JP3783272B2 - Manufacturing method of thermal fuse - Google Patents

Manufacturing method of thermal fuse Download PDF

Info

Publication number
JP3783272B2
JP3783272B2 JP06966996A JP6966996A JP3783272B2 JP 3783272 B2 JP3783272 B2 JP 3783272B2 JP 06966996 A JP06966996 A JP 06966996A JP 6966996 A JP6966996 A JP 6966996A JP 3783272 B2 JP3783272 B2 JP 3783272B2
Authority
JP
Japan
Prior art keywords
insulating member
lead wires
thermal fuse
case
fusible alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06966996A
Other languages
Japanese (ja)
Other versions
JPH09259723A (en
Inventor
篤司 河野
考生 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06966996A priority Critical patent/JP3783272B2/en
Publication of JPH09259723A publication Critical patent/JPH09259723A/en
Application granted granted Critical
Publication of JP3783272B2 publication Critical patent/JP3783272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種電気機器の電子回路に取り付けられ、過熱保護として用いられる温度ヒューズの製造方法に関するものである。
【0002】
【従来の技術】
従来のこの種の温度ヒューズとしては、実願平1−65151号(実開平3−4635号)のマイクロフィルムに記載されたものが知られている。
【0003】
図6は、従来の温度ヒューズの断面図である。図において、1は低融点金属体からなる可溶合金である。2は可溶合金1の表面に塗布されたフラックスである。3は可溶合金1の両端に電気的に接続されたリード線である。4は少なくとも可溶合金1を収納するとともにリード線3を引き出す開口部5を有するケースである。6はケース4の開口部5を封口するエポキシからなる封口部材である。7はケース4および封口部材6より引き出された部分のリード線3を覆うように設けられたポリエチレン塩化ビニルやナイロン等よりなる絶縁部材である。
【0004】
以上のように構成された従来の温度ヒューズについて、以下にその動作を説明する。
【0005】
図7は従来の温度ヒューズの使用例を示す断面図である。図中、図6と同一のものは同一の符号を付け、説明を省略する。図において、8はこの温度ヒューズ9を上面に取り付けるトランスである。10はトランス8と温度ヒューズ9とを実装する基板である。11は温度ヒューズ9を実装するために基板10に設けられた孔である。温度ヒューズ9は、トランス8の上面に直接取り付けられるとともに基板10に設けられた孔11にリード線3の端部をはめ込むことにより、基板10に実装されるため、基板10上の電気回路に対して直列に使用される。このトランス8が異常状態になり発熱すると、その熱が温度ヒューズ9の可溶合金1に伝わる。可溶合金1が融点以上の高温になると中心部分から溶融が始まり、表面張力によってリード線3の両端に球状に引き寄せられて温度ヒューズ9が断線し、電気回路を遮断するものである。
【0006】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、図7に示すようにこの温度ヒューズ9をトランス8等の部品にリード線3をコ字状に折り曲げて取り付ける際、折り曲げ部分にあたるリード線3を覆う封口部材6と絶縁部材7との境界に折り曲げ応力による隙間11ができやすいという課題を有していた。
【0007】
上記課題を解決するために本発明は、封口部材と絶縁部材との境界に隙間が生じにくい温度ヒューズの製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明は、第1,第2のリード線を可溶合金に溶接してヒューズユニットを形成し、次に少なくとも前記ヒューズユニットの可溶合金を収納するとともに前記第1,第2のリード線を引き出す開口部を有するケースを挿入し、次に前記ケースの開口部を封口する封口部材を形成し、次に前記ケースから引き出された前記第1,第2のリード線を覆うように第1の絶縁部材を挿入し、かつこの第1,第2のリード線を覆う第1の絶縁部材をそれぞれヒータ板に接触させるとともに、前記可溶合金を収納したケースをヒータ板の間に位置させ、さらに温度ヒューズをヒータ板上で加熱しながら回転させることにより、前記第1の絶縁部材をヒータ板上で加熱収縮させて第1の絶縁部材を前記第1,第2のリード線に被着し、最後に少なくとも前記封口部材と第1の絶縁部材との境界を覆う第2の絶縁部材を塗布して乾燥させることにより第2の絶縁部材を形成したものである。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、第1,第2のリード線を可溶合金に溶接してヒューズユニットを形成し、次に少なくとも前記ヒューズユニットの可溶合金を収納するとともに前記第1,第2のリード線を引き出す開口部を有するケースを挿入し、次に前記ケースの開口部を封口する封口部材を形成し、次に前記ケースから引き出された前記第1,第2のリード線を覆うように第1の絶縁部材を挿入し、かつこの第1,第2のリード線を覆う第1の絶縁部材をそれぞれヒータ板に接触させるとともに、前記可溶合金を収納したケースをヒータ板の間に位置させ、さらに温度ヒューズをヒータ板上で加熱しながら回転させることにより、前記第1の絶縁部材をヒータ板上で加熱収縮させて第1の絶縁部材を前記第1,第2のリード線に被着し、最後に少なくとも前記封口部材と第1の絶縁部材との境界を覆う第2の絶縁部材を塗布して乾燥させることにより第2の絶縁部材を形成したもので、この製造方法によれば、可溶合金を収納したケースの開口部を封口する封口部材と第1の絶縁部材との境界を覆う第2の絶縁部材を塗布して乾燥させることにより第2の絶縁部材を形成しているため、折り曲げ部分にあたる第1,第2のリード線を覆う第1の絶縁部材と封口部材との境界に隙間ができにくくなり、これにより、第1,第2のリード線が露出することなく、第2の絶縁部材で覆われるため、第1,第2のリード線の折り曲げに対しても絶縁性が保持されるという作用を有するものである。
【0010】
また、この製造方法によれば、第1,第2のリード線を覆う第1の絶縁部材をそれぞれヒータ板に接触させるとともに、前記可溶合金を収納したケースをヒータ板の間に位置させ、さらに温度ヒューズをヒータ板上で加熱しながら回転させることにより、前記第1の絶縁部材をヒータ板上で加熱収縮させて第1の絶縁部材を前記第1,第2のリード線に被着するようにしているため、第1の絶縁部材の収縮は均一なものとなって、第1の絶縁部材を前記第1,第2のリード線に均一に被着させることができ、また、可溶合金を収納したケースはヒータ板の間に位置しているため、可溶合金が高温にさらされて溶融するということもなく、第1の絶縁部材のみを加熱することができるという作用を有するものである。
【0011】
以下、本発明の一実施の形態における温度ヒューズの製造方法について、図面を参照しながら説明する。
【0012】
図1は本発明の一実施の形態における温度ヒューズの断面図である。図1において、13は錫、鉛、ビスマス、インジウム等の低融点金属の少なくとも1つ以上からなる可溶合金である。14は可溶合金13の表面に必要により塗布されたロジン系のフラックスである。15,16は可溶合金13を介して電気的に接続された第1,第2のリード線であり、この第1,第2のリード線15,16と可溶合金13とでヒューズユニットを構成している。17は少なくとも可溶合金13を収納するとともに第1,第2のリード線15,16を引き出す開口部18を有するセラミック等からなるケースである。19はケース17の開口部18を封口するエポキシ樹脂、ウレタン樹脂等の熱硬化性樹脂からなる封口部材で、ケース17から離れるにしたがって先細りとなるように設けられている。20は第1,第2のリード線15,16を覆うように設けられた塩化ビニル、ポリオレフィン、ポリエチレン等よりなる第1の絶縁部材である。21は少なくとも封口部材19と第1の絶縁部材20との境界を覆うエポキシ樹脂等の熱硬化性樹脂よりなる第2の絶縁部材である。
【0013】
以上のように構成された本発明の一実施の形態における温度ヒューズについて、以下にその製造方法を説明する。
【0014】
図2(a)〜(h)は本発明の一実施の形態における温度ヒューズの製造方法を示す工程図である。
【0015】
まず、図2(a)に示すように、錫、鉛、ビスマス等の低融点金属の少なくとも1つ以上からなる可溶合金22に、銅線に鍍金を施した第1,第2のリード線23,24を約300℃で溶接し、ヒューズユニットを形成する。
【0016】
次に、図2(b)に示すように、可溶合金22の表面全体にロジン系のフラックス25を塗布する。このフラックス25は可溶合金22が溶融すると表面張力の働きを促進し、断線時間を短縮させる効果がある。
【0017】
次に、図2(c)に示すように、少なくともヒューズユニットの可溶合金22を収納するとともに第1,第2のリード線23,24を引き出す開口部27を有するセラミック等の絶縁性材料からなるケース26を挿入する。
【0018】
次に、図2(d)に示すように、ケース26の開口部27を封口するように、エポキシ樹脂、ウレタン樹脂等の熱硬化性樹脂を、ディスペンサ28で塗布後、約80℃で約1時間乾燥させて封口部材29を形成する。この際、封口部材29は、ケース26から離れるにしたがって先細りに円錐状になるように形成する。
【0019】
次に、図2(e)に示すように、ケース26から引き出された第1,第2のリード線23,24を覆うように、塩化ビニル、ポリオレフィン、ポリエチレン等の熱収縮性を有する第1の絶縁部材30を第1,第2のリード線23,24に挿入する。このとき後の工程で第1の絶縁部材30を確実に被着させるため、第1の絶縁部材30は円錐状に形成された封口部材29の挿入できる位置まで押し込んでおく。
【0020】
次に、図2(f)に示すように、ケース26と封口部材29とを合わせた幅とほぼ同じ間隔をあけて設置されたヒータ板31上に第1,第2のリード線23,24に挿入された第1の絶縁部材30が接し、ケース26がヒータ板31の間になるようにかつ第1,第2のリード線23,24は搬送ベルト32上に接するように並べ、この搬送ベルト32を動かして前工程で形成された温度ヒューズをAからBの方向へ約130℃で加熱しながら均一に収縮するように回転させ、図2(g)に示すように第1の絶縁部材30を第1,第2のリード線23,24に均一に被着する。このとき、第1の絶縁部材30をヒータ板31で加熱するときのケース26の表面温度は約60〜70℃程度であり、可溶合金22が溶融する温度までは上がらず、第1の絶縁部材30のみを加熱することができる。また、可溶合金22の融点が例えば約70℃と低い場合は、ケース26にスポットクーラ等を用いて可溶合金22を冷却してもよい。
【0021】
最後に、図2(h)に示すように、少なくとも封口部材29と第1の絶縁部材30との境界を覆うように、エポキシ樹脂、ウレタン樹脂等の熱硬化性樹脂を塗布し、約80℃で約1時間乾燥させて第2の絶縁部材33を形成し、本発明の温度ヒューズを製造するものである。
【0022】
以上のようにして構成され、かつ製造された本発明の一実施の形態における温度ヒューズについて、以下にその動作を説明する。
【0023】
図3は、本発明の一実施の形態における温度ヒューズの使用方法の一例を示す断面図である。図中、図1と同一のものは同一の符号を付け、説明を省略する。34はこの温度ヒューズを上面に取り付けるトランスである。35はトランス34と温度ヒューズ36とを実装する基板である。37はこの温度ヒューズ36を実装するために基板35に設けられた孔である。温度ヒューズ36はトランス34の上面に直接取り付けられるとともに基板35に設けられた孔37に第1,第2のリード線15,16の端部をはめ込むことにより、基板35に実装されるため、基板35の電気回路に対して直列に使用される。このトランス34が異常状態になり発熱すると、その熱が温度ヒューズ36の可溶合金13に伝わる。可溶合金13が融点以上の高温になると中心部分から溶融が始まり、表面張力によって第1,第2のリード線15,16それぞれの両端に球状に引き寄せられて温度ヒューズ36が断線し、電気回路を遮断するものである。図3に示すように、この温度ヒューズ36をトランス34に第1,第2のリード線15,16をコ字状に折り曲げて取り付ける際、折り曲げ部分にあたる第1,第2のリード線15,16を覆う封口部材19と第1の絶縁部材20との境界を第2の絶縁部材21で覆っているため、境界に折り曲げ応力が働いても、第2の絶縁部材21を形成する樹脂がその応力を吸収し、境界に発生する隙間を抑え、第1,第2のリード線15,16が露出することなく、露出部分がトランス34と直接接触することを防ぐことができるものである。
【0024】
なお、上述した温度ヒューズの製造方法では、可溶合金13を介して第1,第2のリード線15,16が一直線状に構成された温度ヒューズを例にして説明したが、図4に示すように、可溶合金38を介して下方から第1,第2のリード線39,40が平行に引き出されている場合でも、封口部材41と第1の絶縁部材42との境界を覆うように第2の絶縁部材43を設けても絶縁性が強化され、同様の効果が得られる。
【0025】
また、このような第1,第2のリード線39,40が平行に形成された温度ヒューズに第1の絶縁部材42を被着する場合、図5に示すように、一対のヒータ板44にケース45を除いて第1の絶縁部材46が挿入された第1,第2のリード線47,48を設置する溝49を設けたものを用いて第1の絶縁部材46のみを加熱する。このように第1の絶縁部材46を加熱して収縮させながら被着しても同様の効果が得られる。このとき第1の絶縁部材46をより均一に被着するため、ヒータ板44を上下に動かしても良い。
【0026】
【発明の効果】
以上のように本発明によれば、折り曲げ部分にあたる第1,第2のリード線を覆う第1の絶縁部材と封口部材との境界に隙間ができるのを第2の絶縁部材で防止することができるため、第1,第2のリード線が露出することもなく、第2の絶縁部材で覆われるため、第1,第2のリード線の折り曲げに対しても絶縁性が保持されるという効果を有するとともに、第1,第2のリード線を覆う第1の絶縁部材をそれぞれヒータ板に接触させるとともに、可溶合金を収納したケースをヒータ板の間に位置させ、さらに温度ヒューズをヒータ板上で加熱しながら回転させることにより、前記第1の絶縁部材をヒータ板上で加熱収縮させて第1の絶縁部材を前記第1,第2のリード線に被着するようにしているため、第 1の絶縁部材の収縮は均一なものとなって、第1の絶縁部材を前記第1,第2のリード線に均一に被着させることができ、また、可溶合金を収納したケースはヒータ板の間に位置しているため、可溶合金が高温にさらされて溶融するということもなく、第1の絶縁部材のみを加熱することができるという温度ヒューズの製造方法を提供することができるものである。
【図面の簡単な説明】
【図1】 本発明の一実施の形態における温度ヒューズの断面図
【図2】 (a)〜(h)同温度ヒューズの製造方法を示す工程図
【図3】 同温度ヒューズの使用例を示す断面図
【図4】 本発明の他の実施の形態における温度ヒューズの断面図
【図5】 同温度ヒューズの製造工程の一部を示す斜視図
【図6】 従来の温度ヒューズの断面図
【図7】 同温度ヒューズの使用例を示す断面図
【符号の説明】
13 可溶合金
15 第1のリード線
16 第2のリード線
17 ケース
18 開口部
19 封口部材
20 第1の絶縁部材
21 第2の絶縁部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a thermal fuse that is attached to an electronic circuit of various electric devices and used as overheat protection.
[0002]
[Prior art]
As this type of conventional thermal fuse, one described in the microfilm of Japanese Utility Model Application No. 1-65151 (Japanese Utility Model Application Publication No. 3-4635) is known.
[0003]
FIG. 6 is a cross-sectional view of a conventional thermal fuse. In the figure, reference numeral 1 denotes a fusible alloy made of a low melting point metal body. Reference numeral 2 denotes a flux applied to the surface of the soluble alloy 1. Reference numeral 3 denotes a lead wire electrically connected to both ends of the fusible alloy 1. Reference numeral 4 denotes a case that houses at least the fusible alloy 1 and has an opening 5 through which the lead wire 3 is drawn. Reference numeral 6 denotes a sealing member made of epoxy that seals the opening 5 of the case 4. Reference numeral 7 denotes an insulating member made of polyethylene vinyl chloride, nylon, or the like provided so as to cover the lead wire 3 in a portion drawn from the case 4 and the sealing member 6.
[0004]
The operation of the conventional thermal fuse configured as described above will be described below.
[0005]
FIG. 7 is a sectional view showing an example of use of a conventional thermal fuse. In the figure, the same components as those in FIG. In the figure, 8 is a transformer for attaching the thermal fuse 9 to the upper surface. Reference numeral 10 denotes a substrate on which the transformer 8 and the thermal fuse 9 are mounted. Reference numeral 11 denotes a hole provided in the substrate 10 for mounting the thermal fuse 9. The thermal fuse 9 is directly attached to the upper surface of the transformer 8 and is mounted on the substrate 10 by fitting the end of the lead wire 3 into the hole 11 provided in the substrate 10. Are used in series. When the transformer 8 becomes abnormal and generates heat, the heat is transferred to the fusible alloy 1 of the thermal fuse 9. When the fusible alloy 1 reaches a high temperature equal to or higher than the melting point, melting starts from the central portion and is attracted spherically to both ends of the lead wire 3 due to surface tension, and the thermal fuse 9 is disconnected to interrupt the electric circuit.
[0006]
[Problems to be solved by the invention]
However, in the above conventional configuration, as shown in FIG. 7, when the thermal fuse 9 is attached to a component such as a transformer 8 by bending the lead wire 3 into a U-shape, it is insulated from the sealing member 6 covering the lead wire 3 corresponding to the bent portion. It had the subject that the clearance gap 11 by bending stress was easy to be made in the boundary with the member 7. FIG.
[0007]
In order to solve the above-described problems, an object of the present invention is to provide a method for manufacturing a thermal fuse in which a gap is hardly generated at the boundary between a sealing member and an insulating member.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention forms a fuse unit by welding the first and second lead wires to a fusible alloy, and then stores at least the fusible alloy of the fuse unit and the first. , A case having an opening for drawing the second lead wire is inserted, a sealing member for sealing the opening of the case is then formed, and then the first and second lead wires drawn from the case The first insulating member is inserted so as to cover the first insulating member and the first insulating member covering the first and second lead wires is brought into contact with the heater plate, and the case containing the soluble alloy is interposed between the heater plates. The first insulating member is heated and shrunk on the heater plate by rotating the thermal fuse while being heated on the heater plate, and the first insulating member is moved to the first and second lead wires. Adhering to , In which finally forming at least the sealing member and the first insulating member and the second insulating member and dried by applying a second insulating member covering the boundary.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, the first and second lead wires are welded to a fusible alloy to form a fuse unit, and then at least the fusible alloy of the fuse unit is accommodated and the first 1. Insert a case having an opening for pulling out the second lead wire, then form a sealing member for sealing the opening of the case, and then the first and second leads drawn from the case A first insulating member is inserted so as to cover the wire, and the first insulating member covering the first and second lead wires is brought into contact with the heater plate, and the case containing the soluble alloy is heated. The first insulating member is heated and shrunk on the heater plate by rotating the thermal fuse on the heater plate while being positioned between the plates, and the first insulating member is moved to the first and second leads. Adhere to the wire Finally, a second insulating member is formed by applying and drying a second insulating member that covers at least the boundary between the sealing member and the first insulating member. Since the second insulating member is formed by applying and drying a second insulating member that covers the boundary between the sealing member that seals the opening of the case containing the alloy and the first insulating member, bending is performed. It becomes difficult to form a gap at the boundary between the first insulating member and the sealing member covering the first and second lead wires corresponding to the portion, and the second and second lead wires are not exposed. Since it is covered with the insulating member, it has an effect that the insulating property is maintained even when the first and second lead wires are bent.
[0010]
Further, according to this manufacturing method, the first insulating member covering the first and second lead wires is brought into contact with the heater plate, the case containing the fusible alloy is positioned between the heater plates, and the temperature is further increased. By rotating the fuse while heating it on the heater plate, the first insulating member is heated and shrunk on the heater plate so that the first insulating member is attached to the first and second lead wires. Therefore, the shrinkage of the first insulating member becomes uniform, so that the first insulating member can be uniformly applied to the first and second lead wires, Since the accommodated case is located between the heater plates, the fusible alloy is not exposed to high temperature and melts, and only the first insulating member can be heated.
[0011]
Hereinafter, a method for manufacturing a thermal fuse in an embodiment of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a cross-sectional view of a thermal fuse in an embodiment of the present invention. In FIG. 1, 13 is a fusible alloy composed of at least one of low melting point metals such as tin, lead, bismuth and indium. Reference numeral 14 denotes a rosin flux applied to the surface of the soluble alloy 13 as necessary. Reference numerals 15 and 16 denote first and second lead wires electrically connected via the fusible alloy 13, and the fuse unit is constituted by the first and second lead wires 15 and 16 and the fusible alloy 13. It is composed. Reference numeral 17 denotes a case made of ceramic or the like that houses at least the fusible alloy 13 and has an opening 18 through which the first and second lead wires 15 and 16 are drawn. Reference numeral 19 denotes a sealing member made of a thermosetting resin such as an epoxy resin or a urethane resin that seals the opening 18 of the case 17, and is provided so as to taper away from the case 17. Reference numeral 20 denotes a first insulating member made of vinyl chloride, polyolefin, polyethylene or the like provided so as to cover the first and second lead wires 15 and 16. Reference numeral 21 denotes a second insulating member made of a thermosetting resin such as an epoxy resin that covers at least the boundary between the sealing member 19 and the first insulating member 20.
[0013]
A method for manufacturing the thermal fuse according to the embodiment of the present invention configured as described above will be described below.
[0014]
FIGS. 2A to 2H are process diagrams showing a method for manufacturing a thermal fuse in one embodiment of the present invention.
[0015]
First, as shown in FIG. 2 (a), first and second lead wires obtained by plating a copper wire on a fusible alloy 22 made of at least one low melting point metal such as tin, lead, bismuth or the like. 23 and 24 are welded at about 300 ° C. to form a fuse unit.
[0016]
Next, as shown in FIG. 2B, a rosin flux 25 is applied to the entire surface of the fusible alloy 22. This flux 25 has the effect of promoting the function of surface tension when the fusible alloy 22 is melted and shortening the disconnection time.
[0017]
Next, as shown in FIG. 2 (c), from an insulating material such as ceramic that houses at least the fusible alloy 22 of the fuse unit and has an opening 27 through which the first and second lead wires 23 and 24 are drawn. A case 26 is inserted.
[0018]
Next, as shown in FIG. 2 (d), a thermosetting resin such as an epoxy resin or a urethane resin is applied with a dispenser 28 so as to seal the opening 27 of the case 26, and then about 1 at about 80 ° C. The sealing member 29 is formed by drying for a period of time. At this time, the sealing member 29 is formed so as to be tapered and conical as the distance from the case 26 increases.
[0019]
Next, as shown in FIG. 2E, a first heat-shrinkable material such as vinyl chloride, polyolefin, polyethylene, or the like is provided so as to cover the first and second lead wires 23, 24 drawn from the case 26. The insulating member 30 is inserted into the first and second lead wires 23 and 24. At this time, in order to securely attach the first insulating member 30 in a later step, the first insulating member 30 is pushed into a position where the conical sealing member 29 can be inserted.
[0020]
Next, as shown in FIG. 2 (f), the first and second lead wires 23, 24 are placed on a heater plate 31 that is installed at substantially the same interval as the combined width of the case 26 and the sealing member 29. The first insulating member 30 inserted in the contact is in contact, the case 26 is located between the heater plates 31, and the first and second lead wires 23 and 24 are arranged in contact with the transport belt 32. The belt 32 is moved to rotate the thermal fuse formed in the previous process so that it is uniformly shrunk while being heated in the direction from A to B at about 130 ° C., as shown in FIG. 30 is uniformly applied to the first and second lead wires 23 and 24. At this time, the surface temperature of the case 26 when the first insulating member 30 is heated by the heater plate 31 is about 60 to 70 ° C., and does not rise to a temperature at which the fusible alloy 22 melts. Only the member 30 can be heated. Further, when the melting point of the fusible alloy 22 is as low as about 70 ° C., for example, the fusible alloy 22 may be cooled to the case 26 using a spot cooler or the like.
[0021]
Finally, as shown in FIG. 2 (h), a thermosetting resin such as an epoxy resin or a urethane resin is applied so as to cover at least the boundary between the sealing member 29 and the first insulating member 30, and about 80 ° C. The second insulating member 33 is formed by drying for about 1 hour, and the thermal fuse of the present invention is manufactured.
[0022]
The operation of the thermal fuse according to the embodiment of the present invention constructed and manufactured as described above will be described below.
[0023]
FIG. 3 is a cross-sectional view showing an example of a method of using the thermal fuse in one embodiment of the present invention. In the figure, the same components as those in FIG. Reference numeral 34 denotes a transformer for attaching the thermal fuse to the upper surface. Reference numeral 35 denotes a substrate on which the transformer 34 and the thermal fuse 36 are mounted. Reference numeral 37 denotes a hole provided in the substrate 35 for mounting the thermal fuse 36. The thermal fuse 36 is mounted directly on the upper surface of the transformer 34 and mounted on the substrate 35 by fitting the end portions of the first and second lead wires 15 and 16 into holes 37 provided in the substrate 35. Used in series with 35 electrical circuits. When the transformer 34 becomes abnormal and generates heat, the heat is transmitted to the fusible alloy 13 of the temperature fuse 36. When the fusible alloy 13 is heated to a temperature higher than the melting point, the melting starts from the central portion, and is attracted spherically to both ends of the first and second lead wires 15 and 16 by the surface tension, and the thermal fuse 36 is disconnected, and the electric circuit Is to shut off. As shown in FIG. 3, when the thermal fuse 36 is attached to the transformer 34 by bending the first and second lead wires 15 and 16 into a U shape, the first and second lead wires 15 and 16 corresponding to the bent portions are attached. Since the boundary between the sealing member 19 that covers the first insulating member 20 and the first insulating member 20 is covered with the second insulating member 21, even if bending stress acts on the boundary, the resin that forms the second insulating member 21 is subjected to the stress. , The gap generated at the boundary is suppressed, and the exposed portion can be prevented from coming into direct contact with the transformer 34 without the first and second lead wires 15 and 16 being exposed.
[0024]
The above-described method for manufacturing a thermal fuse has been described by taking as an example a thermal fuse in which the first and second lead wires 15 and 16 are arranged in a straight line with the fusible alloy 13 being shown in FIG. As described above, even when the first and second lead wires 39 and 40 are drawn in parallel from below through the fusible alloy 38, the boundary between the sealing member 41 and the first insulating member 42 is covered. Even if the second insulating member 43 is provided, the insulation is enhanced and the same effect can be obtained.
[0025]
In addition, when the first insulating member 42 is attached to the thermal fuse in which the first and second lead wires 39 and 40 are formed in parallel, as shown in FIG. Except for the case 45, only the first insulating member 46 is heated using a member provided with a groove 49 for installing the first and second lead wires 47 and 48 into which the first insulating member 46 is inserted. Thus, the same effect can be obtained even if the first insulating member 46 is applied while being heated and contracted. At this time, in order to deposit the first insulating member 46 more uniformly, the heater plate 44 may be moved up and down.
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent the second insulating member from forming a gap at the boundary between the first insulating member and the sealing member covering the first and second lead wires corresponding to the bent portions . Therefore, since the first and second lead wires are not exposed and are covered with the second insulating member, the insulating property is maintained even when the first and second lead wires are bent. A first insulating member covering the first and second lead wires is brought into contact with the heater plate, a case containing a fusible alloy is positioned between the heater plates, and a thermal fuse is disposed on the heater plate. by rotating with heating, since the so deposited on the first insulating member first insulating member the first by heat shrinking over the heater plate, the second lead, the first The insulation member shrinks evenly Thus, the first insulating member can be uniformly attached to the first and second lead wires, and the case containing the fusible alloy is located between the heater plates. It is possible to provide a method for manufacturing a thermal fuse in which only the first insulating member can be heated without the alloy being exposed to a high temperature and melting .
[Brief description of the drawings]
FIG. 1 is a sectional view of a thermal fuse in an embodiment of the present invention. FIGS. 2A to 2H are process diagrams showing a manufacturing method of the thermal fuse . FIG. 4 is a cross-sectional view of a thermal fuse in another embodiment of the present invention. FIG. 5 is a perspective view showing a part of the manufacturing process of the thermal fuse. FIG. 6 is a cross-sectional view of a conventional thermal fuse. 7] Cross sectional view showing usage example of the same temperature fuse 【Explanation of symbols】
13 fusible alloy 15 first lead wire 16 second lead wire 17 case 18 opening 19 sealing member 20 first insulating member 21 second insulating member

Claims (1)

第1,第2のリード線を可溶合金に溶接してヒューズユニットを形成し、次に少なくとも前記ヒューズユニットの可溶合金を収納するとともに前記第1,第2のリード線を引き出す開口部を有するケースを挿入し、次に前記ケースの開口部を封口する封口部材を形成し、次に前記ケースから引き出された前記第1,第2のリード線を覆うように第1の絶縁部材を挿入し、かつこの第1,第2のリード線を覆う第1の絶縁部材をそれぞれヒータ板に接触させるとともに、前記可溶合金を収納したケースをヒータ板の間に位置させ、さらに温度ヒューズをヒータ板上で加熱しながら回転させることにより、前記第1の絶縁部材をヒータ板上で加熱収縮させて第1の絶縁部材を前記第1,第2のリード線に被着し、最後に少なくとも前記封口部材と第1の絶縁部材との境界を覆う第2の絶縁部材を塗布して乾燥させることにより第2の絶縁部材を形成した温度ヒューズの製造方法。 A fuse unit is formed by welding the first and second lead wires to a fusible alloy, and then an opening for accommodating at least the fusible alloy of the fuse unit and drawing out the first and second lead wires is provided. the case having inserted, then forming a sealing member for sealing the opening portion of the case, the first drawn from the case then, so as to cover the second lead wire insertion first insulating member And the first insulating members covering the first and second lead wires are brought into contact with the heater plate, the case containing the fusible alloy is positioned between the heater plates, and a thermal fuse is disposed on the heater plate. The first insulating member is heated and shrunk on the heater plate by being rotated while being heated in order to adhere the first insulating member to the first and second lead wires, and finally at least the sealing member. When Thermal fuse fabrication method of forming the second insulating member and dried by applying a second insulating member which covers the boundary between the first insulating member.
JP06966996A 1996-03-26 1996-03-26 Manufacturing method of thermal fuse Expired - Fee Related JP3783272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06966996A JP3783272B2 (en) 1996-03-26 1996-03-26 Manufacturing method of thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06966996A JP3783272B2 (en) 1996-03-26 1996-03-26 Manufacturing method of thermal fuse

Publications (2)

Publication Number Publication Date
JPH09259723A JPH09259723A (en) 1997-10-03
JP3783272B2 true JP3783272B2 (en) 2006-06-07

Family

ID=13409489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06966996A Expired - Fee Related JP3783272B2 (en) 1996-03-26 1996-03-26 Manufacturing method of thermal fuse

Country Status (1)

Country Link
JP (1) JP3783272B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4376428B2 (en) 2000-06-16 2009-12-02 株式会社タムラサーマルデバイス Method for coating insulating tube on lead wire of thermal fuse and thermal fuse thereof
JP4624489B2 (en) * 2005-08-05 2011-02-02 内橋エステック株式会社 Manufacturing method of case type alloy type thermal fuse and case type alloy type thermal fuse

Also Published As

Publication number Publication date
JPH09259723A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
US4852252A (en) Method of terminating wires to terminals
JP2673728B2 (en) Electric terminal and method of manufacturing electric connector using the same
US7128621B2 (en) Connecting structure and its connecting method, and rotating machinery and alternating current
JP2593471B2 (en) Semiconductor device
US5064978A (en) Assembly with self-regulating temperature heater perform for terminating conductors and insulating the termination
KR0154323B1 (en) Method of terminating electrical conductors
JP3876054B2 (en) Fuse and manufacturing method thereof
JP3783272B2 (en) Manufacturing method of thermal fuse
MXPA06005911A (en) Method for the attachment of an electrical lead wire on a surface element, as well as a heating element, especially for a plastic-spraying device.
JP6941731B2 (en) Manufacturing method of stranded wire connector and stranded wire connector for electric devices
JP2002043010A (en) Manufacturing method for lead wire connecting part having waterproof structure
JPH031880Y2 (en)
JPH07109745B2 (en) How to reset the alloy type thermal fuse
EP0371455A1 (en) Method of joining a plurality of associated pairs of electrical conductors
JP3866366B2 (en) Method for manufacturing circuit protection element
JPH0638351Y2 (en) Temperature fuse
JP2599435B2 (en) Method of manufacturing collective coil
JPH0918135A (en) Wire bonding tool and adapter
JP2001076821A (en) Connector shield structue and shield method
JPH0310594Y2 (en)
JPH042023A (en) Resistance/thermal fuse and manufacture thereof
JPH0834077B2 (en) Alloy type thermal fuse
JPH088033B2 (en) Thermal fuse and manufacturing method thereof
JPH0436034Y2 (en)
JP2544169Y2 (en) Thermal fuse

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees