JP3783003B2 - Building seismic isolation structure - Google Patents

Building seismic isolation structure Download PDF

Info

Publication number
JP3783003B2
JP3783003B2 JP2003163845A JP2003163845A JP3783003B2 JP 3783003 B2 JP3783003 B2 JP 3783003B2 JP 2003163845 A JP2003163845 A JP 2003163845A JP 2003163845 A JP2003163845 A JP 2003163845A JP 3783003 B2 JP3783003 B2 JP 3783003B2
Authority
JP
Japan
Prior art keywords
base
rod
building
seismic isolation
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003163845A
Other languages
Japanese (ja)
Other versions
JP2004211530A (en
Inventor
信義 金子
Original Assignee
信義 金子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信義 金子 filed Critical 信義 金子
Priority to JP2003163845A priority Critical patent/JP3783003B2/en
Publication of JP2004211530A publication Critical patent/JP2004211530A/en
Application granted granted Critical
Publication of JP3783003B2 publication Critical patent/JP3783003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地震に対する建物の免震構造に関するものである。
【0002】
【従来の技術】
震災における建物の倒壊原因の大きな要因の一つとして、地盤と建物との震動が共振し、振幅が飛躍的に拡大するものがあった。そこで前記のような地震対策として、従来は例えば、建物と地盤とを切り離し、それぞれに対向する彎曲面を基礎台の複数箇所に備えるとともに、当該各彎曲面の間に球体を介在した構成をなすもの等があった(例えば、特許文献1及び2参照。)。
【0003】
【特許文献1】
特開平11−315885号(第3頁、図1)
【特許文献2】
特開平9−228684号(第2頁、図1)
【0004】
【発明が解決しようする課題】
しかしながら前述のように、基礎台の間に球体を介在して免震させる構造のものの場合、横揺れ型の地震に対しては、球体が転がって免震作用を発揮するために効果的ではあるものの、縦揺れ型の地震に対しては、球体と各彎曲面との間に特別な免震作用を発揮する手段が施されていないために免震不能となり、このことから、従来の基礎台の間に球体を介在する構成のものは、建物の免震構造として完全に機能しないのが現状であった。
【0005】
本発明は、横揺れ型の地震は勿論、縦揺れ型の地震に対しても建物と地面との共振を防ぎ、確実に地震による被害を防ぐことができる建物の免震構造を提供することにある。
【0006】
【課題を解決するための手段】
本発明のうち請求項1記載の発明は、地盤から基礎台の空間内に起立する脚部と、該脚部の上部位置から横方向に張り出す天部と、該天部から垂下し且つ基礎台を地盤から浮かせた状態で支える棒状部と、から構成し、前記棒状部は、少なくとも一部に緩衝部材を備えており、前記棒状部の上部は天部に貫通し、また該棒状部の下部は基礎台に貫通し、さらに、該棒状部における天部と基礎台のそれぞれから突出した各先端には張出部を備え、当該各張出部の引掛かりによって、天部を基点に、基礎台を棒状部を介して揺動可能に支え、前記各張出部は、基礎台を平時において静止位置での位置決めが可能な張出幅を有し、前記各張出部における天部及び基礎台との当接面、又は/及び、天部及び基礎台における張出部との当接面は球面状に形成してあり、さらに、前記各当接面のうちの少なくとも一方側には磁石を、また他方側には該磁石の被吸着部材を備えていることを特徴とする。
【0007】
また本発明のうち請求項2記載の発明では、地盤を掘り下げて基礎台の格納が可能な大きさに形成した穴と、前記地盤上に配置した固定部材と、該固定部材から穴側に張り出した天部と、該天部から垂下し且つ基礎台を穴内に浮かせた状態で支える棒状部と、から構成し、前記棒状部は、少なくとも一部に緩衝部材を備えており、前記棒状部の上部は天部に貫通し、また該棒状部の下部は基礎台に貫通し、さらに、該棒状部における天部と基礎台のそれぞれから突出した各先端には張出部を備え、当該各張出部の引掛かりによって、天部を基点に、棒状部を介して基礎台を揺動可能に支え、前記各張出部は、基礎台を平時において静止位置での位置決めが可能な張出幅を有し、前記各張出部における天部及び基礎台との当接面、又は/及び、天部及び基礎台における張出部との当接面は球面状に形成してあり、さらに、前記各当接面のうちの少なくとも一方側には磁石を、また他方側には該磁石の被吸着部材を備えていることを特徴とする。
【0008】
建物とは、例えば家屋や車庫、塀などの基礎台を形成して地盤上に築かれるものの全てを意味する概念である。また基礎台とは、その上部側において建物を構築できる広さと、該建物を支持できる強度を確保できるものを示し、建物の床平面に合わせて自在なレイアウトができるものを言う。さらに基礎台の空間とは、建物の床下などに特別に設けてもよいし、或いは床下の隙間や通気孔等を利用したものであってもよい。
【0009】
また棒状部・緩衝部材としては、地盤から伝わる震動を和らげて基礎台に伝えない手段であればよく、特にその手段を限定はしないが、例えばコイルスプリングやエアシリンダ、或いは板バネ等のように、天部から基礎台を支える手段としても兼用できるものが望ましい。さらに、本免震構造の配置数については、建物の設置が不安定な状態にならなければ、特に限定するものではない。また、地震の揺れに追従可能に取り付けるとは、基礎台を地震の揺れの方向に逆らうことなく、天部から棒状部を介して基礎台を支持できる状態を言う。また方向は、地盤を基準としてその方向を定めるものである。さらに張出部は、天部及び基礎台との引掛かり部分が面で接するようなものであればよく、具体的には中心から全周に張り出した傘状の部材、つまりはナットなどが挙げられる。また静止位置とは、基礎台が平時の状態にある位置、具体的には、基礎台が天部から垂下した位置にある状態を言う。さらに固定部材は、基礎台を支える耐性を有すると共に、地盤の上に安定設置できるものであればよく、例えば、掘り下げた穴を囲むように厚みのある鋼板を枠状に配置したものなどが挙げられる。
【0010】
このように形成すると、例えば地震により地盤が横揺れした際には、基礎台が地盤の動きに追従して逆らうことなく、棒状部に支持された基礎台が天部を基点に振り子のように自在に揺動することとなり、しかも地盤が縦揺れした場合でも、基礎台と天部との間に介在する棒状部に備えた緩衝部材によって、地盤から伝達する震動を吸収するので、建物と基礎台への衝撃を大幅に和らげることができる。しかも、天部及び基礎台と張出部との引掛かり部分が幅をもって接しているので、建物に受ける風や、或いは人の出入りに伴う振動程度では、該基礎台が揺動することなく静止状態を保つ。また地震が発生した場合には、張出部による基礎台の位置決めが可能な支持力を上回る揺れが該基礎台に伝わり、該基礎台が地震の揺れに追従して逆らうことなく、振り子のように揺動する。
【0011】
また、本発明は、前記各張出部における天部及び基礎台との当接面、又は/及び、天部及び基礎台における張出部との当接面は、球面状に形成してあり、さらに、前記各当接面のうちの少なくとも一方側には磁石を、また他方側には該磁石の被吸着部材を備えているので、地震時の地盤からの振動により、張出部を基点に棒状部が揺れた場合、当接面が球面を介して摺り合うことで滑らかに揺動し、基礎台ひいては建物への衝撃の緩和、さらには揺動時の基礎台や建物のきしみ音が解消され、しかも、磁力によって張出部と天部・基礎台との各当接面が位置決めされているので、平時における不意な揺れを防止できる。
【0012】
ここで張出部、天部、基礎台の各当接面を球面とする形態は例えば、張出部の天部・基礎台との当接面側を半球状とし、一方の天部や基礎台においては、それぞれの前記張出部との当接面に球面状の窪みを設けるものなどが挙げられる。また、被吸着部材とは具体的に、前記当接面を磁石が吸着する素材で形成すればよい。さらに、張出部と天部及び基礎台の双方に磁石を用いる場合には、それぞれの磁極を違わせる必要があり、望ましくは、いずれかのみに磁石を使用する。
【0013】
天部及び基礎台における棒状部の貫通孔の径は、該棒状部の揺動を妨げない程度の大きさを確保していれば充分ではあるが、本発明のうち請求項3記載の発明のように、天部及び基礎台における棒状部の各貫通孔は、張出部との当接面側の径が狭く且つ他方側の径が広がるテーパ状をなすので、各貫通孔の張出部との当接面側の径においては、棒状部の径に近い孔径に絞られていることで、棒状部のがたつきが抑えられ、さらに貫通孔の径はテーパ状に広がりをもつことで、張出部との当接面側を基点として棒状部の可動範囲が確保され、該棒状部の揺動を妨げることがない。
【0014】
基礎台側の棒状部の貫通孔は、基礎台のコンクリートの下地となる底板などに設けられ る。また貫通孔の開口形状は、特に限定するものではないが、揺動時における棒状部の可動範囲を鑑みて円形とすることが望ましい。
【0015】
例えば、単体の緩衝部材を地盤と基礎台との間に介在するものであっても充分に免震効果が発揮されるが、本発明のうち請求項4記載の発明のように、前記棒状部は、天部と基礎台との間の少なくとも3箇所以上に介在しているので、仮に縦揺れ型の地震が起こった際には、より衝撃吸収効果が向上するのは勿論であるが、特に横揺れ型の地震が起こった場合に、任意の棒状部の緩衝部材が縮んで地盤からの衝撃を吸収した際に、反対に他の棒状部に備わる緩衝部材が伸びることで、基礎台を平時の状態に復帰しようとする方向に付勢力を働かせることとなり、これにより、地震による基礎台の揺動状態を短時間で元の位置に復帰できる。
【0016】
ここで、棒状部の数を3箇所以上としたのは、基礎台の揺動方向の全方向に対応できるからであり、例えば2箇所であれば、棒状部が一列に配置されるから、揺れの方向によっては、基礎台が平時の位置に復帰する方向へは付勢力が働かない場合がある。また、棒状部の数は3箇所以上あれば特に限定するものではないが、あまり数が多いと、かえって基礎台の揺動を妨げることになるので、望ましくは3箇所に介在してあればよい。
【0017】
【発明の実施の形態】
本発明による建物の免震構造について、以下にその具体例を説明する。
まず、本発明の第1実施形態の建物の免震構造を図1に基づいて簡単に説明すると、この実施形態における免震手段1は、地盤Gと基礎台2との間に形成した免震空間Sと該基礎台2に備わる通気窓による空間Qとにおいて、地盤Gから起立する脚部20と、該脚部20の上端から水平方向に張り出した天部5と、該天部5から基礎台2を支えるスプリングダンパー4と、から構成するものであり、前記スプリングダンパー4の上部9側と下部12側は、まず上部9は天部5と、そして下部12は基礎台2の下端に固着する底板11とに、それぞれ地震の揺れに対して追従可能な状態に取り付けたものである。
【0018】
そして、前記免震手段1の更に具体的な構成を説明すると、まず、脚部20の形状については、天部5が扁平で且つ間隔をあけて2本の脚部分が垂下する門状をなしており、さらに前記脚部20は、地盤Gに起立するように固定してある。また、前記スプリングダンパー4については、ボルト7にコイルスプリング8を巻き付けて形成してあるもので、該スプリングダンパー4の上部9側を、脚部20の天部5に設けてあるテーパ孔6に下方から挿通し、さらに、前記脚部20の上端面から突出したスプリングダンパー4の上部9には、径の大きな丸ナット10を羅合して、この丸ナット10の張り出し部分による天部5への引掛かりによって、前記スプリングダンパー4を脚部20の天部5において、地盤Gを基準とする横方向への自在揺動が可能な状態で取り付けてある。
尚、前記テーパ孔6,6は、天部5側のものが下方にいくに従って径が拡がるものであり、一方、底板11側のものは、上方にいくに従って径が拡がるものであり、スプリングダンパー4の揺動を妨げない形状をなしている。
【0019】
一方、前記スプリングダンパー4の下部12側は、基礎台2の底板11に設けてあるテーパ孔6に上方から挿通しており、さらに、前記底板11の裏面側から突出した前記スプリングダンパー4の下部12を、前述した脚部20の天部5側と同様に丸ナット13で羅合しており、これにより、スプリングダンパー4を天部5と基礎台2に対して、地震の揺れに追従可能に保定するものである。また本実施形態の免震構造には、前記各丸ナット10,13と上下に重なるように、それぞれに補助ナット18,18が羅合してあるが、これは、本免震構造の長期間の使用により各丸ナット10,13のスプリングダンパー4からの離脱を防止する手段となっている。また上部側の丸ナット10には、比較的径の大きなものを使用しているが、これは基礎台2が建物に受ける風圧程度では静止位置Pから揺れることがなく、地震発生時にのみ前記基礎台2を揺らすように設定しているためである。さらにスプリングダンパー4には、コイルスプリング8の付勢力を調整するための調整ナット19が羅合してある。
【0020】
本実施形態による建物の免震構造が上記のような構成をなすことで、例えば、横揺れ型の地震に対しては図2のように、スプリングダンパー4が天部5のテーパ孔6の上部開口縁を軸として、地盤Gを基準に振り子のように揺動することで、前記スプリングダンパー4の下部12側に支えられた基礎台2が、地盤Gの動きに追従して逆らうことなく自在に揺動し、地盤Gと基礎台2との共振を防ぐことが可能となり、この結果、建物の揺れを最小限に抑えることができる。また、縦揺れ型の地震に対しては図3のように、スプリングダンパー4が、脚部20の天部5と基礎台2との間に常に介在することで、地盤Gから伝わる衝撃を確実に吸収し、このことから、横揺れ型の地震は勿論のこと、縦揺れ型の地震時においても建物への震動の伝達を確実に防ぐことが可能となり、あらゆる揺れの方向に対応できる。
【0021】
また、図4に示すものは、上述した第1実施形態の免震構造を用いて、該免震構造を横部材15を会して上下2段とした応用例であり、このように形成すると、より震度の高い地震に対しても、効果的な免震が行なえる構成となる。そして、この2段とした免震構造を第1実施形態と相違する部分について説明すると、地盤Gにおいて基礎台2の格納ができる程度の大きさの穴Hを堀り、この穴Hを囲むように枠状をなす固定部材14を配置し、該固定部材14には、丸ナット10を上端部に羅合したスプリングダンパー4を、該丸ナット10が引掛かるように垂れ下げ、地盤Gを基準として振り子のように自在に揺動させる。(これを上部側スプリングダンパーとする)。また、上部側スプリングダンパー4の下端部は横部材15に突入し、さらに、該横部材15の下端面から突出したスプリングダンパー4の下端側先端部を、前記横部材15の下側から丸ナット13で羅合し、横部材15を丸ナット13の扁平な部分に載せるような状態で支持している。
【0022】
そして、前記横部材15における上部側スプリングダンパー4を取り付けた箇所から僅かに移動した箇所においても、その上端部に羅合した丸ナット10が横部材15の上端面に引掛かるように、スプリングダンパー4が垂下している(これを下部側スプリングダンパーとする)。そして、この下部側スプリングダンパー4の下端側は、基礎台2の底板16に突入しており、さらに、該底板16の下端面から突出した先端部には丸ナット13を羅合し、該丸ナット13に引掛かる状態で底板16が、穴Hの底面から浮き上がった位置に支持される。
【0023】
次に、本発明の建物の免震構造の第2実施形態のものについて、以下に説明する。
この実施形態のものは図5(a)のように、脚部20の天部5において3本のスプリングダンパー4を用いて、前記基礎台2を地盤Gから支えたものである。詳しくは、前述の第1実施形態の免震構造のものと同様に、地盤Gに脚部20を固定し、この脚部20の天部5においては、それぞれが120°の間隔をあけて、3本のスプリングダンパー4,4,4の上端側を上下に摺動可能な状態で挿通し、さらに、天部5の上面側から突出する各スプリングダンパー4,4,4上端側のネジ切り部分に羅合した各ナット10,10,10によって、前記各スプリングダンパー4,4,4を脚部20の天部5の横方向への自在な揺動が可能な状態で支持するものである。一方、当該各3本のスプリングダンパー4,4,4の下端側を、基礎台2底部に備わる底板11において上下に摺動可能な状態で挿通し、さらに、前記各スプリングダンパー4,4,4の下端側のネジ切り部にナット13,13,13をそれぞれ羅合し、当該各ナット13,13,13によって前記底板11を引掛けることで、基礎台2を地盤Gにおいて、地震の揺れに追従可能に支えられる構成となっている。
【0024】
上記のように、脚部20の天部5に3本のスプリングダンパー4,4,4によって地盤Gから基礎台2を支えた場合には、仮に縦揺れ型の地震が起こった際には、より衝撃吸収効果が高いのは勿論であるが、横揺れ型の地震が起こった場合には、任意の1本のスプリングダンパー4に衝撃を受けると、他の2本のスプリングダンパー4,4は、基礎台2が地震前の元の状態に戻ろうとする方向に付勢が働くので、結果として、地震後に揺れた状態にある基礎台2が元に戻るまでの時間を一層短縮することになる。
【0025】
さらに、本発明の建物の免震構造の第3実施形態として図6のように、基礎台2と脚部20の天部5との緩衝部材として、エアシリンダ17を用いたものである。このように、脚部20の天部5と基礎台2との間にエアシリンダ17が介在した形態のものの場合には、まず、横揺れ型の地震が起きた際には、図7(a)のように、上述した第1実施形態のスプリングダンパー4による免震作用と同様に、エアシリンダ17が脚部20の天部5を基準として、地盤Gの動きに追従しながら、該地盤Gを基準に振り子のように揺動する。一方、縦揺れ型の地震が起きた際には、図7(b)のように、地盤Gとともに突き上げる脚部20及び天部5からの衝撃を、エアシリンダ17の摺動によって吸収することで、基礎台2への衝撃の伝達を大幅に和らげることが可能となる。
【0026】
次に、本発明の建物の免震構造の第4実施形態として図8のように、脚部20の天部5上面側に半球状に陥没した窪み21を設け、一方、底部側に前記窪み21の球面に対応した球状金具10を備え、この球状金具10において揺動可能な状態で天部5からスプリングダンパー4を垂れ下げる構造となっている。また、前記スプリングダンパー4下端側の底板11を支持する球状金具10においても上向きの半球状をなす球状金具10を備えており、さらに、前記底板11の底面側においても球状金具10と一致した球面状をなす窪み21が設けてあり、この窪み21に前記球状金具10が雌雄状に入り込むことで、天部5、スプリングダンパー4、基礎台2底板11のそれぞれの当接部分が球面同士で接することとなる。また、前記天部5の窪み21の周部には磁石26が埋め込まれており、この磁石26の働きによって、球状金具10の動きを磁力で規制してスプリングダンパー4を垂直な状態に位置決めし、基礎台2の平時における不意な揺動を防いでいる。このようにすると図9のように、仮に地震が発生した場合、地震の揺れに対応して天部5からスプリングダンパー4によって支持された底板11が、振り子のようにスムーズに揺動し、スプリングダンパー4の天部5・底板11間の衝撃吸収効果と相俟って、建物に加わる衝撃を飛躍的に和らげることが可能となる。尚、図8と図9中の符号22は、コイルスプリング8の動きを規制するプレートである。
【0027】
次に、本発明の建物の免震構造の第5実施形態を図10に基づいて以下に説明する。
尚、他の実施形態と同一の構成をなす箇所の説明については省く。また、この形態では、第4実施形態で使用した球状金具10を使用している。
本実施形態では、底板11を板バネ27を介して天部5から吊り下げるものであり、この板バネ27の構成は、上向きに彎曲した上板バネ23と、下向きに彎曲した下板バネ24の2部材からなっており、さらに当該各板バネ23,24の左右両端をそれぞれピン28,28止めし、各板バネ23,24をパンタグラフのように上下に開閉可能に連結して、天部5と底板11間を緩衝するものである。
【0028】
そして、実際に地震が起きた場合に本実施形態のものは図11のように、地盤側から突き上げるような振動に対しては、前記板バネ27が前記振動による衝撃を受け止め、スプリングダンパー4やエアシリンダ17と同様の作用を発揮する。また、底板11の上端面に板バネ27を囲むようなアーチ状のストッパー25,25をそれぞれ取り付ければ、地震時に板バネ27の開閉する範囲が規制されるので、該板バネ27が衝撃を吸収した際の反作用で底板11を大きく浮き上がらせないように規制できる。
尚、横揺れ型の地震においては、本免震構造は第4実施形態のものと同様の作用をするので、ここでの説明は割愛する。
【0029】
【発明の効果】
本発明によれば、横揺れ型、或いは縦揺れ型の双方の地震に際しても、該地震の揺れに追従して自在に揺動するので、建物を地震の脅威から確実に守ることができ、しかも、平時における建物の不意な揺れを確実に防ぐことができる。
【0030】
本発明によれば、各張出部と天部及び基礎台との当接面が球面で接触していることで、基礎台がより一層スムーズに揺動し、しかも、平時には基礎台が不意に揺れることがない。
【0031】
本発明のうち請求項3記載の発明によれば、請求項1及び2記載の発明の効果に加えて、棒状部の不意ながたつきを抑えることで、建物の平時の安定性が増し、しかも地震時には、より一層スムーズに地震の揺れに対応できる。
【0032】
本発明のうち請求項記載の発明によれば、地震時において、基礎台に受ける衝撃を和らげるとともに、基礎台を地震前の元の状態に戻そうとする方向に付勢力が働くので、地震による建物の揺れを短時間でおさめることができる。
【図面の簡単な説明】
【図1】 本発明の建物の免震構造の第1実施形態の要部を拡大して示す縦断面図である。
【図2】 上述の第1実施形態の建物の免震構造による、横揺れ型の地震に対する作用を示す説明図である。
【図3】 同じく、上述の第1実施形態の建物の免震構造による、縦揺れ型の地震に対する作用を示す説明図である。
【図4】 上述の第1実施形態の建物の免震構造の応用例を示す説明図である。
【図5】(a)(b)
図5(a)は、本発明の建物の免震構造の第2実施形態の要部を示す平面図、そして図5(b)は、要部を拡大した縦断面図である。
【図6】 本発明の建物の免震構造の第3実施形態を示す要部を拡大した縦断面図である。
【図7】(a)(b)
図7(a)は、図6の免震構造による横揺れ型の地震に対する作用を示す説明図であり、また図7(b)は、横揺れ型の地震に対する作用を示す説明である。
【図8】 本発明の建物の免震構造の第4実施形態を示す要部を拡大した縦断面図である。
【図9】 図8の実際の作動状態を示す説明図である。
【図10】 本発明の建物の免震構造の第5実施形態を示す要部を拡大した縦断面図である。
【図11】 図10の実際の作動状態を示す説明図である。
【符号の説明】
2 基礎台
4 スプリングダンパー(棒状部、緩衝部材)
5 天部
6 テーパ孔(貫通孔)
8 コイルスプリング(緩衝部材)
9 上部
10,13 ナット、丸ナット、球状金具(張出部)
12 下部
14 固定部材
17 エアシリンダ(棒状部、緩衝部材)
20 脚部
21 窪み(球面)
26 磁石
27 板バネ(緩衝部材)
G 地盤
H 穴
P 静止位置
Q 空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation structure of a building against an earthquake.
[0002]
[Prior art]
One of the major causes of building collapse in the earthquake disaster is that the vibration of the ground and the building resonates and the amplitude dramatically increases. Therefore, as a countermeasure against earthquakes as described above, conventionally, for example, the building and the ground are separated from each other, and a curved surface facing each of them is provided at a plurality of locations on the base, and a sphere is interposed between the curved surfaces. (For example, see Patent Documents 1 and 2).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-315885 (page 3, FIG. 1)
[Patent Document 2]
JP-A-9-228684 (second page, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, as described above, in the case of a structure with a sphere intervening between bases to make a base isolation, it is effective for rolling type earthquakes because the sphere rolls and exhibits a base isolation function. However, for pitch-type earthquakes, there is no means for exerting a special seismic isolation between the sphere and each curved surface, making it impossible to perform seismic isolation. In the present situation, a structure having a sphere between them does not function completely as a seismic isolation structure of a building.
[0005]
It is an object of the present invention to provide a building seismic isolation structure capable of preventing resonance between a building and the ground against a roll-type earthquake as well as a roll-type earthquake and reliably preventing damage caused by the earthquake. is there.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention includes a leg portion standing in the space of the foundation from the ground, a top portion projecting laterally from an upper position of the leg portion, and a base hanging from the top portion and the foundation A rod-shaped portion that supports the base in a state of floating from the ground, and the rod-shaped portion includes a buffer member at least in part, and the upper portion of the rod-shaped portion penetrates the top portion, and the rod-shaped portion The lower part penetrates the base, and further, each tip protruding from each of the top and the base in the rod-like part is provided with an overhang, and by the hook of each overhang, the top is used as a base point. swingably supporting the foundation platform via the rod-shaped part, wherein each projecting portion is a basic block have a ChoIzuruhaba positionable be at rest position in normal times, the top portion of each projecting portion and The contact surface with the base or / and the contact surface with the overhang on the top and the base should be spherical. Yes forms, further the magnet on at least one side of each abutment surface, also on the other side, characterized in that it comprises a the attracted member of the magnet.
[0007]
Further, in the invention according to claim 2 of the present invention, a hole formed in a size that allows the foundation to be retracted by digging down the ground, a fixing member disposed on the ground, and projecting from the fixing member to the hole side And a rod-shaped portion that hangs from the ceiling and supports the foundation in a state of floating in the hole, the rod-shaped portion including a buffer member at least in part, The upper part penetrates the top part, the lower part of the bar-like part penetrates the base, and each bar-like part protrudes from the top part and the base, respectively, and has an overhang part. By hooking the protruding part, the base is pivotably supported via a bar-like part with the top as the base point, and each of the protruding parts has a protruding width that allows the base to be positioned at a stationary position in normal time. have a contact surface between the top portion and the base board in each of the overhanging portions, or / and, The contact surface with the projecting portion of the base and the base is formed in a spherical shape, and a magnet is provided on at least one of the contact surfaces, and the magnet is attracted to the other side. A member is provided .
[0008]
A building is a concept that means all things that are built on the ground by forming a base such as a house, a garage, or a fence. Further, the foundation stands are those that can secure a space capable of constructing a building on the upper side and a strength capable of supporting the building, and can be freely laid out in accordance with the floor plane of the building. Furthermore, the space of the base may be provided specially under the floor of the building, or may be a space utilizing a gap or a vent hole under the floor.
[0009]
Further, the rod-like portion / buffer member may be any means that softens the vibration transmitted from the ground and does not transmit it to the foundation, and the means is not particularly limited. For example, a coil spring, an air cylinder, a leaf spring, etc. It is desirable to be able to use it as a means for supporting the foundation from the top. Furthermore, the number of the seismic isolation structures is not particularly limited as long as the building installation does not become unstable. In addition, mounting so as to be able to follow the shaking of an earthquake means a state in which the foundation can be supported from the top through a rod-like portion without countering the direction of the shaking of the earthquake. The direction is determined based on the ground. Further, the overhanging portion only needs to be such that the hooked portion between the top and the base is in contact with the surface, specifically, an umbrella-like member protruding from the center to the entire circumference, that is, a nut or the like. It is done. The stationary position refers to a position where the foundation is in a normal state, specifically, a state where the foundation is in a position depending from the top. Further, the fixing member may be any member as long as it has resistance to support the base and can be stably installed on the ground.For example, a member in which a thick steel plate is arranged in a frame shape so as to surround the hole dug down. It is done.
[0010]
When formed in this way, for example, when the ground rolls due to an earthquake, the foundation is supported by the rod-like part without following the movement of the ground and the base is supported like a pendulum from the top. Even if the ground swings vertically, the shock absorber transmitted to the ground is absorbed by the buffer member provided on the rod-shaped part interposed between the foundation and the top, so the building and foundation The shock to the table can be greatly reduced. In addition, since the catching part of the top and the foundation platform and the overhanging portion are in contact with each other with a width, the foundation platform does not oscillate in the degree of wind received by the building or the vibration caused by people coming in and out. Keep state. In addition, when an earthquake occurs, a swing exceeding the support capacity that allows the base to be positioned by the overhang is transmitted to the base, and the base does not follow the earthquake and does not counteract like a pendulum. Rocks.
[0011]
Further, according to the present invention, the contact surfaces of the overhang portions with the top portion and the base stand or / and the contact surfaces of the top portion and the base stand with the overhang portion are formed in a spherical shape. Furthermore, since the magnet is provided on at least one side of each of the contact surfaces and the attracted member of the magnet is provided on the other side, the overhanging portion is used as a base point due to vibration from the ground during an earthquake. If the rod-shaped part sways, the abutment surface slides smoothly through the spherical surface, so that it swings smoothly, mitigates the impact on the foundation platform and the building, and further squeaks from the foundation platform and building during the oscillation. In addition, since the contact surfaces of the projecting portion and the top / base are positioned by the magnetic force, it is possible to prevent unexpected shaking during normal times.
[0012]
Here, the form in which each contact surface of the overhanging portion, the top portion, and the base is made spherical is, for example, the contact surface side of the overhang portion with the top and the base is hemispherical, Examples of the platform include those having spherical depressions in contact surfaces with the respective overhang portions. Moreover, what is necessary is just to form the said contact surface with the raw material which a magnet adsorb | sucks specifically with a to-be-adsorbed member. Furthermore, when magnets are used for both the overhanging part, the top part, and the base, it is necessary to make the respective magnetic poles different, and it is desirable to use the magnets only for any one of them.
[0013]
It is sufficient that the diameter of the through hole of the rod-shaped portion in the top and the base is as large as not to prevent the rocking of the rod-shaped portion, but the invention according to claim 3 of the present invention. Thus, each through hole of the bar-shaped part in the top and the base has a tapered shape in which the diameter on the contact surface side with the projecting part is narrow and the diameter on the other side is widened, so that the projecting part of each through hole The diameter of the abutting surface side is reduced to a hole diameter close to the diameter of the rod-shaped portion, so that rattling of the rod-shaped portion is suppressed, and further, the diameter of the through hole is tapered and widened. The movable range of the rod-shaped portion is secured from the contact surface side with the overhang portion as a base point, and the swinging of the rod-shaped portion is not hindered.
[0014]
Penetration of the rod-like portion of the underlying platform side holes, Ru provided such bottom plate underlying the foundation base of the concrete. The shape of the opening of the through hole is not particularly limited, but it is desirable to make it circular in view of the movable range of the rod-shaped portion when swinging.
[0015]
For example, even if a single cushioning member is interposed between the ground and the base, the seismic isolation effect is sufficiently exhibited. However, as in the invention according to claim 4 , the rod-shaped portion Is interposed in at least three places between the top and the base, so if a pitch-type earthquake occurs, the impact absorption effect will be improved, When a roll-type earthquake occurs, when the buffer member of any bar-shaped part shrinks and absorbs the impact from the ground, the buffer member provided on the other bar-shaped part is extended, so that the foundation platform is in peacetime. Thus, the urging force is applied in the direction of returning to the initial state, so that the swinging state of the base due to the earthquake can be returned to the original position in a short time.
[0016]
Here, the reason why the number of the bar-shaped portions is set to three or more is that it can correspond to all directions of the swinging direction of the base. For example, if there are two bar-shaped portions, the bar-shaped portions are arranged in a row. Depending on the direction, the urging force may not work in the direction in which the foundation platform returns to the normal position. Further, the number of the rod-shaped portions is not particularly limited as long as it is three or more, but if the number is too large, the swinging of the foundation is hindered. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
About the seismic isolation structure of the building by this invention, the specific example is demonstrated below.
First, the seismic isolation structure of the building according to the first embodiment of the present invention will be briefly described with reference to FIG. 1. The seismic isolation means 1 in this embodiment is a seismic isolation system formed between the ground G and the base 2. In the space S and the space Q by the ventilation window provided in the foundation stand 2, the leg portion 20 standing up from the ground G, the top portion 5 projecting horizontally from the upper end of the leg portion 20, and the foundation from the top portion 5 The spring damper 4 is configured to support the base 2. The upper part 9 and the lower part 12 of the spring damper 4 are first fixed to the top part 5 and the lower part 12 to the lower end of the base 2. It attaches to the bottom plate 11 to be able to follow the shaking of the earthquake.
[0018]
Then, a more specific configuration of the seismic isolation means 1 will be described. First, the shape of the leg portion 20 is a gate shape in which the top portion 5 is flat and the two leg portions hang down at intervals. Further, the leg portion 20 is fixed so as to stand on the ground G. The spring damper 4 is formed by winding a coil spring 8 around a bolt 7, and the upper 9 side of the spring damper 4 is formed in a tapered hole 6 provided in the top portion 5 of the leg portion 20. A round nut 10 having a large diameter is fitted into the upper portion 9 of the spring damper 4 that is inserted from below and protrudes from the upper end surface of the leg portion 20, and is connected to the top portion 5 by the projecting portion of the round nut 10. Thus, the spring damper 4 is attached to the top portion 5 of the leg portion 20 in such a manner that the spring damper 4 can swing freely in the lateral direction with respect to the ground G.
The diameter of the tapered holes 6 and 6 increases as the one on the top 5 side goes downward, while that on the bottom plate 11 side increases in diameter as it goes upward. 4 has a shape that does not hinder the swinging of 4.
[0019]
On the other hand, the lower part 12 side of the spring damper 4 is inserted from above into a tapered hole 6 provided in the bottom plate 11 of the base 2, and further, the lower part of the spring damper 4 protruding from the back side of the bottom plate 11. 12 is combined with the round nut 13 in the same manner as the top part 5 side of the leg part 20 described above, so that the spring damper 4 can follow the shaking of the earthquake with respect to the top part 5 and the base 2. To be held. In addition, in the seismic isolation structure of this embodiment, auxiliary nuts 18 and 18 are combined with each of the round nuts 10 and 13 so as to overlap each other. Is used to prevent the respective round nuts 10 and 13 from being detached from the spring damper 4. Further, the upper round nut 10 has a relatively large diameter, but this does not sway from the stationary position P at the level of the wind pressure that the foundation 2 is subjected to the building. This is because the table 2 is set to be shaken. Further, the spring damper 4 is provided with an adjustment nut 19 for adjusting the urging force of the coil spring 8.
[0020]
When the seismic isolation structure of the building according to the present embodiment is configured as described above, for example, for a roll-type earthquake, the spring damper 4 is located above the tapered hole 6 of the top 5 as shown in FIG. By swinging like a pendulum with the opening edge as an axis on the basis of the ground G, the base 2 supported on the lower part 12 side of the spring damper 4 is free to follow and follow the movement of the ground G. It becomes possible to prevent the ground G and the base 2 from resonating, and as a result, the shaking of the building can be minimized. Further, as shown in FIG. 3, the spring damper 4 is always interposed between the top part 5 of the leg part 20 and the base 2 for a pitching type earthquake, so that an impact transmitted from the ground G can be reliably ensured. From this, it is possible to reliably prevent the transmission of vibrations to the building even in the case of a pitching type earthquake as well as a rolling type earthquake, and can cope with any direction of shaking.
[0021]
Moreover, what is shown in FIG. 4 is an application example in which the seismic isolation structure of the first embodiment described above is used, and the seismic isolation structure is arranged in two upper and lower stages by meeting the lateral member 15. Therefore, effective seismic isolation is possible even for earthquakes with higher seismic intensity. Then, the difference between the two-stage seismic isolation structure and the first embodiment will be described. A hole H having a size that allows the base 2 to be stored in the ground G is dug, and the hole H is surrounded. A fixing member 14 having a frame shape is disposed on the base plate, and a spring damper 4 having a round nut 10 at the upper end is suspended on the fixing member 14 so that the round nut 10 is hooked. And swing freely like a pendulum. (This is the upper spring damper.) Further, the lower end portion of the upper spring damper 4 protrudes into the horizontal member 15, and the lower end side tip portion of the spring damper 4 protruding from the lower end surface of the horizontal member 15 is inserted into the round nut from the lower side of the horizontal member 15. 13, the horizontal member 15 is supported in a state where it is placed on the flat portion of the round nut 13.
[0022]
Further, the spring damper is arranged so that the round nut 10 fitted to the upper end of the horizontal member 15 is hooked on the upper end surface of the horizontal member 15 even at a position where the upper side spring damper 4 is slightly moved in the horizontal member 15. 4 is drooping (this is a lower spring damper). And the lower end side of this lower side spring damper 4 protrudes into the bottom plate 16 of the base 2, and further, a round nut 13 is fitted on the tip portion protruding from the lower end surface of the bottom plate 16, The bottom plate 16 is supported at a position lifted from the bottom surface of the hole H in a state of being caught by the nut 13.
[0023]
Next, the thing of 2nd Embodiment of the seismic isolation structure of the building of this invention is demonstrated below.
In this embodiment, as shown in FIG. 5A, the base 2 is supported from the ground G by using three spring dampers 4 at the top 5 of the leg 20. Specifically, like the base-isolated structure of the first embodiment described above, the leg portion 20 is fixed to the ground G, and the top portion 5 of the leg portion 20 has an interval of 120 °. The upper ends of the three spring dampers 4, 4, 4 are inserted so as to be slidable in the vertical direction, and further the threaded portions of the upper ends of the spring dampers 4, 4, 4 protruding from the upper surface side of the top 5 Each of the spring dampers 4, 4, and 4 is supported by the nuts 10, 10, and 10 in a state where the top part 5 of the leg part 20 can freely swing in the lateral direction. On the other hand, the lower end side of each of the three spring dampers 4, 4 and 4 is inserted through the bottom plate 11 provided at the bottom of the base 2 so as to be slidable in the vertical direction. Nut 13, 13, 13 in the threaded portion on the lower end side of the base plate and hooking the bottom plate 11 with the nut 13, 13, 13, the base 2 is grounded on the ground G to shake the earthquake It is configured to be able to follow.
[0024]
As described above, when the base 2 is supported from the ground G by the three spring dampers 4, 4, 4 on the top 5 of the leg 20, if a pitch-type earthquake occurs, Of course, the impact absorption effect is higher, but when a roll-type earthquake occurs, if one of the spring dampers 4 receives an impact, the other two spring dampers 4 and 4 Since the urging force works in the direction in which the base 2 tries to return to the original state before the earthquake, as a result, the time until the base 2 in the shaken state after the earthquake returns to the original state is further shortened. .
[0025]
Furthermore, as a third embodiment of the seismic isolation structure for a building according to the present invention, an air cylinder 17 is used as a buffer member between the base 2 and the top 5 of the leg 20 as shown in FIG. As described above, in the case where the air cylinder 17 is interposed between the top 5 of the leg 20 and the base 2, first, when a roll-type earthquake occurs, FIG. ), The air cylinder 17 follows the movement of the ground G with the top 5 of the leg 20 as a reference, similarly to the above-described seismic isolation action by the spring damper 4 of the first embodiment. It swings like a pendulum with reference to. On the other hand, when a pitch-type earthquake occurs, as shown in FIG. 7B, the impact from the leg 20 and the top 5 pushed up together with the ground G is absorbed by the sliding of the air cylinder 17. Thus, it is possible to greatly reduce the transmission of impact to the base 2.
[0026]
Next, as a fourth embodiment of the seismic isolation structure for a building of the present invention, as shown in FIG. 8, a recess 21 recessed in a hemispherical shape is provided on the upper surface side of the top portion 5 of the leg portion 20, while the recess is formed on the bottom side. The spherical metal fitting 10 corresponding to the spherical surface 21 is provided, and the spring damper 4 is suspended from the top 5 in a state where the spherical metal fitting 10 can swing. Further, the spherical metal fitting 10 that supports the bottom plate 11 on the lower end side of the spring damper 4 is also provided with a spherical metal fitting 10 that forms an upward hemisphere, and the spherical surface that matches the spherical metal fitting 10 also on the bottom surface side of the bottom plate 11. The spherical metal fitting 10 enters the male and female shape into the hollow 21 so that the contact portions of the top 5, the spring damper 4, and the base plate 2 bottom plate 11 are in contact with each other on the spherical surfaces. It will be. Further, a magnet 26 is embedded in the peripheral portion of the recess 21 of the top portion 5, and the action of the magnet 26 regulates the movement of the spherical metal fitting 10 by magnetic force to position the spring damper 4 in a vertical state. This prevents the base 2 from swinging unexpectedly during normal times. In this case, as shown in FIG. 9, when an earthquake occurs, the bottom plate 11 supported by the spring damper 4 from the top 5 in response to the earthquake swings smoothly like a pendulum, and the spring Combined with the impact absorbing effect between the top 5 and the bottom plate 11 of the damper 4, it is possible to drastically reduce the impact applied to the building. In addition, the code | symbol 22 in FIG. 8 and FIG. 9 is a plate which controls the motion of the coil spring 8. FIG.
[0027]
Next, a fifth embodiment of the seismic isolation structure for buildings according to the present invention will be described below with reference to FIG.
In addition, description of the location which makes the same structure as other embodiment is abbreviate | omitted. In this embodiment, the spherical metal fitting 10 used in the fourth embodiment is used.
In the present embodiment, the bottom plate 11 is suspended from the top portion 5 via a leaf spring 27. The leaf spring 27 is composed of an upper leaf spring 23 bent upward and a lower leaf spring 24 bent downward. Further, the left and right ends of the plate springs 23 and 24 are fixed to the pins 28 and 28, respectively, and the plate springs 23 and 24 are connected so as to be opened and closed up and down like a pantograph. 5 and the bottom plate 11 are buffered.
[0028]
When the earthquake actually occurs, the leaf spring 27 receives the shock caused by the vibration against the vibration that pushes up from the ground side as shown in FIG. The same effect as the air cylinder 17 is exhibited. Further, if the arch-shaped stoppers 25, 25 surrounding the leaf spring 27 are attached to the upper end surface of the bottom plate 11, the opening and closing range of the leaf spring 27 is restricted in the event of an earthquake, so that the leaf spring 27 absorbs the impact. The bottom plate 11 can be regulated so as not to be lifted greatly by the reaction at the time.
Note that in a roll-type earthquake, the seismic isolation structure operates in the same manner as that of the fourth embodiment, so the description here is omitted.
[0029]
【The invention's effect】
According to the present invention, even in the case of both a roll-type and a pitch-type earthquake, the building can freely swing following the earthquake, so that the building can be surely protected from the threat of the earthquake. It is possible to reliably prevent unexpected shaking of the building during normal times.
[0030]
According to the present invention, since the contact surfaces of the overhangs, the top, and the base are in contact with each other by a spherical surface, the base is more smoothly swung, and the base is unexpected when it is normal. There is no shaking.
[0031]
According to the invention described in claim 3 of the present invention, in addition to the effects of the inventions described in claims 1 and 2, by suppressing the unexpected rattling of the rod-shaped part, the stability during normal times of the building is increased, Moreover, during an earthquake, the earthquake can be handled more smoothly.
[0032]
According to the invention described in claim 4 of the present invention , in the event of an earthquake, the urging force acts in a direction to soften the impact received on the foundation and return the foundation to the original state before the earthquake. Can reduce the shaking of the building in a short time.
[Brief description of the drawings]
FIG. 1 is an enlarged longitudinal sectional view showing a main part of a first embodiment of a seismic isolation structure for a building according to the present invention.
FIG. 2 is an explanatory diagram showing an effect on a roll-type earthquake by the building seismic isolation structure of the first embodiment described above.
FIG. 3 is also an explanatory view showing an action against a pitching type earthquake by the base isolation structure of the first embodiment described above.
FIG. 4 is an explanatory diagram showing an application example of the building seismic isolation structure of the first embodiment.
FIG. 5 (a) (b)
Fig.5 (a) is a top view which shows the principal part of 2nd Embodiment of the seismic isolation structure of the building of this invention, and FIG.5 (b) is the longitudinal cross-sectional view which expanded the principal part.
FIG. 6 is an enlarged longitudinal sectional view showing a main part of a third embodiment of the seismic isolation structure for a building according to the present invention.
FIG. 7 (a) (b)
FIG. 7A is an explanatory diagram showing the action against a roll-type earthquake by the seismic isolation structure of FIG. 6, and FIG. 7B is an explanation showing the action against the roll-type earthquake.
FIG. 8 is an enlarged longitudinal sectional view showing a main part of a fourth embodiment of the seismic isolation structure for a building according to the present invention.
9 is an explanatory diagram showing an actual operating state of FIG. 8. FIG.
FIG. 10 is an enlarged longitudinal sectional view showing a main part of a fifth embodiment of the building seismic isolation structure of the present invention.
11 is an explanatory diagram showing an actual operating state of FIG. 10; FIG.
[Explanation of symbols]
2 Foundation base 4 Spring damper (bar-shaped part, cushioning member)
5 Top 6 Taper hole (through hole)
8 Coil spring (buffer member)
9 Upper part 10, 13 Nut, round nut, spherical bracket (overhang)
12 Lower part 14 Fixing member 17 Air cylinder (bar-shaped part, buffer member)
20 leg 21 hollow (spherical surface)
26 Magnet 27 Leaf spring (buffer member)
G Ground H Hole P Rest position Q Space

Claims (4)

地盤(G)から基礎台(2)の空間(Q)内に起立する脚部(20)と、該脚部(20)の上部位置から横方向に張り出す天部(5)と、該天部(5)から垂下し且つ基礎台(2)を地盤(G)から浮かせた状態で支える棒状部(4,17)と、から構成し、
前記棒状部(4,17)は、少なくとも一部に緩衝部材(8,17,27)を備えており、
前記棒状部(4,17)の上部(9)は天部(5)に貫通し、また該棒状部(4,17)の下部(12)は基礎台(2)に貫通し、さらに、該棒状部(4,17)における天部(5)と基礎台(2)のそれぞれから突出した各先端には張出部(10,13)を備え、当該各張出部(10,13)の引掛かりによって、天部(5)を基点に、基礎台(2)を棒状部(4,17)を介して揺動可能に支え、
前記各張出部(10,13)は、基礎台(2)を平時において静止位置(P)での位置決めが可能な張出幅を有し、
前記各張出部(10,13)における天部(5)及び基礎台(2)との当接面(10,13)、又は/及び、天部(5)及び基礎台(2)における張出部(10,13)との当接面(21)は球面状に形成してあり、さらに、前記各当接面(10,13,21)のうちの少なくとも一方側には磁石(26)を、また他方側には該磁石(26)の被吸着部材を備えていることを特徴とする建物の免震構造。
A leg (20) standing up in the space (Q) of the foundation (2) from the ground (G), a ceiling (5) projecting laterally from the upper position of the leg (20), and the ceiling A rod-like part (4, 17) that hangs down from the part (5) and supports the base (2) in a state of floating from the ground (G),
The rod-like portion (4, 17) includes a buffer member (8, 17, 27) at least in part.
The upper part (9) of the rod-shaped part (4, 17) penetrates the top part (5), and the lower part (12) of the rod-shaped part (4, 17) penetrates the base (2), Each rod-like portion (4, 17) has a protruding portion (10, 13) at each tip protruding from the top (5) and the base (2), and each protruding portion (10, 13) By hooking, the base (2) is pivotably supported via the bar (4, 17) with the top (5) as a base point,
Each of the overhang portions (10, 13) has an overhang width that allows the base platform (2) to be positioned at a stationary position (P) in normal time .
The abutment surface (10, 13) with the top (5) and the base (2) in each overhang (10, 13) or / and the tension on the top (5) and the base (2) The contact surface (21) with the protruding portion (10, 13) is formed in a spherical shape, and a magnet (26) is provided on at least one of the contact surfaces (10, 13, 21). And a seismic isolation structure for a building, which is provided with a member to be attracted to the magnet (26) on the other side .
地盤(G)を掘り下げて基礎台(2)の格納が可能な大きさに形成した穴(H)と、前記地盤(G)上に配置した固定部材(14)と、該固定部材(14)から穴(H)側に張り出した天部(5)と、該天部(5)から垂下し且つ基礎台(2)を穴(H)内に浮かせた状態で支える棒状部(4,17)と、から構成し、
前記棒状部(4,17)は、少なくとも一部に緩衝部材(8,17,27)を備えており、
前記棒状部(4,17)の上部(9)は天部(5)に貫通し、また該棒状部(4,17)の下部(12)は基礎台(2)に貫通し、さらに、該棒状部(4,17)における天部(5)と基礎台(2)のそれぞれから突出した各先端には張出部(10,13)を備え、当該各張出部(10,13)の引掛かりによって、天部(5)を基点に、棒状部(4,17)を介して基礎台(2)を揺動可能に支え、
前記各張出部(10,13)は、基礎台(2)を平時において静止位置(P)での位置決めが可能な張出幅を有し、
前記各張出部(10,13)における天部(5)及び基礎台(2)との当接面(10,13)、又は/及び、天部(5)及び基礎台(2)における張出部(10,13)との当接面(21)は球面状に形成してあり、さらに、前記各当接面(10,13,21)のうちの少なくとも一方側には磁石(26)を、また他方側には該磁石(26)の被吸着部材を備えていることを特徴とする建物の免震構造。
A hole (H) formed in a size that allows the foundation (2) to be stored by digging the ground (G), a fixing member (14) disposed on the ground (G), and the fixing member (14) The top part (5) projecting from the top (5) to the hole (H), and the rod-like part (4, 17) hanging from the top part (5) and supporting the base stand (2) in the hole (H) And consisting of
The rod-like portion (4, 17) includes a buffer member (8, 17, 27) at least in part.
The upper part (9) of the rod-shaped part (4, 17) penetrates the top part (5), and the lower part (12) of the rod-shaped part (4, 17) penetrates the base (2), Each rod-like portion (4, 17) has a protruding portion (10, 13) at each tip protruding from the top (5) and the base (2), and each protruding portion (10, 13) With the hook, the base (2) is supported swingably from the top (5) via the rod-shaped part (4, 17),
Wherein each projecting portion (10, 13), the basal board (2) have a ChoIzuruhaba capable positioning in the rest position (P) at normal times,
The abutment surface (10, 13) with the top (5) and the base (2) in each overhang (10, 13) or / and the tension on the top (5) and the base (2) The contact surface (21) with the protruding portion (10, 13) is formed in a spherical shape, and a magnet (26) is provided on at least one of the contact surfaces (10, 13, 21). And a seismic isolation structure for a building, which is provided with a member to be attracted to the magnet (26) on the other side .
天部(5)及び基礎台(2)における棒状部(4,17)の各貫通孔(6,6)は、張出部(10,13)との当接面側の径が狭く且つ他方側の径が広がるテーパ状をなすことを特徴とする請求項1又は2記載の建物の免震構造。  The through holes (6, 6) of the rod-like parts (4, 17) in the top part (5) and the base (2) have a narrow diameter on the contact surface side with the projecting parts (10, 13) and the other. 3. The building seismic isolation structure according to claim 1 or 2, wherein the building has a tapered shape with a wide side diameter. 前記棒状部(4,17)は、天部(5)と基礎台(2)との間の少なくとも3箇所以上に介在していることを特徴とする請求項1、2、又は3記載の建物の免震構造。 The building according to claim 1, 2, or 3, wherein the rod-shaped part (4, 17) is interposed at least at three or more places between the top part (5) and the base (2). Seismic isolation structure.
JP2003163845A 2002-11-12 2003-06-09 Building seismic isolation structure Expired - Fee Related JP3783003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163845A JP3783003B2 (en) 2002-11-12 2003-06-09 Building seismic isolation structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002328209 2002-11-12
JP2003163845A JP3783003B2 (en) 2002-11-12 2003-06-09 Building seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2004211530A JP2004211530A (en) 2004-07-29
JP3783003B2 true JP3783003B2 (en) 2006-06-07

Family

ID=32828408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163845A Expired - Fee Related JP3783003B2 (en) 2002-11-12 2003-06-09 Building seismic isolation structure

Country Status (1)

Country Link
JP (1) JP3783003B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218418A (en) * 2005-07-19 2007-08-30 Toyo Tire & Rubber Co Ltd Active liquid-sealed vibration control device
JP4543052B2 (en) * 2006-09-05 2010-09-15 信義 金子 Building seismic isolation device
JP5064093B2 (en) * 2007-04-16 2012-10-31 オイレス工業株式会社 Seismic isolation device and fixture equipped with the seismic isolation device
JP2010013889A (en) * 2008-07-07 2010-01-21 Bs Door Kk Building base-isolation unit for earthquake resistance
JP5145310B2 (en) * 2008-11-13 2013-02-13 ジークレフ音響株式会社 Insulator
CN106015599B (en) * 2016-07-27 2019-06-14 无锡市华通电力设备有限公司 A kind of buffer unit with stiffener plate
KR101752402B1 (en) * 2017-02-07 2017-06-30 주식회사 최선트레이 Earthquake-resistant structure member for cable tray support member
KR101973032B1 (en) * 2018-08-17 2019-04-26 주식회사 성실엔지니어링 Seismic equipment for cable tray - seismic cable tray system including this
CN114134914B (en) * 2021-11-10 2022-09-23 大连理工大学 Support method of swing type anti-seismic recoverable anchor rod suitable for complex slope support

Also Published As

Publication number Publication date
JP2004211530A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US20080098670A1 (en) Earthquake resistant building foundation
JP3783003B2 (en) Building seismic isolation structure
KR20180119035A (en) The seismic device of the fire water tank using the wire rope type buffer
US20110131894A1 (en) Pylon Attachment Device and Flooring System Utilizing Same
JP4543052B2 (en) Building seismic isolation device
KR101370820B1 (en) Bridge bearing
KR101404814B1 (en) Construction method of vibration isolation swing slab
JP2009214950A (en) Base isolated supporting structure of crane
JPH11293811A (en) Aseismic device for steel rahmen structure
JP7245551B1 (en) Seismic isolation device for both table and hanger
JP6216391B2 (en) Seismic isolation swing slab support device and seismic isolation swing slab construction method using the same
JP2006022484A (en) Vibration isolation device of building structure
JP2007113377A (en) Method and device for base isolation of building
US6202365B1 (en) Suspended deck structure
JP2002129772A (en) Base isolating one-stage, two-stage, and three-stage structure for building
JP3650911B2 (en) Seismic isolation device and seismic isolation structure
JP5907772B2 (en) Rolling prevention mechanism and vibration isolator with the same mechanism
JP4513095B2 (en) Isolation device
KR20210014026A (en) Flooring installation structure with easy-to-install earthquake-proof structure
JP4440746B2 (en) Seismic device for structure
JP2005249210A (en) Damping apparatus
JP2008082452A (en) Damping device, and road bridge and pedestrian bridge with superior damping performance
JP3191428U (en) Seismic isolation device
JP2001153180A (en) Base isolation structure
JP2006057435A (en) Base isolation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees