JP3783058B2 - Method and system for inverse estimation of wave direction spectrum from radar image - Google Patents

Method and system for inverse estimation of wave direction spectrum from radar image Download PDF

Info

Publication number
JP3783058B2
JP3783058B2 JP2003302045A JP2003302045A JP3783058B2 JP 3783058 B2 JP3783058 B2 JP 3783058B2 JP 2003302045 A JP2003302045 A JP 2003302045A JP 2003302045 A JP2003302045 A JP 2003302045A JP 3783058 B2 JP3783058 B2 JP 3783058B2
Authority
JP
Japan
Prior art keywords
spectrum
wave
radar
image
wave direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003302045A
Other languages
Japanese (ja)
Other versions
JP2005043333A (en
Inventor
正一郎 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2003302045A priority Critical patent/JP3783058B2/en
Publication of JP2005043333A publication Critical patent/JP2005043333A/en
Application granted granted Critical
Publication of JP3783058B2 publication Critical patent/JP3783058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、航空機や人工衛星等の飛翔体に搭載された映像化レーダ(合成開口レーダ、実開口レーダ等)で観測された海表面からの後方散乱波の強度を表す画像から、波浪の方向スペクトルを逆推定する方法とシステムに関するものである。  The present invention relates to the direction of waves from an image representing the intensity of backscattered waves from the sea surface observed by an imaging radar (synthetic aperture radar, actual aperture radar, etc.) mounted on a flying object such as an aircraft or an artificial satellite. The present invention relates to a method and system for inverse estimation of a spectrum.

航空機や人工衛星に搭載されている合成開口レーダ(SAR:Synthetic Aperture Radar)は、マイクロ波を地表面や海面に照射して、そこからの反射や後方散乱を受信する構成になっている。
マイクロ波の照射方向は、通常、航空機や人工衛星の進行方向に対して横向きでかつ斜め下向きである。このため、進行方向に対する反射・後方散乱の左右の曖昧さを避けることができる。マイクロ波を直下に照射するセンサではこの左右の曖昧さのため、左右どちらからの反射・後方散乱かを特定することはできない。
また、地表面及び海面の映像化は、一般的なレーダのようにアンテナを動かして掃引するのではなく、鉛直方向に幅広く水平方向に幅狭いビームを使用し、アンテナを固定したままで航空機や人工衛星の移動とともに地表面や海面を帯状に掃引する。
A Synthetic Aperture Radar (SAR) mounted on an aircraft or an artificial satellite is configured to irradiate a ground surface or sea surface with a microwave and receive reflection and backscattering from the surface.
The irradiation direction of the microwave is usually transverse to the traveling direction of the aircraft or the satellite and obliquely downward. For this reason, it is possible to avoid left and right ambiguity of reflection and backscattering with respect to the traveling direction. Due to this left-right ambiguity, a sensor that irradiates microwaves directly underneath cannot specify whether reflection or backscattering is from left or right.
Also, imaging of the ground surface and the sea surface is not performed by moving the antenna like a general radar and sweeping, but using a beam that is wide in the vertical direction and narrow in the horizontal direction, with the antenna fixed, Sweeps the surface of the earth and the sea surface in a band as the satellite moves.

SARは、太陽光を必要とせずに地表面や海面を観測することができる能動型センサである。このため、季節や昼夜に関係なく観測を行うことができる。また、SARで用いるマイクロ波は、大気における透過率が高いので、雲による影響を受けることなく定期的な観測を行うことができる。これにより、従来の可視・近赤外のセンサでは観測することができなかった台風や低気圧下における海面の様子を観測することができる。  The SAR is an active sensor that can observe the ground surface and the sea surface without requiring sunlight. Therefore, observation can be performed regardless of the season or day and night. In addition, since the microwave used in the SAR has a high transmittance in the atmosphere, regular observation can be performed without being affected by clouds. As a result, it is possible to observe the state of the sea surface under a typhoon or a low atmospheric pressure that could not be observed with a conventional visible / near infrared sensor.

可視・近赤外センサは、観測高度が高くなると地表面の空間分解能は低下する。通常、この種のセンサは観測高度が2倍になると空間分解能は4分の1になる。
SARの空間分解能は、観測に用いているマイクロ波パルスの長さ、パルスの帯域幅、アンテナの大きさなどから決まるため,観測高度や用いているマイクロ波の波長には無関係である。そのため、人工衛星の観測高度からも高い空間分解能で観測することができる。また、SARは、パルス圧縮や合成開口処理によって、他のマイクロ波センサと比較して極めて高い空間分解能を有している。
Visible and near-infrared sensors have a lower spatial resolution on the ground surface as the observation altitude increases. Usually, this type of sensor has a spatial resolution of 1/4 when the observation altitude is doubled.
Since the spatial resolution of the SAR is determined by the length of the microwave pulse used for observation, the bandwidth of the pulse, the size of the antenna, etc., it is independent of the observation altitude and the wavelength of the microwave used. Therefore, it can be observed with high spatial resolution even from the observation altitude of the artificial satellite. In addition, SAR has extremely high spatial resolution compared to other microwave sensors by pulse compression or synthetic aperture processing.

SARは、マイクロ波を斜め下方向に照射して、海面からの反射・後方散乱波の強度を測定している。マイクロ波の反射・散乱現象は海面の粗さと傾斜による影響を強く受ける。特に、SARで海面を観測すると、海面に存在する波浪によってマイクロ波の入射角の大きさが連続的に変化する様子を観測することができる。このマイクロ波の入射角の変化を解析することにより、波浪の情報(波高、波向、周期、方向スペクトル)を得ることができる。  The SAR measures the intensity of reflected / backscattered waves from the sea surface by irradiating microwaves obliquely downward. Microwave reflection and scattering are strongly influenced by the roughness and slope of the sea surface. In particular, when the sea surface is observed with the SAR, it is possible to observe a state in which the magnitude of the incident angle of the microwave continuously changes due to the waves existing on the sea surface. By analyzing the change in the incident angle of the microwave, wave information (wave height, wave direction, period, direction spectrum) can be obtained.

SAR画像をスペクトル解析することによって得られる2次元波数スペクトルと、波浪の方向スペクトルとの関係については、これまで様々な研究が行われ、両者を関係づける定式化がなされてきた。例えば、Hasellman(1991)は、準線形理論に基づいて合成開口処理の際に生じる非線形の効果を考慮して定式化を行っている。
SAR画像の2次元波数スペクトルから波浪の方向スペクトルを求めるためには、これらの関係式の逆解析を行わなければならない。これまで、この逆問題を解析する方法には以下のようなものがある。
Various studies have been conducted on the relationship between the two-dimensional wave number spectrum obtained by analyzing the spectrum of the SAR image and the direction spectrum of the waves, and a formulation for relating the two has been made. For example, Hasellman (1991) formulates in consideration of non-linear effects generated during synthetic aperture processing based on quasi-linear theory.
In order to obtain the wave direction spectrum from the two-dimensional wave number spectrum of the SAR image, these relational expressions must be inversely analyzed. Until now, there are the following methods for analyzing this inverse problem.

Hasselmann,K.and S.Hasselmann,“On the Nonlinear Mapping of an Ocean Wave Spectra into a Synthetic Apture Radar Image Spectrum and its Inversion”,J.Geophys.Res.,Vol.96,No.C6,1991,pp.10713−10799.  Hasselmann, K.M. and S. Hasselmann, “On the Nonlinear Mapping of an Ocean Wave Spectra into a Synthetic Approach Radar Image Spectrum and It's Inversion”, J. Am. Geophys. Res. , Vol. 96, no. C6, 1991, pp. 10713-10799. Engen,G.,H.Johnsen,H.E.Krogstad,S.F.Barstow,”Directional wave spectra by inversion of ERS−1 synthetic aperture radar ocean imagery”,IEEE Trans. On Geoscience and Remote sensing,Vol.32,No.2,1994,pp.340−352  Engen, G.M. , H .; Johnson, H.C. E. Krogstad, S.M. F. Barstow, “Directional wave specular by inversion of ERS-1 synthetic approach radar ocean imagery”, IEEE Trans. On Geoscience and Remote sensing, Vol. 32, no. 2, 1994, pp. 340-352 泉宮尊司,居場博之,”合成開口レーダによる海面画像の順線形理論に基づいた逆解析解の存在とその特性”,海岸工学論文集,第47巻,2000,pp.1326−1330  Takashi Izumimiya, Hiroyuki Iba, “Existence and Characteristics of Inverse Analysis Based on Forward Linear Theory of Synthetic Aperture Radar”, Coastal Engineering Papers, Vol. 47, 2000, pp. 1326-1330

非特許文献1の逆解析法は、波浪推算で与えた初期条件に依存するような解析法なので、初期条件として与える波浪推算が存在しない場合には解析することができない。いわゆる初期値に依存した解析法(初期値問題がある解析法)になっている。
非特許文献2及び3の逆解析法は、解を一意に決めるために人為的な処理を行っていて、完全に逆問題を解いた形になっていないために、必ずしも精度良く波浪の方向スペクトルを推定できない。また、SAR画像中に存在するノイズの大きさに依存して、その精度が大きく変化してしまう。
The inverse analysis method of Non-Patent Document 1 is an analysis method that depends on the initial condition given by the wave estimation, and therefore cannot be analyzed when there is no wave estimation given as the initial condition. The analysis method depends on the so-called initial value (analysis method having an initial value problem).
In the inverse analysis methods of Non-Patent Documents 2 and 3, artificial processing is performed to uniquely determine the solution, and since the inverse problem is not completely solved, the direction spectrum of the waves is not necessarily accurate. Cannot be estimated. Further, the accuracy greatly varies depending on the magnitude of noise present in the SAR image.

そこで、本発明は、合成開口レーダに代表されるレーダ画像から、統計学と情報学に基づいて、初期値や画像中のノイズに依存することなく高精度で、波浪の方向スペクトルを逆推定する方法及びシステムを提供することを課題とする。  Therefore, the present invention reversely estimates the direction spectrum of a wave from a radar image typified by a synthetic aperture radar based on statistics and informatics with high accuracy without depending on the initial value and noise in the image. It is an object to provide a method and system.

上記課題を解決するために、本発明のレーダ画像からの波浪方向スペクトル逆推定方法は、次の構成を備える。
すなわち、レーダで電波を海面に照射し、その後方散乱の強度を処理して得られた画像から、波浪の方向スペクトルを逆推定する方法において、波浪の方向スペクトルを、指数部に離散的一定値関数を有する指数関数で表し、これを、準線形理論に基づく波浪の方向スペクトルとレーダ画像の2次元波数スペクトルとの関係式に適用し、レーダの方位と周波数の座標で展開し、ベイズモデルを導入して後方散乱波の強度画像から波浪の方向スペクトルを求め、かつ、波浪の方向スペクトルを、指数部に離散的一定値関数を有する指数関数で表し、これを、準線形理論に基づく波浪の方向スペクトルとレーダ画像の2次元波数スペクトルとの関係式に適用した結果得られる積分方程式に対して、対数をとり、波浪の波向を半円方向に限定し、積分を離散化することで、積分方程式を非線形代数方程式に近似して、画像の2次元波数スペクトルの変動を滑らかにし、波浪方向スペクトルの推定精度の向上に寄与できる
In order to solve the above problems, a wave direction spectrum inverse estimation method from a radar image according to the present invention comprises the following arrangement.
That is, in the method of inversely estimating the wave direction spectrum from the image obtained by irradiating the sea surface with radio waves and processing the intensity of the backscattering, the wave direction spectrum is a discrete constant value in the exponent part. This is expressed as an exponential function with a function, which is applied to the relational expression between the wave direction spectrum based on quasi-linear theory and the two-dimensional wave number spectrum of the radar image, and is expanded in the coordinates of the radar azimuth and frequency. The wave direction spectrum is obtained from the intensity image of the backscattered wave , and the wave direction spectrum is expressed by an exponential function having a discrete constant value function in the exponent part. The integral equation obtained as a result of application to the relational expression between the direction spectrum and the two-dimensional wave number spectrum of the radar image is logarithmically limited to the wave direction of the wave in the semicircular direction. The By discretizing, by approximating the integral equations in the nonlinear algebraic equations, to smooth the variation of the two-dimensional wave number spectrum of the image, it can contribute to the improvement of the estimation accuracy of wave directional spectrum.

滑らかな分布をする波浪の方向スペクトルの先験条件を、ベイズモデルの事前分布に組み込み、その先験条件の重み係数を、ABIC(赤池のベイズ型情報基準)の最小化によって決定し、ベイズの最尤法によって、波浪の方向スペクトルを逐次近似で求めて、過剰な先験条件と先験条件に対する重み係数の客観的な決定に対応させてもよい。  The a priori condition of the direction spectrum of the wave with a smooth distribution is incorporated into the prior distribution of the Bayesian model, and the weighting coefficient of the prior condition is determined by minimizing the ABIC (Akaike Bayesian Information Criterion). The wave direction spectrum may be obtained by successive approximation using the maximum likelihood method to correspond to an objective determination of excessive prior conditions and weighting factors for the prior conditions.

また、本発明のレーダ画像からの波浪方向スペクトル逆推定システムは、レーダで電波を海面に照射し、その後方散乱の強度を処理して得られた画像から、波浪の方向スペクトルを逆推定するシステムであって、波浪の方向スペクトルを、指数部に離散的一定値関数を有する指数関数で表し、これを、準線形理論に基づく波浪の方向スペクトルとレーダ画像の2次元波数スペクトルとの関係式に適用し、レーダの方位と周波数の座標で展開し、ベイズモデルを導入して後方散乱波の強度画像から波浪の方向スペクトルを求める演算部を備え、波浪の方向スペクトルを、指数部に離散的一定値関数を有する指数関数で表し、これを、準線形理論に基づく波浪の方向スペクトルとレーダ画像の2次元波数スペクトルとの関係式に適用した結果得られる積分方程式に対して、対数をとり、波浪の波向を半円方向に限定し、積分を離散化することで、積分方程式を非線形代数方程式に近似することを特徴とする。 Further, the wave direction spectrum inverse estimation system from the radar image of the present invention is a system for inversely estimating the wave direction spectrum from the image obtained by irradiating the sea surface with radio waves and processing the intensity of the backscattering. The wave direction spectrum is represented by an exponential function having a discrete constant value function in the exponent part, and this is expressed by a relational expression between the wave direction spectrum based on the quasi-linear theory and the two-dimensional wave number spectrum of the radar image. Applied with radar azimuth and frequency coordinates, equipped with a calculation unit that calculates the wave direction spectrum from the intensity image of the backscattered wave by introducing a Bayesian model , and the wave direction spectrum is discretely constant in the exponent part It is expressed as an exponential function having a value function, and is obtained as a result of applying it to the relational expression between the wave direction spectrum based on the quasilinear theory and the two-dimensional wave number spectrum of the radar image. Relative integral equation that takes the logarithm of wave of wave direction is limited to a semicircular direction, by discretizing the integral, it characterized that you approximate the integral equation to the nonlinear algebraic equations.

本発明によると、少ない計算量で精度高く、レーダ画像から波浪方向スペクトルを逆推定することができる。特に、実際の観測で画像中に生じるスペックルノイズの影響を最小限に抑えて、推定精度を向上させることができる。  According to the present invention, a wave direction spectrum can be back-estimated from a radar image with a small amount of calculation and high accuracy. In particular, it is possible to improve the estimation accuracy by minimizing the influence of speckle noise generated in the image in actual observation.

SAR等のレーダ画像をスペクトル解析することによって得られる2次元波数スペクトルと、波浪の方向スペクトルとの関係については、これまで様々な研究が行われ、両者を関係づける定式化がなされている。
本発明では、Hasellman(1991)が提案した準線形理論に基づいて定式化された以下の式を用いて、2次元波数スペクトルから波浪の方向スペクトルを逆推定する。
Various studies have been conducted on the relationship between a two-dimensional wave number spectrum obtained by spectral analysis of a radar image such as SAR and the direction spectrum of a wave, and a formulation relating the two has been made.
In the present invention, the wave direction spectrum is inversely estimated from the two-dimensional wave number spectrum using the following formula formulated based on the quasilinear theory proposed by Hasellman (1991).

Figure 0003783058
Figure 0003783058

ここで、k=(k,k)は波浪の波数ベクトル、k(=|k|)は波数、kはアジマス方向の波数、kはレンジ方向の波数、Rは人工衛星と観測地点との距離、Vは人工衛星の移動速度、SSAR(k)はSAR画像の2次元波数スペクトル、S(k)は波浪の方向スペクトル、T(k)とT(k)はそれぞれ変調関数を表し、以下のように定式化されている。 Here, k = (k a, k r) are waves of wave vector, k (= | k |) is the wave number, k a is the azimuth direction wavenumber, k r is in the range direction wavenumber, R represents a satellite watching The distance from the point, V is the moving speed of the satellite, S SAR (k) is the two-dimensional wave number spectrum of the SAR image, S w (k) is the wave direction spectrum, and T v (k) and T s (k) are Each represents a modulation function and is formulated as follows.

Figure 0003783058
Figure 0003783058

Figure 0003783058
Figure 0003783058

ここで、ωは波浪の周波数、kradarはSARで使用しているマイクロ波の波数、θはマイクロ波の海面への入射角、Mtitl(k)、Mhydro(k)、Mvb(k)はそれぞれ傾き変調関数、水理学的変調関数、速度バンチング変調関数を表している。
傾き変調関数Mtitl(k)、水理学的変調関数Mhydro(k)、速度バンチング変調関数Mvb(k)はそれぞれ以下に示すように定式化されている。
Here, ω is the wave frequency, k radar is the wave number of the microwave used in the SAR, θ is the incident angle of the microwave to the sea surface, M titl (k), M hydro (k), M vb (k ) Represent a slope modulation function, a hydraulic modulation function, and a velocity bunching modulation function, respectively.
The slope modulation function M titl (k), the hydraulic modulation function M hydro (k), and the velocity bunching modulation function M vb (k) are formulated as shown below.

Figure 0003783058
Figure 0003783058

Figure 0003783058
Figure 0003783058

Figure 0003783058
Figure 0003783058

Figure 0003783058

する。これにより、方向スペクトルS(f,θ)は、指数部に離散的一定値関数を有する指数関数を用いて以下のように定義する。
Figure 0003783058

To do. Accordingly, the direction spectrum S (f, θ) is defined as follows using an exponential function having a discrete constant value function in the exponent part.

Figure 0003783058
Figure 0003783058

ここで、Iは周波数分割数、Jは方向分割数で、δi,j(f,θ)はデルタ関数をそれぞれ表している。デルタ関数δi,j(f,θ)は以下のような関係を満足している。Here, I is the number of frequency divisions, J is the number of direction divisions, and δ i, j (f, θ) represents a delta function. The delta function δ i, j (f, θ) satisfies the following relationship.

Figure 0003783058
Figure 0003783058

また、式7における周波数fと方向角θは、それぞれ次式によって離散化する。  Further, the frequency f and the direction angle θ in Expression 7 are discretized by the following expressions, respectively.

Figure 0003783058
Figure 0003783058

式7を式1に代入すれば、式1は未知数X=(x1,1,・・・,xI,Jを含む積分方程式になる。
しかしながら、式1において指数部に積分が存在するため、容易には式1から波浪の方向スペクトルを逆推定することはできない。
そこで、本発明では、式1の両辺の対数を取り、以下のように式変形を行った。
If Equation 7 is substituted into Equation 1, Equation 1 becomes an integral equation including unknowns X = (x 1,1 ,..., X I, J ) t .
However, since the integral exists in the exponent part in Equation 1, the wave direction spectrum cannot be easily estimated from Equation 1.
Therefore, in the present invention, the logarithm of both sides of Equation 1 is taken and the equation is modified as follows.

Figure 0003783058
Figure 0003783058

上記のように変形することにより、観測より得られるSARなどのレーダ画像の2次元波数スペクトルの変動は滑らかになり、推定する方向スペクトルの推定精度が向上する。
特に、実際の観測では、画像中にはスペックルノイズと呼ばれる時空間での変動が激しいノイズ成分が混入し、画像の2次元波数スペクトルの変動を大きくしている。そのため、この大きな変動ために推定される方向スペクトルの精度が著しく低下する。本発明では、対数を取ることにより、このノイズの影響を最小限にし、推定精度を向上させた。
By deforming as described above, the fluctuation of the two-dimensional wave number spectrum of the radar image such as SAR obtained by observation becomes smooth, and the estimation accuracy of the direction spectrum to be estimated is improved.
In particular, in actual observation, a noise component called speckle noise, which fluctuates in time and space, is mixed in the image, and the fluctuation of the two-dimensional wave number spectrum of the image is increased. For this reason, the accuracy of the direction spectrum estimated due to this large fluctuation is significantly reduced. In the present invention, by taking the logarithm, the influence of this noise is minimized and the estimation accuracy is improved.

画像から特定される波浪の波向には180度のあいまいさが存在する。
この180度のあいまいさを表現するために式10の右辺第2項は、{|T(k)|(k)+|T(−k)|(−k)}の形を取っている。
本発明では、推定する方向スペクトルにおいて、波浪の波向を0〜180度に限定することにより式10の第2項中の|T(−k)|(−k)を省略することができるようにした。つまり、式10は以下のように変形することができる。
There is a 180 degree ambiguity in the direction of the waves identified from the image.
The second term of the right side of equation 10 to express the ambiguity of 180 degrees, {| T S (k) | 2 S W (k) + | T S (-k) | 2 S W (-k) }.
In the present invention, in the directional spectrum of estimating, by limiting the waves of wave direction to 0-180 degrees in the second term of equation 10 | omitted 2 S W (-k) | T S (-k) I was able to do that. That is, Equation 10 can be modified as follows.

Figure 0003783058
Figure 0003783058

式11の積分を離散化することにより、積分方程式は非線形代数方程式で近似することができる。
本発明では、式11の離散化した積分を計算するために、求める波浪の方向スペクトル値をその4近傍の格子点上の方向スペクトルを用いて、以下のようにして内挿することにより算定する。
By discretizing the integral of Equation 11, the integral equation can be approximated by a non-linear algebraic equation.
In the present invention, in order to calculate the discretized integral of Equation 11, the direction spectrum value of the wave to be calculated is calculated by interpolating as follows using the direction spectrum on the lattice points in the vicinity of the four waves. .

Figure 0003783058
Figure 0003783058

Figure 0003783058

きるようにした。
さらに、画像の2次元波数スペクトルの誤差Eε4を考慮し、最終的には、式1の積分方程式は、次式で表される未知数X=(x1,1,・・・,xI,Jを含む非線形代数方程式で近似される。
Figure 0003783058

I was able to do it.
Further, considering the error Eε k 4 of the two-dimensional wave number spectrum of the image, the integral equation of Equation 1 is finally an unknown X = (x 1,1 ,..., X I expressed by the following equation: , J ) approximated by a nonlinear algebraic equation including t .

Figure 0003783058
Figure 0003783058

ここで、F(X)は波数ごとに積分方程式を離散化したベクトル関数、サフィック

Figure 0003783058

は、次式で与えられる。Here, F k (X) is a vector function obtained by discretizing the integral equation for each wave number, Safic
Figure 0003783058

Is given by:

Figure 0003783058
Figure 0003783058

波浪の方向スペクトルは離散的一定値関数として近似したが、各区間のエネルギーの相関については考慮していない。波の線形性からは各微小区間毎のエネルギー分布はそれぞれ独立であると見なされるが、方向スペクトルが不連続なエネルギー分布をしているとは考えにくい。また、一般に方向スペクトルは滑らかな連続関数であると見なされている。
したがって、ここでは方向スペクトルS(f,θ)が滑らかであるという仮定の表現として、8方向の微分オペレータを用いて以下のように先験条件を規定する。
The wave direction spectrum is approximated as a discrete constant value function, but the energy correlation in each section is not considered. From the linearity of the wave, it is considered that the energy distribution in each minute section is independent, but it is difficult to think that the direction spectrum has a discontinuous energy distribution. In general, the direction spectrum is regarded as a smooth continuous function.
Therefore, here, as an expression of an assumption that the direction spectrum S (f, θ) is smooth, an a priori condition is defined as follows using an 8-direction differential operator.

Figure 0003783058
Figure 0003783058

また,解析対象周波数の上限(i=I)及び下限(i=1)では、5方向の微分オペレータを用いて以下のように先験条件を規定する。  In addition, for the upper limit (i = I) and lower limit (i = 1) of the frequency to be analyzed, the prior conditions are defined as follows using a differential operator in five directions.

Figure 0003783058
Figure 0003783058

以上、式15と式16を用いると先験条件は、次のように表せる。  As described above, using Equation 15 and Equation 16, the prior conditions can be expressed as follows.

Figure 0003783058
Figure 0003783058

ただし、xi,0=xi,J、xi,−1=xi,J−1とする。式13は作用行列Dを導入することにより、次のように行列表現できる。However, x i, 0 = x i, J , x i, −1 = x i, J−1 . Expression 13 can be expressed as a matrix by introducing an action matrix D as follows.

Figure 0003783058
Figure 0003783058

式18は、その値が小さいほど、方向スペクトルの推定値が滑らかになることを表している。
したがって、方向スペクトルS(f,θ)の推定値としては、式18をあまり大きくしない範囲で尤度(式14)の大きいものが望ましい。
これを定式化すると、適当なパラメータu(超パラメータ、重み係数)を用いて、
Equation 18 represents that the smaller the value, the smoother the estimated value of the direction spectrum.
Therefore, it is desirable that the estimated value of the direction spectrum S (f, θ) has a large likelihood (Formula 14) within a range where Formula 18 is not so large.
When this is formulated, using an appropriate parameter u 2 (super parameter, weight coefficient),

Figure 0003783058
Figure 0003783058

を最大化するX=(x1,1,・・・,xI,Jを求めればよい。
これはベイズの推論方法において、事後分布pPOST( )の
X = (x 1,1 ,..., X I, J ) t may be obtained.
This is the Bayesian inference method, and the posterior distribution p POST ()

Figure 0003783058
Figure 0003783058

の関係式において、X=(x1,1,・・・,xI,Jの事前分布として、次式を想定したことに相当する。In this relational expression, the following expression is assumed as a prior distribution of X = (x 1,1 ,..., X I, J ) t .

Figure 0003783058
Figure 0003783058

を与えれば、式21を最大化するXは、λに無関係に決まり、Given u 2 , the X that maximizes Equation 21 is determined independently of λ 2 ,

Figure 0003783058

を最小化することにより得られる。
Figure 0003783058

Is obtained by minimizing.

つまり、画像の2次元波数スペクトルから方向スペクトルを逆推定する逆問題を、式22で表される最小値検索問題に帰着したことに相当する。
ここで、式22の第1項は客観的な誤差エネルギーを表し、第2項は主観的な誤差エネルギーをそれぞれ表している。
客観的な誤差エネルギーは、観測値と推定値の一致度を表し、この値が小さいほど観測値と推定値が良く一致していることを表している。これに対して、主観的な誤差エネルギーは、推定された方向スペクトルが先験条件をどの程度満たしているのかを表している。
That is, this corresponds to the inverse problem of inversely estimating the direction spectrum from the two-dimensional wave number spectrum of the image reduced to the minimum value search problem expressed by Equation 22.
Here, the first term of Expression 22 represents objective error energy, and the second term represents subjective error energy.
The objective error energy represents the degree of coincidence between the observed value and the estimated value, and the smaller this value, the better the observed value and the estimated value match. In contrast, the subjective error energy represents how well the estimated directional spectrum satisfies the a priori condition.

超パラメータuは主観的な誤差エネルギーの重みを与える定数で、その値が小さくなれば推定される方向スペクトルは画像の2次元波数スペクトルに一致するように推定され、その値が0のときは事前確率分布(先験条件)を考慮しない最小2乗法によって推定される方向スペクトルと同じ結果を得る。これに対して、超パラメータuの値が大きくなると、推定される方向スペクトルは主観(先験条件)にかなったものになり、画像の2次元波数スペクトルの値が推定に反映されなくなる。
超パラメータuとλは、次式で表されるABIC(赤池のベイズ型情報量基準、赤池(1980))を最小化することで、解の確からしさと滑らかさの両方の観点から望ましいuが決められる。
The super parameter u is a constant that gives a weight of subjective error energy. If the value becomes smaller, the estimated direction spectrum is estimated to match the two-dimensional wave number spectrum of the image. The same result as the direction spectrum estimated by the least square method without considering the probability distribution (a priori condition) is obtained. On the other hand, when the value of the super parameter u is increased, the estimated direction spectrum becomes subjective (a priori condition), and the value of the two-dimensional wave number spectrum of the image is not reflected in the estimation.
The hyperparameters u and λ 2 are desirable from the viewpoint of both accuracy and smoothness of the solution by minimizing ABIC (Akaike's Bayesian information criterion, Akaike (1980)) expressed by the following equation: Is decided.

Figure 0003783058
Figure 0003783058

方向スペクトルを推定する場合、式17の最小化及び式18の積分と最小化を実行しなければならない。しかしながら、いまの場合それらを解析的に行うことは不可能である。
そこで、テイラーの微分補正法を用いて式22を線形化し、繰り返し計算によ

Figure 0003783058

てXのまわりでF(X)をTaylor展開すると、When estimating the directional spectrum, the minimization of Equation 17 and the integration and minimization of Equation 18 must be performed. However, in this case, it is impossible to do them analytically.
Therefore, the equation 22 is linearized using Taylor's differential correction method, and repeated calculation is performed.
Figure 0003783058

And Taylor expansion of F k (X) around X 0

Figure 0003783058
Figure 0003783058

Figure 0003783058
Figure 0003783058

となる。
式24を用いて式13を行列表示すると、次のようになる。
It becomes.
When Expression 13 is displayed in matrix using Expression 24, the following is obtained.

Figure 0003783058
Figure 0003783058

Figure 0003783058
Figure 0003783058

Figure 0003783058

まず、適当なu及びXの初期値Xを与えて、式28で示される最小2乗法によ
Figure 0003783058
Figure 0003783058

First, an appropriate initial value X 0 of u 2 and X is given, and the least square method expressed by Equation 28 is used.
Figure 0003783058

Figure 0003783058
Figure 0003783058

ここで、最初にXを与えて式28に最小2乗法を適用し、第1近似解X(1)を算出する。次に式26のXをX(1)に置き換えて、式28に最小2乗法を適用し、X(2)

Figure 0003783058
Here, the first approximate solution X (1) is calculated by first applying X 0 and applying the least square method to Equation 28. Next, replace X 0 in Equation 26 with X (1) , apply the least squares method to Equation 28, and replace X (2) with
Figure 0003783058

得られた結果を用いて、次式により、与えられたuに対するABICを算出する。Using the obtained result, ABIC for a given u 2 is calculated by the following equation.

Figure 0003783058
Figure 0003783058

Figure 0003783058
Figure 0003783058

次いで、uを種々に変えて上記の計算を繰り返す。

Figure 0003783058
Then, repeating the above calculation by changing the u 2 variously.
Figure 0003783058

Figure 0003783058

S(f,θ)が得られる。
なお、本発明では、適用する際の数値計算の利便性を考え、全ての計算ケースで初期値Xを0として計算し、数値計算の安定性を確認している。また、式28の繰り返し計算の収束基準としては、(k+1)ステップ目における未知数の変化の大きさ‖X(k+1)−X(k)‖と(k)ステップ目における未知数の大きさ‖X(k)‖との比が10−2以下に
Figure 0003783058

また、超パラメータuの設定に際しては、一般には下式を用い、格子探索法による繰り返し計算を行っている。
Figure 0003783058

S (f, θ) is obtained.
In the present invention, in consideration of the convenience of numerical calculation when applied, the initial value X0 is calculated as 0 in all calculation cases, and the stability of the numerical calculation is confirmed. Further, as the convergence criterion of the iterative calculation of Expression 28, the magnitude of the unknown change at the (k + 1) -th step ‖X (k + 1) −X (k) ‖ and the magnitude of the unknown at the (k) step ‖X ( k) ‖ a ratio of 10 -2
Figure 0003783058

In setting the super parameter u 2 , generally, the following equation is used, and the iterative calculation is performed by the lattice search method.

Figure 0003783058
Figure 0003783058

本発明の推定精度及び問題点を明らかにするために、数値シミュレーションによる検証を行った。
この検証では、モデル波浪の方向スペクトルからSAR画像の2次元波数スペクトルを算定し、本発明による波浪の方向スペクトル逆推定法によって波浪の方向スペクトルを逆推定した。推定結果と計算の初期条件で与えたモデル波浪の方向スペクトルとの比較を行うことにより、本発明で提案した推定法の精度及び問題点を検証した。
計算の初期条件で与えるモデル波浪の方向スペクトルS(f,θ)のは以下に示すBretschneider−Mitsuyasu型周波数スペクトルS(f)と光易型型方向分布関数G(θ)のを掛け合わせたものを用いた。
In order to clarify the estimation accuracy and problems of the present invention, verification by numerical simulation was performed.
In this verification, the two-dimensional wave number spectrum of the SAR image was calculated from the model wave direction spectrum, and the wave direction spectrum was inversely estimated by the wave direction spectrum inverse estimation method according to the present invention. The accuracy and problems of the estimation method proposed in the present invention were verified by comparing the estimation result with the direction spectrum of the model wave given in the initial condition of the calculation.
The direction spectrum S S (f, θ) of the model wave given as the initial condition of the calculation is multiplied by the Bretschneider-Mitsuiyu type frequency spectrum S f (f) shown below and the light-easy type direction distribution function G S (θ). The combined ones were used.

Figure 0003783058
Figure 0003783058

Figure 0003783058
Figure 0003783058

Figure 0003783058
Figure 0003783058

Figure 0003783058
Figure 0003783058

ここで、fは周波数、θは波向、H1/3は有義波高、T1/3は有義周期、θは主波向、

Figure 0003783058

をそれぞれ表している。Here, f is the frequency, θ is the wave direction, H 1/3 is the significant wave height, T 1/3 is the significant period, θ 0 is the main wave direction,
Figure 0003783058

Respectively.

図1に、モデル波浪の方向スペクトルの一例を示す。主波向0度、有義波高2[m]、有義周期6[s]、集中度パラメータ80の場合の方向スペクトルを示している。
図1に示される波浪の方向スペクトルを式6に代入して計算したSAR画像の2次元波数スペクトルを図2に示す。図2は、SARによって海表面を観測して得られる画像を2次元のスペクトル解析をすることによって得られる。
図3にSAR画像の2次元波数スペクトル(図2)から、波浪の方向スペクトルを逆推定した結果を示す。
図1と図3を比較すると、波浪の方向スペクトルの形状が非常に類似していることがわかる。また、両者の有義波高と有義周期がほぼ一致し、SAR画像の2次元波数スペクトルから波浪の方向スペクトルを精度良く推定できていることがわかる。
図4〜7に主波向を変化(90度、180度、225度、270度)させたときの逆推定結果を示す。これらの図より、波向によらず、SAR画像の2次元波数スペクトルから波浪の方向スペクトルを精度良く逆推定することができることがわかる。
FIG. 1 shows an example of the direction spectrum of a model wave. A direction spectrum in the case of a main wave direction of 0 degree, a significant wave height of 2 [m], a significant period of 6 [s], and a concentration parameter 80 is shown.
FIG. 2 shows a two-dimensional wave number spectrum of the SAR image calculated by substituting the wave direction spectrum shown in FIG. FIG. 2 is obtained by two-dimensional spectral analysis of an image obtained by observing the sea surface with SAR.
FIG. 3 shows the result of inverse estimation of the wave direction spectrum from the two-dimensional wave number spectrum (FIG. 2) of the SAR image.
Comparing FIG. 1 and FIG. 3, it can be seen that the shape of the wave direction spectrum is very similar. Moreover, it can be seen that the significant wave heights and the significant periods of the two are almost the same, and the wave direction spectrum can be accurately estimated from the two-dimensional wave number spectrum of the SAR image.
4 to 7 show the inverse estimation results when the main wave direction is changed (90 degrees, 180 degrees, 225 degrees, 270 degrees). From these figures, it can be seen that the wave direction spectrum can be accurately back-estimated from the two-dimensional wave number spectrum of the SAR image regardless of the wave direction.

本発明によると、実際の観測で画像中に生じるスペックルノイズの影響を抑えて、レーダ画像から波浪方向スペクトルを実用レベルの高精度で逆推定することができる。これによって、気象海象予報や海難防止の他、海洋学や、海岸工学、水産業等の分野でも有用である。  According to the present invention, it is possible to suppress the influence of speckle noise generated in an image in actual observation, and to reversely estimate the wave direction spectrum from the radar image with a practical level of high accuracy. As a result, it is useful in fields such as oceanography, coastal engineering, and fisheries, as well as weather forecasts and marine accident prevention.

モデル波浪の方向スペクトルの例を示すグラフ  Graph showing an example of the direction spectrum of model waves SAR画像の2次元波数スペクトルのグラフ  Graph of 2D wave number spectrum of SAR image SAR画像2次元波数スペクトルから、波浪方向スペクトルを逆推定した結果のグラフ  Graph of the result of inverse estimation of wave direction spectrum from SAR image two-dimensional wave number spectrum 主波向を変化(90度)させたときの真値とその逆推定結果のグラフ  A graph of the true value and its inverse estimation result when the main wave direction is changed (90 degrees) 主波向を変化(180度)させたときの真値とその逆推定結果のグラフ  Graph of true value and its inverse estimation result when main wave direction is changed (180 degrees) 主波向を変化(225度)させたときの真値とその逆推定結果のグラフ  A graph of the true value when the main wave direction is changed (225 degrees) and its inverse estimation result 主波向を変化(270度)させたときの真値とその逆推定結果のグラフ  A graph of the true value and its inverse estimation result when the main wave direction is changed (270 degrees)

Claims (3)

レーダで電波を海面に照射し、その後方散乱の強度を処理して得られた画像から、波浪の方向スペクトルを逆推定する方法であって、
波浪の方向スペクトルを、指数部に離散的一定値関数を有する指数関数で表し、
これを、準線形理論に基づく波浪の方向スペクトルとレーダ画像の2次元波数スペクトルとの関係式に適用し、
レーダの方位と周波数の座標で展開し、ベイズモデルを導入して後方散乱波の強度画像から波浪の方向スペクトルを求める
ことを特徴とするレーダ画像からの波浪方向スペクトル逆推定方法であって、
波浪の方向スペクトルを、指数部に離散的一定値関数を有する指数関数で表し、これを、準線形理論に基づく波浪の方向スペクトルとレーダ画像の2次元波数スペクトルとの関係式に適用した結果得られる積分方程式に対して、
対数をとり、波浪の波向を半円方向に限定し、積分を離散化することで、
積分方程式を非線形代数方程式に近似する
レーダ画像からの波浪方向スペクトル逆推定方法。
A method of inversely estimating the direction spectrum of a wave from an image obtained by radiating radio waves onto the sea surface with a radar and processing the intensity of the backscattering,
The directional spectrum of waves is represented by an exponential function having a discrete constant value function in the exponent part,
This is applied to the relational expression between the wave direction spectrum based on the quasi-linear theory and the two-dimensional wave number spectrum of the radar image,
A wave direction spectrum inverse estimation method from a radar image, which is developed with radar azimuth and frequency coordinates, introduces a Bayesian model and obtains the wave direction spectrum from the intensity image of the backscattered wave ,
The wave direction spectrum is expressed by an exponential function having a discrete constant value function in the exponent part, and is obtained as a result of applying this to the relational expression between the wave direction spectrum based on the quasilinear theory and the two-dimensional wave number spectrum of the radar image. For the integral equation
By taking the logarithm, limiting the wave direction of the waves to the semicircular direction, and discretizing the integral,
Approximate integral equation to nonlinear algebraic equation. Wave direction spectrum inverse estimation method from radar image.
滑らかな分布をする波浪の方向スペクトルの先験条件を、ベイズモデルの事前分布に組み込み、
その先験条件の重み係数を、ABIC(赤池のベイズ型情報基準)の最小化によって決定し、
ベイズの最尤法によって、波浪の方向スペクトルを逐次近似で求める
請求項1に記載のレーダ画像からの波浪方向スペクトル逆推定方法。
A priori condition of the direction spectrum of waves with a smooth distribution is incorporated into the prior distribution of the Bayesian model,
The weighting factor of the a priori condition is determined by minimizing ABIC (Akaike Bayesian Information Standard),
The Bayesian maximum likelihood, wave directional spectrum inverse estimation method from the radar image according to claim 1, obtained by successive approximation the directional spectrum of waves.
レーダで電波を海面に照射し、その後方散乱の強度を処理して得られた画像から、波浪の方向スペクトルを逆推定するシステムであって、
波浪の方向スペクトルを、指数部に離散的一定値関数を有する指数関数で表し、
これを、準線形理論に基づく波浪の方向スペクトルとレーダ画像の2次元波数スペクトルとの関係式に適用し、
レーダの方位と周波数の座標で展開し、ベイズモデルを導入して後方散乱波の強度画像から波浪の方向スペクトルを求める演算部を備える
ことを特徴とするレーダ画像からの波浪方向スペクトル逆推定システムであって、
波浪の方向スペクトルを、指数部に離散的一定値関数を有する指数関数で表し、これを、準線形理論に基づく波浪の方向スペクトルとレーダ画像の2次元波数スペクトルとの関係式に適用した結果得られる積分方程式に対して、
対数をとり、波浪の波向を半円方向に限定し、積分を離散化することで、
積分方程式を非線形代数方程式に近似する
レーダ画像からの波浪方向スペクトル逆推定システム。
A system that reversely estimates the direction spectrum of waves from an image obtained by radiating radio waves onto the sea surface with radar and processing the intensity of the backscattering,
The directional spectrum of waves is represented by an exponential function having a discrete constant value function in the exponent part,
This is applied to the relational expression between the wave direction spectrum based on the quasi-linear theory and the two-dimensional wave number spectrum of the radar image,
And developed with radar azimuth and frequency coordinates, in wave directional spectrum inverse estimation system from radar images, characterized in that it comprises an arithmetic unit for determining the wave direction spectrum from backscatter intensity image by introducing a Bayesian model There,
The wave direction spectrum is expressed by an exponential function having a discrete constant value function in the exponent part, and is obtained as a result of applying this to the relational expression between the wave direction spectrum based on the quasilinear theory and the two-dimensional wave number spectrum of the radar image. For the integral equation
By taking the logarithm, limiting the wave direction of the waves to the semicircular direction, and discretizing the integral,
An inverse wave direction spectrum estimation system from radar images that approximates integral equations to nonlinear algebraic equations.
JP2003302045A 2003-07-19 2003-07-19 Method and system for inverse estimation of wave direction spectrum from radar image Expired - Lifetime JP3783058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302045A JP3783058B2 (en) 2003-07-19 2003-07-19 Method and system for inverse estimation of wave direction spectrum from radar image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003302045A JP3783058B2 (en) 2003-07-19 2003-07-19 Method and system for inverse estimation of wave direction spectrum from radar image

Publications (2)

Publication Number Publication Date
JP2005043333A JP2005043333A (en) 2005-02-17
JP3783058B2 true JP3783058B2 (en) 2006-06-07

Family

ID=34269140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302045A Expired - Lifetime JP3783058B2 (en) 2003-07-19 2003-07-19 Method and system for inverse estimation of wave direction spectrum from radar image

Country Status (1)

Country Link
JP (1) JP3783058B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915569A (en) * 2010-07-07 2010-12-15 南京信息工程大学 Storm wave element numerical value real-image monitoring system and monitoring method thereof
CN106872979A (en) * 2017-03-02 2017-06-20 中国科学院电子学研究所 Ocean wave parameter acquisition methods based on shifting target SAR image refocusing

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399346B (en) * 2013-08-15 2016-04-06 电子科技大学 A kind of well shake associating impedance initial value modeling method
CN108885257A (en) 2016-04-11 2018-11-23 古野电气株式会社 Signal processing apparatus and radar installations
KR101934035B1 (en) 2017-05-29 2018-12-31 (주)에스이티시스템 Method and program for measuring ocean current information, and ocean radar system using the same
CN109085571B (en) * 2018-08-20 2020-04-21 中国人民解放军海军航空大学 Hypersonic target tracking method based on triple Bayesian criterion
CN111159937B (en) * 2019-12-23 2023-04-07 西安电子科技大学 Near-shore nonlinear sinusoidal wave microwave scattering characteristic analysis method
KR102206445B1 (en) * 2020-08-06 2021-01-22 한국과학기술원 Method of Numerical Analysis for the design of Submerged Floating Tunnel
CN112764030B (en) * 2020-12-25 2023-09-08 中国人民解放军空军工程大学 Sea surface SAR image clutter generation method based on electromagnetic and statistical hybrid model
CN115755043B (en) * 2022-10-19 2023-07-04 华中科技大学 Wave field reconstruction and prediction method based on X-band non-coherent radar
CN115980744B (en) * 2022-11-10 2024-03-22 国家卫星海洋应用中心 Method for separating satellite-borne SAR image data from non-overlapping masking peak sea wave image spectrum
CN116930906B (en) * 2023-09-14 2023-12-15 中国海洋大学 Sea wave observation method based on millimeter wave radar array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915569A (en) * 2010-07-07 2010-12-15 南京信息工程大学 Storm wave element numerical value real-image monitoring system and monitoring method thereof
CN101915569B (en) * 2010-07-07 2012-09-26 南京信息工程大学 Storm wave element numerical value real-image monitoring system and monitoring method thereof
CN106872979A (en) * 2017-03-02 2017-06-20 中国科学院电子学研究所 Ocean wave parameter acquisition methods based on shifting target SAR image refocusing
CN106872979B (en) * 2017-03-02 2019-12-20 中国科学院电子学研究所 Sea wave parameter acquisition method based on sea surface fluctuation moving target SAR image refocusing

Also Published As

Publication number Publication date
JP2005043333A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US8711029B2 (en) Process for filtering interferograms obtained from SAR images acquired on the same area
US7132974B1 (en) Methods and systems for estimating three dimensional distribution of turbulence intensity using radar measurements
Su et al. Prediction of water depth from multispectral satellite imagery—the regression Kriging alternative
JP4595078B2 (en) Apparatus and method for estimating three-dimensional distribution of rainfall intensity and amount of rainwater
CN106680817B (en) Method for realizing high-resolution imaging of forward-looking radar
JP3783058B2 (en) Method and system for inverse estimation of wave direction spectrum from radar image
Gierull et al. Estimating the effective number of looks in interferometric SAR data
US6677885B1 (en) Method for mitigating atmospheric propagation error in multiple pass interferometric synthetic aperture radar
Ni et al. Features of point clouds synthesized from multi-view ALOS/PRISM data and comparisons with LiDAR data in forested areas
Magnard et al. Analysis of a maximum likelihood phase estimation method for airborne multibaseline SAR interferometry
d’Alessandro et al. Interferometric ground cancellation for above ground biomass estimation
Bian et al. The feasibility of assessing swell-based bathymetry using SAR imagery from orbiting satellites
Belcher et al. Measurement of the ionospheric scintillation parameter $ C_ {k} L $ from SAR images of clutter
Koppel et al. Sentinel-1 for urban area monitoring—Analysing local-area statistics and interferometric coherence methods for buildings' detection
Feng et al. GB-SAR interferometry based on dimension-reduced compressive sensing and multiple measurement vectors model
Chang et al. Assessment of InSAR atmospheric correction using both MODIS near-infrared and infrared water vapor products
Baldini et al. Analysis of dual polarization images of precipitating clouds collected by the COSMO SkyMed constellation
Eppler et al. High temporal resolution permafrost monitoring using a multiple stack InSAR technique
Bringer et al. Studies of terrain surface roughness and its effect on GNSS-R systems using airborne lidar measurements
Goel et al. Fusion of monostatic/bistatic InSAR stacks for urban area analysis via distributed scatterers
Domínguez et al. Deriving digital surface models from geocoded SAR images and back-projection tomography
Bližňák et al. The exploitation of Meteosat Second Generation data for convective storms over the Czech Republic
Soja et al. Estimation of boreal forest biomass from two-level model inversion of interferometric TanDEM-X data
Praks et al. SAR coherence tomography for boreal forest with aid of laser measurements
Aslebagh et al. Wave period and direction estimation in shallow water using airborne along-track interferometric synthetic aperture radar

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Ref document number: 3783058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term