JP3782076B2 - Plant control device - Google Patents

Plant control device Download PDF

Info

Publication number
JP3782076B2
JP3782076B2 JP2003196046A JP2003196046A JP3782076B2 JP 3782076 B2 JP3782076 B2 JP 3782076B2 JP 2003196046 A JP2003196046 A JP 2003196046A JP 2003196046 A JP2003196046 A JP 2003196046A JP 3782076 B2 JP3782076 B2 JP 3782076B2
Authority
JP
Japan
Prior art keywords
generator
breaker
generator motors
power transmission
motors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003196046A
Other languages
Japanese (ja)
Other versions
JP2004048989A (en
Inventor
浩 横田
孝蔵 池田
宣雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Tokyo Electric Power Services Co Ltd
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Tokyo Electric Power Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Electric Corp, Tokyo Electric Power Services Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2003196046A priority Critical patent/JP3782076B2/en
Publication of JP2004048989A publication Critical patent/JP2004048989A/en
Application granted granted Critical
Publication of JP3782076B2 publication Critical patent/JP3782076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stopping Of Electric Motors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、揚水発電所に設置されている発電電動機の停止制御を行うプラント制御装置に関するものである。
【0002】
【従来の技術】
図3はプラント制御装置の従来例を示す単線結線図であり、図において、51a,51bは揚水発電用の発電電動機、52aは発電電動機51aの主回路、52bは発電電動機51bの主回路、53aは発電電動機51aの励磁回路、53bは発電電動機51bの励磁回路である。
【0003】
また、54は主回路52a,52bを電力系統に連繋する送電線、55は送電遮断器、56は一端が送電遮断器55の発電所側と接続され、他端が接地された点検用の接地断路器、57a,57bは特高側断路器、58a,58bは主回路52a,52bにそれぞれ設置された主変圧器、59a,59bは発電運転用の相反転断路器、60a,60bは揚水運転用の相反転断路器、61a,61bは発電機遮断器、62a,62bは発電電動機51a,51bの端子をそれぞれ短絡する電気ブレーキ用断路器である。
【0004】
また、63a,63bは界磁巻線65a,65bに励磁電流を供給するサイリスタ励磁装置、64a,64bは励磁回路53a,53bにそれぞれ設置された界磁遮断器、65a,65bはそれぞれ発電電動機51a,51bの界磁巻線、66a,66b,67a,67bは始動用断路器、68はサイリスタ始動装置である。
【0005】
次に発電電動機を停止する場合の手順を説明する。
例えば、発電電動機51aを停止する場合(発電電動機51bの停止も同様であるので説明を省略する)、最初に、図示せぬ制御回路が、発電機遮断器61aを開放するとともに、サイリスタ励磁装置63aを制御して、界磁巻線65aに供給する励磁電流を零にする。
【0006】
そして、図示せぬ制御回路が、電気ブレーキ用断路器62aを閉路して発電電動機51aの端子を短絡状態にしたのち、サイリスタ励磁装置63aを制御して、発電電動機51aに定格電流が流れる程度の励磁電流を界磁巻線65aに供給し、電気ブレーキを印加する。
これにより、発電電動機51aは停止することになる。
【0007】
【発明が解決しようとする課題】
従来のプラント制御装置は以上のように構成されているので、発電電動機を停止する場合(図3参照)、発電電動機の端子を短絡する電気ブレーキ用断路器62a,62bを各発電電動機51a,51bごとに設置しなければならず、設備費が高価になる課題があった。
【0008】
この発明は上記のような課題を解決するためになされたもので、電気ブレーキ装置を簡略化することができるプラント制御装置を得ることを目的とする。
【0009】
【課題を解決するための手段】
この発明に係るプラント制御装置は、複数の発電電動機を停止する際、送電遮断器及び界磁遮断器のトリップが完了したのち接地断路器を投入し、複数の発電電動機の界磁巻線に供給する励磁電流をそれぞれ制御して電気ブレーキを印加するようにしたものである。
【0010】
この発明に係るプラント制御装置は、励磁電流を零にすべき旨の指令値を励磁電流制御手段に対して出力する一方、送電遮断器のトリップが完了したのち接地断路器を投入し、複数の発電電動機の界磁巻線に供給する励磁電流をそれぞれ制御して電気ブレーキを印加するようにしたものである。
【0011】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1によるプラント制御装置を示す単線結線図であり、図において、51a,51bは揚水発電用の発電電動機、52aは発電電動機51aの主回路、52bは発電電動機51bの主回路、53aは発電電動機51aの励磁回路、53bは発電電動機51bの励磁回路である。
【0012】
また、54は主回路52a,52bを電力系統に連繋する送電線、55は送電遮断器、56は一端が送電遮断器55の発電所側と接続され、他端が接地された点検用の接地断路器、57a,57bは特高側断路器、58a,58bは主回路52a,52bにそれぞれ設置された主変圧器、59a,59bは発電運転用の相反転断路器、60a,60bは揚水運転用の相反転断路器、61a,61bは発電機遮断器である。
【0013】
また、63a,63bは界磁巻線65a,65bに励磁電流を供給するサイリスタ励磁装置(励磁電流制御手段)、64a,64bは励磁回路53a,53bにそれぞれ設置された界磁遮断器、65a,65bはそれぞれ発電電動機51a,51bの界磁巻線、66a,66b,67a,67bは始動用断路器、68はサイリスタ始動装置である。
因に、図2はこの発明の実施の形態1によるプラント制御装置の動作を示すフローチャートである。
【0014】
次に、発電電動機51a,51bを停止する場合の手順を説明する。
最初に、図示せぬ制御回路(開閉器操作手段)が、送電遮断器55をトリップして、発電電動機51a,51bを電力系統から切り離す処理を行う(ステップST1)。
そして、図示せぬ制御回路(開閉器操作手段)が、界磁遮断器64a,64bをトリップして、界磁巻線65a,65bに供給する励磁電流を遮断し、発電電動機51a,51bの端子電圧を低下させる(ステップST2)。
【0015】
そして、図示せぬ制御回路(開閉器操作手段)が、発電電動機51a,51bの端子電圧が残留電圧まで低下したら、点検用の接地断路器56を投入する(ステップST3)。
これにより、発電電動機51a,51bの端子を短絡状態にしたことと等価となるため、界磁遮断器64a,64bを投入して界磁巻線65a,65bに励磁電流を供給すれば、発電電動機51a,51bから接地断路器56に向けて短絡電流が流れることになる。
【0016】
そして、接地断路器56を投入すると、図示せぬ制御回路(電気ブレーキ印加手段)が、界磁遮断器64a,64bを投入する(ステップST4)。
そして、サイリスタ励磁装置63a,63bを制御して、発電電動機51a,51bに定格電流が流れる程度の励磁電流を界磁巻線65a,65bに供給し、電気ブレーキを印加する(ステップST5)。複数の発電電動機に定格電流が流れる程度の励磁電流を界磁巻線に供給するように構成したので、電気ブレーキの効果を最大にすることができる効果がある。
これにより、発電電動機51a,51bは停止することになる。
【0017】
以上より、この実施の形態1によれば、通常設置されている点検用の接地断路器56を用いて電気ブレーキを印加するようにしたので、従来のもののように、電気ブレーキ用断路器62a,62bを発電電動機51a,51bごとに設置することなく、発電電動機51a,51bを停止させることができる。
また、この実施の形態1の場合、短絡電流が主変圧器58a,58bを通過することになるので、発電電動機51a,51bのコイルだけでなく、主変圧器58a,58bのコイルからも熱が発生するようになり、その結果、従来のものよりも発電制動の効果が大きくなって、発電電動機51a,51bの停止時間が短縮されることになる。
【0018】
実施の形態2.
上記実施の形態1では、発電電動機51a,51bを停止する際、界磁遮断器64a,64bをトリップして、発電電動機51a,51bの界磁巻線65a,65bに供給する励磁電流を遮断するものについて示したが、サイリスタ励磁装置63a,63bを制御して、発電電動機51a,51bの界磁巻線65a,65bに供給する励磁電流を零にするようにしてもよく、上記実施の形態1と同様の効果を奏することができる。
【0019】
実施の形態3.
上記実施の形態2では、2台の発電電動機51a,51bを同時に停止する場合について示したが、一方の発電電動機が停止している状態で、他方の発電電動機を停止する場合に当該発明を適用してもよく、上記実施の形態1と同様の効果を奏することができる。
【0020】
【発明の効果】
以上のように、この発明によれば、複数の発電電動機を停止する際、送電遮断器及び界磁遮断器のトリップが完了したのち接地断路器を投入し、複数の発電電動機の界磁巻線に供給する励磁電流をそれぞれ制御して電気ブレーキを印加するように構成したので、従来のもののように、電気ブレーキ用断路器を各発電電動機ごとに設置することなく、発電電動機を停止させることができるようになり、装置構成を簡略化できる効果がある。
また、短絡電流が主変圧器を通過することになるので、発電電動機のコイルだけでなく、主変圧器のコイルからも熱が発生するようになり、その結果、従来のものよりも発電制動の効果が大きくなって、発電電動機の停止時間が短縮される効果もある。
【0021】
この発明によれば、励磁電流を零にすべき旨の指令値を励磁電流制御手段に対して出力する一方、送電遮断器のトリップが完了したのち接地断路器を投入し、複数の発電電動機の界磁巻線に供給する励磁電流をそれぞれ制御して電気ブレーキを印加するように構成したので、従来のもののように、電気ブレーキ用断路器を各発電電動機ごとに設置することなく、発電電動機を停止させることができるようになり、装置構成を簡略化できる効果がある。
また、短絡電流が主変圧器を通過することになるので、発電電動機のコイルだけでなく、主変圧器のコイルからも熱が発生するようになり、その結果、従来のものよりも発電制動の効果が大きくなって、発電電動機の停止時間が短縮される効果もある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1によるプラント制御装置を示す単線結線図である。
【図2】 この発明の実施の形態1によるプラント制御装置の保護回路を示すフロー図である。
【図3】 従来のプラント制御装置を示す単線結線図である。
【符号の説明】
51a,51b 発電電動機、52a,52b 主回路、53a,53b 励磁回路、54 送電線、55 送電遮断器、56 設地遮断器、57a,57b 特高側断路器、58a,58b 主変圧器、59a,59b 相反転断路器、61a,61b 発電機遮断器、62a,62b 電気ブレーキ用断路器、63a,63b サイリスタ励磁装置(励磁電流制御手段)、64a,64b 界磁遮断器、65a,65b 界磁巻線、66a,66b,67a,67b 始動用断路器、68 サイリスタ始動装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plant control apparatus that performs stop control of a generator motor installed in a pumped storage power plant.
[0002]
[Prior art]
FIG. 3 is a single-line diagram showing a conventional example of a plant control apparatus, in which 51a and 51b are generator motors for pumped-storage power generation, 52a is a main circuit of the generator motor 51a, 52b is a main circuit of the generator motor 51b, and 53a. Is an excitation circuit of the generator motor 51a, and 53b is an excitation circuit of the generator motor 51b.
[0003]
54 is a power transmission line connecting the main circuits 52a and 52b to the power system, 55 is a power breaker, 56 is connected to the power plant side of the power breaker 55, and the other end is grounded for inspection. Disconnectors 57a and 57b are extra high-side disconnectors, 58a and 58b are main transformers installed in the main circuits 52a and 52b, 59a and 59b are phase-inverted disconnectors for power generation operation, and 60a and 60b are pumping operations. Phase inversion disconnectors 61a and 61b are generator breakers, and 62a and 62b are electrical brake disconnectors that short-circuit the terminals of the generator motors 51a and 51b, respectively.
[0004]
Reference numerals 63a and 63b denote thyristor exciters for supplying exciting currents to the field windings 65a and 65b, 64a and 64b denote field breakers installed in the excitation circuits 53a and 53b, and 65a and 65b denote generator motors 51a. , 51b, 66a, 66b, 67a, 67b are start disconnectors, and 68 is a thyristor starter.
[0005]
Next, the procedure for stopping the generator motor will be described.
For example, when the generator motor 51a is stopped (the description is omitted because the generator motor 51b is also stopped), first, a control circuit (not shown) opens the generator circuit breaker 61a and thyristor exciter 63a. And the exciting current supplied to the field winding 65a is made zero.
[0006]
A control circuit (not shown) closes the electric brake disconnector 62a and short-circuits the terminals of the generator motor 51a, and then controls the thyristor excitation device 63a so that the rated current flows through the generator motor 51a. An exciting current is supplied to the field winding 65a and an electric brake is applied.
Thereby, the generator motor 51a stops.
[0007]
[Problems to be solved by the invention]
Since the conventional plant control apparatus is configured as described above, when the generator motor is stopped (see FIG. 3), the electric brake disconnectors 62a and 62b that short-circuit the terminals of the generator motor are connected to the generator motors 51a and 51b. Each has to be installed, and there is a problem that the equipment cost becomes expensive.
[0008]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a plant control device that can simplify an electric brake device.
[0009]
[Means for Solving the Problems]
When stopping a plurality of generator motors, the plant control device according to the present invention, after the trip of the power breaker and the field breaker is completed, inserts a ground disconnector and supplies it to the field windings of the plurality of generator motors The electric current is applied by controlling the exciting current to be applied.
[0010]
The plant control device according to the present invention outputs a command value indicating that the excitation current should be zero to the excitation current control means, and after the trip of the power transmission breaker is completed, the ground disconnector is turned on, An electric brake is applied by controlling the exciting current supplied to the field winding of the generator motor.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
Embodiment 1 FIG.
1 is a single-line diagram showing a plant control apparatus according to Embodiment 1 of the present invention. In the figure, 51a and 51b are generator motors for pumped-storage power generation, 52a is a main circuit of the generator motor 51a, and 52b is a generator motor 51b. , 53a is an excitation circuit for the generator motor 51a, and 53b is an excitation circuit for the generator motor 51b.
[0012]
54 is a power transmission line connecting the main circuits 52a and 52b to the power system, 55 is a power breaker, 56 is connected to the power plant side of the power breaker 55, and the other end is grounded for inspection. Disconnectors 57a and 57b are extra high-side disconnectors, 58a and 58b are main transformers installed in the main circuits 52a and 52b, 59a and 59b are phase-inverted disconnectors for power generation operation, and 60a and 60b are pumping operations. Phase reversing disconnectors 61a and 61b are generator breakers.
[0013]
Reference numerals 63a and 63b denote thyristor excitation devices (excitation current control means) for supplying excitation current to the field windings 65a and 65b. Reference numerals 64a and 64b denote field breakers installed in the excitation circuits 53a and 53b, respectively. 65b is a field winding of each of the generator motors 51a and 51b, 66a, 66b, 67a and 67b are start disconnectors, and 68 is a thyristor starter.
FIG. 2 is a flowchart showing the operation of the plant control apparatus according to Embodiment 1 of the present invention.
[0014]
Next, the procedure for stopping the generator motors 51a and 51b will be described.
First, a control circuit (switch operating means) (not shown) trips the power transmission breaker 55 and performs a process of disconnecting the generator motors 51a and 51b from the power system (step ST1).
A control circuit (switch operating means) (not shown) trips the field breakers 64a and 64b to cut off the excitation current supplied to the field windings 65a and 65b, and the terminals of the generator motors 51a and 51b. The voltage is lowered (step ST2).
[0015]
Then, when the terminal voltage of the generator motors 51a and 51b drops to the residual voltage, a control circuit (switch operating means) (not shown) turns on the grounding disconnect switch 56 for inspection (step ST3).
This is equivalent to short-circuiting the terminals of the generator motors 51a and 51b. Therefore, if the field breakers 64a and 64b are turned on to supply the exciting current to the field windings 65a and 65b, the generator motor A short-circuit current flows from 51 a and 51 b toward the ground disconnector 56.
[0016]
Then, when the ground disconnector 56 is turned on, a control circuit (electric brake applying means) (not shown) turns on the field breakers 64a and 64b (step ST4).
Then, the thyristor excitation devices 63a and 63b are controlled to supply the field windings 65a and 65b with an excitation current to the extent that the rated current flows through the generator motors 51a and 51b, and apply the electric brake (step ST5). Since the exciting current that allows the rated current to flow through the plurality of generator motors is supplied to the field winding, the effect of the electric brake can be maximized.
Thereby, the generator motors 51a and 51b are stopped.
[0017]
As described above, according to the first embodiment, since the electric brake is applied using the grounding disconnecting switch 56 for inspection that is normally installed, the electric brake disconnecting switch 62a, The generator motors 51a and 51b can be stopped without installing 62b for each of the generator motors 51a and 51b.
In the case of the first embodiment, since the short-circuit current passes through the main transformers 58a and 58b, heat is generated not only from the coils of the generator motors 51a and 51b but also from the coils of the main transformers 58a and 58b. As a result, the effect of dynamic braking becomes greater than that of the conventional one, and the stop time of the generator motors 51a and 51b is shortened.
[0018]
Embodiment 2. FIG.
In the first embodiment, when the generator motors 51a and 51b are stopped, the field breakers 64a and 64b are tripped to cut off the excitation current supplied to the field windings 65a and 65b of the generator motors 51a and 51b. As described above, the thyristor excitation devices 63a and 63b may be controlled so that the excitation current supplied to the field windings 65a and 65b of the generator motors 51a and 51b may be zero. The same effect can be achieved.
[0019]
Embodiment 3 FIG.
In the second embodiment, the case where the two generator motors 51a and 51b are stopped simultaneously has been described. However, the present invention is applied to the case where one generator motor is stopped and the other generator motor is stopped. Alternatively, the same effects as those of the first embodiment can be obtained.
[0020]
【The invention's effect】
As described above, according to the present invention, when the plurality of generator motors are stopped, after the trip of the power transmission circuit breaker and the field breaker is completed, the ground disconnector is inserted, and the field windings of the plurality of generator motors Since the electric brake is applied by controlling the excitation current supplied to each, the generator motor can be stopped without installing the electric brake disconnector for each generator motor as in the conventional case. As a result, the apparatus configuration can be simplified.
In addition, since the short-circuit current passes through the main transformer, heat is generated not only from the generator motor coil but also from the main transformer coil. The effect is increased, and there is an effect that the stop time of the generator motor is shortened.
[0021]
According to the present invention, the command value indicating that the excitation current should be zero is output to the excitation current control means, and after the trip of the power transmission breaker is completed, the ground disconnector is turned on, and a plurality of generator motors Since the electric current is applied by controlling the exciting currents supplied to the field windings, the electric motors can be operated without installing the electric brake disconnecting switch for each electric generator as in the prior art. This makes it possible to stop the apparatus and to simplify the apparatus configuration.
In addition, since the short-circuit current passes through the main transformer, heat is generated not only from the generator motor coil but also from the main transformer coil. The effect is increased, and there is an effect that the stop time of the generator motor is shortened.
[Brief description of the drawings]
FIG. 1 is a single-line diagram showing a plant control apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a flowchart showing a protection circuit of the plant control apparatus according to Embodiment 1 of the present invention.
FIG. 3 is a single-line connection diagram showing a conventional plant control apparatus.
[Explanation of symbols]
51a, 51b Generator motor, 52a, 52b Main circuit, 53a, 53b Excitation circuit, 54 Transmission line, 55 Transmission breaker, 56 Ground breaker, 57a, 57b Extra high-side disconnector, 58a, 58b Main transformer, 59a , 59b Phase reversal disconnector, 61a, 61b Generator circuit breaker, 62a, 62b Electric brake disconnector, 63a, 63b Thyristor exciter (excitation current control means), 64a, 64b Field breaker, 65a, 65b Field magnet Winding, 66a, 66b, 67a, 67b Start disconnector, 68 Thyristor starter.

Claims (2)

互いに並列に接続された複数の発電電動機の主回路にそれぞれ設置された主変圧器と、上記複数の発電電動機の主回路を電力系統に連繋する送電遮断器と、一端が上記送電遮断器の発電所側と接続され、他端が接地された接地断路器と、上記複数の発電電動機の励磁回路にそれぞれ設置された界磁遮断器と、上記複数の発電電動機を停止する際、上記送電遮断器及び界磁遮断器をトリップするとともに、そのトリップが完了したのち上記接地断路器を投入する開閉器操作手段と、上記開閉器操作手段により接地断路器が投入されると、上記界磁遮断器を投入するとともに、上記複数の発電電動機の界磁巻線に供給する励磁電流をそれぞれ制御して、各発電電動機を停止させる電気ブレーキ印加手段とを備えたプラント制御装置。A main transformer installed in a main circuit of each of a plurality of generator motors connected in parallel to each other, a power transmission breaker linking the main circuits of the plurality of generator motors to a power system, and one end of the power generation of the power transmission breaker A grounding disconnector connected to a site and grounded at the other end, a field breaker installed in each of the excitation circuits of the plurality of generator motors, and the power transmission breaker when stopping the plurality of generator motors When the trip is completed and the trip is completed, the switch operating means for turning on the ground disconnector, and when the ground disconnector is turned on by the switch operating means, the field breaker is turned on. A plant control apparatus comprising: an electric brake applying unit that controls the exciting current supplied to the field windings of the plurality of generator motors and stops each generator motor. 互いに並列に接続された複数の発電電動機の主回路にそれぞれ設置された主変圧器と、上記複数の発電電動機の主回路を電力系統に連繋する送電遮断器と、一端が上記送電遮断器の発電所側と接続され、他端が接地された接地断路器と、上記複数の発電電動機の界磁巻線に供給する励磁電流を指令値に基づいてそれぞれ制御する励磁電流制御手段と、上記複数の発電電動機を停止する際、上記送電遮断器をトリップするとともに、上記励磁電流を零にすべき旨の指令値を上記励磁電流制御手段に対して出力し、その送電遮断器のトリップが完了したのち上記接地断路器を投入する開閉器操作手段と、上記開閉器操作手段により接地断路器が投入されると、上記複数の発電電動機の界磁巻線に供給する励磁電流をそれぞれ制御して、各発電電動機を停止させる電気ブレーキ印加手段とを備えたプラント制御装置。A main transformer installed in a main circuit of each of a plurality of generator motors connected in parallel to each other, a power transmission breaker linking the main circuits of the plurality of generator motors to a power system, and one end of the power generation of the power transmission breaker A grounding disconnector connected to the site side and grounded at the other end; excitation current control means for controlling excitation currents supplied to the field windings of the plurality of generator motors based on command values; and When stopping the generator motor, trip the power transmission breaker, and output a command value to the excitation current control means to make the excitation current zero, and after the trip of the power transmission breaker is completed The switch operating means for turning on the ground disconnector, and when the ground disconnector is turned on by the switch operating means, the excitation current supplied to the field windings of the plurality of generator motors is controlled respectively. Power generation Plant control device provided with an electric brake applying means for stopping.
JP2003196046A 2003-07-11 2003-07-11 Plant control device Expired - Fee Related JP3782076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196046A JP3782076B2 (en) 2003-07-11 2003-07-11 Plant control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196046A JP3782076B2 (en) 2003-07-11 2003-07-11 Plant control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24633695A Division JP3490197B2 (en) 1995-09-25 1995-09-25 Plant control device

Publications (2)

Publication Number Publication Date
JP2004048989A JP2004048989A (en) 2004-02-12
JP3782076B2 true JP3782076B2 (en) 2006-06-07

Family

ID=31712496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196046A Expired - Fee Related JP3782076B2 (en) 2003-07-11 2003-07-11 Plant control device

Country Status (1)

Country Link
JP (1) JP3782076B2 (en)

Also Published As

Publication number Publication date
JP2004048989A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US6906479B2 (en) Gas turbine engine starter generator with multiple windings on each exciter stator pole
JP2010537621A (en) Electrical equipment
WO1999029015A3 (en) Method and device for controlling the magnetic flux with an auxiliary winding in a hv ac machine
US10584671B2 (en) Brushless starter generator
KR101650260B1 (en) Superconducting machine and method for the operation thereof
US20160294238A1 (en) Wound field generator system featuring combined permanent magnet generator excitation with exciter stator
RU2498473C1 (en) Short-circuiting protection device for permanent magnet generator (versions)
JP3782076B2 (en) Plant control device
US5451854A (en) Procedure for reducing the starting current of a squirrel-cage motor, and a squirrel-cage motor unit designed for implementing the procedure
JPH077978A (en) Korndorfer method for starting motor
JP2008043017A (en) Kondorfer starting device for electric motor
JP2856869B2 (en) Operation method of variable speed pumped storage power plant
WO2008046953A2 (en) Synchronous machine
JP2004153932A (en) Exciting rush current reduction circuit for transformer
US20040212353A1 (en) Use of a closing impedance to minimize the adverse impact of out-of-phase generator synchronization
JPH0993797A (en) Plant control device
Aimin et al. Research and application of novel switch reluctance motor operating mechanism used in 40.5 kV HV circuit breaker
CN114325475B (en) Power supply circuit and method of extra-high voltage transformer short circuit test system
US1392137A (en) Circuit-interrupter
JP2704654B2 (en) Parallel induction generator
CN107612042A (en) Synchronous capacitor based on the big impedance of pre-access starts parallel network circuit and control method
US1347908A (en) Automatic circuit-interrupting device
JP2004048990A (en) Plant controller
JP3754644B2 (en) Starting method for variable speed frequency converter
JPS5845273B2 (en) Electric brake device for generator motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees