JP3783877B2 - Vacuum casting method - Google Patents

Vacuum casting method Download PDF

Info

Publication number
JP3783877B2
JP3783877B2 JP24559095A JP24559095A JP3783877B2 JP 3783877 B2 JP3783877 B2 JP 3783877B2 JP 24559095 A JP24559095 A JP 24559095A JP 24559095 A JP24559095 A JP 24559095A JP 3783877 B2 JP3783877 B2 JP 3783877B2
Authority
JP
Japan
Prior art keywords
core
cavity
mold
casting
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24559095A
Other languages
Japanese (ja)
Other versions
JPH0985421A (en
Inventor
尚隆 出来
公雄 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24559095A priority Critical patent/JP3783877B2/en
Publication of JPH0985421A publication Critical patent/JPH0985421A/en
Application granted granted Critical
Publication of JP3783877B2 publication Critical patent/JP3783877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はキャビティ、中子、湯口および堰部を有する通気性鋳型を減圧して鋳造する減圧鋳造方法に関し、特に、複雑形状で薄肉のステンレス鋳鋼や耐熱鋳鋼などの鋳物を、不廻り、湯境、吹かれ、湯じわ等の鋳造欠陥が無く健全に製造する減圧鋳造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
部分的に5mm以下の肉厚を持つ薄肉鋳物は、溶湯が注湯され鋳型と接触すると凝固しやすく、また、凝固しなくても粘性が大きくなって流動性が悪くなり、不廻り、湯境欠陥等が発生しやすい。
また、複雑な形状をした薄肉鋳物を鋳造する場合には、特に空気や鋳型から発生するガスを溶湯中に巻き込みやすく、凝固後の鋳物に吹かれ、湯じわ等のガス欠陥が発生しやすい。従って、ステンレス鋳鋼や耐熱鋳鋼などの溶湯の流動性の悪い材質で複雑形状で肉厚5mm以下の薄肉鋳物を健全に鋳造することは困難であった。
【0003】
本出願人は先に特開昭59−229257号公報として、埋設した中子(中子は中空、中実いずれでもよい)を有する減圧鋳造鋳型構造を開示している。この方法では、製品部鋳型空間(キャビティ)は、鋳型を介して、また鋳型内に設けた減圧孔と中子を介して減圧される。鋳型と鋳型内に形成された製品部鋳型空間(キャビティ)とはその境界を共有しており、この鋳型内に減圧孔が設けられているため、製品部鋳型空間(キャビティ)が鋳型からのガスを自由に吸い込み、その目的とする減圧効果が期待できない場合がある。
【0004】
また本出願人は、特開平6−55255号公報において、キャビティ、湯口及び押湯又ははかせを有する砂鋳型(中子埋設)と、減圧装置とを有し、前記砂鋳型の堰部から離隔した位置に押湯またははかせを設けると共に、前記押湯またははかせの近くに外部と連通する空孔部を有し、前記減圧装置は前記空孔部と接触する吸引口を有し、前記空孔部に接触させた前記吸引口より減圧することにより、前記キャビティ内を減圧しながら鋳造を行う砂鋳型による鋳鋼鋳物の製造方法及びその装置を提案した。この提案では、キャビティの減圧を押湯又ははかせを介して行うことから、中子埋設のキャビティからの発生ガス吸引が間接的な吸引であるため、薄肉複雑形状の中子入りのキャビティの形状によっては、減圧効果がいささか小さい場合があり、このような薄肉複雑形状の中子入りのキャビティの形状については、中子の部位からの直接吸引方法によるさらなる改善が期待されていた。
【0005】
従って、本発明の目的は、上記従来の課題を解決し、複雑形状で部分的に5mm以下の肉厚を持つ薄肉のステンレス鋳鋼や耐熱鋳鋼などにおいても、溶湯の流動性を向上して不廻り、湯境欠陥等を発生させず、空気や鋳型から発生するガスの溶湯中への巻き込みを少なくして凝固後の鋳物に吹かれ、湯じわ等のガス欠陥を発生させずに健全な鋳物を製造できる減圧鋳造方法を提供することである。
【0006】
【課題を解決するための手段】
上記目的に鑑み鋭意研究の結果、本発明者らは、通気性鋳型内の中子幅木部に空孔部を設け、減圧装置により前記空孔部から中子およびキャビティ内を減圧して鋳造すれば、中子入りでかつ複雑形状の薄肉ステンレス鋳鋼や耐熱鋳鋼などの鋳物においても、不廻り、湯境欠陥等を防止し、空気や鋳型から発生するガスを巻き込むことなく凝固後の鋳物に吹かれ、湯じわ等のガス欠陥を発生させずに健全な鋳物を得ることができるとの知見を得て、本発明に想到した。
【0007】
すなわち、本発明の鋳造方法は、キャビティ、中子、湯口および堰部を有する通気性鋳型を減圧して溶湯を鋳造する減圧鋳造方法であって、前記通気性鋳型内のキャビティ形成部位に中子を埋設し、前記中子の中子幅木部に外部と連通する空孔部を設けるとともに、前記通気性鋳型からのガス吸引を遮断して、前記空孔部を介する前記中子および前記キャビティの減圧効果を向上させるため、前記空孔部が形成されている前記中子幅木部の外面にガス吸引防止塗型層を形成し、該空孔部に真空ポンプと減圧度制御手段を有する減圧装置の減圧吸引口を接続させ、前記減圧装置により前記空孔部を介して前記中子および前記キャビティ内を減圧しながら鋳造することを特徴とする。
【0008】
そして、前記中子幅木部に設けた前記空孔部と連通する中子空洞部を前記中子に設け、前記空孔部の減圧値を前記湯口の減圧値より大きくして鋳造する。また、前記通気性鋳型からのガス吸引を遮断して、前記空孔部を介する前記中子および前記キャビティの減圧効果を向上させるため、前記空孔部が形成されている前記中子幅木部の外面にガス吸引防止塗型層を形成する。このガス吸引防止塗型層は、通気性鋳型材の珪砂6号砂よりも粒度の小さいジルコン系塗型剤を用い0.1〜0.4mm、例えば0.2mm厚さの塗型層を形成する。
【0009】
【発明の実施の形態】
通気性鋳型内の中子幅木部に外部と連通する空孔部を設け、該空孔部に真空ポンプと減圧度制御手段を有する減圧装置の減圧吸引口を接続させ、減圧装置により空孔部を介して中子およびキャビティ内を減圧して鋳造することにより、部分的に5mm以下の肉厚を持つ複雑形状の薄肉鋳物を不廻り、湯境欠陥、吹かれ、湯じわ等を出さず健全な鋳物として鋳造するためのキャビティ内圧力勾配、溶湯注入速度が確保でき、特に空気や鋳型から発生するガスを溶湯中に巻き込まないよう効果的に除去できる。
【0010】
中子幅木部に設けた空孔部と連通する中子空洞部を中子に設けると、発生ガス除去効果をさらに高めることができる。
【0011】
空孔部の減圧値を湯口の減圧値より大きくすると、溶湯の流れを乱すことなく溶湯の流動性を確保し、キャビティの薄肉部への溶湯の吸引鋳造効果が向上する。減圧値の調整は、減圧度制御手段の作動により真空ポンプの回転数を変化させることにより行うことができる。
【0012】
また、減圧吸引は、搬送装置(図示せず)により通気性鋳型を搬送、位置させたところで、通気性鋳型の外面に向けて開口した空孔部から減圧装置により減圧吸引される。
【0013】
以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の実施の一形態で、2個ごめの減圧鋳造装置を示す縦断面図である。本発明に供する減圧鋳造装置は、通気性鋳型1および減圧装置12からなる。
減圧装置12は、真空ポンプ14と、中子幅木部17に設けた空孔部10の開口部10aに接続する減圧吸引口13を一端に有するパイプ16と、減圧吸引口13と真空ポンプ14との間に設置された減圧度制御手段15とを有する。
【0014】
通気性鋳型1には図2、図3に示すとおり、中子8により外径120mm、厚さ3.0mmの薄肉スクロール部(排気ガスの通路となる部位)21と、その上部および側方部に厚さ15mmの2個のフランジ部22と、上方フランジ外周部に厚さ20mm、高さ25mmの2個のボス部23を持つ複雑形状で薄肉のキャビティ2を形成している。通気性鋳型1はコールドボックス型でけい砂6号を使用している。湯口5は通気性鋳型1の中央近くに設け、この湯口5に連続した湯道6と堰部7を設けている。そして、通気性鋳型1の中子幅木部17には底面に向けて開口した空孔部10を設け、中子8には空孔部10と連通する中子空洞部9を設けている。なお、湯道6と堰7との間には、溶湯3に混入した固体不純物がキャビティ2内に流入するのを防ぐため、フィルタを配置するのが好ましい。また、キャビティを形成する通気性鋳型1の内面には、鋳型からの発生ガスをキャビティ内に吸引するのを防止するため、ガス吸引防止塗型を刷毛塗りまたはスプレーにより形成するのが好ましい。
【0015】
図1に示すように、通気性鋳型1に埋設した中子8の中子幅木部17の空孔部10は、通気性鋳型1の下面に設けられた開口部10aから垂直に上方に向かって延び、中子空洞部9と連通している。中子空洞部9も上方に向かって垂直に延び、その先端が中子8の横方向幅が最大の略卵型の上端部位とほぼ同位置まで延びている。このために、中子8からの発生ガスを効率よく吸引除去できる。
【0016】
減圧装置12は真空ポンプ14、減圧度制御手段15、および通気性鋳型1の空孔部10にフレキシブル管から密着させて減圧吸引を行う減圧吸引口13を有している。
【0017】
次に、上記の装置により鋳鋼鋳物を製造した減圧鋳造方法の実施に一形態について説明する。図2は、耐熱鋳鋼製鋳造品の自動車用ターボロータのタービンハウジング19の外観図である。その縦断面図を図3に示すように、複雑形状であり、その鋳造品の中空部20を形成するために、図4に外観を示すように、通気性鋳型1に埋設する中子8は単純な形状ではなく、うず巻き状部を有する中子形状である。この中子8を通気性鋳型の主型(図示せず)にセットすることにより中子8の周囲にはキャビティ2の薄肉部(この薄肉部が鋳造品の薄肉部24である。)が形成される。 注湯ステーション(図示せず)に通気性鋳型1を搬送装置により搬入する。次に、通気性鋳型1の空孔部10に減圧装置12からの減圧吸引口13を密着させる。そして、空孔部10内の減圧値が、注湯前で−100〜−20mmHgの範囲となるようにし、かつ空孔部の減圧値を湯口より大きくしている。その後取鍋4から所定量の溶湯をキャビティ2に注入して鋳造を行う。取鍋4内の溶湯温度は1500〜1600℃の範囲とした。鋳造した鋳鋼の化学組成を表1に示す。
【0018】
【表1】

Figure 0003783877
【0019】
通気性鋳型1内で鋳鋼鋳物が凝固後、搬送装置で次の型ばらしステーション(図示せず)に搬出する。そして、鋳造前の別の通気性鋳型1を注湯ステーションに搬入する。上述の工程を繰り返し、必要とする数の鋳鋼鋳物を鋳造する。
図2および図3に示すフランジ付き複雑形状の薄肉鋳鋼鋳物を80個鋳造して鋳物の品質を調査した。その結果、溶湯の注入速度が速く、かつ溶湯が乱れにくく、空気や鋳型から発生するガスを溶湯中に巻き込くことなく、全数、不廻り、湯境、吹かれ、湯じわ等の鋳造欠陥の発生は無く、健全であった。
【0020】
図5は、中子空洞部から減圧吸引を行う他の実施の形態を示す縦断面図である。通気性鋳型(主型)1のキャビティを形成する部位に埋設された中子8の外周と通気性鋳型1との間にキャビティ2が形成される。この鋳造品は複雑形状で、図5に示すように、両側に耳状の薄肉部2を有し、この薄肉部を形成するために埋設した中子8は、この部位が厚く形成されており、当然のことながら中子からの発生ガスは多いと考えられる。従って、中子空洞部を減圧吸引口13から垂直に上方に延ばし、その先端を耳状部位の近傍まで達するように形成する。この実施の形態により減圧吸引鋳造を行った結果は、吹かれ等の鋳造欠陥は発生せず、健全な鋳造品を得ることができた。
【0021】
図6は、実施の比較形態を示す縦断面図である。この比較例においては、埋設する中子8は中実に形成されている。減圧吸引は、キャビティ薄肉部2から吸引部材26を介して鋳型空洞部27を通して減圧吸引口13から減圧装置12(図示せず)により減圧して鋳造した。吸引部材26を通気性鋳型1よりも通気が良好な材料で形成したにもかかわらず、図7(平面図)に示すような薄肉部2の近傍に吹かれ、湯じわ状の鋳造欠陥が発生した。このことは、中子8が中実のものであるため、中実中子の外面からのみでは、発生ガスを吸引除去することが不十分であったことを示していると考えられる。
【0022】
【発明の効果】
以上詳細に説明の通り、通気性鋳型内の中子幅木部に外部と連通する空孔部を設け、該空孔部に真空ポンプと減圧度制御手段を有する減圧装置の減圧吸引口を接続させ、減圧装置により空孔部を介して中子およびキャビティ内を減圧して鋳造することにより、以下の効果を奏する。
(1)溶湯の流れを乱すことなく溶湯の流動性を向上し、不廻り、湯境欠陥を防止する。(2)空気や鋳型から発生するガスを溶湯中に巻き込むことなく効果的に除去し、吹かれ、湯じわ欠陥を発生させない。
従って、複雑形状で薄肉のステンレス鋳鋼や耐熱鋳鋼などの鋳物を健全に製造することができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態を示す減圧鋳造装置の縦断面図である。
【図2】タービンハウジングの外観図である。
【図3】タービンハウジングの縦断面図である。
【図4】中子の外観図である。
【図5】中子空洞部から減圧吸引を行う本発明の他の実施の形態を示す部分縦断面図である。
【図6】実施の形態の比較例を示す部分縦断面図である。
【図7】比較例における鋳造品の鋳造欠陥を示す部分平面図である。
【符号の説明】
1:通気性鋳型、2:キャビティ、3:溶湯、4:取鍋、5:湯口、6:湯道、7:堰部、8:中子、9:中子空洞部、10:空孔部、10a:空孔部の開口部、11:押湯、12:減圧装置、13:減圧吸引口、14:真空ポンプ、15:減圧度制御手段、16:パイプ、17:中子幅木部、19:タービンハウジング、26:吸引部材、27:鋳型空洞部、28:吹かれ、湯じわ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum casting method for casting a breathable mold having a cavity, a core, a gate, and a weir part, and in particular, castings such as thin cast stainless steel and heat-resistant cast steel with complicated shapes, The present invention relates to a vacuum casting method for producing sound without any casting defects such as blown or hot water.
[0002]
[Prior art and problems to be solved by the invention]
Thin castings with a thickness of 5 mm or less partially solidify when the molten metal is poured and comes into contact with the mold, and even if it does not solidify, the viscosity increases and fluidity deteriorates. Defects are likely to occur.
In addition, when casting a thin casting having a complicated shape, gas generated from air or a mold is likely to be caught in the molten metal, and blown to the solidified casting, and gas defects such as water wrinkles are likely to occur. . Therefore, it has been difficult to soundly cast a thin casting having a complicated shape and a thickness of 5 mm or less with a material having poor molten fluidity such as stainless cast steel or heat-resistant cast steel.
[0003]
The present applicant has previously disclosed a vacuum casting mold structure having an embedded core (the core may be hollow or solid) as Japanese Patent Application Laid-Open No. 59-229257. In this method, the product part mold space (cavity) is depressurized through the mold and through the decompression hole and the core provided in the mold. The mold and the product part mold space (cavity) formed in the mold share the boundary, and since the decompression hole is provided in this mold, the product part mold space (cavity) is the gas from the mold. In some cases, the intended decompression effect cannot be expected.
[0004]
In addition, in Japanese Patent Application Laid-Open No. 6-55255, the present applicant has a sand mold (core burying) having a cavity, a pouring gate and a feeder or a skein, and a pressure reducing device, and is separated from the weir portion of the sand mold. A hot water supply or a skein is provided at a position, and a hole portion communicating with the outside is provided near the hot water supply or skein, and the pressure reducing device has a suction port that contacts the hole portion, and the hole portion The present invention has proposed a method and apparatus for producing a cast steel casting using a sand mold that performs casting while reducing the pressure inside the cavity by reducing the pressure from the suction port that is in contact with the air. In this proposal, the cavity is depressurized through a feeder or a skein, so the generated gas suction from the cavity embedded in the core is indirect suction. In some cases, the decompression effect is slightly small, and the shape of the cavity with the core having such a thin complex shape has been expected to be further improved by a direct suction method from the core portion.
[0005]
Therefore, the object of the present invention is to solve the above-mentioned conventional problems and improve the fluidity of the molten metal even in thin stainless cast steel and heat-resistant cast steel having a complicated shape and partially having a thickness of 5 mm or less. No casting defects, etc., less air entrained in the molten metal from the mold and blown into the solidified casting, sound castings without causing gas defects such as hot water It is providing the vacuum casting method which can manufacture.
[0006]
[Means for Solving the Problems]
As a result of diligent research in view of the above object, the present inventors have provided a hole in the core skirting board part in the air-permeable mold and reduced the pressure in the core and the cavity from the hole part by using a pressure reducing device. In this way, even in castings such as thin stainless steel and heat-resistant cast steel with complex cores, it is possible to prevent non-rotation and hot water boundary defects, and to solidify the casting without entraining air or gas generated from the mold. The present inventors have obtained the knowledge that a sound casting can be obtained without generating gas defects such as blowing and hot water wrinkles.
[0007]
That is, the casting method of the present invention is a reduced-pressure casting method for casting a molten metal by reducing the pressure of a gas-permeable mold having a cavity, a core, a gate, and a weir part, wherein the core is formed at a cavity forming portion in the gas-permeable mold. was buried, Rutotomoni provided cavity communicating outside the core width wood of the core, and cut off the gas suction from the ventilation mold, said core and said through said cavities In order to improve the pressure reduction effect of the cavity, a gas suction prevention coating layer is formed on the outer surface of the core base plate where the hole is formed, and a vacuum pump and a pressure reduction degree control means are provided in the hole. A vacuum suction port of a decompression device is connected, and casting is performed while decompressing the core and the cavity through the hole portion by the decompression device.
[0008]
Then, a core cavity portion communicating with the hole portion provided in the core base plate portion is provided in the core, and the pressure reduction value of the hole portion is made larger than the pressure reduction value of the gate, and casting is performed. In addition, in order to cut off the gas suction from the air-permeable mold and improve the pressure reducing effect of the core and the cavity through the hole portion, the core base plate portion in which the hole portion is formed A gas suction preventing coating layer is formed on the outer surface of the substrate. This gas suction prevention coating layer uses a zircon coating agent having a particle size smaller than that of silica sand No. 6 as the breathable mold material to form a coating layer having a thickness of 0.1 to 0.4 mm, for example, 0.2 mm. To do.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A hole part communicating with the outside is provided in the core baseboard part in the breathable mold, and a vacuum suction port of a decompression device having a vacuum pump and a decompression degree control means is connected to the hole part. By casting the inside of the core and the cavity through the part, the thin casting with a complicated shape partially having a wall thickness of 5 mm or less is prevented from rotating, causing hot water defects, blows, hot water wrinkles, etc. Therefore, the pressure gradient in the cavity and the molten metal injection speed for casting as a healthy casting can be secured, and in particular, the gas generated from the air and the mold can be effectively removed so as not to get caught in the molten metal.
[0010]
Providing the core with a core cavity that communicates with the hole provided in the core baseboard can further enhance the effect of removing the generated gas.
[0011]
When the pressure reduction value of the hole portion is made larger than the pressure reduction value of the pouring gate, the fluidity of the molten metal is secured without disturbing the flow of the molten metal, and the suction casting effect of the molten metal on the thin wall portion of the cavity is improved. The pressure reduction value can be adjusted by changing the number of rotations of the vacuum pump by operating the pressure reduction degree control means.
[0012]
Further, in the vacuum suction, when the air-permeable mold is transported and positioned by a transport device (not shown), the vacuum suction is performed by the pressure-reducing device from the hole portion opened toward the outer surface of the air-permeable mold.
[0013]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a second vacuum casting apparatus according to an embodiment of the present invention. The reduced pressure casting apparatus provided for the present invention comprises a breathable mold 1 and a reduced pressure apparatus 12.
The decompression device 12 includes a vacuum pump 14, a pipe 16 having at one end a decompression suction port 13 connected to the opening 10 a of the hole 10 provided in the core baseboard 17, a decompression suction port 13, and a vacuum pump 14. And a decompression degree control means 15 installed between them.
[0014]
As shown in FIGS. 2 and 3, the breathable mold 1 has a thin scroll portion (a portion serving as an exhaust gas passage) 21 having an outer diameter of 120 mm and a thickness of 3.0 mm by the core 8, and an upper portion and a side portion thereof. Further, a thin cavity 2 having a complicated shape having two flange portions 22 having a thickness of 15 mm and two boss portions 23 having a thickness of 20 mm and a height of 25 mm on the outer peripheral portion of the upper flange is formed. The breathable mold 1 is a cold box type and uses silica sand No. 6. The gate 5 is provided near the center of the air-permeable mold 1, and a runner 6 and a weir portion 7 are provided continuously to the gate 5. The core skirting board portion 17 of the breathable mold 1 is provided with a hole portion 10 that opens toward the bottom surface, and the core 8 is provided with a core cavity portion 9 that communicates with the hole portion 10. A filter is preferably disposed between the runner 6 and the weir 7 in order to prevent solid impurities mixed in the molten metal 3 from flowing into the cavity 2. In order to prevent the gas generated from the mold from being sucked into the cavity, it is preferable to form a gas suction prevention coating mold on the inner surface of the air-permeable mold 1 forming the cavity by brushing or spraying.
[0015]
As shown in FIG. 1, the hole 10 of the core skirting board portion 17 of the core 8 embedded in the air-permeable mold 1 is directed upward from the opening 10 a provided on the lower surface of the air-permeable mold 1. And communicates with the core cavity 9. The core cavity portion 9 also extends vertically upward, and its tip extends to substantially the same position as the upper end portion of the substantially egg shape in which the lateral width of the core 8 is maximum. For this reason, the generated gas from the core 8 can be efficiently sucked and removed.
[0016]
The decompression device 12 includes a vacuum pump 14, a decompression degree control means 15, and a decompression suction port 13 that performs decompression suction by bringing the flexible tube into close contact with the air hole 10 of the breathable mold 1.
[0017]
Next, an embodiment of the reduced pressure casting method for producing a cast steel casting by the above apparatus will be described. FIG. 2 is an external view of the turbine housing 19 of the automobile turbo rotor made of heat-resistant cast steel. As shown in FIG. 3, the longitudinal cross-sectional view has a complicated shape. In order to form the hollow portion 20 of the cast product, as shown in FIG. 4, the core 8 embedded in the air-permeable mold 1 is It is not a simple shape but a core shape having a spiral portion. By setting the core 8 in a main mold (not shown) of a breathable mold, a thin portion of the cavity 2 (this thin portion is a thin portion 24 of a cast product) is formed around the core 8. Is done. The breathable mold 1 is carried into a pouring station (not shown) by a transport device. Next, the vacuum suction port 13 from the decompression device 12 is brought into close contact with the air hole 10 of the breathable mold 1. And the pressure reduction value in the void | hole part 10 is made into the range of -100 ~ -20mmHg before pouring, and the pressure reduction value of a void | hole part is made larger than the gate. Thereafter, a predetermined amount of molten metal is poured into the cavity 2 from the ladle 4 to perform casting. The molten metal temperature in the ladle 4 was set to the range of 1500-1600 degreeC. Table 1 shows the chemical composition of the cast steel.
[0018]
[Table 1]
Figure 0003783877
[0019]
After the cast steel casting is solidified in the air-permeable mold 1, it is carried out to the next mold release station (not shown) by the transport device. Then, another breathable mold 1 before casting is carried into the pouring station. The above steps are repeated to cast as many cast steel castings as necessary.
80 pieces of complex cast thin-walled steel castings with flanges shown in FIGS. 2 and 3 were cast and the quality of the castings was investigated. As a result, the casting speed of the molten metal is high, and the molten metal is not easily disturbed. Casting of all, non-rotating, hot water boundaries, blown, hot water wrinkles, etc. without entraining the gas generated from the air or mold. There were no defects and it was healthy.
[0020]
FIG. 5 is a longitudinal sectional view showing another embodiment in which vacuum suction is performed from the core cavity. A cavity 2 is formed between the outer periphery of the core 8 embedded in the portion of the air-permeable mold (main mold) 1 forming the cavity and the air-permeable mold 1. This cast product has a complicated shape, and as shown in FIG. 5, it has an ear-shaped thin part 2 on both sides, and the core 8 embedded to form this thin part has a thick part. Of course, the gas generated from the core is considered to be large. Accordingly, the core cavity is formed so as to extend vertically upward from the vacuum suction port 13 so that the tip thereof reaches the vicinity of the ear-shaped part. As a result of performing vacuum suction casting according to this embodiment, casting defects such as blowing were not generated, and a sound cast product could be obtained.
[0021]
FIG. 6 is a longitudinal sectional view showing a comparative embodiment. In this comparative example, the core 8 to be embedded is formed solid. The vacuum suction was performed by reducing the pressure from the vacuum thin wall portion 2 through the mold cavity 27 through the suction member 26 and from the vacuum suction port 13 using the vacuum device 12 (not shown). Even though the suction member 26 is made of a material having better ventilation than the breathable mold 1, it is blown in the vicinity of the thin portion 2 as shown in FIG. Occurred. This is considered to indicate that since the core 8 is solid, it was insufficient to suck and remove the generated gas only from the outer surface of the solid core.
[0022]
【The invention's effect】
As described above in detail, a hole communicating with the outside is provided in the core skirting board in the breathable mold, and a vacuum suction port of a decompression device having a vacuum pump and a pressure reduction degree control means is connected to the hole. Then, the following effects can be achieved by casting the core and the cavity with a decompression device through the hole.
(1) The fluidity of the molten metal is improved without disturbing the flow of the molten metal, and it is possible to prevent malfunctions and boundary defects. (2) The gas generated from the air and the mold is effectively removed without being involved in the molten metal, and blown and does not cause a wrinkle defect.
Therefore, it is possible to produce a casting having a complex shape and a thin wall such as a stainless cast steel and a heat-resistant cast steel.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a vacuum casting apparatus showing an embodiment of the present invention.
FIG. 2 is an external view of a turbine housing.
FIG. 3 is a longitudinal sectional view of a turbine housing.
FIG. 4 is an external view of a core.
FIG. 5 is a partial longitudinal sectional view showing another embodiment of the present invention in which vacuum suction is performed from a core cavity.
FIG. 6 is a partial longitudinal sectional view showing a comparative example of the embodiment.
FIG. 7 is a partial plan view showing a casting defect of a cast product in a comparative example.
[Explanation of symbols]
1: breathable mold, 2: cavity, 3: molten metal, 4: ladle, 5: spout, 6: runner, 7: weir, 8: core, 9: core cavity, 10: hole 10a: Opening of hole part, 11: feeder, 12: decompression device, 13: decompression suction port, 14: vacuum pump, 15: decompression degree control means, 16: pipe, 17: core baseboard part, 19: turbine housing, 26: suction member, 27: mold cavity, 28: blown, hot water

Claims (3)

キャビティ、中子、湯口および堰部を有する通気性鋳型を減圧して溶湯を鋳造する減圧鋳造方法であって、前記通気性鋳型内のキャビティ形成部位に中子を埋設し、前記中子の中子幅木部に外部と連通する空孔部を設けるとともに、前記通気性鋳型からのガス吸引を遮断して、前記空孔部を介する前記中子および前記キャビティの減圧効果を向上させるため、前記空孔部が形成されている前記中子幅木部の外面にガス吸引防止塗型層を形成し、該空孔部に真空ポンプと減圧度制御手段を有する減圧装置の減圧吸引口を接続させ、前記減圧装置により前記空孔部を介して前記中子および前記キャビティ内を減圧しながら鋳造することを特徴とする減圧鋳造方法。A vacuum casting method for casting a molten metal by depressurizing a gas-permeable mold having a cavity, a core, a gate, and a weir part, wherein the core is embedded in a cavity forming portion in the gas-permeable mold, Rutotomoni provided cavity communicating outside the child width wood, to interrupt the gas suction from the ventilation mold, to improve the effect of reducing the pressure of said core and said cavity through said cavities, A gas suction prevention coating layer is formed on the outer surface of the core skirting portion where the hole is formed, and a vacuum suction port of a decompression device having a vacuum pump and a pressure reduction degree control unit is connected to the hole And performing casting while reducing the pressure inside the core and the cavity through the hole by the pressure reducing device. 請求項1記載の減圧鋳造方法において、前記中子幅木部に設けた前記空孔部と連通する中子空洞部を前記中子に設けることを特徴とする減圧鋳造方法。2. The reduced pressure casting method according to claim 1, wherein a core cavity portion communicating with the hole portion provided in the core skirting portion is provided in the core. 請求項1または請求項2記載の減圧鋳造方法において、前記空孔部の減圧値を前記湯口の減圧値より大きくして鋳造することを特徴とする減圧鋳造方法。The reduced pressure casting method according to claim 1 or 2, wherein casting is performed with a reduced pressure value of the hole portion larger than a reduced pressure value of the gate.
JP24559095A 1995-09-25 1995-09-25 Vacuum casting method Expired - Lifetime JP3783877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24559095A JP3783877B2 (en) 1995-09-25 1995-09-25 Vacuum casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24559095A JP3783877B2 (en) 1995-09-25 1995-09-25 Vacuum casting method

Publications (2)

Publication Number Publication Date
JPH0985421A JPH0985421A (en) 1997-03-31
JP3783877B2 true JP3783877B2 (en) 2006-06-07

Family

ID=17135998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24559095A Expired - Lifetime JP3783877B2 (en) 1995-09-25 1995-09-25 Vacuum casting method

Country Status (1)

Country Link
JP (1) JP3783877B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150764B2 (en) 2005-09-15 2008-09-17 政人 五家 Casting method
CN109465399B (en) * 2018-12-26 2023-11-21 广东富华铸锻有限公司 Gating system with speed reducer shell sand core structure
CN111408690A (en) * 2020-04-07 2020-07-14 滁州金诺实业有限公司 High-performance aluminum alloy casting dieless forming casting method

Also Published As

Publication number Publication date
JPH0985421A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3783877B2 (en) Vacuum casting method
JPH05161957A (en) Casting method and mold
US5348073A (en) Method and apparatus for producing cast steel article
JPS61296938A (en) Casting method using sand mold
JPH01180769A (en) Low pressure casting method using sand mold
JPH0561018B2 (en)
JPH06226423A (en) Manufacture of thin cast product by permeable mold
JPH06142828A (en) Method and device for casting lost foam pattern
JPH05277699A (en) Method for casting thin casting
JP2778898B2 (en) Method and apparatus for producing cast steel casting by sand mold
JP3720241B2 (en) Vacuum casting method using vanishing model
JPH07265998A (en) Mold for reduced pressure casting
JP2872322B2 (en) Vacuum casting method
JPH0246295B2 (en) CHUZOSOCHINOYUMICHOSHOSHITSUMOKEI
JPH06106326A (en) Sand mold for vacuum casting
JP2003170266A (en) Vacuum casting method
JPH07290225A (en) Reduced pressure casting method and device thereof
JPH07266023A (en) Reduced pressure casting method and reduced pressure casting apparatus
JPS5970455A (en) Production device for casting
JPS61245941A (en) Vacuum molding method
JPS6012268A (en) Method and device for suction casting
JPS60166155A (en) Suction casting method with back metallic mold
JP3173209B2 (en) Precision casting method and equipment
JPH08290254A (en) Reduced pressure casting apparatus
JPH04147760A (en) Casting mold for suction casting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term