JP3782282B2 - Method for manufacturing piezoelectric driving body - Google Patents

Method for manufacturing piezoelectric driving body Download PDF

Info

Publication number
JP3782282B2
JP3782282B2 JP2000115655A JP2000115655A JP3782282B2 JP 3782282 B2 JP3782282 B2 JP 3782282B2 JP 2000115655 A JP2000115655 A JP 2000115655A JP 2000115655 A JP2000115655 A JP 2000115655A JP 3782282 B2 JP3782282 B2 JP 3782282B2
Authority
JP
Japan
Prior art keywords
layer
film
electrode
mgo
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000115655A
Other languages
Japanese (ja)
Other versions
JP2001298220A (en
Inventor
より子 ▲高▼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000115655A priority Critical patent/JP3782282B2/en
Publication of JP2001298220A publication Critical patent/JP2001298220A/en
Application granted granted Critical
Publication of JP3782282B2 publication Critical patent/JP3782282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電素子に電極を配し、電圧で駆動することのできる圧電駆動体及びその製造方法に関するもので、さらに詳細には、圧電素子が薄膜で形成されているこ圧電駆動体およびその製造方法に関する発明である。
【0002】
【従来の技術】
高トラック密度化したHDDのヘッドトラッキングのためのアクチュエーター等のように、微小量の移動制御のために薄膜圧電素子を用いた圧電駆動体が注目されている。
【0003】
図5は、従来の圧電駆動体の製造方法を示す図である。基板となる酸化マグネシウム(MgO)1の上に白金(Pt)膜2及びチタン酸鉛(PLT)膜3をスパッタリングや蒸着法により形成する。その上に圧電素子であるPZT(Pb-Zr-Ti)膜4を同様な方法で形成し、その上に電極となるクロム(Cr)膜5を形成する。
【0004】
ここでは、圧電素子膜に電極膜が付加された状態のものを圧電駆動体と呼ぶ(以下同じ)。基板にMgO1を用いるのはPZT膜4よりも熱膨張係数が高いためであり、これによって膜製造時にPZT膜4の内部に圧縮応力をかけるためである。膜成製時に圧縮応力をかけておくことによって、膜形成後のPZT膜4の変位特性の向上に大きな効果があることが知られている。
【0005】
この様に圧電素子薄膜の形成時には、膜内部に圧縮応力をかけるという役割をはたすMgO基板であるが、圧電素子膜の形成後は不要なものとなるため除去する。
【0006】
図6は図5を逆にしたもので、基板となるMgO1をリン酸によるエッチング(7はエッチング方向を示す)で除去する工程を示す。この際に図中で示す方向12a、12b、12c、12d等の素子の側面は樹脂などで封止し、エッチング時に各薄膜へリン酸が浸入する事を防いでいる。図7では、このようにして、圧電膜形成時には基板となったMgO1をリン酸により除去した後のPt膜2とCr膜5の間に電圧電源9を接続した状態を示している。この電圧源によって交流電圧を印加することで圧電駆動体として動作を始める。
【0007】
たとえば固定端を11とした場合に、変位方向として10のような方向に動く。これは印可された電圧により圧電膜PZT4が長さ方向13の方へ伸び縮みするのに伴い、剛性の高いCr層5の影響によってバイメタルのような動きをするからである。
【0008】
【発明が解決しようとする課題】
しかし、図7のような構成の圧電駆動体においては電圧をかけて動作させていると、錆のような電蝕領域8が発生し、やがてそれが膜全域に広がり、最終的には圧電駆動体としての変位特性を失うという問題があった。このような問題に鑑み、本発明者は鋭意検討を行った。その結果、この原因は図6においてリン酸によるエッチングを行った際、上側電極基板Pt層2に存在する小さな穴を通し、リン酸がPZT4層に浸入し、そこに電圧をかけることによって生じる電池効果によって電蝕が広がるものであることがわかった。上側電極基板Pt層2は非常に薄く作成されるため(通常サブミクロンの厚み)、膜が十分に一体化していない部分が生じてそこが小さな孔となるのである。
【0009】
この問題を解決するためにはPt膜2の厚みを厚くするということが考えられるが、Pt層2を厚くすると膜形成時にMgO基板1とPZT層4との間に生じさせた熱膨張係数によるPZT層4内部の圧縮応力をPt層2が吸収してしまい、膜形成時に圧縮応力がかからなくなってしまう。一方、図6におけるリン酸エッチングを途中で止め、Pt層2の上にMgO基板1を残してしまっては、Pt層2に対して電極を形成することはできない。
【0010】
本発明は、前記従来の問題を解決するため、エッチングの際のリン酸によるPZT層への浸入を防止し、駆動時に起こる電蝕の発生を防止し、さらにより大きな変位特性を得られる圧電駆動体及びその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記目的を達成するため、本発明の圧電駆動体の製造方法は、MgOよりなる電気絶縁体基板上に溝加工し、前記溝部をPtよりなる導電体で埋め、その上に第1の電極膜を形成し、その上に圧電素子膜を形成し、その上に第2の電極膜を形成し、前記MgOよりなる電気絶縁体基板を前記溝部に埋めたPtよりなる導電体が露出するまでリン酸エッチング処理により除去することを特徴とする。
【0012】
前記方法においては、前記第1の電極膜をPtにより形成し、前記第2の電極膜をCrにより形成するのが好ましい。
【0013】
また、前記第1の電極膜および前記第2の電極膜をともにPtにより形成するのが好ましい。
【0016】
【発明の実施の形態】
本発明は、予めMgO基板1上に電極端となる部分を形成しておき、その上に図5で示すようなPt層2、PLT層3、PZT層4、Cr層5を形成し、MgO基板1の除去工程では、前記電極端が露出するまでMgO層をエッチングしていき、最終的にはMgO層の一部を残し、かつその下のPt層2に通じる電極を形成する。前記において、MgO層はPt層がMgO層のエッチング工程時に、リン酸溶液をPZT層に通さないだけの厚みが必要であり、その厚みは数μm〜十数μm、好ましくは3nm〜15nmである。このようにすることによって、圧電素子膜であるPZT層4には、電極層となるPt層2を通してリン酸が侵入してくることを防ぐとともに、MgO基板1の一部を残していても電極を形成することが可能となる。さらに、電極端として形成した部分はその外側にMgOは存在しないが、膜圧が十分に厚いので、この部分からのリン酸の侵入も防ぐことができる。
【0017】
(実施の形態1)
以下に本発明にかかる実施の形態1について図を用いて説明する。図1は本発明による電極を有した圧電駆動体である。図7と比べるとPt層2の上側には基板であるMgO層1がまだ残されており、かつPt層2に通じる電極として電極端Pt21が形成されている。このPt層21はMgO層1と同一平面内に存在するものの、その表面を露出させており、この部分を電極とすることができる。
【0018】
図2は図1の14方向からの断面を示す図である。Cr層5、PZT層4、PLT層3、Pt層2については従来と同じ構成であるが、Pt層2の上にはMgO基板1であったものの一部が残存しており、かつ電極端となるPt21の部分が形成されているのがわかる。図2に示すように電源9を電極端Pt層21およびCr層5の間に配し、固定端を11として駆動電圧をかけると、10に示すような変異方向に駆動することになる。
【0019】
電極端となるPt層21は、圧電素子膜であるPZT層4の形成時にはMgO基板1とPZT層4の間に厚い膜として存在するため、PZT層4へのMgO基板の膜内圧縮効果が作用しにくいと考えられる。すなわち、図2で見ると、電極端であるPt層21の下側にあるPZT層4の一部は変位特性が小さい。従って、電極端Pt21の幅は狭い方がよく、また、圧電駆動体の端部に形成するのがよい。
【0020】
さらに図1および2に示すように圧電駆動体に形成する電極端は2カ所である必要はなく、1カ所でもいいし、またその形状も、導通を確保することが本発明の目的であるので、帯状に限定するものではない。
【0021】
【実施例】
以下、実施例を用いて本発明をさらに具体的に説明する。
【0022】
(実施例1)
以下図3を用いて図1に示した本発明による電極端子を有した圧電素子の製造について説明する。基板となるMgOは縦20mm横20mm厚さ0.3mmのものを用意した(図3(a))。
【0023】
この基板上に電極端子のパターンを描くため、感光性樹脂のレジスト30を厚さ5μmの厚みに塗布し、別途準備した電極パターン用マスクを用いて、電極パターンを露光により形成した後、電極端子となる部分のレジストを除去した(図3(b))。
【0024】
この時、電極部分の幅は30μmとした。電極部分となる部分のレジストを除去した後、全体を20重量%水溶液の80℃のリン酸溶液でエッチングし、深さ10μmの電極端となる部分をMgO基板中に形成した(図3(c))。
【0025】
この上にPtを10μm蒸着法で形成した。こうすることにより、図3(c)で示したMgO基板の表面をエッチングで除去した部分32をPtで埋めることができ、この部分が後の電極端となる。こうした後にレジスト30を除去することで電極端部を膜表面に持ったMgO基板1を作成することができる(図3(d))。以上の工法はいわゆるリフトオフと呼ばれる工法である。
【0026】
この様にして作成したMgOの基板上にPt層2、PLT層3、PZT層4、Cr層5を従来方法と同様に形成していき、その後、リン酸エッチング処理7によりPt層21が露出するまでMgO層1を除去した。この際に、図6で説明したように膜の側面方向は樹脂で封止し、リン酸の膜侵入によるダメージを防止しておくことは言うまでもない。
【0027】
本実施例では(図3(e))のPt層には0.1μm、PLT層3は0.05μm、PZT層4は2.5μm、Cr層5は5μmの厚さにした。なおリン酸エッチングで用いたリン酸溶液は、リン酸が20重量%の水溶液であった。エッチング条件は、温度80℃で行い、エッチングレートは時間で制御した。
【0028】
この様にして作ったPt21の電極端がMgO基板から露出した圧電駆動体の電極端Pt21がある側に、金(Au)22を厚さ0.05〜0.07μm蒸着し、上部全面を導通体とした。このAu層22とCr層5の間に1KHz、5Vの駆動電圧を加えたところ、固定端とした反対側の自由端では約0.5μmの変位を観測することができた。
【0029】
以上のような本発明による電極を有した圧電素子は、基板となるMgO1の一部を残してあるため、MgO基板1を除去するために用いたリン酸エッチング処理7のリン酸が、Pt層2を通してPZT層4に浸入することがなく、長時間の駆動においても電蝕を発生することがなかった。
【0030】
(実施例2)
実施例1においては圧電素子であるPZT層4の両側に弾性率の高いCr層5及びMgO層1が残っておりバイメタル効果としてはPZT層4の両側でそれを打ち消すように働き、変位特性に損失をもたらしていると考えられる。言い換えると、駆動電圧によって伸張収縮する圧電素子の両側に変形しにくい(弾性率の高い)膜が存在すると、全体としての変位特性は小さくなる。
【0031】
そこで、Cr層5の代わりに弾性率の低いPt層を付け、電極端Pt21の反対側の電極とすることを考えた。つまり実質的には、伸張収縮する圧電素子PZTと、その一方の面に形成された変形しにくいMgO膜とでバイメタル的動作を行おうというものである。
【0032】
図4に示すのがその具体的な構造である。図3(f)と比較するとCr層5の代わりにPt層23が形成されているのがわかる。この状態で先ほどと同じように1kHz、5Vの駆動電圧をかけたところ、固定端の反対の自由端では約1μmの変位を観測することができた。このようにCr層を剛性の低いPt層23に代えることによりバイメタル効果はPZT層4とMgO層1の間で生じ、より大きな変位特性を得ることができる。
【0033】
以上のように本発明の実施例ではリン酸により除去するMgO層を一部残したまま電極となるPt層2と導通性のある電極Pt21を形成させたため、リン酸によるPZT層4への浸入がなくなり駆動時に起こる電蝕という問題を解決することができる。さらにMgO層1の反対側を弾性率の低い電極Pt23としたためにより大きな変位特性を得ることもできた。
【0034】
【発明の効果】
本発明は、基板となるMgOを一定の厚さで残し、かつ同時に残したMgO基板の一部に電極端が形成できるように圧電駆動体を形成することで、エッチングの際のリン酸によるPZT層への浸入を防止し、駆動時に起こる電蝕の発生を防止し、さらにより大きな変位特性を得られる圧電駆動体及びその製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の電極部を有した圧電駆動体を示す図
【図2】本発明の一実施の形態の圧電駆動体の駆動状態を示す断面図
【図3】本発明の一実施の形態の圧電駆動体の製造工程を示す図
【図4】本発明の他の実施形態における圧電駆動体の断面を示す図
【図5】従来の圧電駆動体の製造工程を示す図
【図6】従来の圧電駆動体の製造工程中リン酸で基板を除去する工程を示す図
【図7】従来の圧電駆動体を駆動させる状態を示す図
【符号の説明】
1 電気絶縁体(MgO)
2 電極(Pt)
3 チタン酸鉛膜(PLT)
4 圧電素子膜(PZT)
5 電極(Cr)
6 基板への接着方向
7 エッチング方向
8 電蝕領域
9 電圧電源
10 変位方向
11 固定端
12a,12b,12c,12d 樹脂封止部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric driving body that can be driven by voltage by arranging electrodes on the piezoelectric element, and more particularly to a method for manufacturing the piezoelectric driving body. The invention relates to a manufacturing method.
[0002]
[Prior art]
A piezoelectric driving body using a thin film piezoelectric element for controlling movement of a minute amount, such as an actuator for head tracking of an HDD having a high track density, has attracted attention.
[0003]
FIG. 5 is a diagram showing a conventional method for manufacturing a piezoelectric driving body. A platinum (Pt) film 2 and a lead titanate (PLT) film 3 are formed on a magnesium oxide (MgO) 1 serving as a substrate by sputtering or vapor deposition. A PZT (Pb—Zr—Ti) film 4 that is a piezoelectric element is formed thereon by the same method, and a chromium (Cr) film 5 that is an electrode is formed thereon.
[0004]
Here, a state in which an electrode film is added to a piezoelectric element film is referred to as a piezoelectric driving body (hereinafter the same). The reason why MgO1 is used for the substrate is that the coefficient of thermal expansion is higher than that of the PZT film 4, thereby applying a compressive stress to the inside of the PZT film 4 during film production. It is known that applying a compressive stress during film formation has a great effect on improving the displacement characteristics of the PZT film 4 after film formation.
[0005]
As described above, when the piezoelectric element thin film is formed, the MgO substrate plays a role of applying compressive stress to the inside of the film, but is removed after the piezoelectric element film is formed because it becomes unnecessary.
[0006]
FIG. 6 is a reverse of FIG. 5 and shows a step of removing MgO1 serving as a substrate by etching with phosphoric acid (7 indicates the etching direction). At this time, the side surfaces of the elements such as directions 12a, 12b, 12c, and 12d shown in the figure are sealed with resin or the like to prevent phosphoric acid from entering each thin film during etching. FIG. 7 shows a state in which the voltage power source 9 is connected between the Pt film 2 and the Cr film 5 after the MgO 1 that has become the substrate when the piezoelectric film is formed is removed by phosphoric acid. The operation as a piezoelectric driving body is started by applying an AC voltage from this voltage source.
[0007]
For example, when the fixed end is 11, it moves in a direction such as 10 as the displacement direction. This is because the piezoelectric film PZT4 expands and contracts in the length direction 13 by the applied voltage and moves like a bimetal due to the influence of the highly rigid Cr layer 5.
[0008]
[Problems to be solved by the invention]
However, in the piezoelectric driving body configured as shown in FIG. 7, when operated by applying a voltage, a rust-like electro-corrosion area 8 is generated and eventually spreads over the entire film, and finally the piezoelectric driving. There was a problem of losing the displacement characteristics of the body. In view of such a problem, the present inventor has intensively studied. As a result, when the etching with phosphoric acid is performed in FIG. 6, the cause is that the battery is generated by passing the small hole existing in the upper electrode substrate Pt layer 2 and the phosphoric acid entering the PZT4 layer and applying a voltage thereto. It was found that the electric corrosion spreads depending on the effect. Since the upper electrode substrate Pt layer 2 is made very thin (usually a thickness of submicron), a portion where the film is not sufficiently integrated is generated and becomes a small hole.
[0009]
In order to solve this problem, it is conceivable to increase the thickness of the Pt film 2. However, if the Pt layer 2 is increased, it depends on the thermal expansion coefficient generated between the MgO substrate 1 and the PZT layer 4 during film formation. The Pt layer 2 absorbs the compressive stress in the PZT layer 4 and no compressive stress is applied during film formation. On the other hand, if the phosphoric acid etching in FIG. 6 is stopped halfway and the MgO substrate 1 is left on the Pt layer 2, an electrode cannot be formed on the Pt layer 2.
[0010]
In order to solve the above-mentioned conventional problems, the present invention prevents the penetration of phosphoric acid into the PZT layer during etching, prevents the occurrence of galvanic corrosion that occurs at the time of driving, and achieves a greater displacement characteristic. It aims at providing a body and its manufacturing method.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a piezoelectric driving body according to the present invention includes a step of forming a groove on an electrical insulator substrate made of MgO , filling the groove with a conductor made of Pt , and forming a first electrode film thereon A piezoelectric element film is formed thereon, a second electrode film is formed thereon, and phosphorous is exposed until the conductor made of Pt with the electrically insulating substrate made of MgO buried in the groove is exposed. It is characterized by being removed by an acid etching process .
[0012]
In the method, it is preferable that the first electrode film is formed of Pt and the second electrode film is formed of Cr .
[0013]
Further, it is preferable that both the first electrode film and the second electrode film are formed of Pt .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a part to be an electrode end is formed on the MgO substrate 1 in advance, and a Pt layer 2, a PLT layer 3, a PZT layer 4 and a Cr layer 5 are formed thereon as shown in FIG. In the removal process of the substrate 1, the MgO layer is etched until the end of the electrode is exposed, and finally an electrode is formed which leaves a part of the MgO layer and leads to the Pt layer 2 below. In the above, the MgO layer needs to have a thickness that does not allow the phosphoric acid solution to pass through the PZT layer when the Pt layer is etched, and the thickness is several μm to several tens of μm, preferably 3 nm to 15 nm. . By doing so, phosphoric acid is prevented from entering the PZT layer 4 which is a piezoelectric element film through the Pt layer 2 which is an electrode layer, and the electrode is formed even if a part of the MgO substrate 1 is left. Can be formed. Further, although MgO does not exist outside the portion formed as the electrode end, the membrane pressure is sufficiently thick, so that intrusion of phosphoric acid from this portion can also be prevented.
[0017]
(Embodiment 1)
Embodiment 1 according to the present invention will be described below with reference to the drawings. FIG. 1 shows a piezoelectric driver having an electrode according to the present invention. Compared with FIG. 7, the MgO layer 1 as a substrate is still left above the Pt layer 2, and an electrode end Pt 21 is formed as an electrode that communicates with the Pt layer 2. Although this Pt layer 21 exists in the same plane as the MgO layer 1, its surface is exposed and this portion can be used as an electrode.
[0018]
FIG. 2 is a view showing a cross section from the 14 direction of FIG. The Cr layer 5, the PZT layer 4, the PLT layer 3, and the Pt layer 2 have the same configuration as the conventional one, but a part of the MgO substrate 1 remains on the Pt layer 2 and the electrode ends. It can be seen that a portion of Pt21 is formed. As shown in FIG. 2, when the power source 9 is arranged between the electrode end Pt layer 21 and the Cr layer 5 and the fixed end is 11 and a driving voltage is applied, driving is performed in a variation direction as indicated by 10.
[0019]
Since the Pt layer 21 serving as the electrode end exists as a thick film between the MgO substrate 1 and the PZT layer 4 when the PZT layer 4 which is a piezoelectric element film is formed, the in-film compression effect of the MgO substrate on the PZT layer 4 is exerted. It is thought that it is hard to act. That is, when viewed in FIG. 2, a part of the PZT layer 4 below the Pt layer 21 that is the electrode end has a small displacement characteristic. Therefore, the electrode end Pt21 should have a narrow width and should be formed at the end of the piezoelectric driving body.
[0020]
Further, as shown in FIGS. 1 and 2, the electrode ends formed on the piezoelectric driving body do not have to be two places, and may be one place, and the shape of the present invention is also to ensure conduction. It is not limited to a belt shape.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0022]
Example 1
Hereinafter, manufacturing of the piezoelectric element having the electrode terminal according to the present invention shown in FIG. 1 will be described with reference to FIG. As the substrate, MgO having a length of 20 mm, a width of 20 mm, and a thickness of 0.3 mm was prepared (FIG. 3A).
[0023]
In order to draw an electrode terminal pattern on the substrate, a photosensitive resin resist 30 was applied to a thickness of 5 μm, and an electrode pattern was formed by exposure using a separately prepared electrode pattern mask. The resist of the part which becomes is removed (FIG. 3B).
[0024]
At this time, the width of the electrode portion was 30 μm. After removing the resist to be the electrode part, the whole was etched with a phosphoric acid solution of 20% by weight aqueous solution at 80 ° C., and a part to be the electrode end having a depth of 10 μm was formed in the MgO substrate (FIG. 3C )).
[0025]
Pt was formed thereon by a 10 μm vapor deposition method. By doing so, the portion 32 where the surface of the MgO substrate shown in FIG. 3C is removed by etching can be filled with Pt, and this portion becomes a later electrode end. By removing the resist 30 after this, the MgO substrate 1 having the electrode end on the film surface can be produced (FIG. 3D). The above method is a so-called lift-off method.
[0026]
A Pt layer 2, a PLT layer 3, a PZT layer 4 and a Cr layer 5 are formed on the MgO substrate thus prepared in the same manner as the conventional method, and then the Pt layer 21 is exposed by the phosphoric acid etching process 7. Until then, the MgO layer 1 was removed. At this time, it is needless to say that the side surface direction of the film is sealed with resin as described with reference to FIG. 6 to prevent damage due to phosphoric acid penetration into the film.
[0027]
In this example (FIG. 3E), the Pt layer was 0.1 μm, the PLT layer 3 was 0.05 μm, the PZT layer 4 was 2.5 μm, and the Cr layer 5 was 5 μm. The phosphoric acid solution used in the phosphoric acid etching was an aqueous solution containing 20% by weight phosphoric acid. Etching conditions were performed at a temperature of 80 ° C., and the etching rate was controlled by time.
[0028]
Gold (Au) 22 is deposited to a thickness of 0.05 to 0.07 μm on the side where the electrode end Pt21 of the piezoelectric driving body with the electrode end of the Pt21 thus made exposed from the MgO substrate is present, and the entire upper surface is conductive. The body. When a drive voltage of 1 KHz and 5 V was applied between the Au layer 22 and the Cr layer 5, a displacement of about 0.5 μm could be observed at the free end opposite to the fixed end.
[0029]
In the piezoelectric element having the electrode according to the present invention as described above, a part of MgO1 serving as the substrate is left, so that the phosphoric acid of the phosphoric acid etching treatment 7 used for removing the MgO substrate 1 is the Pt layer. 2 did not enter the PZT layer 4, and no electrolytic corrosion occurred even during long-time driving.
[0030]
(Example 2)
In Example 1, the Cr layer 5 and the MgO layer 1 having high elastic modulus remain on both sides of the PZT layer 4 that is a piezoelectric element, and the bimetal effect works to cancel it on both sides of the PZT layer 4, resulting in displacement characteristics. It is thought that it is causing loss. In other words, if there is a film that does not easily deform (has a high elastic modulus) on both sides of the piezoelectric element that expands and contracts due to the drive voltage, the overall displacement characteristics become small.
[0031]
Therefore, it was considered that a Pt layer having a low elastic modulus was provided instead of the Cr layer 5 to form an electrode on the side opposite to the electrode end Pt21. In other words, the piezoelectric element PZT that expands and contracts and the MgO film that is difficult to deform formed on one surface of the piezoelectric element PZT substantially perform a bimetallic operation.
[0032]
FIG. 4 shows the specific structure. As compared with FIG. 3 (f), it can be seen that a Pt layer 23 is formed instead of the Cr layer 5. In this state, when a drive voltage of 1 kHz and 5 V was applied as before, a displacement of about 1 μm could be observed at the free end opposite to the fixed end. Thus, by replacing the Cr layer with the Pt layer 23 having low rigidity, the bimetal effect is generated between the PZT layer 4 and the MgO layer 1, and a larger displacement characteristic can be obtained.
[0033]
As described above, in the embodiment of the present invention, the Pt layer 2 serving as an electrode and the conductive electrode Pt21 are formed while leaving a part of the MgO layer removed by phosphoric acid, so that the PZT layer 4 is infiltrated by phosphoric acid. This eliminates the problem of electric corrosion that occurs during driving. Further, since the opposite side of the MgO layer 1 is the electrode Pt23 having a low elastic modulus, a larger displacement characteristic can be obtained.
[0034]
【The invention's effect】
According to the present invention, the piezoelectric drive body is formed so that the electrode end can be formed on a part of the MgO substrate left at a constant thickness while leaving the MgO serving as the substrate at the same time, so that PZT by phosphoric acid at the time of etching is formed. It is possible to provide a piezoelectric driver and a method for manufacturing the same that can prevent intrusion into the layer, prevent the occurrence of electrical corrosion that occurs during driving, and obtain even greater displacement characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram showing a piezoelectric driving body having an electrode portion according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a driving state of the piezoelectric driving body according to an embodiment of the present invention. FIG. 4 is a diagram showing a manufacturing process of a piezoelectric driving body according to an embodiment of the present invention. FIG. 4 is a diagram showing a cross-section of a piezoelectric driving body according to another embodiment of the present invention. FIG. 6 is a view showing a process of removing a substrate with phosphoric acid during a manufacturing process of a conventional piezoelectric drive body. FIG. 7 is a view showing a state of driving a conventional piezoelectric drive body.
1 Electrical insulator (MgO)
2 electrodes (Pt)
3 Lead titanate film (PLT)
4 Piezoelectric element film (PZT)
5 Electrode (Cr)
6 Bonding direction to substrate 7 Etching direction 8 Electrolytic corrosion area 9 Voltage power supply 10 Displacement direction 11 Fixed ends 12a, 12b, 12c, 12d Resin sealing portion

Claims (3)

MgOよりなる電気絶縁体基板上に溝加工し、前記溝部をPtよりなる導電体で埋め、その上に第1の電極膜を形成し、その上に圧電素子膜を形成し、その上に第2の電極膜を形成し、前記MgOよりなる電気絶縁体基板を前記溝部に埋めたPtよりなる導電体が露出するまでリン酸エッチング処理により除去することを特徴とする圧電駆動体の製造方法。 A groove is formed on an electrical insulator substrate made of MgO , the groove is filled with a conductor made of Pt, a first electrode film is formed thereon, a piezoelectric element film is formed thereon, and a first electrode film is formed thereon . 2. A method for manufacturing a piezoelectric driver, comprising: forming an electrode film 2 and removing the electric insulator substrate made of MgO by a phosphoric acid etching process until a conductor made of Pt buried in the groove is exposed. 前記第1の電極膜をPtにより形成し、前記第2の電極膜をCrにより形成する請求項1に記載の圧電駆動体の製造方法。The method for manufacturing a piezoelectric driving body according to claim 1, wherein the first electrode film is formed of Pt, and the second electrode film is formed of Cr. 前記第1の電極膜および前記第2の電極膜をともにPtにより形成する請求項1に記載の圧電駆動体の製造方法。The method for manufacturing a piezoelectric driver according to claim 1, wherein both the first electrode film and the second electrode film are formed of Pt.
JP2000115655A 2000-04-17 2000-04-17 Method for manufacturing piezoelectric driving body Expired - Fee Related JP3782282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000115655A JP3782282B2 (en) 2000-04-17 2000-04-17 Method for manufacturing piezoelectric driving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000115655A JP3782282B2 (en) 2000-04-17 2000-04-17 Method for manufacturing piezoelectric driving body

Publications (2)

Publication Number Publication Date
JP2001298220A JP2001298220A (en) 2001-10-26
JP3782282B2 true JP3782282B2 (en) 2006-06-07

Family

ID=18627249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000115655A Expired - Fee Related JP3782282B2 (en) 2000-04-17 2000-04-17 Method for manufacturing piezoelectric driving body

Country Status (1)

Country Link
JP (1) JP3782282B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100345320C (en) 2001-12-18 2007-10-24 松下电器产业株式会社 Piezoelectric element, ink-jet head, angular velocity sensor and manufacturing method thereof, ink-jet recording apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083387A (en) * 1983-10-14 1985-05-11 Hitachi Ltd Piezo-electric element
JP3053069B2 (en) * 1995-12-23 2000-06-19 川崎重工業株式会社 Laminated actuator and its wiring method
JPH09223824A (en) * 1996-02-19 1997-08-26 Nikon Corp Piezoelectric application element
JPH10135528A (en) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd Dielectric film sheet for electronic part, its manufacture and dielectric element
JPH11345833A (en) * 1998-06-01 1999-12-14 Matsushita Electric Ind Co Ltd Manufacture of electronic components
JPH11348285A (en) * 1998-06-10 1999-12-21 Matsushita Electric Ind Co Ltd Ink jet recorder and manufacture thereof
JP2000285626A (en) * 1999-03-29 2000-10-13 Matsushita Electric Ind Co Ltd Piezoelectric thin film, piezoelectric element, actuator mechanism and information recording/reproducing device using the same

Also Published As

Publication number Publication date
JP2001298220A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP2665106B2 (en) Piezoelectric / electrostrictive film element
JPH03128680A (en) Piezoelectric/electrostrictive actuator
US7050271B2 (en) Actuator having doped silicon arms and method of making the same
JP3451623B2 (en) Inkjet recording head
JP2007273589A (en) Thin film piezoelectric device and its forming method
JP3782282B2 (en) Method for manufacturing piezoelectric driving body
JP2004363489A (en) Piezoelectric/electrostrictive element, manufacturing method thereof, piezoelectric/electrostrictive device, and manufacturing method thereof
JP2011138925A5 (en)
KR101397323B1 (en) Electric device and method of manufacturing the same
CN104752602B (en) Possesses the manufacture method of the sensor element of PZT film
US20090219653A1 (en) Head slider equipped with piezoelectric element
JP4934924B2 (en) Ferroelectric actuator element and manufacturing method thereof
JP4144717B2 (en) Electrostatic relay
JP4260339B2 (en) Method for manufacturing acceleration sensor
JP5664410B2 (en) Method for manufacturing liquid jet head and liquid jet head
JP2013247221A (en) Piezoelectric actuator and inkjet head including the same
JP2000091663A (en) Method for working silicon micro-device
JP3484956B2 (en) Method for manufacturing piezoelectric element
JP2014075193A (en) Method for manufacturing electronic device
JP5314932B2 (en) Electric micro mechanical switch
US20140191616A1 (en) Mems switch
JPH02285685A (en) Laminated piezoelectric element
JP2015092616A (en) Piezoelectric element and method for manufacturing piezoelectric element
JPH0714483A (en) Micro bi-metal relay and its manufacture
JP2007071725A (en) Capacitance type sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150317

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees