JP3782037B2 - Material strength evaluation method and material strength test apparatus - Google Patents

Material strength evaluation method and material strength test apparatus Download PDF

Info

Publication number
JP3782037B2
JP3782037B2 JP2002167129A JP2002167129A JP3782037B2 JP 3782037 B2 JP3782037 B2 JP 3782037B2 JP 2002167129 A JP2002167129 A JP 2002167129A JP 2002167129 A JP2002167129 A JP 2002167129A JP 3782037 B2 JP3782037 B2 JP 3782037B2
Authority
JP
Japan
Prior art keywords
fixing member
test sheet
stress
polymer material
material strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002167129A
Other languages
Japanese (ja)
Other versions
JP2004012332A (en
Inventor
裕人 渡邉
圭二 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002167129A priority Critical patent/JP3782037B2/en
Publication of JP2004012332A publication Critical patent/JP2004012332A/en
Application granted granted Critical
Publication of JP3782037B2 publication Critical patent/JP3782037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線硬化型樹脂等の高分子材料の機械的強度を評価する材料強度評価方法、及び前記高分子材料の機械的強度を評価するために用いられる材料強度試験装置に関する。
【0002】
【従来の技術】
光ファイバ通信の技術分野においては、光ファイバにおける被覆層に高分子材料として紫外線硬化型樹脂が用いられている。
【0003】
ここで、前記光ファイバにおける前記被覆層は、一般に、二重の被覆構造になっており、ヤング率の低い軟質の紫外線硬化型樹脂から構成されかつ前記光ファイバのガラスファイバの外周部を直接的に被覆する一次被覆層と、ヤング率の高い硬質の紫外線硬化型樹脂から構成されかつ前記ガラスファイバの外周部を前記一次被覆層を介して間接的に被覆する二次被覆層とを備えている。これは、前記光ファイバに外力が加わった場合に、前記二次被覆層によって前記光ファイバ全体の変形を抑制し、更に前記一次被覆層によって抑制された小さい変形を吸収することによって、前記ガラスファイバに前記外力による変形を極力伝えないためである。
【0004】
また、前記ガラスファイバの微小な曲がりによる前記光ファイバの伝送損失を極力少なくして前記光ファイバの品質の向上を図るうえにおいて、前記一次被覆層が前記ガラスファイバを直接的に被覆していることから、前記二次被覆層を構成する前記硬質の紫外線硬化型樹脂の機械的強度よりも、前記一次被覆層を構成する前記軟質の紫外線硬化型樹脂の機械的強度を評価することが重要である。そのため、前記軟質の紫外線硬化型樹脂からなる試験片を一方向へ引っ張る引張試験を行って、一方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破断応力を求めている。
【0005】
【発明が解決しようとする課題】
ところで、前記被覆層の樹脂硬化時からこの硬化終了時にかけて前記被覆層の樹脂温度が低下することによって前記被覆層は3次元的に収縮する傾向にある一方、前記ファイバガラスと前記二次被覆層によって前記一次被覆層の3次元的収縮が拘束されているため、前記一次被覆層において略均一に3次元引張応力が加えることになる。ここで、硬化終了時とは、硬化終了直後の他に、硬化終了してから環境温度が変化した後も含むものである。そして、前記一次被覆層に働く前記3次元引張応力の平均引張応力が所定の破損応力を越えると、前記一次被覆層には前記ガラスファイバの微小な曲がりの原因になるボイド又は亀裂が生じるものである。
【0006】
しかし、前述のように、前記軟質の紫外線硬化型樹脂からなる前記試験片を一方向へ引っ張る引張試験を行って、一方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破断応力を求めるだけでは、一方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の機械的強度を評価できても、前記試験片に3次元引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の機械的強度を評価することができない。そのため、前記光ファイバにおける前記一次被覆層にボイド又は亀裂が生じないように前記軟質の紫外線硬化型樹脂を利用する等、ボイド又は亀裂が生じないように前記高分子材料を利用することが困難になる。
【0007】
【課題を解決するための手段】
請求項1に記載の発明にあっては、高分子材料の機械的強度を評価する材料強度評価方法において、
前記高分子材料からなる薄い円板状の試験シートの表面を第1固定部材の第1拘束面に密着して固定すると共に、前記試験シートの裏面を第2固定部材の第2拘束面に密着して固定することにより、前記試験シートの全領域のうち外周部付近を除く応力有効領域を径方向,周方向へ変位しないように拘束し、
透明に構成されたいずれかの固定部材の外側から前記試験シートを観察しつつ、前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記第1固定部材を前記試験シートの厚み方向であって前記第2固定部材に対して離反する離反方向へ相対的に微小変位させることにより、前記試験シートの前記応力有効領域において略均一に3次元引張応力を加え、
前記試験シートにボイド又は亀裂が生じたときにおける前記第1固定部材の相対的な変位量に基づいて、3次元引張応力を加えた状態における前記高分子材料の破損応力を求めることを特徴とする。
【0008】
ここで、3次元引張応力とは、前記応力有効領域に前記径方向と前記厚み方向に三次元的に加わった引張応力のことをいい、3次元引張応力が加わった応力状態における前記高分子材料の破損応力とは、前記試験シートにボイド又は亀裂が生じたときに前記試験シートの前記応力有効領域に働く3次元引張応力の平均引張応力のことをいう。また、透明とは、完全に透明の他に、半透明、有色透明も含まれる。
【0009】
請求項2に記載の発明にあっては、請求項1に記載の発明特定事項の他に、前記高分子材料は紫外線硬化型樹脂であることを特徴とする。
【0010】
請求項3に記載の発明にあっては、請求項1に記載の発明特定事項の他に、前記高分子材料は前記光ファイバにおける一次被覆層と同じ紫外線硬化型樹脂であって、
前記試験シートの厚みを前記光ファイバにおける前記一次被覆層の厚みと同じにしたことを特徴とする。
【0011】
請求項4に記載の発明にあっては、高分子材料の機械的強度を評価するために用いられる材料強度試験装置において、
前記高分子材料からなる薄い円板状の試験シートの表面が密着して固定される第1拘束面を有した第1固定部材と、
前記第1固定部材に対向してあって、前記試験シートの裏面が密着して固定される第2拘束面を有した第2固定部材と、
前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記第1固定部材を高分子材料の厚み方向であって前記第2固定部材に対して離反する離反方向へ相対的に微小変位させる微小変位機構とを備えてあって、
前記第1固定部材と前記第2固定部材の少なくともいずれかの固定部材を透明に構成してなることを特徴とする。
【0012】
ここで、透明とは、完全に透明の他に、半透明、有色透明も含まれる。
【0013】
請求項4に記載の発明特定事項によると、前記試験シートの表面を前記第1固定部材の前記第1拘束面に密着して固定すると共に、前記試験シートの裏面を前記第2固定部材の前記第2拘束面に密着して固定する。これにより、前記試験シートの全領域のうち外周部付近を除く応力有効領域を径方向,周方向へ変位しないように拘束できる。
【0014】
そして、前記いずれかの固定部材の外側から前記試験シートを観察しつつ、前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記微小変位機構の作動によって前記第1固定部材を前記離反方向へ前記第2固定部材に対して相対的に微小変位させる。これにより、前記試験シートは3次元的に収縮する傾向にあるが、前記第1拘束面及び前記第2拘束面よって前記試験シートの前記応力有効領域の径方向,周方向の変位が拘束されることから、試験シートの応力有効領域には前記厚み方向の引張応力の他に、前記径方向の引張応力を加えることができ、換言すれば、前記試験シートの前記応力有効領域に3次元引張応力を加えることができ、また、前記試験シートの厚さが薄いことから、前記試験シートの前記応力有効領域において略均一に3次元引張応力を加えることができる。
【0015】
ここで、3次元的引張応力とは、前記応力有効領域に前記径方向と前記厚み方向に三次元的に加わった引張応力のことをいう。
【0016】
更に、前記第1固定部材の相対的な微小変位量が増えることよって、前記試験シートの前記応力有効領域の前記3次元引張応力が徐々に高くなって、前記試験シートにボイド又は亀裂が生じる。そして、前記試験シートにボイド又は亀裂が生じたときにおける前記第1固定部材の相対的な変位量に基づいて、3次元引張応力を加えた状態における前記高分子材料の破損応力を求める。これによって、3次元引張応力を加えた状態における前記高分子材料の機械的強度を評価することができる。
【0017】
ここで、3次元引張応力を加えた状態における前記高分子材料の破損応力とは、前記試験シートにボイド又は亀裂が生じたときに前記試験シートの応力有効領域に働く3次元引張応力の平均引張応力のことをいう。
【0018】
請求項5に記載の発明にあっては、請求項4に記載の発明特定事項の他に、前記第1固定部材及び前記第2固定部材をガラスによりそれぞれ構成してなることを特徴とする。
【0019】
請求項5に記載の発明特定事項によると、請求項4に記載の発明特定事項の他に、前記第1固定部材及び前記第2固定部材をガラスによりそれぞれ構成してあるため、前記第1拘束面及び前記第2拘束面に対する前記試験シートの密着した固定状態が安定する。
【0020】
請求項6に記載の発明にあっては、請求項4又は請求項5に記載の発明特定事項の他に、前記いずれかの固定部材の外側から前記試験シートを拡大して観察するための拡大鏡を備えてなることを特徴とする。
【0021】
請求項6に記載の発明特定事項によると、請求項4又は請求項5に記載発明特定事項による作用の他に、前記拡大鏡により前記試験シートを拡大して観察することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0023】
図1は、本発明の実施の形態に係わる材料強度試験装置の模式的な斜視図であって、図2は、本発明の実施の形態に係わる材料強度評価方法を説明する図であって、図3は、図2(b)における試験シートを上から見た図である。
【0024】
ここで、「上」は、図1及び図2において上,図3において紙面に向かって表のことをいい、「下」は、図1及び図2において下,図3において紙面に向かって裏のことをいう。
【0025】
図1に示すように、本発明の実施の形態に係わる材料強度試験装置1は、軟質の紫外線硬化型樹脂(高分子材料の1つ)の機械的強度を評価するために用いられる装置であって、四角形状の第1ホルダ3と四角形状の第2ホルダ5を上下に対向して備えている。
【0026】
第1ホルダ3が第2ホルダ5に対して上下方向へ移動可能に支持されるようにするため、第2ホルダ5には複数の固定突起7が設けられており、複数の固定突起7にはガイドピン9が立設されてあって、第1ホルダ3には対応するガイドピン9に上下方向へ移動可能に案内される複数の可動突起11が設けられている。
【0027】
第1ホルダ3の中央部には円形状の第1固定部材13が設けられており、この第1固定部材13は極めて薄い円板状の試験シートSの表面が接着作用によって密着して固定される第1拘束面13f(図2参照)を有している。また、第2ホルダ5の中央部には円形状の第2固定部材15が第1固定部材13に上下に対向して設けられており、この第2固定部材15は試験シートSの裏面が接着作用によって密着して固定される第2拘束面15f(図2参照)を有している。
【0028】
ここで、第1固定部材13及び第2固定部材15は透明なガラスによりそれぞれ構成されている。なお、透明なガラスとは、完全に透明なガラスの他に、半透明なガラス、有色透明なガラスも含まれる。また、第1固定部材及び第2固定部材をそれぞれ透明に構成する代わりに、第1固定部材13と第2固定部材15のうちいずれかの固定部材を透明に構成してもよい。
【0029】
また、試験シートSは、図示省略の光ファイバにおける一次被覆層を構成する軟質の紫外線硬化型樹脂と同じ軟質の紫外線硬化型樹脂(高分子材料の一例)からなるものであって、試験シートSの厚みは、前記光ファイバにおける一次被覆層の厚みと同じにしてある。なお、試験シートSの固定方法は、前述の接着作用に限るものではなく、例えば、第1固定部材13と第2固定部材15の間に流動状の紫外線硬化型樹脂を充填して、流動状の紫外線硬化型樹脂を紫外線を照射によって硬化させることにより固定してもよい。
【0030】
第1ホルダ3には取付突起17が設けられており、第2ホルダ5には当接突起19が取付突起17に上下に対向して設けられている。第1固定部材13を上方向(換言すれば、試験シートSの厚み方向であって第2固定部材15に対して離反する離反方向)へ微小変位させるため、取付突起17にはつまみ21の回転操作によって上下方向へ微小伸縮可能なスピンドル23を備えたマイクロメータヘッド25が設けられており、このスピンドル23の先端部(下端部)は当接突起に当接可能である。
【0031】
従って、スピンドル23の先端部を当接突起19に当接させて、つまみ21を回転操作によってスピンドル23を下方向へ微少量だけ伸ばすことにより、第1固定部材13を第1ホルダ3と一体的に上方向へ微小変位させることができる。
このとき、複数の可動突起11が複数のガイドピン9に案内されて上方向へ変位するため、第1拘束面13fと第2拘束面15fは平行に保持した状態にある。
【0032】
なお、第1固定部材13を微小変位させる機構は、マイクロメータヘッド25に限るものではなく、適宜の微小変位機構を用いることができる。また、第1固定部材13を上方向へ微小変位させる代わりに、第2固定部材15を下方向へ微小変位させてもよく、或いは第1固定部材13及び第2固定部材15を互いに離反する上下方向へ微小変位させるようにしてもよい。
【0033】
第1ホルダ3の上方には第1固定部材13の外側上方から試験シートSを観察する顕微鏡27が図示省略の支持アームを介して設けられている。なお、顕微鏡27は適宜の機構を介して姿勢、位置等を変更することができる。
【0034】
次に、本発明の実施の形態に係わる材料強度評価方法について、作用を含めて説明する。
【0035】
図2に示すように、試験シートSの表面を第1固定部材13の第1拘束面13fに接着作用により密着して固定すると共に、試験シートSの裏面を第2固定部材15の第2拘束面15fに接着作用により密着して固定する(図2(a)参照)。これにより、試験シートSの全領域のうち外周部付近を除く応力有効領域Saを径方向,周方向へ変位しないように拘束できる。なお、第1固定部材13及び第2固定部材15をガラスによりそれぞれ構成してあるため、第1拘束面13f及び第2拘束面15fに対する試験シートSの密着した固定状態が安定する。
【0036】
ここで、応力有効領域Saをより明確にすると、本発明の実施の形態にあっては、第1固定部材13を上方向へ微小変位させると試験シートSの外周面にR状の凹みSdが生じるが、応力有効領域Saとは、試験シートSの全領域のうち外周部付近を除く領域であって、凹みSdが生じない領域のことをいう。
【0037】
そして、顕微鏡27により第1固定部材13の外側から試験シートSを拡大して観察しつつ、第1拘束面13fと第2拘束面15fを平行に保持した状態の下で、スピンドル23の先端部を当接突起19に当接させて、つまみ21を回転操作してスピンドル23を下方向へ微小変位させて、第1固定部材13を上方向へ微小変位させる(図2(b)参照)。これにより、試験シートSは3次元的に収縮する傾向にあるが、第1拘束面13f及び第2拘束面15fよって試験シートSの応力有効領域Saの径方向,周方向の変位が拘束されることから、試験シートSの応力有効領域Saに前記厚み方向(図2において上下方向)の引張応力σzの他に、前記径方向の引張応力σ rを付与することができ、換言すれば、試験シートSの応力有効領域Saに3次元引張応力(σ r 、σ z を付与することができる。また、試験シートSの厚さが極めて薄いことから、試験シートSの応力有効領域Saを略均一な3次元引張応力を加えた状態にすることができる。
【0038】
更に、第1固定部材13の微小変位量が増えることによって、試験シートSの応力有効領域Saの3次元引張応力が徐々に高くなって、試験シートSにボイドV又は亀裂(図示省略)が生じる(図2(c)参照)。そして、試験シートSにボイドV又は亀裂が生じたときにおける第1固定部材13の変位量に基づいて、3次元引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破損応力を求める。これによって、3次元引張応力を加えた状態における前記軟質の紫外線硬化型樹脂(高分子材料の一例)の機械的強度を評価することができる。
【0039】
ここで、第1固定部材13の変位量に対する3次元引張応力は、有限要素法による解析等を用いて求めることができ、試験シートSの応力有効領域Saにおいて第1固定部材13の変位量と3次元引張応力の間には線形の関係がある。また、3次元引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破損応力とは、試験シートSにボイドV又は亀裂が生じたときに試験シートSの応力有効領域Saに働く3次元引張応力の平均引張応力のことをいう。
【0040】
以上の如き、本発明の実施の形態によれば、3次元方引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破損応力を求めて、3次元引張応力を加えた状態における紫外線硬化型樹脂の機械的強度を評価できるため、前記光ファイバにおける前記一次被覆層にボイドV又は亀裂が生じないように前記軟質の紫外線硬化型樹脂を容易に利用することができ、前記軟質の紫外線硬化型樹脂を様々な分野で有効利用することができる。
【0041】
また、試験シートSは前記光ファイバにおける前記一次被覆層を構成する前記軟質の紫外線硬化型樹脂と同じ軟質の紫外線硬化型樹脂からなるものであって、試験シートSの厚みを前記光ファイバにおける前記一次被覆層の厚みと同じにしてあるため、試験シートSを前記光ファイバにおける前記一次被覆層と略同じ状態にすることができ、前記光ファイバにおける前記一次被覆層を構成する前記軟質の紫外線硬化型樹脂の機械的強度を正確に評価することができる。
【0042】
更に、第1拘束面13f及び第2拘束面15fに対する試験シートSの密着した固定状態が安定するため、試験シートSの応力有効領域Saにおいて3次元引張応力(σ r 、σ z がより均一化され、3次元引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の機械的強度を正確に評価することができる。
【0043】
また、顕微鏡27により試験シートSを拡大して観察できるため、試験シートSに生じたボイドV又は亀裂を容易に見つけることができ、3次元引張応力状態における前記軟質の紫外線硬化型樹脂の破損応力を正確に求めることができる。
【0044】
なお、本発明は、前述の発明の実施の形態の説明に限るものではなく、例えば、試験シートを紫外線硬化型樹脂以外の別の高分子材料からなるようにすることにより、前記別の高分子材料の機械的強度を評価する等、適宜の変更を行うことが可能である。
【0045】
【実施例】
以下、本発明に係わる実施例について簡単に説明する。
【0046】
第1固定部材13の外径及び第2固定部材15の外径を100mmとし、ヤング率1MPa,厚み100μm,外径100mmの試験シートSの応力有効領域Saにおいて略均一に3次元引張応力(σ r 、σ z を加える。
【0047】
ここで、予め、有限要素法による解析によって、試験シートSの中心から半径45mmの領域が略均一な3次元引張応力が働く応力有効領域Saとなることが求められ、更に、第1固定部材13を5μmステップで50μmまで微小変位させた場合において、試験シートSの応力有効領域Saに働く3次元的引張応力と第1固定部材13の変位量との関係は、第1固定部材13の変位量50μmで3次元引張応力(σ r が1.9MPa、σ z が2.3MPa)になるような線形の関係が求められている。
【0048】
前記条件の下で、前述のように、第1固定部材13を上方向へ微小変位させて、試験シートSの応力有効領域Saにおいて略均一に3次元引張応力(σr 、σz)を加えると、第1固定部材13の変位量30μmのときに試験シートSの応力有効領域SaにボイドVが生じ、このときの試験シートSの応力有効領域Saに働く3次元引張応力(σ r が1.1MPa、σ z が1.4MPa)の平均引張応力1.2MPaを前記軟質の紫外線硬化型樹脂の破損応力とすることができる。
【0049】
【発明の効果】
請求項1から請求項6のうちのいずれかの請求項に記載の発明によれば、3次元引張応力を加えた状態における前記高分子材料の破損応力を求めて、3次引張応力を加えた状態における前記高分子材料の機械的強度を評価できるため、ボイド又は亀裂が生じないように前記高分子材料を容易に利用することができ、前記高分子材料を様々な分野で有効利用することができる。
【0050】
請求項3に記載の発明によれば、前記高分子材料は前記光ファイバにおける前記一次被覆層と同じ軟質の紫外線硬化型樹脂であって、前記試験シートの厚みを前記光ファイバにおける前記一次被覆層の厚みと同じにしてあるため、前記試験シートを前記光ファイバにおける前記一次被覆層と略同じ状態にすることができ、前記光ファイバにおける前記一次被覆層を構成する前記軟質の紫外線硬化型樹脂の機械的強度を正確に評価することができる。
【0051】
請求項5に記載の発明にあっては、前記第1拘束面及び前記第2拘束面に対する前記試験シートの密着した固定状態が安定するため、前記試験シートの前記応力有効領域において3次元引張応力がより均一化され、3次元引張応力を加えた状態における前記高分子材料の機械的強度を正確に評価することができる。
【0052】
請求項6に記載の発明にあっては、前記拡大鏡により前記試験シートを拡大して観察できるため、前記試験シートに生じたボイド又は亀裂を容易に見つけることができ、3次元引張応力を加えた状態における前記高分子材料の破損応力を正確に求めることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係わる材料強度試験装置の模式的な斜視図である。
【図2】 本発明の実施の形態に係わる材料強度評価方法を説明する図である。
【図3】 図2(b)における試験シートを上から見た図である。
【符号の説明】
1 材料強度試験装置
13 第1固定部材
13f 第1拘束面
15 第2固定部材
15f 第2拘束面
23 スピンドル
25 マイクロメータヘッド
27 顕微鏡
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material strength evaluation method for evaluating the mechanical strength of a polymer material such as an ultraviolet curable resin, and a material strength test apparatus used for evaluating the mechanical strength of the polymer material.
[0002]
[Prior art]
In the technical field of optical fiber communication, an ultraviolet curable resin is used as a polymer material for a coating layer in an optical fiber.
[0003]
Here, the coating layer in the optical fiber generally has a double coating structure, is composed of a soft UV curable resin having a low Young's modulus, and directly covers the outer periphery of the glass fiber of the optical fiber. And a secondary coating layer that is made of a hard UV curable resin having a high Young's modulus and that indirectly coats the outer periphery of the glass fiber via the primary coating layer. . This is because when an external force is applied to the optical fiber, the deformation of the entire optical fiber is suppressed by the secondary coating layer, and further, the small deformation suppressed by the primary coating layer is absorbed, thereby the glass fiber. This is because the deformation due to the external force is not transmitted as much as possible.
[0004]
Further, in order to improve the quality of the optical fiber by minimizing transmission loss of the optical fiber due to minute bending of the glass fiber, the primary coating layer directly covers the glass fiber. Therefore, it is important to evaluate the mechanical strength of the soft ultraviolet curable resin constituting the primary coating layer rather than the mechanical strength of the hard ultraviolet curable resin constituting the secondary coating layer. . Therefore, a tensile test in which the test piece made of the soft ultraviolet curable resin is pulled in one direction is performed, and the breaking stress of the soft ultraviolet curable resin in a state where a tensile stress in one direction is applied is obtained.
[0005]
[Problems to be solved by the invention]
Meanwhile, the fiber glass and the secondary coating layer tend to shrink three-dimensionally as the resin temperature of the coating layer decreases from the time when the coating layer is cured to the end of the curing. 3-dimensional contraction of the primary coating layer because it is constrained becomes substantially uniformly applies that 3-dimensional tensile stresses in the primary coating layer by. Here, the time of completion of the curing, in addition to immediately after the completion of the curing, Ru der but also after the environmental temperature is changed from the end cured. Then, what the average tensile stress of the three-dimensional tensile stress acting on the primary coating layer exceeds a predetermined failure stress, said primary coating layer voids or cracks cause small bending of the glass fibers occurs It is.
[0006]
However, as described above, the tensile test of pulling the test piece made of the soft UV curable resin in one direction is performed, and the breaking stress of the soft UV curable resin in a state where a tensile stress in one direction is applied. only seek may be able to evaluate the mechanical strength of the ultraviolet curable resin of the soft in while applying a unidirectional tensile stress, ultraviolet said soft in while applying a three-dimensional tensile stress to the test piece The mechanical strength of the curable resin cannot be evaluated. Therefore, it is difficult to use the polymer material so that voids or cracks do not occur, such as using the soft ultraviolet curable resin so that voids or cracks do not occur in the primary coating layer in the optical fiber. Become.
[0007]
[Means for Solving the Problems]
In the invention according to claim 1, in the material strength evaluation method for evaluating the mechanical strength of the polymer material,
The surface of the thin disk-shaped test sheet made of the polymer material is fixed in close contact with the first constraining surface of the first fixing member, and the back surface of the test sheet is in close contact with the second constraining surface of the second fixing member. By restraining the stress effective region excluding the vicinity of the outer peripheral portion of the entire region of the test sheet so as not to be displaced in the radial direction and the circumferential direction,
While observing the test sheet from the outside of any one of the fixing members configured to be transparent, the first fixing member is tested in the state in which the first and second restraining surfaces are held in parallel. by relatively small displacement a thickness direction of the sheet to the separating direction of separating from the second fixing member, a substantially uniform three-dimensional tensile stress in said stress effective area of the test sheet was added,
And wherein determining the failure stress of the polymer material in the state based on the relative displacement of said first fixing member, was added 3-dimensional tensile stress at the time when voids or cracks occurred in the test sheet To do.
[0008]
Here, the three-dimensional tensile stress refers to a three-dimensional to the applied tensile stress in the thickness direction and the radial direction to the stresses effective area, the height at a stress state that joined the three-dimensional tensile stress The failure stress of the molecular material means an average tensile stress of a three-dimensional tensile stress that acts on the stress effective region of the test sheet when a void or a crack occurs in the test sheet. Further, the term “transparent” includes translucent and colored transparency in addition to completely transparent.
[0009]
The invention described in claim 2 is characterized in that, in addition to the matters specifying the invention described in claim 1, the polymer material is an ultraviolet curable resin.
[0010]
In the invention according to claim 3, in addition to the matters specifying the invention according to claim 1, the polymer material is the same ultraviolet curable resin as the primary coating layer in the optical fiber,
The thickness of the test sheet is the same as the thickness of the primary coating layer in the optical fiber.
[0011]
In the invention according to claim 4, in the material strength test apparatus used for evaluating the mechanical strength of the polymer material,
A first fixing member having a first constraining surface to which the surface of the thin disk-shaped test sheet made of the polymer material is closely attached and fixed;
A second fixing member facing the first fixing member and having a second restraining surface to which the back surface of the test sheet is fixed in close contact;
With the first constraining surface and the second constraining surface being held in parallel, the first fixing member is relative to the separation direction that is away from the second fixing member in the thickness direction of the polymer material. And a micro displacement mechanism that makes micro displacement
At least one of the first fixing member and the second fixing member is configured to be transparent.
[0012]
Here, the term “transparent” includes not only completely transparent but also translucent and colored transparent.
[0013]
According to the invention specific matter of claim 4, the surface of the test sheet is fixed in close contact with the first restraining surface of the first fixing member, and the back surface of the test sheet is fixed to the second fixing member. Closely fixed to the second restraining surface. Thereby, the stress effective area | region except the outer peripheral part vicinity can be restrained so that it may not displace to radial direction and the circumferential direction among all the areas | regions of the said test sheet.
[0014]
Then, while observing the test sheet from the outside of any one of the fixing members, the first displacement surface and the second constraint surface are held in parallel and the first displacement surface is operated by the micro displacement mechanism. The fixing member is slightly displaced relative to the second fixing member in the separating direction. As a result, the test sheet tends to shrink three-dimensionally, but the displacement in the radial and circumferential directions of the stress effective region of the test sheet is constrained by the first constraining surface and the second constraining surface. since, in addition to the thickness direction of the tensile stress to the stress the effective area of the test sheet, can be added to the radial tensile stress, in other words, three-dimensional tensile the stress effective area of the test sheet stress can be added, also, since the thickness of the test sheet is thin, can be added substantially uniformly three-dimensional tensile stress in said stress effective area of the test sheet.
[0015]
Here, the three-dimensional tensile stress refers to a tensile stress that is three-dimensionally applied to the effective stress region in the radial direction and the thickness direction .
[0016]
Furthermore, I'll be relative small displacement amount of the first fixing member is increased, the stress the effective region 3 dimensional tensile stress gradually increased in the test sheet, voids or cracks in the said test sheet . Then, based on the relative displacement of said first fixing member at the time when the test sheet to voids or cracks occur, seek failure stress of the polymeric material in the state plus the three-dimensional tensile stress. This makes it possible to evaluate the mechanical strength of the polymer material in a state of plus three dimensional tensile stress.
[0017]
Here, the polymeric material in a state of plus three dimensional tensile stress The failure stress, the voids or cracks in the test sheets is three-dimensional tensile stress acting on the stress effective area of the test sheet when it occurs The average tensile stress.
[0018]
The invention according to claim 5 is characterized in that, in addition to the matters specifying the invention according to claim 4, each of the first fixing member and the second fixing member is made of glass.
[0019]
According to the invention specific matter of the fifth aspect, in addition to the invention specific matter of the fourth aspect, since the first fixing member and the second fixing member are made of glass, respectively, the first constraint The fixed state in which the test sheet is in close contact with the surface and the second constraining surface is stabilized.
[0020]
In the invention according to claim 6, in addition to the matters specifying the invention according to claim 4 or claim 5, an enlargement for observing the test sheet from the outside of any one of the fixing members It is characterized by comprising a mirror.
[0021]
According to the invention specific matter of claim 6, in addition to the action of the invention specific matter of claim 4 or 5, the test sheet can be magnified and observed by the magnifier.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a schematic perspective view of a material strength test apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining a material strength evaluation method according to an embodiment of the present invention. FIG. 3 is a top view of the test sheet in FIG.
[0024]
Here, “up” refers to the top in FIG. 1 and FIG. 2 and the table toward the paper surface in FIG. 3, and “lower” refers to the bottom in FIG. 1 and FIG. 2, and back to the paper surface in FIG. I mean.
[0025]
As shown in FIG. 1, a material strength test apparatus 1 according to an embodiment of the present invention is an apparatus used for evaluating the mechanical strength of a soft ultraviolet curable resin (one of polymer materials). The rectangular first holder 3 and the rectangular second holder 5 are provided so as to face each other vertically.
[0026]
In order to support the first holder 3 so as to be movable in the vertical direction with respect to the second holder 5, the second holder 5 is provided with a plurality of fixing protrusions 7. Guide pins 9 are erected, and the first holder 3 is provided with a plurality of movable protrusions 11 that are guided by the corresponding guide pins 9 so as to be movable in the vertical direction.
[0027]
A circular first fixing member 13 is provided at the center of the first holder 3, and the surface of the very thin disk-shaped test sheet S is fixed in close contact by an adhesive action. The first constraining surface 13f (see FIG. 2). In addition, a circular second fixing member 15 is provided at the center of the second holder 5 so as to face the first fixing member 13 in the vertical direction, and the back surface of the test sheet S is bonded to the second fixing member 15. It has the 2nd constraining surface 15f (refer FIG. 2) fixed closely by an effect | action.
[0028]
Here, the first fixing member 13 and the second fixing member 15 are each made of transparent glass. The transparent glass includes translucent glass and colored transparent glass in addition to completely transparent glass. Further, instead of configuring the first fixing member and the second fixing member to be transparent, any one of the first fixing member 13 and the second fixing member 15 may be configured to be transparent.
[0029]
The test sheet S is made of the same soft ultraviolet curable resin (an example of a polymer material) as the soft ultraviolet curable resin constituting the primary coating layer in an optical fiber (not shown). The thickness of is the same as the thickness of the primary coating layer in the optical fiber. In addition, the fixing method of the test sheet S is not limited to the above-described adhesive action, and for example, a fluid UV curable resin is filled between the first fixing member 13 and the second fixing member 15 so as to be fluid. The ultraviolet curable resin may be fixed by curing with ultraviolet irradiation.
[0030]
A mounting protrusion 17 is provided on the first holder 3, and a contact protrusion 19 is provided on the second holder 5 so as to face the mounting protrusion 17 in the vertical direction. In order to slightly displace the first fixing member 13 in the upward direction (in other words, in the direction of the thickness of the test sheet S and away from the second fixing member 15), the mounting protrusion 17 rotates the knob 21. A micrometer head 25 having a spindle 23 that can be slightly expanded and contracted in the vertical direction by an operation is provided, and a tip end portion (lower end portion) of the spindle 23 can be brought into contact with a contact protrusion.
[0031]
Therefore, the first fixing member 13 is integrated with the first holder 3 by bringing the tip of the spindle 23 into contact with the contact protrusion 19 and extending the spindle 23 by a small amount by rotating the knob 21. Can be slightly displaced upward.
At this time, since the plurality of movable protrusions 11 are guided by the plurality of guide pins 9 and displaced upward, the first constraining surface 13f and the second constraining surface 15f are held in parallel.
[0032]
The mechanism for minutely displacing the first fixing member 13 is not limited to the micrometer head 25, and an appropriate minute displacement mechanism can be used. Further, instead of causing the first fixing member 13 to be slightly displaced upward, the second fixing member 15 may be slightly displaced downward, or the first fixing member 13 and the second fixing member 15 may be separated from each other. You may make it carry out a minute displacement to a direction.
[0033]
Above the first holder 3, a microscope 27 for observing the test sheet S from the upper outside of the first fixing member 13 is provided via a support arm (not shown). The microscope 27 can change its posture, position, etc. through an appropriate mechanism.
[0034]
Next, the material strength evaluation method according to the embodiment of the present invention will be described including its operation.
[0035]
As shown in FIG. 2, the surface of the test sheet S is fixed in close contact with the first restraining surface 13 f of the first fixing member 13 by an adhesive action, and the back surface of the test sheet S is fixed to the second restraining surface of the second fixing member 15. The surface 15f is adhered and fixed by an adhesive action (see FIG. 2A). Thereby, the stress effective area | region Sa except the outer peripheral part vicinity can be restrained so that it may not displace to radial direction and the circumferential direction among the all areas | domains of the test sheet S. In addition, since the 1st fixing member 13 and the 2nd fixing member 15 are each comprised with glass, the fixed state which the test sheet S contact | adhered with respect to the 1st restraint surface 13f and the 2nd restraint surface 15f is stabilized.
[0036]
Here, when the stress effective region Sa is made clearer, in the embodiment of the present invention, when the first fixing member 13 is slightly displaced upward, an R-shaped dent Sd is formed on the outer peripheral surface of the test sheet S. However, the stress effective area Sa is an area excluding the vicinity of the outer peripheral portion of the entire area of the test sheet S, and means an area where the dent Sd does not occur.
[0037]
Then, while magnifying and observing the test sheet S from the outside of the first fixing member 13 with the microscope 27, the tip portion of the spindle 23 is held in a state where the first restraining surface 13f and the second restraining surface 15f are held in parallel. Is brought into contact with the contact protrusion 19, and the knob 21 is rotated to slightly displace the spindle 23 downward, and the first fixing member 13 is slightly displaced upward (see FIG. 2B). As a result, the test sheet S tends to shrink three-dimensionally, but the radial and circumferential displacements of the stress effective region Sa of the test sheet S are constrained by the first constraining surface 13f and the second constraining surface 15f. since, in addition to the tensile stress σz of the thickness direction stress effective area Sa of the test sheets S (vertical direction in FIG. 2), it said radial tensile stress sigma r can impart, in other words, the test 3-dimensional tensile stress to the stress the effective area Sa of the sheet S r, σ z) can impart. Further, since it is extremely thin thickness of the test sheet S, it is possible to state that adding a substantially uniform three-dimensional tensile stress stress effective area Sa of the test sheets S.
[0038]
Furthermore, by the minute displacement of the first fixing member 13 is increased, becomes gradually higher three-dimensional tensile stress of stress effective area Sa of the test sheet S, the voids V or crack test sheets S (not shown) Occurs (see FIG. 2 (c)). Then, based on the displacement amount of the first fixing member 13 at the time when the void V or cracked in the test sheet S, determining the failure stress of the ultraviolet curable resin of the soft in while applying a three-dimensional tensile stress. This makes it possible to evaluate the mechanical strength of the three-dimensional tension the soft in a state in which stressed the ultraviolet curable resin (an example of a polymeric material).
[0039]
Here, three-dimensional tensile stress with respect to the displacement amount of the first fixing member 13 may be determined using an analysis such as the finite element method, the displacement amount of the first fixing member 13 in the stress effective area Sa of the test sheets S linear relationship of between the and 3-dimensional tensile stress. Further, the failure stress of the ultraviolet curable resin of the soft in while applying a three-dimensional tensile stress, a three-dimensional acting stress effective area Sa of the test sheet S when the void V or cracked in the test sheet S It means the average tensile stress.
[0040]
According to the above-described, embodiments of the present invention, ultraviolet in a state where seeking failure stress of the ultraviolet curable resin of the soft in while applying a three-dimensional anisotropic tensile stress, was added 3-dimensional tensile stress Since the mechanical strength of the curable resin can be evaluated, the soft ultraviolet curable resin can be easily used so that the void V or crack does not occur in the primary coating layer of the optical fiber, and the soft ultraviolet The curable resin can be effectively used in various fields.
[0041]
Further, the test sheet S is made of the same soft ultraviolet curable resin as the soft ultraviolet curable resin constituting the primary coating layer in the optical fiber, and the thickness of the test sheet S in the optical fiber is the same as that in the optical fiber. Since the thickness is the same as the thickness of the primary coating layer, the test sheet S can be in substantially the same state as the primary coating layer in the optical fiber, and the soft UV curing that constitutes the primary coating layer in the optical fiber. The mechanical strength of the mold resin can be accurately evaluated.
[0042]
Furthermore, since the fixed state in which the test sheet S is in close contact with the first constraining surface 13f and the second constraining surface 15f is stabilized, the three-dimensional tensile stress r , σ z ) is further increased in the stress effective region Sa of the test sheet S. are equalized, the mechanical strength of the ultraviolet curable resin of the soft in while applying a three-dimensional tensile stress can be accurately evaluated.
[0043]
Further, since it observe an enlarged test sheets S by microscopic 27, test sheets voids V or cracks occurring in S can easily find, in the ultraviolet curable resin of the soft in 3-dimensional tensile stress state corruption Stress can be determined accurately.
[0044]
The present invention is not limited to the description of the embodiment of the invention described above. For example, the test sheet is made of another polymer material other than the ultraviolet curable resin, so that Appropriate changes can be made, such as evaluating the mechanical strength of the material.
[0045]
【Example】
Embodiments according to the present invention will be briefly described below.
[0046]
The outer diameter and the outer diameter of the second fixing member 15 and 100mm, Young's modulus 1 MPa, thickness 100 [mu] m, substantially uniformly three-dimensional tensile stress in the stress effective area Sa of the test sheet S outside diameter 100mm of the first fixing member 13 ( σ r , σ z ) .
[0047]
Here, in advance, by analysis by the finite element method, it is required from the center of the radius 45mm area of the test sheet S is stress effective area Sa that acts substantially uniform three-dimensional tensile stress, further, the first fixing member When 13 is slightly displaced to 50 μm in 5 μm steps, the relationship between the three-dimensional tensile stress acting on the stress effective region Sa of the test sheet S and the displacement amount of the first fixing member 13 is the displacement of the first fixing member 13. 3-dimensional tensile stress in an amount 50 [mu] m (sigma r is 1.9 MPa, sigma z is 2.3 MPa) are linear relationship is determined such that.
[0048]
Under the condition, as described above, the first fixing member 13 is finely displaced upward, substantially uniformly three-dimensional tensile stress (σr, σz) in stress effective region Sa test sheets S Addition of void V is generated in the stress effective area Sa of the test sheet S when the displacement amount 30μm of the first fixing member 13, three-dimensional tensile stress (sigma r acting on stress effective area Sa of the test sheet S at this time is 1 The average tensile stress of 1.2 MPa ( .1 MPa , σ z is 1.4 MPa) can be used as the failure stress of the soft UV-curable resin.
[0049]
【The invention's effect】
According to claim 1, the invention according to any of claims one of claims 6, seeking failure stress of the polymeric material in the state plus the three-dimensional tensile stress, a 3-order tensile stress Since the mechanical strength of the polymer material in an added state can be evaluated, the polymer material can be easily used so that voids or cracks do not occur, and the polymer material can be effectively used in various fields. be able to.
[0050]
According to a third aspect of the present invention, the polymer material is the same soft ultraviolet curable resin as the primary coating layer in the optical fiber, and the thickness of the test sheet is set to the primary coating layer in the optical fiber. Therefore, the test sheet can be brought into substantially the same state as the primary coating layer in the optical fiber, and the soft ultraviolet curable resin constituting the primary coating layer in the optical fiber can be formed. The mechanical strength can be accurately evaluated.
[0051]
In the invention described in claim 5, since the fixing state of close contact of the test sheet relative to the first constraining surface and said second constraining surface is stabilized, 3-dimensional tensile in the stress effective area of the test sheet stress is more uniform, it is possible to accurately evaluate the mechanical strength of the polymer material in a state of plus three dimensional tensile stress.
[0052]
In the invention described in claim 6, since the observable expanding the test sheets by the magnifying glass, can find a void or crack generated in the test sheet easily, the 3-dimensional tensile stress The breaking stress of the polymer material in the added state can be accurately obtained.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a material strength test apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining a material strength evaluation method according to an embodiment of the present invention.
3 is a top view of the test sheet in FIG. 2 (b).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Material strength test apparatus 13 1st fixing member 13f 1st restraint surface 15 2nd fixing member 15f 2nd restraint surface 23 Spindle 25 Micrometer head 27 Microscope

Claims (6)

高分子材料の機械的強度を評価する材料強度評価方法において、
前記高分子材料からなる薄い円板状の試験シートの表面を第1固定部材の第1拘束面に密着して固定すると共に、前記試験シートの裏面を第2固定部材の第2拘束面に密着して固定することにより、前記試験シートの全領域のうち外周部付近を除く応力有効領域を径方向,周方向へ変位しないように拘束し、
透明に構成されたいずれかの固定部材の外側から前記試験シートを観察しつつ、前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記第1固定部材を前記試験シートの厚み方向であって前記第2固定部材に対して離反する離反方向へ相対的に微小変位させることにより、前記試験シートの前記応力有効領域において略均一に3次元引張応力を加え、
前記試験シートにボイド又は亀裂が生じたときにおける前記第1固定部材の相対的な変位量に基づいて、3次元引張応力を加えた状態における前記高分子材料の破損応力を求めることを特徴とする材料強度評価方法。
In a material strength evaluation method for evaluating the mechanical strength of a polymer material,
The surface of the thin disk-shaped test sheet made of the polymer material is fixed in close contact with the first constraining surface of the first fixing member, and the back surface of the test sheet is in close contact with the second constraining surface of the second fixing member. By restraining the stress effective region excluding the vicinity of the outer peripheral portion of the entire region of the test sheet so as not to be displaced in the radial direction and the circumferential direction,
While observing the test sheet from the outside of any one of the fixing members configured to be transparent, the first fixing member is tested in the state in which the first and second restraining surfaces are held in parallel. by relatively small displacement a thickness direction of the sheet to the separating direction of separating from the second fixing member, a substantially uniform three-dimensional tensile stress in said stress effective area of the test sheet was added,
And wherein determining the failure stress of the polymer material in the state based on the relative displacement of said first fixing member, was added 3-dimensional tensile stress at the time when voids or cracks occurred in the test sheet Material strength evaluation method.
前記高分子材料は紫外線硬化型樹脂であることを特徴とする請求項1に記載の材料強度評価方法。  The material strength evaluation method according to claim 1, wherein the polymer material is an ultraviolet curable resin. 前記高分子材料は前記光ファイバにおける一次被覆層と同じ紫外線硬化型樹脂であって、
前記試験シートの厚みを前記光ファイバにおける前記一次被覆層の厚みと同じにしたことを特徴とする請求項1に記載の材料強度評価方法。
The polymer material is the same ultraviolet curable resin as the primary coating layer in the optical fiber,
The material strength evaluation method according to claim 1, wherein the thickness of the test sheet is the same as the thickness of the primary coating layer in the optical fiber.
高分子材料の機械的強度を評価するために用いられる材料強度試験装置において、
前記高分子材料からなる薄い円板状の試験シートの表面が密着して固定される第1拘束面を有した第1固定部材と、
前記第1固定部材に対向してあって、前記試験シートの裏面が密着して固定される第2拘束面を有した第2固定部材と、
前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記第1固定部材を前記高分子材料の厚み方向であって前記第2固定部材に対して離反する離反方向へ相対的に微小変位させる微小変位機構とを備えてあって、
前記第1固定部材と前記第2固定部材の少なくともいずれかの固定部材を透明に構成してなることを特徴とする材料強度試験装置。
In a material strength test apparatus used to evaluate the mechanical strength of a polymer material,
A first fixing member having a first constraining surface to which the surface of the thin disk-shaped test sheet made of the polymer material is closely attached and fixed;
A second fixing member facing the first fixing member and having a second restraining surface to which the back surface of the test sheet is fixed in close contact;
Under the state where the first restraining surface and the second restraining surface are held in parallel, the first fixing member is moved away from the second fixing member in the thickness direction of the polymer material. A relatively small displacement mechanism for relatively small displacement,
A material strength test apparatus, wherein at least one of the first fixing member and the second fixing member is transparent.
前記第1固定部材及び前記第2固定部材をガラスによりそれぞれ構成してなることを特徴とする請求項4に記載の材料強度試験装置。  The material strength test apparatus according to claim 4, wherein the first fixing member and the second fixing member are made of glass. 前記いずれかの固定部材の外側から前記試験シートを拡大して観察するための拡大鏡を備えてなることを特徴とする請求項4又は請求項5に記載の材料強度試験装置。  6. The material strength test apparatus according to claim 4, further comprising a magnifying mirror for magnifying and observing the test sheet from the outside of any one of the fixing members.
JP2002167129A 2002-06-07 2002-06-07 Material strength evaluation method and material strength test apparatus Expired - Lifetime JP3782037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167129A JP3782037B2 (en) 2002-06-07 2002-06-07 Material strength evaluation method and material strength test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167129A JP3782037B2 (en) 2002-06-07 2002-06-07 Material strength evaluation method and material strength test apparatus

Publications (2)

Publication Number Publication Date
JP2004012332A JP2004012332A (en) 2004-01-15
JP3782037B2 true JP3782037B2 (en) 2006-06-07

Family

ID=30434468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167129A Expired - Lifetime JP3782037B2 (en) 2002-06-07 2002-06-07 Material strength evaluation method and material strength test apparatus

Country Status (1)

Country Link
JP (1) JP3782037B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879272B (en) * 2012-09-29 2014-09-24 长安大学 Method for evaluating damage self-healing capacity of asphalt mortar
CN105300801B (en) * 2014-08-02 2017-11-28 同济大学 The selfreparing effect evaluation method of self-repairing cement-base material
CN109187186B (en) * 2018-09-21 2019-11-08 中国石油大学(华东) A kind of test method and system of polyethylene effective stress under ideal nondestructive state
KR102545151B1 (en) * 2022-12-26 2023-06-20 목포대학교산학협력단 strength test device for insulation panels of extremely low temperature cargo tank

Also Published As

Publication number Publication date
JP2004012332A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
Röhrig et al. 3D direct laser writing of nano‐and microstructured hierarchical gecko‐mimicking surfaces
JP2020170174A5 (en)
JP2011508253A (en) Optical element manufacturing
CN102625951A (en) Debonding a glass substrate from carrier using ultrasonic wave
JP3782037B2 (en) Material strength evaluation method and material strength test apparatus
JPWO2007094365A1 (en) Measuring probe, sample surface measuring apparatus, and sample surface measuring method
Madani-Grasset et al. Femtosecond laser micromachining of fused silica molds
JP2020160460A5 (en)
Llobera et al. SU-8 optical accelerometers
JP2020160462A5 (en)
Tan et al. Single‐Step‐Lithography Micro‐Stepper Based on Frictional Contact and Chiral Metamaterial
Horsley et al. Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch
Wee et al. Preferential directional coupling to ultrasonic sensor using adhesive tape
US6546182B2 (en) Angled fiber termination and methods of making the same
Namazu et al. Tension–Torsion Combined Loading Test Equipment for a Minute Beam Specimen
CN110346214A (en) A kind of experiment loading device
Tian et al. Development of a novel 3-DOF suspension mechanism for multi-function stylus profiling systems
Liu et al. Gecko-inspired self-adhesive packaging for strain-free temperature sensing based on optical fibre Bragg gratings
JP2004059420A (en) Optical fiber with primary coating layer and secondary coating layer, optical fiber cable and their manufacturing methods
Chou et al. Investigation of mechanics properties of an awl-shaped serpentine microspring for in-plane displacement with low spring constant-to-layout area
Ebraert et al. Design and prototyping of self-centering optical single-mode fiber alignment structures
CN112067466A (en) In-situ analysis device and method for in-plane shear matrix cracks of ceramic matrix composite
Bschaden Developing Design Guidelines for Improved Gecko Inspired Dry Adhesive Performance
Smith et al. Development and characterization of a precisely adjustable fiber polishing arm
Civitani et al. Thin full shells oriented to the Lynx x-ray telescope: from design to breadboard realization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7