毎に取得した、減衰回路4の制御電圧Vg1、Vg2をパラメータとした通過減衰特性、通過位相特性、反射特性のデータとし、計算回路5に、外部から使用する温度情報(以下、温度条件とする。)を入力するようにしたものである。
【0021】
次に、実施の形態3の減衰回路4における減衰量設定方法について述べる。ROM6には、使用する温度毎に予め取得した、減衰回路4の制御電圧Vg1、Vg2をパラメータとした通過減衰特性、通過位相特性、反射特性のデータが記録されている。計算回路5では、これらROM6に記録されたデータと外部から入力する温度条件を用い、使用温度において、外部から設定される所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧条件を計算する。計算回路5から出力された制御電圧データはD/A変換器7にて第1のFET2および第2のFET3に印加される。
【0022】
以上のように、この実施の形態3によれば、使用する温度条件における、可変減衰器4への制御電圧条件が設定できるため、更に、通過位相変動量を小さくすることができる。
【0023】
上記実施の形態1〜3では、減衰回路4としてFETを使用したπ型減衰回路を用いた例について記しているが、FETの代わりにダイオードなどの他の可変抵抗素子を用いてもよく、また、π型減衰回路の代わりにT型減衰回路やはしご型減衰回路などの、制御電圧を印加する可変抵抗素子を用いた減衰回路を用いても同様の効果が得られる。
【0024】
また、上記実施の形態1〜3では、減衰回路4の制御電圧が2つの場合の例について記しているが、1つないし3つ以上の制御電圧を用いる減衰回路の場合でも、同様の減衰量設定方法を適用することが可能である。
【0025】
【発明の効果】
この発明は、制御電圧により抵抗値が変化する可変抵抗手段を有し、この可変抵抗手段に制御電圧を印加するようにした可変減衰器であって、前記可変抵抗手段の制御電圧と前記可変減衰器の通過減衰特性及び通過位相特性との関係を示すデータを記録したROMと、前記ROMに記録された前記データを基に、所望の通過減衰量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める計算回路と、前記制御電圧印加条件に基づき、前記可変抵抗手段に制御電圧を印加するD/A変換回路とを備えた可変減衰器であるので、位相変動補償用の位相調整器が不要で、可変減衰器の通過位相変動量が小さく、かつ、小型で安価に構成できるという効果が得られる。
【0026】
また、前記ROMが、前記データに加え、さらに、前記可変抵抗手段の制御電圧と前記可変減衰器の反射特性との関係を示すデータを記録しており、前記計算回路が、前記ROMに記録された前記データを基に、所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求めるようにしたので、位相変動補償用の位相調整器が不要で、可変減衰器の通過位相変動量が更に小さく、かつ、小型で安価に構成できるという効果が得られる。
【0027】
また、この発明は、制御電圧により抵抗値が変化する可変抵抗手段を有し、この可変抵抗手段に制御電圧を印加するようにした可変減衰器であって、前記可変抵抗手段の制御電圧と前記可変減衰器の通過減衰特性及び通過位相特性との関係を示すデータを記録したROMと、前記ROMに記録された前記データを基に、所望の通過減衰量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める計算回路と、前記制御電圧印加条件に基づき、前記可変抵抗手段に制御電圧を印加するD/A変換回路とを備え、前記ROMが、各々の使用温度毎の、前記可変抵抗素子の制御電圧と前記可変減衰器の通過減衰特性、反射特性及び通過位相特性との関係を示すデータを記録しており、前記計算回路が、使用する温度情報を入力とし、前記ROMに記録された前記データを基に、入力された使用温度において所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求めることを特徴とする可変減衰器であるので、位相変動補償用の位相調整器が不要で、可変減衰器の通過位相変動量が小さく、かつ、小型で安価に構成できるという効果が得られる。また、前記ROMが、各々の使用温度毎の、前記可変抵抗素子の制御電圧と前記可変減衰器の通過減衰特性、反射特性及び通過位相特性との関係を示すデータを記録しており、前記計算回路が、使用する温度情報を入力とし、前記ROMに記録された前記データを基に、入力された使用温度において所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求めるようにしたので、使用する温度条件毎における、可変減衰器への制御電圧条件が設定できるため、可変減衰器の通過位相変動量が更に小さく、かつ、小型で安価に構成できるという効果が得られる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による可変減衰器の構成を示す構成図である。
【図2】 図1に示した可変減衰器における減衰回路の等価回路を示す回路図である。
【図3】 図1及び図2に示した減衰回路の制御電圧対通過減衰量の分布の一例を示す説明図である。
【図4】 図1及び図2に示した減衰回路の制御電圧対通過位相量の分布の一例を示す説明図である。
【図5】 この発明の実施の形態1による可変減衰器の通過減衰量対通過位相量の特性を示す説明図である。
【図6】 この発明の実施の形態2による可変減衰器における減衰回路の制御電圧対反射量の分布の一例を示す説明図である。
【図7】 この発明の実施の形態3による可変減衰器の構成を示す図である。
【図8】 従来の可変減衰器の構成を示す構成図である。
【符号の説明】
1,1a,1b 高周波信号入出力端子、2,2a,2b 第1のFET、3第2のFET、4 減衰回路、5 計算回路、6 ROM、7,7a,7b D/A変換器、8 第1の可変抵抗、9 第2の可変抵抗、101a,101b高周波信号入出力端子、102 可変減衰器、103 位相調整器、104 制御信号入力端子、105 A/D変換器、106 マイクロプロセッサユニット、107 ROM、108a,108b D/A変換器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable attenuator, and more particularly to a variable attenuator for electrically changing the amplitude of a signal in a microwave band and a millimeter wave band.
[0002]
[Prior art]
A variable attenuator is widely used for amplitude control of a high-frequency signal to obtain necessary transmission power and reception power in a transceiver such as a radar or a communication device. On the other hand, in a phased array antenna that uses a transceiver and a phase shifter connected to each of a plurality of antenna elements and changes the direction of the antenna by controlling the phase of the high-frequency signal, the error in the amount of phase shift is Therefore, even in a variable attenuator that is a part of the component of the transceiver, it is necessary to minimize the variation of the passing phase amount when the attenuation amount is varied.
[0003]
FIG. 8 shows a configuration of a conventional variable attenuator disclosed in, for example, Japanese Patent Application Laid-Open No. 8-162886. In the figure, 101a and 101b are high-frequency signal input / output terminals, 102 is a variable attenuator, 103 is a phase adjuster, 104 is a control signal input terminal, 105 is an A / D converter, 106 is a microprocessor unit, 107 is ROM, Reference numerals 108a and 108b denote D / A converters.
[0004]
Next, the operation will be described. The high-frequency signal input to the high-frequency signal input / output terminal 101a is input to the phase adjuster 103 via the variable attenuator 102, and after being subjected to phase compensation, is output from the high-frequency signal input / output terminal 101b. Here, the control signal input from the control signal input terminal 104 for controlling the attenuation is converted into digital data by the A / D converter 105, and the converted digital data is further changed by the microprocessor unit 106. It is further converted into two kinds of digital signals for controlling the attenuator 2 and the phase adjuster 103. This conversion is performed using a voltage-attenuation characteristic and voltage-phase characteristic conversion table recorded in the ROM 107. The two types of digital signals thus converted are reconverted into DC voltages as analog signals by the D / A converters 108a and 108b and applied to the variable attenuator 102 and the phase adjuster 103, respectively. At this time, the fluctuation of the passing phase amount of the high-frequency signal generated by the variable attenuator 102 is stored in the ROM 107 in advance, and the phase adjuster 103 performs a phase change that cancels the fluctuation of the passing phase amount. A variable attenuator with little variation in the amount of passing phase during attenuation is obtained.
[0005]
[Problems to be solved by the invention]
Since the conventional variable attenuator requires a phase adjuster to correct the variation in the passing phase amount of the variable attenuator, there is a problem that the circuit becomes large and expensive.
[0006]
The present invention has been made to solve such a problem, and an object of the present invention is to obtain a small and inexpensive variable attenuator in which the variation of the passing phase amount at the time of attenuation is small.
[0007]
[Means for Solving the Problems]
The present invention is a variable attenuator having variable resistance means whose resistance value changes according to a control voltage, and applying the control voltage to the variable resistance means, the control voltage of the variable resistance means and the variable attenuation Based on the ROM that records data indicating the relationship between the pass attenuation characteristic and the pass phase characteristic of the detector, and the data recorded in the ROM, a desired pass attenuation amount can be obtained, and fluctuations in the pass phase amount can be obtained. A calculation circuit for obtaining a minimum control voltage application condition; and a D / A conversion circuit for applying a control voltage to the variable resistance means based on the control voltage application condition , wherein the ROM further includes the data, , Data indicating the relationship between the control voltage of the variable resistance means and the reflection characteristic of the variable attenuator is recorded, and the calculation circuit calculates a desired passing attenuation amount based on the data recorded in the ROM. Preliminary reflection amount can be obtained, and a variable attenuator and obtains the control voltage applying conditions change the passing phase amount is minimized.
[0008]
The ROM records data indicating the relationship between the control voltage of the variable resistance element and the pass attenuation characteristic, reflection characteristic, and pass phase characteristic of the variable attenuator for each operating temperature, and the calculation The circuit receives the temperature information to be used as input, and based on the data recorded in the ROM, a desired passing attenuation and reflection amount can be obtained at the inputted operating temperature, and the fluctuation of the passing phase amount is minimized. A control voltage application condition is obtained.
[0009]
Further, the present invention is a variable attenuator having variable resistance means whose resistance value is changed by a control voltage, and applying the control voltage to the variable resistance means, wherein the control voltage of the variable resistance means and the control voltage Based on the ROM in which data indicating the relationship between the pass attenuation characteristic and the pass phase characteristic of the variable attenuator is recorded, and the data recorded in the ROM, a desired pass attenuation amount is obtained, and the pass phase amount A calculation circuit that obtains a control voltage application condition that minimizes fluctuations, and a D / A conversion circuit that applies a control voltage to the variable resistance means based on the control voltage application condition; Data indicating the relationship between the control voltage of the variable resistance element and the pass attenuation characteristic, reflection characteristic, and pass phase characteristic of the variable attenuator is recorded, and the calculation circuit receives temperature information to be used as input. Based on the data recorded on the ROM, desired pass attenuation and reflection amount can be obtained in the input operating temperature, and characterized by obtaining the control voltage applying conditions change the passing phase amount is minimized Is a variable attenuator .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a diagram showing a configuration of a variable attenuator according to Embodiment 1 of the present invention. In FIG. 1, reference numerals 1a and 1b denote high-frequency signal input / output terminals for inputting and outputting high-frequency signals, and reference numerals 2a and 2b denote first FETs that function as variable resistance elements whose resistance values change according to control voltages. The second FET, which also functions as a variable resistance element, 4 is an attenuation circuit composed of the first FETs 2a and 2b and the second FET 3, and 5 is set from the outside based on ROM data described later. A calculation circuit for obtaining a control voltage application condition that satisfies the desired pass attenuation characteristics and minimizes the fluctuation of the pass phase amount; and 6, a control voltage and a variable attenuator for the first and second FETs 2 and 3 The ROMs 7a and 7b, in which the relations between the pass attenuation characteristics and the pass phase characteristics of 4 are recorded as conversion tables, are based on the control voltage application conditions obtained by the calculation circuit 5, and the first and second FETs 2 3 is a D / A converter for applying a control voltage to the.
[0011]
FIG. 2 is a diagram showing an equivalent circuit of the attenuation circuit 4 provided in the variable attenuator shown in FIG. 2, 8a and 8b are first variable resistors corresponding to the equivalent circuit of the first FETs 2a and 2b in FIG. 1, and 9 is a second variable resistor corresponding to the equivalent circuit of the second FET 3 in FIG.
[0012]
Next, the operation will be described. Since the first FET 2 and the second FET 3 can be regarded as variable resistance elements by controlling the voltage applied to the gate electrode, the resistance value between the drain electrode and the source electrode is changed, the attenuation circuit 4 in FIG. 2 operates as a π-type attenuation circuit shown in FIG. The high-frequency signal input from the high-frequency signal input / output terminal 1a is output from the high-frequency signal input / output terminal 1b after being subjected to predetermined attenuation by the attenuation circuit 4 including the first FET 2 and the second FET 3.
[0013]
Next, an attenuation amount setting method in the attenuation circuit 4 will be described. If the control voltage applied to the first FET 2a, 2b (the gate electrode) is Vg1, and the control voltage applied to the second FET 3 (the gate electrode) is Vg2, the ROM 6 has the control voltages Vg1, Vg2. The data of the pass attenuation characteristic and the pass phase characteristic acquired in advance with the above as parameters are recorded. FIG. 3 shows an example of a distribution diagram of the passing attenuation amount in which the control voltage Vg1 is taken on the x axis and Vg2 is taken on the y axis. FIG. 4 shows an example of a distribution diagram of the passing phase amount in which the control voltage Vg1 is on the x-axis and Vg2 is on the y-axis.
[0014]
The calculation circuit 5 uses the data of FIG. 3 and FIG. 4 recorded in the ROM 6 to obtain a desired passing attenuation amount set from the outside and control voltage conditions that minimize the variation of the passing phase amount. Calculate For example, when the desired pass attenuation is in the range of 5 to 20 dB, the control voltage application line A is set as shown in FIGS. 3 and 4 so that the fluctuation of the pass phase amount is minimized. The control voltage data determined as described above and output from the calculation circuit 5 is applied to the first FET 2 and the second FET 3 by the D / A converters 7a and 7b. By performing such attenuation setting, the characteristics of the passing attenuation amount versus the passing phase amount shown in FIG. 5 can be obtained.
[0015]
As described above, according to the variable attenuator in the first embodiment, a desired pass attenuation amount is obtained by the calculation circuit 5 using the distribution data of the pass attenuation amount and the pass phase amount recorded in the ROM 6. Since the control voltage condition that minimizes the variation in the passing phase amount is calculated and the attenuation circuit 4 is operated using this control voltage condition, the phase adjuster for compensating the phase fluctuation becomes unnecessary. A small and inexpensive variable attenuator can be obtained with a small amount of variation in the passing phase.
[0016]
Embodiment 2. FIG.
In the first embodiment described above, the data recorded in the ROM 6 is the pass attenuation characteristic and the pass phase characteristic using the control voltages Vg1 and Vg2 of the attenuation circuit 4 as parameters. In the present embodiment, these data are In addition, reflection characteristics using the control voltages Vg1 and Vg2 of the attenuation circuit 4 as parameters are recorded in the ROM 6. FIG. 6 shows an example of a reflection amount distribution diagram in which the control voltage Vg1 is on the x-axis and Vg2 is on the y-axis. The reflection characteristic represents the ratio between the high-frequency signal input to the circuit and the high-frequency signal reflected back from the circuit, and the input high-frequency signal and the reflected high-frequency signal are superimposed, so that the reflection amount is large. As a result, the fluctuation of the phase of the input high-frequency signal increases. The configuration of the variable attenuator in the present embodiment is basically the same as that shown in FIGS. 1 and 2, and therefore, in the following description, reference is made to FIGS. 1 and 2.
[0017]
An attenuation amount setting method in the attenuation circuit 4 of the present embodiment will be described. The ROM 6 stores data of pass attenuation characteristics, pass phase characteristics, and reflection characteristics acquired in advance using the control voltages Vg1 and Vg2 of the attenuation circuit 4 as parameters. The calculation circuit 5 uses the data of FIGS. 3, 4, and 6 recorded in the ROM 6 to obtain a desired passing attenuation amount and reflection amount set from the outside, and the variation in the passing phase amount is minimized. Calculate the control voltage condition. For example, when the desired pass attenuation amount is in the range of 5 to 20 dB and the reflection amount is −10 dB or less, the control voltage application line B is set as shown in FIGS. Settings are made as shown in FIG. The control voltage data determined as described above and output from the calculation circuit 5 is applied to the first FET 2 and the second FET 3 by the D / A converter 7.
[0018]
As described above, according to the variable attenuator in the second embodiment, the desired pass attenuation amount and reflection amount can be obtained using the distribution data of the pass attenuation amount, the reflection amount, and the pass phase amount recorded in the ROM 6. Since the control voltage condition that can be obtained and the variation in the passing phase amount is minimized is calculated and the attenuation circuit 4 is operated using this control voltage condition, the phase adjuster for compensating the phase fluctuation becomes unnecessary. In addition, since the amount of reflection that causes the amplitude fluctuation and phase fluctuation of the high-frequency signal can be reduced, a variable attenuator having a smaller amount of passage phase fluctuation and smaller and less expensive than that of the first embodiment can be obtained. .
[0019]
Embodiment 3 FIG.
FIG. 7 is a diagram showing a configuration of a variable attenuator according to Embodiment 3 of the present invention. The same or corresponding components as those in FIG. 1 are denoted by the same reference numerals. In the present embodiment, temperature information to be used is further input to the calculation circuit 5 from the outside, and the control voltage of the first and second FETs 2 and 3 and the passage of the variable attenuator 4 are input to the ROM 6. The difference from Embodiment 1 described above is that the relationship between the attenuation characteristic, reflection characteristic, and passing phase characteristic for each operating temperature is recorded as a conversion table.
[0020]
In the third embodiment, data to be recorded in the ROM 6 is obtained as data of pass attenuation characteristics, pass phase characteristics, and reflection characteristics using the control voltages Vg1 and Vg2 of the attenuator circuit 4 obtained as parameters for each temperature to be used. In FIG. 5, temperature information (hereinafter referred to as temperature conditions) to be used from outside is input.
[0021]
Next, an attenuation amount setting method in the attenuation circuit 4 of the third embodiment will be described. The ROM 6 stores data of pass attenuation characteristics, pass phase characteristics, and reflection characteristics, which are acquired in advance for each temperature to be used, using the control voltages Vg1, Vg2 of the attenuation circuit 4 as parameters. The calculation circuit 5 uses the data recorded in the ROM 6 and the temperature condition inputted from the outside, and obtains the desired passing attenuation amount and reflection amount set from the outside at the operating temperature, and changes in the passing phase amount. Calculate the control voltage condition that minimizes. The control voltage data output from the calculation circuit 5 is applied to the first FET 2 and the second FET 3 by the D / A converter 7.
[0022]
As described above, according to the third embodiment, since the control voltage condition to the variable attenuator 4 can be set under the temperature condition to be used, the passing phase fluctuation amount can be further reduced.
[0023]
In the first to third embodiments, an example using a π-type attenuation circuit using an FET as the attenuation circuit 4 is described, but other variable resistance elements such as a diode may be used instead of the FET, The same effect can be obtained by using an attenuation circuit using a variable resistance element that applies a control voltage, such as a T-type attenuation circuit or a ladder-type attenuation circuit, instead of the π-type attenuation circuit.
[0024]
In the first to third embodiments, an example in which the control voltage of the attenuation circuit 4 is two is described. However, the same attenuation amount is applied to an attenuation circuit using one to three or more control voltages. It is possible to apply a setting method.
[0025]
【The invention's effect】
The present invention is a variable attenuator having variable resistance means whose resistance value changes according to a control voltage, and applying the control voltage to the variable resistance means, the control voltage of the variable resistance means and the variable attenuation Based on the ROM that records data indicating the relationship between the pass attenuation characteristic and the pass phase characteristic of the detector, and the data recorded in the ROM, a desired pass attenuation amount can be obtained, and fluctuations in the pass phase amount can be obtained. Since it is a variable attenuator comprising a calculation circuit for obtaining a minimum control voltage application condition and a D / A conversion circuit for applying a control voltage to the variable resistance means based on the control voltage application condition, phase fluctuation compensation Therefore, there is no need for a phase adjuster, and there is an effect that the amount of variation in the passing phase of the variable attenuator is small, and that the configuration can be made small and inexpensive.
[0026]
In addition to the data, the ROM further records data indicating the relationship between the control voltage of the variable resistance means and the reflection characteristics of the variable attenuator, and the calculation circuit is recorded in the ROM. Further, based on the above data, the control voltage application condition for obtaining the desired passing attenuation amount and reflection amount and minimizing the variation of the passing phase amount is obtained. This is unnecessary, and the effect that the amount of variation in the passing phase of the variable attenuator is further small, and the configuration can be reduced in size and at low cost.
[0027]
Further, the present invention is a variable attenuator having variable resistance means whose resistance value is changed by a control voltage, and applying the control voltage to the variable resistance means, wherein the control voltage of the variable resistance means and the control voltage Based on the ROM in which data indicating the relationship between the pass attenuation characteristic and the pass phase characteristic of the variable attenuator is recorded, and the data recorded in the ROM, a desired pass attenuation amount is obtained, and the pass phase amount A calculation circuit that obtains a control voltage application condition that minimizes fluctuations, and a D / A conversion circuit that applies a control voltage to the variable resistance means based on the control voltage application condition; Data indicating the relationship between the control voltage of the variable resistance element and the pass attenuation characteristic, reflection characteristic, and pass phase characteristic of the variable attenuator is recorded, and the calculation circuit receives temperature information to be used as input. Based on the data recorded in the ROM, a control voltage application condition is obtained in which a desired passing attenuation amount and reflection amount can be obtained at the input use temperature and the variation of the passing phase amount is minimized. Thus, there is no need for a phase adjuster for compensating for phase fluctuations, the amount of passing phase fluctuation of the variable attenuator is small, and there is an effect that the configuration can be made small and inexpensive. The ROM records data indicating the relationship between the control voltage of the variable resistance element and the pass attenuation characteristic, reflection characteristic, and pass phase characteristic of the variable attenuator for each operating temperature, and the calculation The circuit receives the temperature information to be used as input, and based on the data recorded in the ROM, a desired passing attenuation and reflection amount can be obtained at the inputted operating temperature, and the fluctuation of the passing phase amount is minimized. Since the control voltage application condition for the variable attenuator can be set for each temperature condition to be used, the amount of variation in the passing phase of the variable attenuator is further reduced, and it is small and inexpensive. The effect that it can be comprised is acquired.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a configuration of a variable attenuator according to a first embodiment of the present invention.
2 is a circuit diagram showing an equivalent circuit of an attenuation circuit in the variable attenuator shown in FIG. 1. FIG.
3 is an explanatory diagram illustrating an example of a distribution of control voltage versus passing attenuation amount of the attenuation circuit illustrated in FIGS. 1 and 2; FIG.
4 is an explanatory diagram illustrating an example of a distribution of control voltage versus passing phase amount of the attenuation circuit illustrated in FIGS. 1 and 2; FIG.
FIG. 5 is an explanatory diagram showing characteristics of a passing attenuation amount versus a passing phase amount of the variable attenuator according to the first embodiment of the present invention.
FIG. 6 is an explanatory diagram showing an example of a distribution of control voltage versus reflection amount of an attenuation circuit in a variable attenuator according to Embodiment 2 of the present invention;
FIG. 7 is a diagram showing a configuration of a variable attenuator according to a third embodiment of the present invention.
FIG. 8 is a configuration diagram showing a configuration of a conventional variable attenuator.
[Explanation of symbols]
1, 1a, 1b High-frequency signal input / output terminals, 2, 2a, 2b 1st FET, 3rd FET, 4 attenuation circuit, 5 calculation circuit, 6 ROM, 7, 7a, 7b D / A converter, 8 1st variable resistance, 9 2nd variable resistance, 101a, 101b high frequency signal input / output terminal, 102 variable attenuator, 103 phase adjuster, 104 control signal input terminal, 105 A / D converter, 106 microprocessor unit, 107 ROM, 108a, 108b D / A converter.

Claims (3)

制御電圧により抵抗値が変化する可変抵抗手段を有し、この可変抵抗手段に制御電圧を印加するようにした可変減衰器であって、
前記可変抵抗手段の制御電圧と前記可変減衰器の通過減衰特性及び通過位相特性との関係を示すデータを記録したROMと、
前記ROMに記録された前記データを基に、所望の通過減衰量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める計算回路と、
前記制御電圧印加条件に基づき、前記可変抵抗手段に制御電圧を印加するD/A変換回路と
を備え
前記ROMが、前記データに加え、さらに、前記可変抵抗手段の制御電圧と前記可変減衰器の反射特性との関係を示すデータを記録しており、
前記計算回路が、前記ROMに記録された前記データを基に、所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める
ことを特徴とする可変減衰器。
A variable attenuator having variable resistance means whose resistance value changes according to the control voltage, and applying the control voltage to the variable resistance means,
ROM recording data indicating the relationship between the control voltage of the variable resistance means and the pass attenuation characteristic and pass phase characteristic of the variable attenuator;
Based on the data recorded in the ROM, a calculation circuit for obtaining a control voltage application condition for obtaining a desired passing attenuation amount and minimizing a variation in the passing phase amount;
A D / A conversion circuit for applying a control voltage to the variable resistance means based on the control voltage application condition ,
In addition to the data, the ROM further records data indicating the relationship between the control voltage of the variable resistance means and the reflection characteristics of the variable attenuator,
The calculation circuit obtains a control voltage application condition for obtaining a desired pass attenuation amount and reflection amount based on the data recorded in the ROM and minimizing a change in the pass phase amount. Variable attenuator.
前記ROMが、各々の使用温度毎の、前記可変抵抗素子の制御電圧と前記可変減衰器の通過減衰特性、反射特性及び通過位相特性との関係を示すデータを記録しており、
前記計算回路が、使用する温度情報を入力とし、前記ROMに記録された前記データを基に、入力された使用温度において所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める
ことを特徴とする請求項1に記載の可変減衰器。
The ROM records data indicating the relationship between the control voltage of the variable resistance element and the pass attenuation characteristic, the reflection characteristic, and the pass phase characteristic of the variable attenuator for each operating temperature,
The calculation circuit receives temperature information to be used as an input, and based on the data recorded in the ROM, a desired passing attenuation amount and reflection amount can be obtained at the inputted operating temperature, and the fluctuation of the passing phase amount is obtained. 2. The variable attenuator according to claim 1, wherein a control voltage application condition that minimizes the voltage is obtained.
制御電圧により抵抗値が変化する可変抵抗手段を有し、この可変抵抗手段に制御電圧を印加するようにした可変減衰器であって、
前記可変抵抗手段の制御電圧と前記可変減衰器の通過減衰特性及び通過位相特性との関係を示すデータを記録したROMと、
前記ROMに記録された前記データを基に、所望の通過減衰量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める計算回路と、
前記制御電圧印加条件に基づき、前記可変抵抗手段に制御電圧を印加するD/A変換回路と
を備え、
前記ROMが、各々の使用温度毎の、前記可変抵抗素子の制御電圧と前記可変減衰器の通過減衰特性、反射特性及び通過位相特性との関係を示すデータを記録しており、
前記計算回路が、使用する温度情報を入力とし、前記ROMに記録された前記データを基に、入力された使用温度において所望の通過減衰量および反射量が得られ、かつ、通過位相量の変動が最小となる制御電圧印加条件を求める
ことを特徴とする可変減衰器。
A variable attenuator having variable resistance means whose resistance value changes according to the control voltage, and applying the control voltage to the variable resistance means,
ROM recording data indicating the relationship between the control voltage of the variable resistance means and the pass attenuation characteristic and pass phase characteristic of the variable attenuator;
Based on the data recorded in the ROM, a calculation circuit for obtaining a control voltage application condition for obtaining a desired passing attenuation amount and minimizing a variation in the passing phase amount;
A D / A converter circuit for applying a control voltage to the variable resistance means based on the control voltage application condition;
With
The ROM records data indicating the relationship between the control voltage of the variable resistance element and the pass attenuation characteristic, the reflection characteristic, and the pass phase characteristic of the variable attenuator for each operating temperature,
The calculation circuit receives temperature information to be used as an input, and based on the data recorded in the ROM, a desired passing attenuation amount and reflection amount can be obtained at the inputted operating temperature, and the fluctuation of the passing phase amount is obtained. There variable attenuator it and obtains the control voltage applying conditions is minimized.
JP2001160699A 2001-05-29 2001-05-29 Variable attenuator Expired - Lifetime JP3784664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160699A JP3784664B2 (en) 2001-05-29 2001-05-29 Variable attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160699A JP3784664B2 (en) 2001-05-29 2001-05-29 Variable attenuator

Publications (2)

Publication Number Publication Date
JP2002353765A JP2002353765A (en) 2002-12-06
JP3784664B2 true JP3784664B2 (en) 2006-06-14

Family

ID=19004070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160699A Expired - Lifetime JP3784664B2 (en) 2001-05-29 2001-05-29 Variable attenuator

Country Status (1)

Country Link
JP (1) JP3784664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710181B2 (en) 2007-08-20 2010-05-04 Panasonic Corporation Variable attenuator and wireless communication device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040027034A (en) * 2002-09-27 2004-04-01 주식회사 유니콘테크놀러지 Variable attenuator for wireless communication
KR101030050B1 (en) 2009-12-14 2011-04-21 한국과학기술원 Digital attenuator with low phase variation
CN112653411B (en) * 2020-12-15 2022-08-19 重庆西南集成电路设计有限责任公司 Temperature compensation circuit and method for numerical control phase shift/digital attenuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710181B2 (en) 2007-08-20 2010-05-04 Panasonic Corporation Variable attenuator and wireless communication device

Also Published As

Publication number Publication date
JP2002353765A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
US6737933B2 (en) Circuit topology for attenuator and switch circuits
JPH03187601A (en) Precedent distortion equalizer equipped with resistance coupler and potential divider
US5862464A (en) Pin diode variable attenuator
US20070040605A1 (en) Shared receiver and transmitter filter
US7907073B2 (en) Variable passive components with high resolution value selection and control
JP3784664B2 (en) Variable attenuator
US5789993A (en) Amplitude/frequency correcting device and corresponding frequency equalizer
EP0462338A1 (en) Phase shifting circuits
JP4382981B2 (en) Phase shifter circuit
KR100344928B1 (en) A transmitting circuit and radio transmitting device
WO2003088477A1 (en) Variable attenuator
KR900008761B1 (en) Cascaded internal impedance dependent amplifier with accelerate variable gain control
JP2000196395A (en) Temperature compensated attenuator and microwave device
EP1739827B1 (en) Radio frequency receiver including a limiter and related methods
JP2002171101A (en) Phase compensation gain control circuit, its regulating method, and radio communication device
US6091299A (en) Method and apparatus for achieving linearized response of PIN diode attenuators
JPH0730463A (en) Quadrature modulator
JP3915147B2 (en) Gain adjustment circuit and frequency conversion circuit
JPH1141034A (en) Gain controlled high frequency amplifier
JP4506719B2 (en) Variable attenuation circuit for high frequency
JP5907795B2 (en) Transceiver module
JPH07326952A (en) Fet switch
JP2000174570A (en) Multi-function arithmetic and logic unit
JP4421273B2 (en) High frequency attenuator
JPH1141053A (en) Varaible resistance circuit and vriable attenuating circuit using the circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3784664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term