JP3782187B2 - Short-circuit current supply method - Google Patents

Short-circuit current supply method Download PDF

Info

Publication number
JP3782187B2
JP3782187B2 JP654897A JP654897A JP3782187B2 JP 3782187 B2 JP3782187 B2 JP 3782187B2 JP 654897 A JP654897 A JP 654897A JP 654897 A JP654897 A JP 654897A JP 3782187 B2 JP3782187 B2 JP 3782187B2
Authority
JP
Japan
Prior art keywords
short
circuit
generator
reactance
transient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP654897A
Other languages
Japanese (ja)
Other versions
JPH10206510A (en
Inventor
弘明 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP654897A priority Critical patent/JP3782187B2/en
Publication of JPH10206510A publication Critical patent/JPH10206510A/en
Application granted granted Critical
Publication of JP3782187B2 publication Critical patent/JP3782187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は遮断器等の短絡電流を試験するため或いは変圧器等の短時間容量を試
験するための短絡電流の供給方法に関する。
【0002】
【従来の技術】
短絡電流等の短時間大電流を遮断する遮断器の遮断性能を確認するため短絡用発電機が大電流発生装置として使用されるが、試験される遮断器、即ち供試体は定格(定格電圧、定格遮断電流)が同じでも遮断時間が同じではない。一方、発電機はリアクタンスと時定数に何も関連づけをしないと一般に発電機を短絡させたときに流れる電流は時間と共に減衰する。従って、遮断時間が長い供試体を試験するために使用する発電機は、短い遮断時間の供試体に使用する発電機に比べて容量の大きなものとなる。実際には、最大遮断時間を決めて発電機の容量を決める事となるが、供試体が数多く考えられるので、それら全てを満足するためにはどうしても過度な容量を有する発電機とならざるを得なかった。
【0003】
【発明が解決しようとする課題】
発電機を短絡させたときに流れる電流の減衰を少なくするために、発電機を短絡させたときに発電機の界磁電流を界磁電圧をあげることにより補償させる方法が最近の発電機の試験装置では採用される場合が多いが、このような方式を用いても遮断試験を実施する供試体の遮断時間の長短によっては必ずしも発生短絡電流の減衰を抑制できるわけではない。
【0004】
本発明は、遮断時間が異なる供試体においても短絡電流がほぼ一定な短絡電流の供給方法を提供することを課題とするものである。
【0005】
【課題を解決するための手段】
発明の短絡電流の供給方法は、遮断器等の短絡容量を試験するため或いは変圧器等の短時間容量を試験するために短絡電流を供給する発電機において、発電機の初期過渡リアクタンス、過渡リアクタンス、同期リアクタンス、短絡初期過渡時定数および短絡過渡時定数の諸定数の内のいずれか1個を予め設定し、それに基づき残りのリアクタンスや時定数を決定するものである。
【0006】
【発明の実施の形態】
図1は本発明の短絡発電機による遮断機等の試験回路を示すもので、回転中の発電機から電圧を発生させるには外部電源を受電するため界磁変圧器1の一次側遮断器2を投入し、サイリスタAC/DC変換器3に給電し、界磁遮断器4をとじることにより発電機の界磁巻線5に電流を流す必要がある。界磁巻線に電流が流れると、発電機の電機子巻線6に電圧が誘起され、電機子端子において電圧が発生する。発生した電圧は発電機電機子巻線と並列に接続された計器用変圧器7(以下、PTと称す)により小さな電圧に降圧され、界磁制御装置8に送られる。界磁制御装置8ではPT7から送られてきた発電機電機子電圧と、中央操作盤に設置した発電機電機子電圧調整スイッチ9で設定した電圧との差を検出して発電機電機子電圧が設定値と等しくなるようサイリスタAC/DC変換器3のゲート回路に送るパルスを制御している。
【0007】
遮断器等の遮断容量を検証するための供試体10と直列に短絡試験用変圧器11、後備保護遮断器12、投入開閉器13、発電機電機子巻線6を接続し、発電機電機子巻線6に電圧が発生している時に投入開閉器を閉じると、供試体10に大電流が流れる。
【0008】
この大電流Isは次式(A)により時間と共に減衰するので、供試体10の遮断時間が異なると、遮断時に必要とされる大電流が得られなくなる場合がある。供試体10に流れる大電流、即ち短絡電流Isは界磁一定の条件では以下の式で表される。
【0009】
Is= E・[(1/X''-1/X')exp(-t/T'')+(1/X'-1/X)exp(-t/T')+1/X ……(A)
ここで、
X''=X''d+Xe , X'=X'd+Xe , X=Xd+Xe
T''=T''d・X'd(X''d+Xe)/X''d(X'd+Xe)
T' =T'd ・Xd(X'd+Xe)/X'd(Xd+Xe)
X''d: 発電機直軸初期過渡リアクタンス
X'd : 発電機直軸過渡リアクタンス
Xd : 発電機直軸同期リアクタンス
T''d: 発電機短絡初期過渡時定数
T'd : 発電機短絡過渡時定数
この問題を解決するためには式(A)の初期過渡リアクタンスX''dと過渡リアクタンスX'd を等しくするか、短絡初期過渡時定数T''dを長くすればよいが、発電機が大きくなるので得策ではない。式(A)では界磁を一定としているので発電機の電機子電流の減衰が大きいが、式(B)で表されるように電機子電流を流している間だけ界磁電圧を高くすれば電流の減衰を小さくすることができる。
【0010】
(A)式で短絡中に界磁を短絡前のP倍に強めると、短絡電流は以下の式となる。
【0011】
Is= E・[(1/X''-1/X')exp(-t/T'')+(1/X'-P/X)exp(-t/T')+P/X ……(B)
この方法では減衰は小さくすることは出来るが、必ずしも遮断時間に関わらず電流がほぼ一定とは言えないので理想的とは言えない。供試体10の遮断時間が異なっていても電流値がほぼ一定な発電機なら式(D)で分かるように供試体10の大電流遮断後の商用回復電圧が遮断時間に依らないので理想的な発電機の特性と言える。この条件に合致するために発電機の諸元を以下のように決めれば理想的な発電機となる。
【0012】
上記(B)式での短絡電流は(A)式での短絡電流に比べて減衰が小さいが、その程度は発電機のリアクタンス (X''d,X'd,Xd ) と時定数(T'',T'd) に依る。
この短絡電流の減衰をほぼゼロにするためには標準的な遮断器の遮断時間Tc
(約60ms)における短絡電流の時間変化がほぼゼロであればよいので、上記式(B)の時間微分をゼロととる。
【0013】

Figure 0003782187
供試体10が規定の遮断性能を有することを確認するには、短絡電流の遮断以外に遮断後の商用回復電圧が規定値(定格電圧の95%以上)でなければならないので、回復電圧IsT'' は、次式を最低満たす必要がある。
【0014】
Figure 0003782187
ここで、E:発電機電機子相電圧
一方、遮断器の遮断時間は長いものでも100 ms程なので前述した60msと 100msの短絡電流の差が殆どない (差が1〜2%程度) と言う条件から以下の式が導かれる。
【0015】
Figure 0003782187
ここで、α=0.98 〜1.02
ある時間tに於ける短絡電流を表す上記の式(B)の右辺に於いて未知数は
X''d,X'd,Xd,T''d,T'd,Xe,P
の7個である。このうち、Xeは試験用変圧器と発電機から供試体までの母線のインビーダンスの和いわゆる外部インピーダンスであり、可能な限り小さく設計されるので一義的に決まってしまう。P は大きければ大きい程良いが実際にはサイリスタAC/DC 変換器3の許容最大入力電圧により制限されるので、必然的にその値を採用せざるを得ないので、既定値となり未知数では無くなる。また、このP を大きくするには発電機は高速の方が良いので2極機であり、かつ短絡時の回転数減少を抑えるため発電機のロータが決まってしまい、発電機の開路過渡時定数T'd0は自然と決まる。T'd0は上記未知数と次の関係がある。
【0016】
T’d0・X’/Xd =T’d …………………… (F)
以上から、未知数はXeとPが無くなったので、X’’d,X’d,Xd,T’’d,T’dの5個である。一方、式は(C),(D),(E),(F)の4個があるので、X’’d,X’d,Xd,T’’d,T’dの内のいずれか一個を設定すれば残りの4個は算出され、理想的な短絡発電機を構成することができる。
【0017】
【実施例】
(例1)この例は、発電機の初期過渡リアクタンスX’’dを予め設定し、短絡電流が供試体の遮断時間に関わらずほぼ一定になるようにすると共に遮断後の商用回復電圧が規格値を満足する値を発生するように過渡リアクタンスX’d、同期リアクタンスXd、短絡初期過渡磁定数T’’d、短絡過渡時定数T’dを決定する短絡発電機に関するもので、図2はこれらのリアクタンスまたは時定数を算出するフローチャートを示している。
【0018】
図2において、まず、ステップS1,2で許容最大界磁電圧Vfmax と無負荷界磁電圧 Vfoを決め、これらに基づいて P=Vfmax/Vfo(ステップS3)を求める。次に、ステップS4において開路過渡時定数T'doを決め、ステップS5において初期過渡リアクタンスX''dを設定する。また、ステップS6〜9において、
dIs/dt = 0 (t:60ms)
Is(t:60ms)/ Is(t:100ms) = α α=0.98 〜1.02
Isx''=0.95E (t:60ms)
T'd0・X'd/Xd=T'd
の演算を行い、さらにステップS10において、X'd ,Xd ,T''d ,T'dを算出する。 上記により発電機の諸定数を設定すれば、短絡試験中の発電機の発生電流は短絡発生直後の値より大幅に減衰することはなく、供試体の遮断時間にも殆ど影響を受けない。さらに、所定の回復電圧が得られるので最適な発電機を得ることができる。
【0019】
(例2)この例は、発電機の過渡リアクタンスX’dを予め設定し、短絡電流が供試体の遮断時間に関わらずほぼ一定となるようにすると共に遮断後の商用回復電圧が規格値を満足する値を発生するように初期過渡リアクタンスX’’d、同期リアクタンスXd、短絡初期過渡時定数T’’d、短絡過渡時定数T’dを決定する短絡発電機に関するもので、図3はこれらのリアクタンスまたは時定数を算出するフローチャートを示している。
【0020】
図3のフローチャートにおいては、図2と対比すれば明らかなように、ステップS5に替えてステップS11において過渡リアクタンスX'd を設定し、また、ステップS10に替えてステップS12においてX''d ,Xd ,T''d ,T'd を算出するようにしている。他のステップは図2の場合と同じである。上記により発電機の諸定数を設定すれば、短絡試験中の発電機の発生電流は短絡発生直後の値より大幅に減衰することはなく、供試体の遮断時間にも殆ど影響を受けない。さらに、所定の回復電圧が得られるので最適な発電機を得ることができる。
【0021】
(例3)この例は、発電機の同期リアクタンスXdを予め設定し、短絡電流が供試体の遮断時間に関わらずほぼ一定となるようにすると共に遮断後の商用回復電圧が規格値を満足する値を発生するように初期過渡リアクタンスX’’d、過渡リアクタンスX’d、短絡初期過渡時定数T’’d、短絡過渡時定数T’dを決定する短絡発電機に関するもので、図4はこれらのリアクタンスまたは時定数を算出するフローチャートを示している。
【0022】
図4のフローチャートにおいては、図2と対比すれば明らかなように、ステップS5に替えてステップS13において同期リアクタンスXdを設定し、また、ステップS10に替えてステップS14においてX''d ,X'd,T''d ,T'd を算出するようにしている。他のステップは図2の場合と同じである。上記により発電機の諸定数を設定すれば、短絡試験中の発電機の発生電流は短絡発生直後の値より大幅に減衰することはなく、供試体の遮断時間にも殆ど影響を受けない。さらに、所定の回復電圧が得られるので最適な発電機を得ることができる。
【0023】
(例4)この例は、発電機の短絡初期過渡時定数T’’dを予め設定し、短絡電流が供試体の遮断時間に関わらずほぼ一定となるようにすると共に遮断後の商用回復電圧が規格値を満足する値を発生するように初期過渡リアクタンスX’’d、過渡リアクタンスX’d、同期リアクタンスXd、短絡過渡時定数T’dを決定する短絡発電機に関するもので、図5はこれらのリアクタンスまたは時定数を算出するフローチャートを示している。
【0024】
図5のフローチャートにおいては、図2と対比すれば明らかなように、ステップS5に替えてステップS15において短絡初期過渡時定数T''dを設定し、また、ステップS10に替えてステップS16においてX''d ,X'd,Xd,T'dを算出するようにしている。他のステップは図2の場合と同じである。上記により発電機の諸定数を設定すれば、短絡試験中の発電機の発生電流は短絡発生直後の値より大幅に減衰することはなく、供試体の遮断時間にも殆ど影響を受けない。さらに、所定の回復電圧が得られるので最適な発電機を得ることができる。
【0025】
(例5)この例は、発電機の短絡過渡時定数T’dを予め設定し、短絡電流が供試体の遮断時間に関わらずほぼ一定となるようにすると共に遮断後の商用回復電圧が規格値を満足する値を発生するように初期過渡リアクタンスX’’d、過渡リアクタンスX’d、同期リアクタンスXd、短絡初期過渡時定数T’’dを決定する短絡発電機に関するもので、図6はこれらのリアクタンスまたは時定数を算出するフローチャートを示している。
【0026】
図6のフローチャートにおいては、図2と対比すれば明らかなように、ステップS5に替えてステップS17において短絡過渡時定数T'd を設定し、また、ステップS10に替えてステップS18においてX''d ,X'd,Xd,T''d を算出するようにしている。他のステップは図2の場合と同じである。上記により発電機の諸定数を設定すれば、短絡試験中の発電機の発生電流は短絡発生直後の値より大幅に減衰することはなく、供試体の遮断時間にも殆ど影響を受けない。さらに、所定の回復電圧が得られるので最適な発電機を得ることができる。
【0027】
【発明の効果】
上述のように、本発明によれば、発電機のリアクタンスと時定数を関連づけることにより、遮断時間が異なる供試体においても短絡電流がほぼ一定な短絡電流の供給方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の短絡発電機による遮断器等の試験回路を例示する回路図。
【図2】本発明の短絡発電機の構成方法を示すフローチャート。
【図3】本発明の短絡発電機の構成方法を示すフローチャート。
【図4】本発明の短絡発電機の構成方法を示すフローチャート。
【図5】本発明の短絡発電機の構成方法を示すフローチャート。
【図6】本発明の短絡発電機の構成方法を示すフローチャート。
【符号の説明】
1・・・・・・界磁変圧器
2・・・・・・一次側しゃ断器
3・・・・・・サイリスタAC/DC 変圧器
4・・・・・・界磁遮断器
5・・・・・・界磁巻線
6・・・・・・電機子巻線
7・・・・・・計器用変圧器
8・・・・・・界磁制御装置
9・・・・・・電圧調整スイッチ
10・・・・・・供試体
11・・・・・・短絡試験用変圧器
12・・・・・・後備保護遮断器
13・・・・・・投入開閉器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to method of supplying a short-circuit current for testing short capacity or transformer or the like for testing the short circuit current of the circuit breaker or the like.
[0002]
[Prior art]
A short-circuit generator is used as a high-current generator to check the breaking performance of a circuit breaker that cuts off a large current for a short time, such as a short-circuit current, but the circuit breaker to be tested, that is, the specimen is rated (rated voltage, Even if the rated breaking current is the same, the breaking time is not the same. On the other hand, if the generator has nothing to do with the reactance and time constant, the current that flows when the generator is short-circuited generally decays with time. Accordingly, the generator used for testing the specimen having a long shut-off time has a larger capacity than the generator used for the specimen having a short shut-off time. In practice, the maximum shut-off time is determined to determine the generator capacity, but there are many specimens, so in order to satisfy them all, it must be a generator with an excessive capacity. There wasn't.
[0003]
[Problems to be solved by the invention]
In order to reduce the attenuation of the current that flows when the generator is short-circuited, a method for compensating the field current of the generator by increasing the field voltage when the generator is short-circuited is a recent generator test. In many cases, the apparatus is employed, but even if such a method is used, the attenuation of the generated short-circuit current cannot necessarily be suppressed depending on the length of the interruption time of the specimen that performs the interruption test.
[0004]
The present invention is directed to an object to be short-circuit current in the specimens interruption time it is different to provide a method of supplying a substantially constant short-circuit current.
[0005]
[Means for Solving the Problems]
The method for supplying a short-circuit current according to the present invention includes a generator for supplying a short-circuit current to test a short-circuit capacity of a circuit breaker or the like or to test a short-term capacity of a transformer or the like. Any one of the reactance, synchronous reactance, short-circuit initial transient time constant, and short-circuit transient time constant is set in advance, and the remaining reactance and time constant are determined based on the preset one.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a test circuit of a circuit breaker using a short-circuit generator according to the present invention. In order to generate a voltage from a rotating generator, a primary circuit breaker 2 of a field transformer 1 is used to receive an external power source. Is supplied, the thyristor AC / DC converter 3 is fed, and the field breaker 4 is turned off to pass a current through the field winding 5 of the generator. When a current flows through the field winding, a voltage is induced in the armature winding 6 of the generator, and a voltage is generated at the armature terminal. The generated voltage is stepped down to a small voltage by an instrument transformer 7 (hereinafter referred to as PT) connected in parallel with the generator armature winding and sent to the field controller 8. The field control device 8 detects the difference between the generator armature voltage sent from the PT 7 and the voltage set by the generator armature voltage adjustment switch 9 installed on the central operation panel, and the generator armature voltage is set to the set value. Is controlled so that the pulse sent to the gate circuit of the thyristor AC / DC converter 3 is equal to.
[0007]
A short-circuit test transformer 11, a back-up protection circuit breaker 12, a closing switch 13, and a generator armature winding 6 are connected in series with a specimen 10 for verifying the breaking capacity of a circuit breaker, etc. If the closing switch is closed while voltage is generated in the winding 6, a large current flows through the specimen 10.
[0008]
Since this large current Is attenuates with time according to the following equation (A), if the interruption time of the specimen 10 is different, the large current required at the interruption may not be obtained. A large current flowing through the specimen 10, that is, a short-circuit current Is, is expressed by the following formula under a constant field condition.
[0009]
Is = E ・ [(1 / X ''-1 / X ') exp (-t / T'') + (1 / X'-1 / X) exp (-t / T') + 1 / X… ... (A)
here,
X`` = X''d + Xe, X '= X'd + Xe, X = Xd + Xe
T`` = T''d ・ X'd (X''d + Xe) / X``d (X'd + Xe)
T '= T'd ・ Xd (X'd + Xe) / X'd (Xd + Xe)
X``d: Generator direct-axis initial transient reactance
X'd: Generator direct-axis transient reactance
Xd: Generator direct axis synchronous reactance
T``d: Generator short-circuit initial transient time constant
T'd: Generator short-circuit transient time constant To solve this problem, the initial transient reactance X''d and the transient reactance X'd in equation (A) are made equal, or the short-circuit initial transient time constant T''d However, it is not a good idea because the generator becomes larger. In the formula (A), since the field is constant, the attenuation of the armature current of the generator is large. However, as shown in the formula (B), if the field voltage is increased only while the armature current is flowing, Current attenuation can be reduced.
[0010]
When the field is strengthened by P times before the short circuit during the short circuit in the formula (A), the short circuit current becomes the following formula.
[0011]
Is = E ・ [(1 / X ''-1 / X ') exp (-t / T'') + (1 / X'-P / X) exp (-t / T') + P / X… ... (B)
Although this method can reduce the attenuation, it is not ideal because the current is not always constant regardless of the interruption time. Even if the interruption time of the specimen 10 is different, if the generator has a substantially constant current value, the commercial recovery voltage after the interruption of the large current of the specimen 10 does not depend on the interruption time, as can be seen from equation (D). It can be said that the characteristics of the generator. An ideal generator can be obtained by determining the specifications of the generator as follows to meet this condition.
[0012]
The short-circuit current in the above formula (B) is less attenuated than the short-circuit current in the formula (A), but the extent is the reactance (X''d, X'd, Xd) of the generator and the time constant (T '', T'd).
In order to make this short-circuit current decay almost zero, the standard circuit breaker breaking time Tc
Since the time change of the short-circuit current at (about 60 ms) may be almost zero, the time differentiation of the above formula (B) is set to zero.
[0013]
Figure 0003782187
In order to confirm that the specimen 10 has the prescribed breaking performance, the commercial recovery voltage after breaking must be a prescribed value (95% or more of the rated voltage) in addition to breaking the short-circuit current. 'Must satisfy at least the following:
[0014]
Figure 0003782187
Here, E: Generator armature phase voltage On the other hand, even if the breaker has a long break time, it is about 100 ms, so there is almost no difference between the short circuit currents of 60 ms and 100 ms (the difference is about 1 to 2%). The following equation is derived from the conditions.
[0015]
Figure 0003782187
Where α = 0.98 to 1.02
In the right side of the above equation (B) representing the short-circuit current at a certain time t, the unknown is
X``d, X'd, Xd, T''d, T'd, Xe, P
It is seven. Of these, Xe is the sum of the impedance of the bus from the test transformer and generator to the specimen, so-called external impedance, and is uniquely determined because it is designed as small as possible. The larger P is, the better, but in practice it is limited by the maximum allowable input voltage of the thyristor AC / DC converter 3, so that value must be adopted, so it becomes a default value and not an unknown. In order to increase this P, the generator should be a high-speed generator, so it is a two-pole machine, and the generator rotor is determined in order to suppress the decrease in the number of revolutions during a short circuit. T'd0 is determined naturally. T'd0 has the following relationship with the unknown.
[0016]
T'd0 ・ X '/ Xd = T'd …………………… (F)
From the above, since Xe and P are lost, there are five unknowns, X ″ d, X′d, Xd, T ″ d, and T′d. On the other hand, since there are four expressions (C), (D), (E), and (F), one of X ″ d, X′d, Xd, T ″ d, and T′d If one is set, the remaining four are calculated, and an ideal short-circuit generator can be configured.
[0017]
【Example】
(Example 1) In this example, the initial transient reactance X''d of the generator is set in advance so that the short-circuit current becomes substantially constant regardless of the test piece's shut-off time, and the commercial recovery voltage after shut-off is specified. FIG. 2 relates to a short-circuit generator that determines the transient reactance X'd, the synchronous reactance Xd, the short-circuit initial transient magnetic constant T''d, and the short-circuit transient time constant T'd so as to generate values that satisfy the values. A flow chart for calculating these reactances or time constants is shown.
[0018]
In FIG. 2, first, in steps S1 and S2, an allowable maximum field voltage Vfmax and a no-load field voltage Vfo are determined, and P = Vfmax / Vfo (step S3) is obtained based on these. Next, an open circuit transient time constant T′do is determined in step S4, and an initial transient reactance X ″ d is set in step S5. In steps S6-9,
dIs / dt = 0 (t: 60ms)
Is (t: 60ms) / Is (t: 100ms) = α α = 0.98 to 1.02
Isx '' = 0.95E (t: 60ms)
T'd0 ・ X'd / Xd = T'd
In step S10, X′d, Xd, T ″ d, and T′d are calculated. If the generator constants are set as described above, the current generated by the generator during the short-circuit test is not significantly attenuated from the value immediately after the occurrence of the short-circuit, and is hardly affected by the shut-off time of the specimen. Furthermore, since a predetermined recovery voltage can be obtained, an optimal generator can be obtained.
[0019]
(Example 2) In this example, the transient reactance X'd of the generator is set in advance so that the short-circuit current is substantially constant regardless of the cutoff time of the specimen, and the commercial recovery voltage after the cutoff is set to the standard value. FIG. 3 relates to a short-circuit generator that determines an initial transient reactance X ″ d, a synchronous reactance Xd, a short-circuit initial transient time constant T ″ d, and a short-circuit transient time constant T′d so as to generate satisfactory values. A flow chart for calculating these reactances or time constants is shown.
[0020]
In the flowchart of FIG. 3, as is clear from comparison with FIG. 2, the transient reactance X′d is set in step S11 instead of step S5, and X ″ d, in step S12 instead of step S10. Xd, T''d, and T'd are calculated. The other steps are the same as in FIG. If the generator constants are set as described above, the current generated by the generator during the short-circuit test is not significantly attenuated from the value immediately after the occurrence of the short-circuit, and is hardly affected by the shut-off time of the specimen. Furthermore, since a predetermined recovery voltage can be obtained, an optimal generator can be obtained.
[0021]
(Example 3) In this example, the synchronous reactance Xd of the generator is set in advance so that the short-circuit current becomes substantially constant regardless of the interruption time of the specimen, and the commercial recovery voltage after interruption satisfies the standard value. FIG. 4 relates to a short-circuit generator that determines initial transient reactance X ″ d, transient reactance X′d, short-circuit initial transient time constant T ″ d, and short-circuit transient time constant T′d so as to generate values. A flow chart for calculating these reactances or time constants is shown.
[0022]
In the flowchart of FIG. 4, as is clear from comparison with FIG. 2, the synchronous reactance Xd is set in step S13 instead of step S5, and X ″ d, X ′ in step S14 instead of step S10. d, T''d and T'd are calculated. The other steps are the same as in FIG. If the generator constants are set as described above, the current generated by the generator during the short-circuit test is not significantly attenuated from the value immediately after the occurrence of the short-circuit, and is hardly affected by the shut-off time of the specimen. Furthermore, since a predetermined recovery voltage can be obtained, an optimal generator can be obtained.
[0023]
(Example 4) In this example, the short-circuit initial transient time constant T ″ d of the generator is set in advance so that the short-circuit current becomes substantially constant regardless of the shut-off time of the specimen, and the commercial recovery voltage after the shut-off FIG. 5 relates to a short-circuit generator that determines initial transient reactance X''d, transient reactance X'd, synchronous reactance Xd, and short-circuit transient time constant T'd so as to generate a value satisfying the standard value. A flow chart for calculating these reactances or time constants is shown.
[0024]
In the flowchart of FIG. 5, as apparent from comparison with FIG. 2, the short-circuit initial transient time constant T ″ d is set in step S15 instead of step S5, and X in step S16 instead of step S10. '' d, X'd, Xd, T'd are calculated. The other steps are the same as in FIG. If the generator constants are set as described above, the current generated by the generator during the short-circuit test is not significantly attenuated from the value immediately after the occurrence of the short-circuit, and is hardly affected by the shut-off time of the specimen. Furthermore, since a predetermined recovery voltage can be obtained, an optimal generator can be obtained.
[0025]
(Example 5) In this example, the short-circuit transient time constant T'd of the generator is set in advance so that the short-circuit current is substantially constant regardless of the cutoff time of the specimen, and the commercial recovery voltage after the cutoff is standard FIG. 6 relates to a short-circuit generator that determines an initial transient reactance X ″ d, a transient reactance X′d, a synchronous reactance Xd, and a short-circuit initial transient time constant T ″ d so as to generate a value that satisfies the values. A flow chart for calculating these reactances or time constants is shown.
[0026]
In the flowchart of FIG. 6, as apparent from comparison with FIG. 2, the short-circuit transient time constant T′d is set in step S17 instead of step S5, and X ″ in step S18 instead of step S10. d, X'd, Xd, T''d are calculated. The other steps are the same as in FIG. If the generator constants are set as described above, the current generated by the generator during the short-circuit test is not significantly attenuated from the value immediately after the occurrence of the short-circuit, and is hardly affected by the shut-off time of the specimen. Furthermore, since a predetermined recovery voltage can be obtained, an optimal generator can be obtained.
[0027]
【The invention's effect】
As described above, according to the present invention, by associating the reactance and the time constant of the generator can be shut off time is also short-circuit current at different specimen is provided a method of supplying a substantially constant short-circuit current.
[Brief description of the drawings]
FIG. 1 is a circuit diagram illustrating a test circuit such as a circuit breaker using a short-circuit generator according to the present invention.
FIG. 2 is a flowchart showing a method for configuring a short-circuit generator according to the present invention.
FIG. 3 is a flowchart showing a method for configuring a short-circuit generator according to the present invention.
FIG. 4 is a flowchart showing a method for configuring a short-circuit generator according to the present invention.
FIG. 5 is a flowchart showing a method of configuring the short-circuit generator according to the present invention.
FIG. 6 is a flowchart showing a method of configuring a short-circuit generator according to the present invention.
[Explanation of symbols]
1 ... Field transformer 2 ... Primary circuit breaker 3 ... Thyristor AC / DC transformer 4 ... Field breaker 5 ... ... Field winding 6 ... Armature winding 7 ... Instrument transformer 8 ... Field control device 9 ... Voltage adjustment switch 10 ...・ ・ ・ ・ ・ Specimen 11 ・ ・ ・ ・ ・ ・ Transformer 12 for short circuit test ・ ・ ・ ・ ・ ・ Protective circuit breaker 13 ・ ・ ・ ・ ・ ・ Switch

Claims (6)

遮断器等の短絡容量を試験するため或いは変圧器等の短時間容量を試験するために短絡電流を供給する発電機において、発電機の初期過渡リアクタンス、過渡リアクタンス、同期リアクタンス、短絡初期過渡時定数および短絡過渡時定数の諸定数の内のいずれか1個を予め設定し、それに基づき残りの諸定数を決定することにより、短絡後の発電機電機子電流が時間経過に関わらず殆ど変化しないように構成することを特徴とする短絡電流の供給方法。  In a generator that supplies a short-circuit current to test a short-circuit capacity of a circuit breaker or the like, or to test a short-term capacity of a transformer or the like, the initial transient reactance, transient reactance, synchronous reactance, initial short-term transient time constant of the generator And by setting any one of the constants of the short-circuiting transient time constant in advance and determining the remaining constants based on it, the generator armature current after the short-circuit hardly changes regardless of the passage of time. A method of supplying a short-circuit current, comprising: 発電機の初期過渡リアクタンスを予め設定し、それに基づき
過渡リアクタンス、同期リアクタンス、短絡初期過渡時定数および短絡過渡時定
数を決定することを特徴とする請求項に記載の短絡電流の供給方法。
2. The short-circuit current supply method according to claim 1 , wherein an initial transient reactance of the generator is set in advance, and a transient reactance, a synchronous reactance, a short-circuit initial transient time constant, and a short-circuit transient time constant are determined based on the initial reactance.
発電機の過渡リアクタンスを予め設定し、それに基づき初期過渡リアクタンス、同期リアクタンス、短絡初期過渡時定数および短絡過渡時定
数を決定することを特徴とする請求項に記載の短絡電流の供給方法。
2. The short-circuit current supply method according to claim 1 , wherein a transient reactance of the generator is set in advance, and an initial transient reactance, a synchronous reactance, a short-circuit initial transient time constant, and a short-circuit transient time constant are determined based on the preset.
発電機の同期リアクタンスを予め設定し、それに基づき初期過渡リアクタンス、過渡リアクタンス、短絡初期過渡時定数および短絡過渡時定数を決定することを特徴とする請求項に記載の短絡電流の供給方法。2. The short-circuit current supply method according to claim 1 , wherein a synchronous reactance of the generator is set in advance, and an initial transient reactance, a transient reactance, a short-circuit initial transient time constant, and a short-circuit transient time constant are determined based thereon. 発電機の短絡初期過渡時定数を予め設定し、それに基づき初
期過渡リアクタンス、過渡リアクタンス、同期リアクタンスおよび短絡過渡時定
数を決定することを特徴とする請求項に記載の短絡電流の供給方法。
2. The method of supplying a short-circuit current according to claim 1 , wherein a short-circuit initial transient time constant of the generator is set in advance, and an initial transient reactance, a transient reactance, a synchronous reactance, and a short-circuit transient time constant are determined based thereon.
発電機の短絡過渡時定数を予め設定し、それに基づき初期過渡リアクタンス、過渡リアクタンス、同期リアクタンスおよび短絡初期過渡時定数を決定することを特徴とする請求項に記載の短絡電流の供給方法。2. The short-circuit current supply method according to claim 1 , wherein a short-circuit transient time constant of the generator is set in advance, and an initial transient reactance, a transient reactance, a synchronous reactance, and a short-circuit initial transient time constant are determined based thereon.
JP654897A 1997-01-17 1997-01-17 Short-circuit current supply method Expired - Fee Related JP3782187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP654897A JP3782187B2 (en) 1997-01-17 1997-01-17 Short-circuit current supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP654897A JP3782187B2 (en) 1997-01-17 1997-01-17 Short-circuit current supply method

Publications (2)

Publication Number Publication Date
JPH10206510A JPH10206510A (en) 1998-08-07
JP3782187B2 true JP3782187B2 (en) 2006-06-07

Family

ID=11641396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP654897A Expired - Fee Related JP3782187B2 (en) 1997-01-17 1997-01-17 Short-circuit current supply method

Country Status (1)

Country Link
JP (1) JP3782187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382859A1 (en) * 2017-03-28 2018-10-03 Vestel Elektronik Sanayi ve Ticaret A.S. Electrical power delivery apparatus and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610451B2 (en) 2010-11-16 2013-12-17 International Business Machines Corporation Post silicide testing for replacement high-k metal gate technologies
CN103278689A (en) * 2013-04-27 2013-09-04 哈尔滨电机厂有限责任公司 Test method for determining synchronous reactance of permanent magnet generator by steady-state short-circuit method
CN109031125B (en) * 2018-10-23 2020-08-28 国家电网有限公司 Method for determining direct current time constant of generator outlet end short-circuit fault current
US11735970B2 (en) * 2019-07-16 2023-08-22 Mitsubishi Electric Corporation Short-circuit generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382859A1 (en) * 2017-03-28 2018-10-03 Vestel Elektronik Sanayi ve Ticaret A.S. Electrical power delivery apparatus and method

Also Published As

Publication number Publication date
JPH10206510A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
Bonnett Analysis of the impact of pulse-width modulated inverter voltage waveforms on AC induction motors
JP3782187B2 (en) Short-circuit current supply method
US4683411A (en) Synchronous motor protection
US8030870B2 (en) Method and device for reducing the influence of a DC component in a load current of an asynchronous three-phase motor
SE510192C2 (en) Procedure and switching arrangements to reduce problems with three-tier currents that may occur in alternator and motor operation of AC machines connected to three-phase distribution or transmission networks
US6911810B2 (en) Reduction of energization transients in a three phase Y-connected load
CN108631281B (en) Resonance eliminating method for ferromagnetic resonance
JPH0735831A (en) Method and apparatus for testing breaker
CN208707556U (en) A kind of new type auto reduced-voltage starting control electric cabinet
EP4102667A1 (en) Method, device, and system for controlled energizing of a transformer in a power grid
JP2000060190A (en) Automatic voltage adjusting device
CA2354407A1 (en) Method and device for controlling the run-down of an induction machine
Venikar et al. Symmetrical components based advanced scheme for detection of incipient inter-turn fault in transformer
JPH06186309A (en) Interruption test circuit for switch
CN118011093A (en) Double-fed motor winding leakage reactance test method
JPH1155999A (en) Exciting equipment of synchronous machine
JP2000092897A (en) Control method for controlling negative phase current of a power generator
RU1780063C (en) Method for determining inductive winding dissipation resistance of three-phase synchronous machine
Tourn et al. Effect of system recovery on the induction motor protection using HBC fuses, following a short-circuit fault
Shakya Over current relay harmonic performance
JPH02119560A (en) Detector for layer short-circuit of field winding of synchronous machine
US2252296A (en) Regulating apparatus for dynamoelectric machines
SU1737615A1 (en) Device for compensation of emf of faulty phase under single- phase short-circuits in network with ungrounded neutral
JPH0534422A (en) Short-time current testing method
WO2018122631A1 (en) A method for load shedding during bus transfer and an inteligent electronic device therof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

LAPS Cancellation because of no payment of annual fees