JP3781956B2 - Pulse wave detector - Google Patents

Pulse wave detector Download PDF

Info

Publication number
JP3781956B2
JP3781956B2 JP2000257764A JP2000257764A JP3781956B2 JP 3781956 B2 JP3781956 B2 JP 3781956B2 JP 2000257764 A JP2000257764 A JP 2000257764A JP 2000257764 A JP2000257764 A JP 2000257764A JP 3781956 B2 JP3781956 B2 JP 3781956B2
Authority
JP
Japan
Prior art keywords
pulse wave
acceleration pulse
variation
variation index
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000257764A
Other languages
Japanese (ja)
Other versions
JP2002065620A5 (en
JP2002065620A (en
Inventor
摩 信 一 播
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanita Corp
Original Assignee
Tanita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanita Corp filed Critical Tanita Corp
Priority to JP2000257764A priority Critical patent/JP3781956B2/en
Publication of JP2002065620A publication Critical patent/JP2002065620A/en
Publication of JP2002065620A5 publication Critical patent/JP2002065620A5/ja
Application granted granted Critical
Publication of JP3781956B2 publication Critical patent/JP3781956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医療分野や健康管理分野などで医用電子機器として使用される脈波検出装置に関する。
【0002】
【従来技術】
脈波とは、心臓の収縮により血流が大動脈に押し出されたときに血管内に発生する圧力変化が抹消方向に伝達するときの波動のことである。
【0003】
従来の脈波検出装置は、光電式や圧電式等の脈波センサから脈波を測定開始から一定の時間サンプリングをして、測定結果として脈波を加速度脈波の加齢値(APGindex)などの波形として表示するものであった。
【0004】
【発明が解決しようとする課題】
心臓の拍動間隔は常に一定であるというわけではなく、変化することが知られている。そして、この心臓の拍動間隔に対応して、本来変化しない脈波も約10秒前後の周期で変化してしまうことがわかっている。
【0005】
このために、従来の脈波計は、脈波が周期変化することに関係なくサンプリングされるため、変化する周期のどの帯域の脈波を捕らえるかにより、測定結果が測定のたびに変動しばらつきが生じる、という問題があった。また、測定結果に対するばらつきを小さなものにするためには、サンプリング時間を長く取らなければならないという問題があった。
【0006】
そこで、本発明の目的は、上記従来技術の有する問題を解消し、短い測定時間で、ばらつきの小さい脈波を高精度に測定可能な脈波検出装置を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の脈波検出装置は、所定サンプリング時間でサンプリングした一連の複数の基本脈波を2回微分し一連の複数の加速度脈波を求める加速度脈波検出手段と、前記加速度脈波検出手段によって検出した加速度脈波から、前記複数の基本脈波の繰返し周期のばらつき程度を示すばらつき指標を算出する指標算出手段と、前記ばらつき指標に前記繰返し周期のばらつきが加速度脈波加齢値に及ぼす影響度を補正する補正係数を予め対応させて形成した補正データと、前記加速度脈波検出手段で求めた一連の複数の加速度脈波に対し前記指標算出手段で前記ばらつき指標を求め、求めた前記ばらつき指標に対応する前記補正係数を前記補正データから抽出する補正係数抽出手段と、前記加速度脈波検出手段で求めた一連の複数の加速度脈波に対し仮の加速度脈波加齢値を算出するとともに前記仮の加速度脈波加齢値を前記補正データから抽出した前記補正係数で補正し加速度脈波加齢値を求める加速度脈波算出手段と、を備えることを特徴とする。
【0008】
また、前記ばらつき指標は第1のばらつき指標と第2のばらつき指標とから構成されており、前記補正データの前記補正係数は前記第1のばらつき指標と前記第2のばらつき指標とを行列として特定され、前記第1のばらつき指標は前記複数の基本脈波の繰返し周期の平均値であることを特徴とする。
【0009】
また、前記第2のばらつき指標は、繰返し周期の標準偏差、平方和、分散、範囲、変動係数のいずれかであることを特徴とする。
【0010】
また、前記加速度脈波検出手段で検出した前記一連の複数の加速度脈波の周波数分布を求める周波数分析手段をさらに備え、前記ばらつき指標は、加速度脈波の周波数分布に係る量であることを特徴とする。
【0011】
また、前記周波数分布に係る量は、加速度脈波の周波数分布における低周波帯域面積と高周波帯域面積との面積比であることを特徴とする。
【0012】
上述の発明において、心臓の拍動間隔の変動が加速度脈波加齢値の測定に及ぼす影響を除去するために、加速度脈波の繰返し周期のばらつきの程度を示すばらつき指標を用いる。そして、加速度脈波検出手段によって加速度脈波を検出する毎に加速度脈波の繰返し周期のばらつき指標を求め、このばらつき指標に対応する補正係数を予め形成されている補正データを参照して補正係数抽出手段によって抽出し、加速度脈波算出手段によって仮の加速度脈波加齢値を算出するとともに仮の加速度脈波加齢値を抽出した補正係数で補正する。これによって、心臓の拍動間隔の変動の影響を受けることなく加速度脈波加齢値を測定することができる。
【0013】
【発明の実施の形態】
以下に図面を参照して、本発明に係る脈波検出装置の実施の形態について説明する。
【0014】
図2に示すように、脈波検出装置は、装置本体1と、センサ部3と、装置本体1とセンサ部3とを接続する導線4とを有する。センサ部3は、サック状に形成され手の指5に装着して使用される。装置本体1の表面部には、データ入力モードの切り替えや電源投入等のためのスイッチ部6と計測結果等の表示をする表示部7とが設けられている。なお、図2に示す例は、一例であり、これ以外の他の構成でもよく、例えば、センサ部3を耳たぶに装着し装置本体1を手首に装着するようなタイプでもよく、また、センサ部3を血圧計のようなカフで腕に巻くようなタイプでもよい。
【0015】
図1に、脈波検出装置のブロック図を示す。脈波検出装置は、所定サンプリング時間でサンプリングした一連の複数の基本脈波を2回微分し一連の複数の加速度脈波を求める加速度脈波検出手段10を備え、加速度脈波検出手段10は、LED等の発光部とフォトダイオード又はフォトトランジスタ等からなる受光部を備え心臓の拍動による血流量の増減を光の透過量や散乱光量の変化により一連の基本脈波を検出するセンサ部3と、センサ部3からのアナログ信号を増幅する増幅回路22と、増幅回路22からの基本脈波のアナログ信号を2回微分して加速度脈波信号に変換する2段に接続された微分回路23,24と、微分回路24からのアナログ信号をデジタル信号に変換するA/D変換回路25を有する。図8(a)に1個の基本脈波101の波形の一例を示し、図8(b)に基本脈波101を2回微分して得られた加速度脈波102の波形を示す。加速度脈波に対し、後述するように基線Lから変曲点までの大きさa,b,c,dが算出され、加速度脈波加齢値が算出される。
【0016】
A/D変換回路25では、所定サンプリング時間、例えば数10秒間に渡ってサンプリングした複数の加速度脈波から構成される図4に示すような加速度脈波信号が得られる。
【0017】
脈波検出装置は、また、加速度脈波検出手段10で検出した加速度脈波に対し各種制御処理をするCPU11と、データを記憶する記憶部12とを有する。
【0018】
CPU11は、指標算出手段26と、補正係数抽出手段17と、加速度脈波算出手段19とを有する。記憶部12は、計測データ記憶部13と関連データ記憶部15とを有する。
【0019】
指標算出手段26は、加速度脈波検出手段10によって検出した加速度脈波から、複数の基本脈波あるいは加速度脈波の繰返し周期のばらつき程度を示すばらつき指標を算出する。ここで、複数の基本脈波あるいは加速度脈波の繰返し周期は図4に示すRで表される。心臓の拍動間隔は常に一定であるというわけではなく、繰返し周期Rは変化することが知られている。繰返し周期の第1のばらつき指標として、繰返し周期の平均値Rバーが採用され、また、第2のばらつき指標としては、例えば、繰返し周期の標準偏差σが採用される。繰返し周期の第1のばらつき指標及び第2のばらつき指標のデータは、計測毎に計測データ記憶部13に記憶される。
【0020】
また、計測データ記憶部13には、加速度脈波検出手段10によって検出された加速度脈波から加速度脈波加齢値を算出するのに要するa,b,c,d等の計測要素のデータも記憶される。
【0021】
【数1】

Figure 0003781956
具体的には、指標算出手段26は、サンプリングした複数の加速度脈波からなる加速度脈波信号について、図4に示すように基線Lからの各変曲点までの大きさ(a1〜d1、a2〜d2、a3〜d3、an〜dn)を求め、各加速度脈波派の同じポイントの変曲点の大きさ同士(a1〜an、b1〜bn、c1〜cn、d1〜dn)を平均した値aバー、bバー、cバー、dバーを式(3)乃至(6)に従って求め、また、サンプリングした複数の加速度脈波のピーク間隔の平均時間Rバーを式(1)に従って求め、サンプリングした複数の加速度脈波の脈波間隔(繰返し周期R)の標準偏差σを式(2)に従って求める。
【0022】
関連データ記憶部15には、図3に示すように補正データが記憶されている。補正データは、第1のばらつき指標と第2のばらつき指標に、繰返し周期のばらつきが加速度脈波加齢値に及ぼす影響度を補正する補正係数を予め対応させて形成されている。第1のばらつき指標としては、例えば繰返し周期の平均値(Rバーn)が取られ、第2のばらつき指標としては例えば繰返し周期の標準偏差(σm)が取られる。
【0023】
繰返し周期のばらつきが加速度脈波加齢値に及ぼす影響度は、予め実験データあるいは経験データを収集して得られ、繰返し周期にばらつきがないとした場合のあるべき加速度脈波加齢値を想定して補正データが定められる。図3において、行部は、第2のばらつき指標の一例としての繰返し周期の標準偏差(σm)を示し、列部は第1のばらつき指標である繰返し周期の平均値(Rバーn)を示し、行列(σm、Rバーn)によって補正係数(Smn)が定まる。
【0024】
なお、ここでは、第2のばらつき指標として標準偏差(σm)をとった場合を示したが、標準偏差に限らず、例えば、繰返し周期の平方和、分散、範囲、変動係数等を採用してもよい。
【0025】
補正係数抽出手段17は、指標算出手段26で求めた繰返し周期の平均値及び標準偏差に対応する補正係数Sを、関連データ記憶部15に記憶された補正データから抽出する。
【0026】
加速度脈波算出手段19は、加速度脈波検出手段10で求めた一連の複数の加速度脈波に対し式(7)に従い、仮の加速度脈波加齢値(APGindexバー)を算出し、仮の加速度脈波加齢値を補正係数抽出手段17によって抽出した補正係数Sで乗算し加速度脈波加齢値(APGindex’)を求める。ここで、仮の加速度脈波加齢値とは、補正データによって補正する前の加速度脈波加齢値をいう。
【0027】
以上、本実施形態によれば、予め関連データ記憶部15に補正データを記憶しておき、加速度脈波検出手段10によって加速度脈波を検出する毎に繰返し周期の平均値及び標準偏差を算出し、この算出結果に対応する補正係数Sを補正係数抽出手段17によって抽出し、加速度脈波算出手段19によって仮の加速度脈波加齢値(APGindexバー)を算出するとともに仮の加速度脈波加齢値を補正係数Sで補正するようにしたので、心臓の拍動間隔の変動の影響を受けることなく加速度脈波加齢値を測定することができる。
【0028】
また、心臓の拍動間隔の変動の影響を小さくするためにサンプリング時間を長く取る必要がなくなり、測定時間を短くすることができる。
【0029】
次に、図5乃至図7を参照して、本発明の第2の実施形態について説明する。
図5に、本実施形態の脈波検出装置のブロック図を示す。図1に示す脈波検出装置と同一部材には同一の符号をつけ説明を省略し、異なる部分についてのみ説明する。
【0030】
図5に示すように、CPU11には、加速度脈波検出手段10におけるA/D変換回路25で検出した加速度脈波を高速フーリェ変換(FFT)する周波数分析手段28を備えている。周波数分析手段28により、図6に示すような周波数分布データが得られる。
【0031】
指標算出手段26は、周波数分析手段28により得た周波数分布データを図6に示すように、二つの低周波帯域LH(0.04〜0.14Hz)と高周波帯域HF(0.14〜0.50Hz)とを設け、低周波帯域LHと高周波帯域HFの面積比LF/HFを求める。そして、繰返し周期のばらつき指標として面積比LF/HFを採用する。
【0032】
なお、繰返し周期のばらつき指標としては、面積比LF/HFに限らず、繰返し周期のばらつきの指標となるものであれば、他の加速度脈波の周波数分布に係る量であってもよい。例えば、加速度脈波の周波数分布を3つの低周波帯域LH、中周波帯域MF及び高周波帯域HFとに分け、各々の面積をLF、MF及びHFとしたときに、(2LF+3MF+HF)/6をばらつき指標とし、図7の横軸にとってもよい。
【0033】
関連データ記憶部15には、図7に示すように補正データが記憶されている。図7に示す補正データは、横軸に取られた面積比LF/HFと、縦軸に取られた補正係数Sで定まる直線状のグラフによって与えられる。
【0034】
次に、本実施形態の作用について説明する。
指標算出手段26は、加速度脈波検出手段10で検出した加速度脈波に対し面積比LF/HFを算出する。補正係数抽出手段17は、指標算出手段26で算出した面積比LF/HFに対応する補正係数Sを、関連データ記憶部15に記憶された図7に示す補正データから抽出する。加速度脈波算出手段19は、加速度脈波検出手段10で求めた一連の複数の加速度脈波に対し式(7)に従い、仮の加速度脈波加齢値(APGindexバー)を算出し、仮の加速度脈波加齢値を補正係数抽出手段17によって抽出した補正係数Sで乗算し加速度脈波加齢値(APGindex’)を求める。
【0035】
本実施の形態によれば、心臓の拍動間隔の変動の影響を受けることなく加速度脈波加齢値を測定することができる。また、心臓の拍動間隔の変動の影響を小さくするためにサンプリング時間を長く取る必要がなくなり、測定時間を短くすることができる。
【0036】
【発明の効果】
以上説明したように、本発明の構成によれば、心臓の拍動間隔の変動の影響を受けることなく高精度な加速度脈波加齢値の測定を短時間で可能にする脈波検出装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る脈波検出装置の一実施形態の概略構成を示すブロック図。
【図2】本発明に係る脈波検出装置の装置構成の概略構成を示す図。
【図3】第1のばらつき指標としての繰返し周期の平均値と第2のばらつき指標としての標準偏差との行列で指定される補正データを示す図。
【図4】サンプリングされた一連の複数の加速度脈波を示す波形図。
【図5】本発明に係る脈波検出装置の他の実施形態の概略構成を示すブロック図。
【図6】FFT処理によって得られた周波数スペクトル分布を示す図。
【図7】ばらつき指標として、加速度脈波の周波数分布における低周波帯域面積と高周波帯域面積との面積比を採用した場合の補正データを示す図。
【図8】基本脈波の信号波形を示す図(a)と、(a)に示す信号波形を2回微分して得られた加速度脈波の信号波形を示す図(b)。
【符号の説明】
1 装置本体
3 センサ部
10 加速度脈波検出手段
11 CPU
13 計測データ記憶部
15 関連データ記憶部(補正データ)
17 補正係数抽出手段
19 加速度脈波算出手段
26 指標算出手段
28 周波数分析手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulse wave detection device used as a medical electronic device in the medical field or health care field.
[0002]
[Prior art]
A pulse wave is a wave when a pressure change generated in a blood vessel is transmitted in a peripheral direction when blood flow is pushed out to the aorta due to contraction of the heart.
[0003]
A conventional pulse wave detection device samples a pulse wave from a photoelectric or piezoelectric pulse wave sensor for a certain period of time from the start of measurement, and measures the pulse wave as an aging value (APGindex) of an acceleration pulse wave as a measurement result. It was displayed as a waveform.
[0004]
[Problems to be solved by the invention]
It is known that the heart beat interval is not always constant but varies. It is known that the pulse wave that does not change originally changes in a cycle of about 10 seconds corresponding to the heart beat interval.
[0005]
For this reason, the conventional sphygmograph is sampled regardless of whether the pulse wave changes periodically, so the measurement results fluctuate and vary from measurement to measurement depending on which band of the changing pulse is captured. There was a problem that occurred. In addition, in order to reduce the variation with respect to the measurement result, there is a problem that a long sampling time must be taken.
[0006]
Accordingly, an object of the present invention is to provide a pulse wave detection device capable of solving the above-described problems of the prior art and measuring pulse waves with small variations with high accuracy in a short measurement time.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the pulse wave detection device of the present invention comprises an acceleration pulse wave detection means for differentiating a series of a plurality of basic pulse waves sampled at a predetermined sampling time twice to obtain a series of acceleration pulse waves. , An index calculating means for calculating a variation index indicating the degree of variation in the repetition period of the plurality of basic pulse waves from the acceleration pulse wave detected by the acceleration pulse wave detecting means, and the variation in the repetition period is accelerated in the variation index. Correction data formed in advance by corresponding correction coefficients for correcting the degree of influence on the pulse wave aging value and a series of a plurality of acceleration pulse waves obtained by the acceleration pulse wave detection means by the indicator calculation means An index is obtained, and the correction coefficient extraction means for extracting the correction coefficient corresponding to the obtained variation index from the correction data and the acceleration pulse wave detection means A temporary acceleration pulse wave aging value is calculated with respect to a plurality of acceleration pulse waves, and the temporary acceleration pulse wave aging value is corrected with the correction coefficient extracted from the correction data to obtain an acceleration pulse wave aging value. And an acceleration pulse wave calculating means to be obtained.
[0008]
In addition, the variation index includes a first variation index and a second variation index, and the correction coefficient of the correction data specifies the first variation index and the second variation index as a matrix. The first variation index is an average value of repetition cycles of the plurality of basic pulse waves.
[0009]
Further, the second variation index is any one of a standard deviation, a sum of squares, a variance, a range, and a variation coefficient of a repetition period.
[0010]
The apparatus further comprises frequency analysis means for obtaining a frequency distribution of the series of acceleration pulse waves detected by the acceleration pulse wave detection means, wherein the variation index is an amount related to the frequency distribution of the acceleration pulse wave. And
[0011]
The amount related to the frequency distribution is an area ratio between a low frequency band area and a high frequency band area in the frequency distribution of the acceleration pulse wave.
[0012]
In the above-described invention, in order to remove the influence of the fluctuation of the heart beat interval on the measurement of the acceleration pulse wave aging value, a variation index indicating the degree of variation of the repetition period of the acceleration pulse wave is used. Then, each time the acceleration pulse wave is detected by the acceleration pulse wave detecting means, a variation index of the repetition period of the acceleration pulse wave is obtained, and a correction coefficient corresponding to the variation index is referred to correction data formed in advance. Extracted by the extracting means, the temporary acceleration pulse wave aging value is calculated by the acceleration pulse wave calculating means, and the temporary acceleration pulse wave aging value is corrected by the extracted correction coefficient. Thereby, the acceleration pulse wave aging value can be measured without being affected by the fluctuation of the heart beat interval.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a pulse wave detection device according to the present invention will be described below with reference to the drawings.
[0014]
As shown in FIG. 2, the pulse wave detection device includes a device body 1, a sensor unit 3, and a conductive wire 4 that connects the device body 1 and the sensor unit 3. The sensor unit 3 is formed in a sack shape and is used by being attached to the finger 5 of the hand. On the surface of the apparatus main body 1, there are provided a switch unit 6 for switching the data input mode, turning on the power, and the like, and a display unit 7 for displaying measurement results and the like. The example shown in FIG. 2 is merely an example, and other configurations may be used. For example, the sensor unit 3 may be mounted on the earlobe and the apparatus main body 1 may be mounted on the wrist. A type in which 3 is wound around the arm with a cuff like a blood pressure monitor may be used.
[0015]
FIG. 1 shows a block diagram of the pulse wave detection device. The pulse wave detection device includes an acceleration pulse wave detection means 10 for differentiating a series of a plurality of basic pulse waves sampled at a predetermined sampling time twice to obtain a series of acceleration pulse waves, and the acceleration pulse wave detection means 10 includes: A sensor unit 3 that includes a light emitting unit such as an LED and a light receiving unit composed of a photodiode or a phototransistor, and detects a series of basic pulse waves by increasing or decreasing the blood flow rate due to the pulsation of the heart by changing the amount of transmitted light or the amount of scattered light; An amplifying circuit 22 for amplifying an analog signal from the sensor unit 3, and a differential circuit 23 connected in two stages for differentiating the analog signal of the basic pulse wave from the amplifying circuit 22 twice to convert it into an acceleration pulse wave signal, 24 and an A / D conversion circuit 25 for converting an analog signal from the differentiation circuit 24 into a digital signal. FIG. 8A shows an example of the waveform of one basic pulse wave 101, and FIG. 8B shows the waveform of the acceleration pulse wave 102 obtained by differentiating the basic pulse wave 101 twice. As described later, the magnitudes a, b, c, and d from the base line L to the inflection point are calculated for the acceleration pulse wave, and the acceleration pulse wave aging value is calculated.
[0016]
In the A / D conversion circuit 25, an acceleration pulse wave signal as shown in FIG. 4 composed of a plurality of acceleration pulse waves sampled over a predetermined sampling time, for example, several tens of seconds, is obtained.
[0017]
The pulse wave detection apparatus also includes a CPU 11 that performs various control processes on the acceleration pulse wave detected by the acceleration pulse wave detection means 10, and a storage unit 12 that stores data.
[0018]
The CPU 11 includes index calculation means 26, correction coefficient extraction means 17, and acceleration pulse wave calculation means 19. The storage unit 12 includes a measurement data storage unit 13 and a related data storage unit 15.
[0019]
The index calculation unit 26 calculates a variation index indicating the degree of variation in the repetition period of a plurality of basic pulse waves or acceleration pulse waves from the acceleration pulse wave detected by the acceleration pulse wave detection unit 10. Here, the repetition period of a plurality of basic pulse waves or acceleration pulse waves is represented by R shown in FIG. It is known that the heart beat interval is not always constant, and the repetition period R changes. As the first variation index of the repetition period, the average value R bar of the repetition period is adopted, and, for example, the standard deviation σ of the repetition period is adopted as the second variation index. The data of the first variation index and the second variation index of the repetition period are stored in the measurement data storage unit 13 for each measurement.
[0020]
The measurement data storage unit 13 also includes data of measurement elements such as a, b, c, and d required to calculate the acceleration pulse wave aging value from the acceleration pulse wave detected by the acceleration pulse wave detection means 10. Remembered.
[0021]
[Expression 1]
Figure 0003781956
Specifically, the index calculation means 26 determines the magnitudes (a1 to d1, a2) from the base line L to each inflection point, as shown in FIG. -D2, a3-d3, an-dn), and the inflection points of the same point of each acceleration pulse wave group were averaged (a1-an, b1-bn, c1-cn, d1-dn) The values a bar, b bar, c bar, and d bar are obtained according to equations (3) to (6), and the average time R bar between the peak intervals of a plurality of sampled acceleration pulse waves is obtained according to equation (1). The standard deviation σ of the pulse wave intervals (repetition period R) of the plurality of acceleration pulse waves is obtained according to the equation (2).
[0022]
In the related data storage unit 15, correction data is stored as shown in FIG. The correction data is formed by associating the first variation index and the second variation index in advance with a correction coefficient for correcting the degree of influence of variation in the repetition period on the acceleration pulse wave aging value. As the first variation index, for example, the average value (R bar n) of the repetition cycle is taken, and as the second variation index, for example, the standard deviation (σm) of the repetition cycle is taken.
[0023]
The degree of influence of variation in the repetition cycle on the acceleration pulse wave aging value is obtained by collecting experimental data or experience data in advance, and assumes the acceleration pulse wave aging value that should be present when there is no variation in the repetition cycle. Thus, correction data is determined. In FIG. 3, the row indicates the standard deviation (σm) of the repetition period as an example of the second variation index, and the column indicates the average value (R bar n) of the repetition period as the first variation index. The correction coefficient (Smn) is determined by the matrix (σm, R bar n).
[0024]
Here, the case where the standard deviation (σm) is taken as the second variation index is shown, but not limited to the standard deviation, for example, the sum of squares of the repetition period, variance, range, variation coefficient, etc. are adopted. Also good.
[0025]
The correction coefficient extraction unit 17 extracts the correction coefficient S corresponding to the average value and standard deviation of the repetition period obtained by the index calculation unit 26 from the correction data stored in the related data storage unit 15.
[0026]
The acceleration pulse wave calculating means 19 calculates a provisional acceleration pulse wave aging value (APGindex bar) according to the equation (7) for a series of a plurality of acceleration pulse waves obtained by the acceleration pulse wave detecting means 10. The acceleration pulse wave aging value (APGindex ′) is obtained by multiplying the acceleration pulse wave aging value by the correction coefficient S extracted by the correction coefficient extracting means 17. Here, the provisional acceleration pulse wave aging value refers to an acceleration pulse wave aging value before correction by correction data.
[0027]
As described above, according to the present embodiment, the correction data is stored in the related data storage unit 15 in advance, and the average value and the standard deviation of the repetition period are calculated each time the acceleration pulse wave is detected by the acceleration pulse wave detecting means 10. Then, the correction coefficient S corresponding to this calculation result is extracted by the correction coefficient extracting means 17, the temporary acceleration pulse wave aging value (APGindex bar) is calculated by the acceleration pulse wave calculating means 19, and the temporary acceleration pulse wave aging is calculated. Since the value is corrected by the correction coefficient S, the acceleration pulse wave aging value can be measured without being affected by the fluctuation of the heart beat interval.
[0028]
Further, it is not necessary to take a long sampling time in order to reduce the influence of fluctuations in the heart beat interval, and the measurement time can be shortened.
[0029]
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 5 shows a block diagram of the pulse wave detection device of the present embodiment. The same members as those in the pulse wave detection device shown in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and only different portions are described.
[0030]
As shown in FIG. 5, the CPU 11 includes frequency analysis means 28 that performs high-speed Fourier transform (FFT) on the acceleration pulse wave detected by the A / D conversion circuit 25 in the acceleration pulse wave detection means 10. Frequency distribution data as shown in FIG. 6 is obtained by the frequency analysis means 28.
[0031]
As shown in FIG. 6, the index calculating unit 26 uses the frequency distribution data obtained by the frequency analyzing unit 28 as two low frequency bands LH (0.04 to 0.14 Hz) and a high frequency band HF (0.14 to 0. 50 Hz), and an area ratio LF / HF between the low frequency band LH and the high frequency band HF is obtained. And area ratio LF / HF is employ | adopted as a dispersion | variation parameter | index of a repetition period.
[0032]
The variation index of the repetition cycle is not limited to the area ratio LF / HF, and may be an amount related to the frequency distribution of other acceleration pulse waves as long as it is an index of variation of the repetition cycle. For example, when the frequency distribution of the acceleration pulse wave is divided into three low frequency bands LH, medium frequency band MF and high frequency band HF, and each area is LF, MF and HF, (2LF + 3MF + HF) / 6 is a variation index. The horizontal axis in FIG.
[0033]
In the related data storage unit 15, correction data is stored as shown in FIG. The correction data shown in FIG. 7 is given by a linear graph determined by the area ratio LF / HF taken on the horizontal axis and the correction coefficient S taken on the vertical axis.
[0034]
Next, the operation of this embodiment will be described.
The index calculator 26 calculates the area ratio LF / HF for the acceleration pulse wave detected by the acceleration pulse wave detector 10. The correction coefficient extraction unit 17 extracts the correction coefficient S corresponding to the area ratio LF / HF calculated by the index calculation unit 26 from the correction data shown in FIG. 7 stored in the related data storage unit 15. The acceleration pulse wave calculating means 19 calculates a provisional acceleration pulse wave aging value (APGindex bar) according to the equation (7) for a series of a plurality of acceleration pulse waves obtained by the acceleration pulse wave detecting means 10. The acceleration pulse wave aging value (APGindex ′) is obtained by multiplying the acceleration pulse wave aging value by the correction coefficient S extracted by the correction coefficient extracting means 17.
[0035]
According to the present embodiment, the acceleration pulse wave aging value can be measured without being affected by fluctuations in the heart beat interval. Further, it is not necessary to take a long sampling time in order to reduce the influence of fluctuations in the heart beat interval, and the measurement time can be shortened.
[0036]
【The invention's effect】
As described above, according to the configuration of the present invention, there is provided a pulse wave detection device capable of measuring an acceleration pulse wave aging value with high accuracy in a short time without being affected by fluctuations in the heart beat interval. Can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a pulse wave detection device according to the present invention.
FIG. 2 is a diagram showing a schematic configuration of a device configuration of a pulse wave detection device according to the present invention.
FIG. 3 is a diagram showing correction data specified by a matrix of an average value of repetition cycles as a first variation index and a standard deviation as a second variation index.
FIG. 4 is a waveform diagram showing a series of a plurality of acceleration pulse waves sampled.
FIG. 5 is a block diagram showing a schematic configuration of another embodiment of the pulse wave detection device according to the present invention.
FIG. 6 is a view showing a frequency spectrum distribution obtained by FFT processing.
FIG. 7 is a diagram showing correction data when an area ratio between a low frequency band area and a high frequency band area in the frequency distribution of acceleration pulse waves is adopted as a variation index.
8A is a diagram showing a signal waveform of a basic pulse wave, and FIG. 8B is a diagram showing a signal waveform of an acceleration pulse wave obtained by differentiating the signal waveform shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Apparatus main body 3 Sensor part 10 Acceleration pulse wave detection means 11 CPU
13 Measurement data storage unit 15 Related data storage unit (correction data)
17 Correction coefficient extraction means 19 Acceleration pulse wave calculation means 26 Index calculation means 28 Frequency analysis means

Claims (6)

所定サンプリング時間でサンプリングした一連の複数の基本脈波を2回微分し一連の複数の加速度脈波を求める加速度脈波検出手段と、
前記加速度脈波検出手段によって検出した加速度脈波から、前記複数の基本脈波の繰返し周期のばらつき程度を示すばらつき指標を算出する指標算出手段と、
前記ばらつき指標に前記繰返し周期のばらつきが加速度脈波加齢値に及ぼす影響度を補正する補正係数を予め対応させて形成した補正データと、
前記加速度脈波検出手段で求めた一連の複数の加速度脈波に対し前記指標算出手段で前記ばらつき指標を求め、求めた前記ばらつき指標に対応する前記補正係数を前記補正データから抽出する補正係数抽出手段と、
前記加速度脈波検出手段で求めた一連の複数の加速度脈波に対し仮の加速度脈波加齢値を算出するとともに前記仮の加速度脈波加齢値を前記補正データから抽出した前記補正係数で補正し加速度脈波加齢値を求める加速度脈波算出手段と、
を備えることを特徴とする脈波検出装置。
An acceleration pulse wave detecting means for differentiating a series of a plurality of basic pulse waves sampled at a predetermined sampling time twice to obtain a series of a plurality of acceleration pulse waves;
Index calculation means for calculating a variation index indicating the degree of variation in the repetition period of the plurality of basic pulse waves from the acceleration pulse wave detected by the acceleration pulse wave detection means;
Correction data formed in advance corresponding to the variation index, the correction coefficient for correcting the influence of the variation of the repetition period on the acceleration pulse wave aging value,
Correction coefficient extraction for obtaining the variation index by the index calculation means for a series of a plurality of acceleration pulse waves obtained by the acceleration pulse wave detection means, and extracting the correction coefficient corresponding to the obtained variation index from the correction data Means,
A temporary acceleration pulse wave aging value is calculated for a series of acceleration pulse waves obtained by the acceleration pulse wave detecting means, and the temporary acceleration pulse wave aging value is extracted from the correction data with the correction coefficient. An acceleration pulse wave calculating means for correcting and calculating an acceleration pulse wave aging value;
A pulse wave detection device comprising:
前記ばらつき指標は第1のばらつき指標と第2のばらつき指標とから構成されており、
前記補正データの前記補正係数は前記第1のばらつき指標と前記第2のばらつき指標とを行列として特定され、
前記第1のばらつき指標は前記複数の基本脈波の繰返し周期の平均値である
ことを特徴とする請求項1に記載の脈波検出装置。
The variation index is composed of a first variation index and a second variation index,
The correction coefficient of the correction data is specified by using the first variation index and the second variation index as a matrix,
The pulse wave detection device according to claim 1, wherein the first variation index is an average value of repetition cycles of the plurality of basic pulse waves.
前記第2のばらつき指標は、繰返し周期の標準偏差、平方和、分散、範囲、変動係数のいずれかである
ことを特徴とする請求項2に記載の脈波検出装置。
The pulse wave detection device according to claim 2, wherein the second variation index is any one of a standard deviation, a sum of squares, a variance, a range, and a variation coefficient of a repetition period.
前記加速度脈波検出手段で検出した前記一連の複数の加速度脈波の周波数分布を求める周波数分析手段をさらに備え、
前記ばらつき指標は、加速度脈波の周波数分布に係る量である
ことを特徴とする請求項1に記載の脈波検出装置。
A frequency analysis means for obtaining a frequency distribution of the series of acceleration pulse waves detected by the acceleration pulse wave detection means;
The pulse wave detection device according to claim 1, wherein the variation index is an amount related to a frequency distribution of an acceleration pulse wave.
前記周波数分布に係る量は、加速度脈波の周波数分布における低周波帯域面積と高周波帯域面積との面積比である
ことを特徴とする請求項4に記載の脈波検出装置。
The pulse wave detection device according to claim 4, wherein the amount related to the frequency distribution is an area ratio between a low frequency band area and a high frequency band area in the frequency distribution of the acceleration pulse wave.
前記周波数分布に係わる量は、加速度脈波の周波数分布における低周波帯域面積をLF、中周波帯域面積をMF、高周波帯域面積をHFとしたときに(2LF+3MF+HF)/6であることを特徴とする請求項4に記載の脈波検出装置。  The amount related to the frequency distribution is (2LF + 3MF + HF) / 6, where LF is a low frequency band area in the frequency distribution of the acceleration pulse wave, MF is a medium frequency band area, and HF is a high frequency band area. The pulse wave detection device according to claim 4.
JP2000257764A 2000-08-28 2000-08-28 Pulse wave detector Expired - Fee Related JP3781956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257764A JP3781956B2 (en) 2000-08-28 2000-08-28 Pulse wave detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000257764A JP3781956B2 (en) 2000-08-28 2000-08-28 Pulse wave detector

Publications (3)

Publication Number Publication Date
JP2002065620A JP2002065620A (en) 2002-03-05
JP2002065620A5 JP2002065620A5 (en) 2005-04-07
JP3781956B2 true JP3781956B2 (en) 2006-06-07

Family

ID=18746182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257764A Expired - Fee Related JP3781956B2 (en) 2000-08-28 2000-08-28 Pulse wave detector

Country Status (1)

Country Link
JP (1) JP3781956B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102251A (en) * 2004-10-06 2006-04-20 Terumo Corp Circulation index measuring device, circulation index measuring method, control program and computer-readable storage medium
JP4069929B2 (en) 2005-04-06 2008-04-02 コニカミノルタセンシング株式会社 Biological information processing device
JP6018025B2 (en) * 2013-07-29 2016-11-02 ビフレステック株式会社 Sample information processing device
JP6393984B2 (en) * 2013-12-19 2018-09-26 富士通株式会社 Pulse measuring device, pulse measuring method and pulse measuring program
WO2015121949A1 (en) * 2014-02-13 2015-08-20 富士通株式会社 Signal-processing unit, signal-processing method, and signal-processing program
WO2018095083A1 (en) * 2016-11-22 2018-05-31 浙江脉联医疗设备有限公司 Pulse wave propagation time correction method

Also Published As

Publication number Publication date
JP2002065620A (en) 2002-03-05

Similar Documents

Publication Publication Date Title
CN103385702B (en) A kind of non-invasive blood pressure continuous detection apparatus and method
CN100560019C (en) Pulse wave transmission time method is measured the initial calibration device of arteriotony
CN101176659B (en) Apparatus for detecting systema cariovasculare functional state
JP6394784B2 (en) Stress monitoring system and computer program
WO2012128407A1 (en) Method and device for improving the accuracy of wrist blood pressure measurement by using multiple biological signal measurements
EP2759258B1 (en) Method of approximating a patient's pulse wave based on non-invasive blood pressure measurement, a logic unit therefore and a system therefore
JP5132003B2 (en) Blood pressure estimation device and blood pressure estimation method
CN108903929B (en) Heart rate detection correction method, device, storage medium and system
CN104042200B (en) A kind of non-invasive monitoring devices and methods therefor of arteriotony by shooting
CN109793507A (en) It is a kind of based on finger pressure oscillographic method without oversleeve blood pressure measuring device and measurement method
CN104027109A (en) Atrial fibrillation analyzer and program
Kaisti et al. Wearable pressure sensor array for health monitoring
CN102755157A (en) Measuring method of finger tip blood flow rate and measuring instrument thereof
WO2011027438A1 (en) Pulse measuring device
WO2017047384A1 (en) Blood pressure analyzing device, blood pressure measuring device, blood pressure analyzing method, and blood pressure analyzing program
JP3781956B2 (en) Pulse wave detector
WO2017113347A1 (en) Health status detecting system and method for detecting health status
TWI789139B (en) Single-arm two-electrode blood pressuremeasuring device and measuring method thereof
WO2018152713A1 (en) Data processing method for use with blood pressure measuring devices
CN202723847U (en) Measuring instrument for blood flow velocity at finger tip
JP4122003B2 (en) Extraction method and device for biological signals such as heartbeat and respiration
EP1302165A1 (en) Pulse-wave-characteristic-point determining apparatus, and pulse-wave-propagation-velocity-related-information obtaining apparatus employing the pulse-wave-characteristic-point determining apparatus
CN110265150A (en) Blood pressure calculates method for establishing model and wearable monitoring device and blood pressure measuring method
JP5471297B2 (en) Pulsation detection device and pulsation detection method
CN203828915U (en) Device for measuring blood pressure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees