JP3781709B2 - Chemical analyzer - Google Patents

Chemical analyzer Download PDF

Info

Publication number
JP3781709B2
JP3781709B2 JP2002284463A JP2002284463A JP3781709B2 JP 3781709 B2 JP3781709 B2 JP 3781709B2 JP 2002284463 A JP2002284463 A JP 2002284463A JP 2002284463 A JP2002284463 A JP 2002284463A JP 3781709 B2 JP3781709 B2 JP 3781709B2
Authority
JP
Japan
Prior art keywords
sample
channel
flow path
inflow channel
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002284463A
Other languages
Japanese (ja)
Other versions
JP2004117308A (en
Inventor
正弘 桑田
肇 須藤
信孝 菊入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002284463A priority Critical patent/JP3781709B2/en
Publication of JP2004117308A publication Critical patent/JP2004117308A/en
Application granted granted Critical
Publication of JP3781709B2 publication Critical patent/JP3781709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微量な化学物質の反応や合成分析を行うμ−TASあるいは血液検査などに用いられる検体検査装置等の微細流路を有する化学分析装置に関する。
【0002】
【従来の技術】
遺伝子解析や血液検査などの生化学分析、あるいは化学反応を効率的に行うために、開口断面の幅、深さが数10μm〜数100μmの微細流路を有する化学分析装置を用いることがある。
【0003】
又、近年、μ−TAS(Micro Total Analysis System)と呼ばれる数cm角程度のガラスやシリコン等のチップ上に送液、混合、反応、分析等の機能部を集積化した化学・生化学分析統合システムが提案されている(例えば、非特許文献1参照。)。図10はμ−TASの従来例の一つを示している。図10に示すように、μ−TASは、流路基板101内に微細流路100が形成され、微細流路100内で試料(試薬)の混合、反応、検出等を行うことにより、創薬や医療診断の予備実験等を行う。試料挿入孔113より試料を注入すると、試料は、流入流路100eを通り、混合部100aで混合される。そして、反応部100bで試料の化学反応が起こり、分離部100cで反応後の試料の分離が行われる。反応後の試料は検出部100dで検出され、不要な試料は廃液部116で回収される。
【0004】
又、混合部100aがT字型の微細流路(例えば、非特許文献2参照。)や混合部100aの合流角度を調整した微細流路(例えば、非特許文献3参照。)を備える化学分析装置もある。
【0005】
【非特許文献1】
「生産研究」52巻7号、2000年7月、P304−311
【0006】
【非特許文献2】
「新技術説明会資料 マイクロリアクタの革新技術」科学技術振興事業団主催、2002年3月4日、於:サイエンスプラザ地下1階ホール、P10
【0007】
【非特許文献3】
「化学工学会第67会要旨集資料」C201
【0008】
【発明が解決しようとする課題】
上記のように、従来の混合部100aは、通常、Y字型が多く用いられており、異なる試料をほぼ等量づつ混ぜ合わせることが多いため、各々の流入流路100eの断面積は変わらない。そのため、異なる試料を異なる混合比で混ぜ合わせる場合には、各々の流路から流入する試料の速度が違うため、異なる試料の接触する界面が不安定になり、流路軸方向上に対して均一な混合の妨げになる問題があった。
【0009】
上記の問題に鑑み、本発明は、異なる試料を異なる混合比で混ぜ合わせる場合に、異なる試料の安定した均一な混合を可能にする化学分析装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の第1の特徴は、2つの異なる試料を異なる比率で混合する溝幅10〜900μmの混合部を備えた化学分析装置において、(イ)1つの試料が流入する第1の流入流路と、(ロ)第1の流入流路と異なる断面積を有し、他の試料が流入する第2の流入流路と、(ハ)第1の流入流路と第2の流入流路から流入する2つの異なる試料の混合後の試料を流出する流出流路とを備える化学分析装置であることを要旨とする。ここで、「流入流路」とは、開口断面の幅、深さが数十μm〜数百μmの試料を通過させる溝を指す。又、第1の特徴に係る化学分析装置の流出流路は、第1の流入流路の断面積と第2の流入流路の断面積を加えたものに等しい断面積を有しても良い。
【0011】
本発明の第2の特徴は、2つの異なる試料を異なる比率で混合する溝幅10〜900μmの混合部を備えた化学分析装置において、(イ)1つの試料が流入する第1の流入流路と、(ロ)他の試料が流入する第2の流入流路と、(ハ)第1の流入流路の中心軸と第2の流入流路の中心軸と1点で交わらない中心軸を有し、2つの異なる試料の混合後の試料を流出する流出流路とを備える化学分析装置であることを要旨とする。
【0012】
本発明の第3の特徴は、2つの異なる試料を異なる比率で混合する溝幅10〜900μmの混合部を備えた化学分析装置において、(イ)1つの試料が流入する第1の流入流路と、(ロ)他の試料が流入する第2の流入流路と、(ハ)2つの異なる試料の混合後の試料を流出する流出流路とを備え、第1の流入流路の流出流路に対する角度が第2の流入流路の流出流路に対する角度と異なる化学分析装置であることを要旨とする。
【0013】
第1〜第3の特徴に係る化学分析装置によると、断面積が異なる流入流路、交差位置が異なる流入流路、角度が異なる流入流路を備えることにより、混合部で安定した混合を可能にすることができる。
【0014】
又、第1〜第3の特徴に係る化学分析装置は、試料が満たされた、第1の流入流路及び第2の流入流路に試料を流すための試料挿入孔と、試料挿入孔の上部に接着されたシートとを更に備えても良い。この化学分析装置によると、外部から試料を供給する手段が必要なく、試料を含んだ状態で流路基板の運搬や販売をすることができる。又、この化学分析装置は、シートの上部から凸状の押し出し用棒を試料挿入孔に差し込むことにより、第1の流入流路及び第2の流入流路に試料を流しても良い。この化学分析装置によると、シート越しに試料を押し出す際に、押し出し用棒に試料が付着しないという利点がある。
【0015】
又、第1〜第3の特徴に係る化学分析装置は、第1の流入流路及び第2の流入流路に試料を流すための試料挿入孔に流量を制御しながら試料を挿入する試料挿入装置とを更に備えても良い。
【0016】
更に、第1〜第3の特徴に係る化学分析装置は、混合後の試料を検出する検出流路と、検出流路の端面に設置された光学特性に優れた材質からなるカバーとを更に備えても良い。この化学分析装置によると、検出流路の端面が平行光の入射・入出の障害にならないので、平行光による色の変化等の検出が精度良く行われる。
【0017】
【発明の実施の形態】
次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであることに留意すべきである。
【0018】
本発明の実施の形態に係る化学分析装置は、図1に示すように、試料を挿入するための試料挿入孔13、数10μm〜数100μmの溝である微細流路が形成された流路基板1と、試料挿入孔13に入れられた試料を押し出す押し出し装置2と、検出流路12に対して平行に平行光31を投入する光源装置3と、平行光31を検出する検出装置4とを備える。流路基板1上の微細流路は、異なる試料を混合する混合部11と、混合後の試料を流出する流出流路20と、混合後の試料を検出する検出流路12とを備える。
【0019】
流路基板1の材質としては、石英等のガラス材料やポリジメチルシロキサン(PDMS)等のシリコンゴムあるいはポリメチルメタクリレート(PMMA)等のアクリル樹脂などが考えられる。更に、ガラスエポキシ樹脂、ポリプロピレン(PP)やポリテトラフロロエチレン(PTFE)等のフッ素樹脂、シリコン等の半導体材料、金属等でも構わない。
【0020】
本発明の実施の形態では、異なる試料として、試薬と検体と例にとり、説明を行う。ここでは、検体とは検査する対象となる試料を指し、試薬とは検体を検査するために加えられる試料を指す。試薬と検体は異なる混合比で混合することを前提とする。
【0021】
図1では、試料挿入装置として押し出し装置2を用いているが、押し出し装置2の他に、ポンプ等を用いても構わない。図1では、押し出し装置2は、試薬挿入孔13aに試薬を挿入し、検体挿入孔13bに検体を挿入する。押し出し装置2は、駆動手段として、ギアつきステッピングモータあるいは差動ソレノイドによって駆動する可動部、圧電素子などを備え、異なった試料をそれぞれ異なった流量で流すことができる。押し出し装置2によって挿入される試料は、外部から供給されても良いし、試料挿入孔13にあらかじめ挿入、封止されていても良い。試料が試料挿入孔13に封入される場合は、図3において後に詳述する。試料挿入孔13より押し出された試料は混合部11へ流れ、そこで適切な混合比に混合され、その後、流出流路20を通過し、検出流路12へと流される。光源装置3はこの検出流路12に平行光31を入射できるようその光軸などが調整されており、検出装置4は検出流路12を通った平行光31を検出する。
【0022】
次に、図2を用いて、本発明の実施の形態に係る微細流路について詳しく説明する。試薬挿入孔13aから挿入された試薬は、第1の流入流路19aを通り混合部11において、検体と混合される。一方、検体挿入孔13bから挿入された検体は、第2の流入流路19bを通り混合部11において、試薬と混合される。混合された試料は、流出流路20を通り、流路切り換え部15から検出流路12に流される。流路切り換え部15の構造については、図7において後に詳述する。検出流路12が混合された試料で満たされ、混合後の化学反応が進行する各時間帯に対して、検出流路12に平行光31を入射し、検出流路12内の混合液を通過した光を検出することにより混合液の検査を行う。1枚の流路基板1に複数の混合部11、検出流路12を設けることにより1枚の流路基板1で同様の過程により検査する複数の検査を順次、あるいは平行して行うことができる。又、図2では検出前の混合は1回のみ行っているが、試料挿入孔13を検出流路12に向かう流路中に複数配置することにより複数回の混合後に検出を行うことも可能である。
【0023】
次に、図3を用いて、押し出し装置2によって挿入される試料が、試料挿入孔13にあらかじめ挿入、封止される場合について説明する。図3(b)に示すように、流入流路19が形成された流路基板上に、流入流路19の一端に合致する位置に試料を挿入するための貫通孔である試料挿入孔13を備える流路基板を張り合わせる。試料挿入孔13に試料を挿入した後、その上面に適切な接着用部材7によりラテックスゴムなど大変形可能な部材で作られたシート6を張りつける。接着方法としては、接着用部材7による接着に限らず、機械的な押し付け、熱による融着、超音波振動などを用いても構わない。試料挿入孔13には、微細流路に流すことができる試料量が挿入されるので、その直径、深さは20mm以下である。設計上は、数mm程度が妥当である。
【0024】
シート6を張りつけると、図3(a)に示すように、シートの下面に試料挿入孔13があり、その周りを接着用部材7が取り囲む状態となる。又、試料挿入孔13の下部に流入流路11が存在する。シート6には、シートの取り外しの便宜を図るため、シート取り外し部6aを設けても構わない。又、あらかじめ試料が挿入され、その上面にシートがとりつけられた流路基板を用いても構わない。
【0025】
試料挿入孔13に試料が充填された流路基板は、押し出し装置2に備えられた凸状の押し出し用棒21の下に配置される。押し出し装置2は、押し出し用棒21の位置を制御することにより、試料挿入孔13内に封止された試料を、シート6越しに流入流路19に押し出す。押し出し装置2が押し出す力、速度を制御することにより、試料を任意の流量で流入流路19に流すことができる。押し出し用棒21の制御手段として、押し出し装置2は、ギア付きのステッピングモータや、差動ソレノイドなどにより駆動される可動部、あるいは圧電素子を備える。
【0026】
試料挿入孔13に試料を封止した流路基板によると、シート越しに試料を押し出す際に、押し出し用棒21に試料が付着しないという利点がある。又、この流路基板によると、外部から試料を供給する手段が必要なく、試料を含んだ状態で流路基板の運搬や販売をすることができる。
【0027】
次に、図4〜6を用いて、図2の混合部11について、3種類の形態を説明する。
【0028】
図4は、第1の流入流路19aと第2の流入流路19bの断面積が異なる混合部11の拡大図である。第1の流入流路19aと第2の流入流路19bの幅、深さを変えることにより、第1の流入流路19aと第2の流入流路19bの開口断面積を異なるものにすることができる。第1の流入流路19aを通して供給される試薬と第2の流入流路19bを通して供給される検体をm:nの体積比で混合する場合、第1の流入流路19aと第2の流入流路19bの断面積比を、m:nとする。図4では、断面積が正方形である場合を示しているが、断面積は、長方形や半円形、その他の形状でも構わないことは勿論である。この微細流路によると、試薬と検体の流入速度がほぼ等速になり、異なる混合比の試料を均一に混合することができる。又、左右の流入流路の断面積をm:nとせず、左右から流入する異なる試料の流入速度が違っていても、第1の流入流路19aと第2の流入流路19bの断面積を変えることにより、第1の流入流路19aと第2の流入流路19bの断面積が等しい場合よりその速度差が小さくなり、安定した流れを供給できる。
【0029】
又、第1の流入流路19a、第2の流入流路19b、流出経路20の断面積比をm:n:m+nとしても良い。つまり、流出経路20の断面積が、第1の流入流路19aと第2の流入流路19bの断面積を足し合わせたものと等しくなる。この微細流路によると、混合部で混合された試料の流れが滞ることなく、安定した流れを供給することができる。
【0030】
図5は、第1の流入流路19aの中心軸と、第2の流入流路19bの中心軸との交わる点が、流出流路20の中心軸と1点で交わらない混合部11の拡大図である。ここで、「中心軸」とは、流路幅の中心を通る軸を指す。通常の混合部11においては、図4に示すように、第1の流入流路19aの中心軸と、第2の流入流路19bの中心軸と、流出流路20の中心軸は1点で交わる。図5に示すように、第1の流入流路19aを中心軸からずらすことにより、第1の流入流路19aを流れる試料よりも、第2の流入流路19bを流れる試料を大きい体積比で混合することができる。この微細流路によると、異なる試料を異なる混合比で混ぜ合わせる場合に、異なる試料の安定した均一な混合が可能となる。
【0031】
図6は、流出流路20に対する第1の流入流路19aの角度αと流出流路20に対する第2の流入流路19bの角度βが異なる混合部11の拡大図である。この微細流路によると、異なる試料を異なる混合比で混ぜ合わせる場合に、異なる試料の安定した均一な混合が可能となる。
【0032】
次に、図7を用いて、図2の流路切り換え部15の構造の一例を説明する。検出流路12における平行光31を用いた検出を行う際に、検出流路12と流出流路20を立体的に交差させて配置する。これは、流出流路20が目標としない検出流路12と交わり、そちらの検出流路12に混合液(検出液)が流れることを防ぐためである。図7(a)では、流出流路20と検出流路12が直行して交差する例を示したが、斜め方向や同一方向で交差するように設けてもよい。ここで、多数の検出を一枚の流路基板1で行う場合、一つの流路基板1上に交差する流路を多数配置することはできないので、流出流路20と検出流路12を異なる流路基板1上に作り、それらを階層的に重ね、その間を貫通孔22で結んでも良い。図7(b)では、流出流路20を備えた第1の流路基板1aと、貫通孔22を備えた第2の流路基板1bと、検出流路12を備えた第3の流路基板1cを階層的に重ね合わせ、検出流路12と流出流路20を立体的に交差させて配置している。
【0033】
次に、図8を用いて、図2の検出流路12の端面形状について説明する。いかなる製法によっても検出流路12の端面は凹凸が残り、平行光31の入射・入出の障害になる。そのため、図8(a)に示すように、検出流路12を貫通孔として形成し、その両端には光透過性など光学特性に優れた石英などを材質とするカバー5を張り合わせる。この張り合わせ方法としては、ヒートボンディング、熱融着、オプティカルコンタクト、機械的な締め上げなどが挙げられる。この検出流路12によると、検出流路12の端面が平行光31の入射・入出の障害にならないので、平行光31による色の変化等の検出が精度良く行われる。又、検出流路12の一方の端には、試料が検出流路12の端面まで充填されるように、端面に逃げのための流路を形成しその先に試料を貯蔵するドレイン16を形成する。図8(b)に示すように、ドレイン16には空気抜き用孔23が設けられる。図8(a)では、逃げの流路及びドレインは横方向に設けているが、これに限らず、縦方向等に設けてもよい。又、このドレイン16は、検出流路12を流れてくる試料の初期部分を検出対象として用いたくない場合に、この初期部分の試料を検出流路12から除く場合にも用いることができる。更に、カバー5を取り外すことにより、検出流路12あるいはドレイン16にある試料を容易に取り出すことができる。
【0034】
次に、図9を用いて、光源装置3から平行光31を検出流路12に入射し、検出装置4で検出を行う方法について説明する。試薬を加えられた検体は、検出流路12において平行光31を投射される。検出装置4は、反応などにより変化する検体の色を測定する。通常、検出流路12において光を用いた検出を行う際は、検出光は検出流路12に対して垂直に入射される。ここでは、流路基板1上に設けられた検出流路12に対して平行な検出光31を入射することにより、検出流路12中の試料を平行光31が通過する距離が長くなり、検出のシグナル/ノイズ比(S/N比)を大幅に改善することができる。光源装置3の光源としてはレーザー、発光ダイオード、ライト、ランプ光源等を用いることも可能であり、光源の光を光ファイバーなどで絞り込んでも良い。
【0035】
本発明の実施の形態に係る化学分析装置によると、断面積が異なる流入流路、交差位置が異なる流入流路、角度が異なる流入流路を備えることにより、混合部で安定した均一な混合を可能にすることができる。特に、混合比が1:10から1:100と大きく、かつその比率の正確さの厳密さが要求される分野においては、異なる混合比に対しても混合部での流れが安定し、精度良い混合を可能にすることができる。
【0036】
(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
【0037】
例えば、本発明の実施の形態に係る微細流路の混合部11は、図4に示す断面積が異なる流入流路、図5に示す交差位置が異なる流入流路、図6に示す角度が異なる流入流路のそれぞれの違いを組み合わせた構造を有しても構わない。例えば、第1の流入経路19aと第2の流入経路19bの断面積比を変え、なおかつ、流出流路20に対する第1の流入流路19aの角度をα、流出流路20に対する第2の流入流路19bの角度をβとすることも可能である。混合する試料の混合体積比、比重、量などにより、多数の組み合わせが考えられる。
【0038】
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【0039】
【発明の効果】
本発明によると、異なる試料を異なる混合比で混ぜ合わせる場合に、異なる試料の安定した均一な混合を可能にする化学分析装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る化学分析装置の斜視図である。
【図2】本発明の実施に形態に係る流路基板を上から見た図である。
【図3】(a)は、本発明の実施の形態に係る試薬挿入孔を上から見た図、(b)は、(a)のA−Aに沿った断面図である。
【図4】本発明の実施に形態に係る混合部の拡大図である(その1)。
【図5】本発明の実施に形態に係る混合部の拡大図である(その2)。
【図6】本発明の実施に形態に係る混合部の拡大図である(その3)。
【図7】(a)は、本発明の実施に形態に係る流路切り換え部を上から見た図、(b)は、(a)のB−Bに沿った断面図である。
【図8】(a)は、本発明の実施の形態に係るドレイン部分を上から見た図、(b)は、(a)のC−Cに沿った断面図である。
【図9】本発明の実施に形態に係る検出流路の断面図である。
【図10】従来のμ−TASの斜視図である。
【符号の説明】
1、101 流路基板
1a 第1の流路基板
1b 第2の流路基板
1c 第3の流路基板
3 光源装置
4 検出装置
5 カバー
6 シート
6a シート取り外し部
11 混合部
12 検出流路
13、113 試料挿入孔
13a 試薬挿入孔
13b 検体挿入孔
15 流路切り換え部
16 ドレイン
19 流入流路
19a 第1の流入流路
19b 第2の流入流路
20 流出経路
21 押し出し用棒
22 貫通孔
23 空気抜き用孔
31 平行光
100 微細流路
100a 混合部
100b 反応部
100c 分離部
100d 検出部
100e 流入流路
116 廃液部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemical analysis apparatus having a fine flow path such as a specimen test apparatus used for μ-TAS or blood test for performing reaction and synthesis analysis of a trace amount of chemical substances.
[0002]
[Prior art]
In order to efficiently perform biochemical analysis such as gene analysis and blood test, or chemical reaction, a chemical analysis apparatus having a fine channel with a width and depth of an opening cross section of several tens to several hundreds of μm may be used.
[0003]
Also, in recent years, chemical and biochemical analysis integration that integrates functional parts such as liquid feeding, mixing, reaction, and analysis on a glass or silicon chip of about several centimeters square called μ-TAS (Micro Total Analysis System). A system has been proposed (for example, see Non-Patent Document 1). FIG. 10 shows one conventional example of μ-TAS. As shown in FIG. 10, in μ-TAS, a microchannel 100 is formed in a channel substrate 101, and a sample (reagent) is mixed, reacted, detected, etc. in the microchannel 100, thereby creating a drug. And preliminary experiments for medical diagnosis. When a sample is injected from the sample insertion hole 113, the sample passes through the inflow channel 100e and is mixed by the mixing unit 100a. Then, a chemical reaction of the sample occurs in the reaction unit 100b, and the sample after the reaction is separated in the separation unit 100c. The sample after the reaction is detected by the detection unit 100d, and the unnecessary sample is collected by the waste liquid unit 116.
[0004]
In addition, the mixing unit 100a includes a T-shaped fine channel (for example, see Non-Patent Document 2) and a chemical analysis in which the merging angle of the mixing unit 100a is adjusted (for example, see Non-Patent Document 3). There is also a device.
[0005]
[Non-Patent Document 1]
"Production Research" vol.52, no.7, July 2000, P304-311
[0006]
[Non-Patent Document 2]
“New Technology Briefing Material Microreactor Innovation Technology” sponsored by the Japan Science and Technology Agency, March 4, 2002 at Science Plaza B1F Hall, P10
[0007]
[Non-Patent Document 3]
"Chemical Engineering Society 67th Meeting Abstract Document" C201
[0008]
[Problems to be solved by the invention]
As described above, the conventional mixing unit 100a is usually Y-shaped, and since different samples are often mixed in almost equal amounts, the cross-sectional area of each inflow channel 100e does not change. . Therefore, when different samples are mixed at different mixing ratios, the velocity of the sample flowing from each flow path is different, so the interface where the different samples come into contact becomes unstable and uniform with respect to the axial direction of the flow path. There was a problem that hindered proper mixing.
[0009]
In view of the above problems, an object of the present invention is to provide a chemical analyzer that enables stable and uniform mixing of different samples when different samples are mixed at different mixing ratios.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the first feature of the present invention is that in a chemical analyzer having a mixing section having a groove width of 10 to 900 μm for mixing two different samples at different ratios, (a) one sample flows in (B) a second inflow channel having a cross-sectional area different from that of the first inflow channel, and (c) a first inflow channel. The gist of the present invention is a chemical analysis device including an outflow channel for flowing out a sample after mixing two different samples flowing in from the second inflow channel. Here, the “inflow channel” refers to a groove through which a sample having a width and depth of an opening cross section of several tens μm to several hundreds μm is passed. Further, the outflow channel of the chemical analyzer according to the first feature may have a cross-sectional area equal to the sum of the cross-sectional area of the first inflow channel and the cross-sectional area of the second inflow channel. .
[0011]
According to a second aspect of the present invention, in the chemical analyzer including a mixing section having a groove width of 10 to 900 μm for mixing two different samples at different ratios, (a) a first inflow channel into which one sample flows. And (b) a second inflow channel into which another sample flows, and (c) a central axis that does not intersect at one point with the central axis of the first inflow channel and the central axis of the second inflow channel. The gist of the present invention is a chemical analysis apparatus including an outflow channel that flows out a sample after mixing two different samples.
[0012]
According to a third aspect of the present invention, in the chemical analyzer having a mixing section having a groove width of 10 to 900 μm for mixing two different samples at different ratios, (a) a first inflow channel into which one sample flows. And (b) a second inflow channel into which another sample flows in, and (c) an outflow channel through which the sample after mixing two different samples flows out, and the outflow flow of the first inflow channel The gist is that the chemical analyzer is different from the angle of the second inflow channel with respect to the outflow channel.
[0013]
According to the chemical analyzers according to the first to third features, the mixing section can provide stable mixing by providing inflow channels with different cross-sectional areas, inflow channels with different crossing positions, and inflow channels with different angles. Can be.
[0014]
In addition, the chemical analyzer according to the first to third features includes a sample insertion hole for flowing a sample into the first inflow channel and the second inflow channel filled with the sample, and a sample insertion hole. You may further provide the sheet | seat adhere | attached on the upper part. According to this chemical analyzer, there is no need for means for supplying a sample from the outside, and the flow path substrate can be transported and sold in a state including the sample. Further, in this chemical analyzer, the sample may flow through the first inflow channel and the second inflow channel by inserting a convex pushing rod from the upper part of the sheet into the sample insertion hole. This chemical analyzer has an advantage that the sample does not adhere to the extrusion rod when the sample is extruded through the sheet.
[0015]
The chemical analyzer according to the first to third features includes a sample insertion for inserting a sample while controlling a flow rate in a sample insertion hole for flowing a sample through the first inflow channel and the second inflow channel. And a device.
[0016]
Furthermore, the chemical analysis device according to the first to third features further includes a detection channel for detecting the mixed sample, and a cover made of a material having excellent optical properties, which is installed on the end face of the detection channel. May be. According to this chemical analyzer, since the end face of the detection flow path does not become an obstacle to the entrance / exit of parallel light, detection of color change or the like due to parallel light is performed with high accuracy.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic.
[0018]
As shown in FIG. 1, the chemical analyzer according to the embodiment of the present invention is a flow path substrate in which a sample insertion hole 13 for inserting a sample and a micro flow path that is a groove of several tens of μm to several 100 μm are formed. 1, an extruding device 2 for extruding a sample placed in the sample insertion hole 13, a light source device 3 for injecting parallel light 31 parallel to the detection flow path 12, and a detection device 4 for detecting the parallel light 31. Prepare. The fine channel on the channel substrate 1 includes a mixing unit 11 that mixes different samples, an outflow channel 20 that flows out the mixed sample, and a detection channel 12 that detects the mixed sample.
[0019]
As the material of the flow path substrate 1, a glass material such as quartz, silicon rubber such as polydimethylsiloxane (PDMS), or an acrylic resin such as polymethyl methacrylate (PMMA) can be considered. Furthermore, a glass epoxy resin, a fluorine resin such as polypropylene (PP) or polytetrafluoroethylene (PTFE), a semiconductor material such as silicon, a metal, or the like may be used.
[0020]
In the embodiment of the present invention, a description will be given using a reagent and a sample as different samples. Here, the specimen refers to a sample to be examined, and the reagent refers to a sample added to examine the specimen. It is assumed that the reagent and the sample are mixed at different mixing ratios.
[0021]
In FIG. 1, the extrusion device 2 is used as the sample insertion device, but a pump or the like may be used in addition to the extrusion device 2. In FIG. 1, the extrusion device 2 inserts a reagent into the reagent insertion hole 13a and inserts a sample into the sample insertion hole 13b. The extrusion device 2 includes a movable part driven by a geared stepping motor or a differential solenoid, a piezoelectric element, and the like as drive means, and can flow different samples at different flow rates. The sample inserted by the extrusion device 2 may be supplied from the outside, or may be inserted and sealed in the sample insertion hole 13 in advance. The case where the sample is sealed in the sample insertion hole 13 will be described in detail later with reference to FIG. The sample pushed out from the sample insertion hole 13 flows to the mixing unit 11, where it is mixed at an appropriate mixing ratio, and then passes through the outflow channel 20 and flows to the detection channel 12. The light source device 3 has its optical axis and the like adjusted so that the parallel light 31 can enter the detection flow channel 12, and the detection device 4 detects the parallel light 31 that has passed through the detection flow channel 12.
[0022]
Next, the fine channel according to the embodiment of the present invention will be described in detail with reference to FIG. The reagent inserted from the reagent insertion hole 13a passes through the first inflow channel 19a and is mixed with the sample in the mixing unit 11. On the other hand, the sample inserted from the sample insertion hole 13b passes through the second inflow channel 19b and is mixed with the reagent in the mixing unit 11. The mixed sample passes through the outflow channel 20 and flows from the channel switching unit 15 to the detection channel 12. The structure of the flow path switching unit 15 will be described in detail later in FIG. The detection flow path 12 is filled with the mixed sample, and the parallel light 31 enters the detection flow path 12 and passes through the mixed liquid in the detection flow path 12 for each time zone in which the chemical reaction after mixing proceeds. The mixed solution is inspected by detecting the emitted light. By providing a plurality of mixing sections 11 and detection flow paths 12 on one flow path substrate 1, a plurality of inspections can be performed sequentially or in parallel on a single flow path substrate 1 in the same process. . In FIG. 2, mixing before detection is performed only once. However, it is also possible to perform detection after mixing a plurality of times by arranging a plurality of sample insertion holes 13 in the flow path toward the detection flow path 12. is there.
[0023]
Next, the case where the sample inserted by the extrusion device 2 is inserted and sealed in the sample insertion hole 13 in advance will be described with reference to FIG. As shown in FIG. 3B, a sample insertion hole 13 which is a through hole for inserting a sample at a position matching one end of the inflow channel 19 is formed on the channel substrate on which the inflow channel 19 is formed. The provided flow path substrate is bonded together. After the sample is inserted into the sample insertion hole 13, a sheet 6 made of a material that can be deformed greatly, such as latex rubber, is adhered to the upper surface of the sample insertion hole 13 by an appropriate bonding member 7. The bonding method is not limited to bonding by the bonding member 7, and mechanical pressing, heat fusion, ultrasonic vibration, or the like may be used. The sample insertion hole 13 has a diameter and depth of 20 mm or less because a sample amount that can be flowed into the fine channel is inserted. In design, about several mm is appropriate.
[0024]
When the sheet 6 is pasted, as shown in FIG. 3A, the sample insertion hole 13 is provided on the lower surface of the sheet, and the adhesive member 7 surrounds the sample insertion hole 13. In addition, the inflow channel 11 exists below the sample insertion hole 13. The seat 6 may be provided with a seat removing portion 6a for the convenience of removing the seat. Alternatively, a flow path substrate in which a sample is inserted in advance and a sheet is attached to the upper surface thereof may be used.
[0025]
The flow path substrate in which the sample insertion hole 13 is filled with the sample is disposed under the convex extrusion bar 21 provided in the extrusion device 2. The extruding device 2 controls the position of the extruding rod 21 to extrude the sample sealed in the sample insertion hole 13 to the inflow channel 19 through the sheet 6. By controlling the force and speed that the extrusion device 2 pushes out, the sample can flow through the inflow channel 19 at an arbitrary flow rate. As a control means for the extrusion rod 21, the extrusion device 2 includes a stepping motor with a gear, a movable part driven by a differential solenoid, or a piezoelectric element.
[0026]
The flow path substrate in which the sample is sealed in the sample insertion hole 13 has an advantage that the sample does not adhere to the extrusion rod 21 when the sample is extruded through the sheet. Further, according to this flow path substrate, there is no need for means for supplying a sample from the outside, and the flow path substrate can be transported and sold in a state including the sample.
[0027]
Next, three types of the mixing unit 11 in FIG. 2 will be described with reference to FIGS.
[0028]
FIG. 4 is an enlarged view of the mixing portion 11 in which the cross-sectional areas of the first inflow channel 19a and the second inflow channel 19b are different. By changing the width and depth of the first inflow channel 19a and the second inflow channel 19b, the opening cross-sectional areas of the first inflow channel 19a and the second inflow channel 19b are made different. Can do. When the reagent supplied through the first inflow channel 19a and the sample supplied through the second inflow channel 19b are mixed at a volume ratio of m: n, the first inflow channel 19a and the second inflow The cross-sectional area ratio of the path 19b is m: n. Although FIG. 4 shows a case where the cross-sectional area is a square, it is needless to say that the cross-sectional area may be a rectangle, a semicircle, or other shapes. According to this fine channel, the inflow rate of the reagent and the sample becomes substantially constant, and samples with different mixing ratios can be mixed uniformly. Further, the cross-sectional areas of the first inflow channel 19a and the second inflow channel 19b are different even if the inflow speeds of different samples flowing in from the left and right are not set to m: n. By changing, the speed difference becomes smaller than when the cross-sectional areas of the first inflow channel 19a and the second inflow channel 19b are equal, and a stable flow can be supplied.
[0029]
The cross-sectional area ratio of the first inflow channel 19a, the second inflow channel 19b, and the outflow channel 20 may be m: n: m + n. That is, the cross-sectional area of the outflow path 20 is equal to the sum of the cross-sectional areas of the first inflow channel 19a and the second inflow channel 19b. According to this fine channel, a stable flow can be supplied without stagnation of the flow of the sample mixed in the mixing section.
[0030]
FIG. 5 shows an enlargement of the mixing section 11 where the central axis of the first inflow channel 19a and the central axis of the second inflow channel 19b do not intersect with the central axis of the outflow channel 20 at one point. FIG. Here, the “center axis” refers to an axis passing through the center of the flow path width. In the normal mixing section 11, as shown in FIG. 4, the central axis of the first inflow channel 19a, the central axis of the second inflow channel 19b, and the central axis of the outflow channel 20 are at one point. Intersect. As shown in FIG. 5, by shifting the first inflow channel 19a from the central axis, the sample flowing through the second inflow channel 19b can have a larger volume ratio than the sample flowing through the first inflow channel 19a. Can be mixed. According to this fine channel, stable and uniform mixing of different samples is possible when different samples are mixed at different mixing ratios.
[0031]
FIG. 6 is an enlarged view of the mixing unit 11 in which the angle α of the first inflow channel 19 a with respect to the outflow channel 20 and the angle β of the second inflow channel 19 b with respect to the outflow channel 20 are different. According to this fine channel, stable and uniform mixing of different samples is possible when different samples are mixed at different mixing ratios.
[0032]
Next, an example of the structure of the flow path switching unit 15 in FIG. 2 will be described with reference to FIG. When performing detection using the parallel light 31 in the detection flow path 12, the detection flow path 12 and the outflow flow path 20 are arranged so as to cross three-dimensionally. This is to prevent the mixed liquid (detection liquid) from flowing into the detection flow path 12 where the outflow flow path 20 intersects the detection flow path 12 that is not the target. Although FIG. 7A shows an example in which the outflow channel 20 and the detection channel 12 intersect perpendicularly, they may be provided so as to intersect in an oblique direction or the same direction. Here, when a large number of detections are performed with one flow path substrate 1, a large number of crossing flow paths cannot be arranged on one flow path substrate 1, so the outflow flow path 20 and the detection flow path 12 are different. They may be formed on the flow path substrate 1, layered on top of each other, and connected therebetween through the through holes 22. In FIG. 7B, the first flow path substrate 1 a provided with the outflow flow path 20, the second flow path substrate 1 b provided with the through hole 22, and the third flow path provided with the detection flow path 12. The substrates 1c are hierarchically overlapped, and the detection channel 12 and the outflow channel 20 are arranged so as to cross three-dimensionally.
[0033]
Next, the shape of the end face of the detection flow path 12 in FIG. 2 will be described with reference to FIG. Irregularities remain on the end face of the detection flow path 12 by any manufacturing method, which obstructs the entrance / exit of the parallel light 31. Therefore, as shown in FIG. 8A, the detection flow path 12 is formed as a through hole, and covers 5 made of quartz or the like having excellent optical characteristics such as light transmittance are bonded to both ends thereof. Examples of the bonding method include heat bonding, heat fusion, optical contact, and mechanical tightening. According to this detection flow path 12, the end face of the detection flow path 12 does not become an obstacle to the entrance / exit of the parallel light 31, so that a change in color or the like by the parallel light 31 is detected with high accuracy. Further, at one end of the detection channel 12, a channel for escaping is formed on the end surface so that the sample is filled up to the end surface of the detection channel 12, and a drain 16 for storing the sample is formed at the end. To do. As shown in FIG. 8B, the drain 16 is provided with an air vent hole 23. In FIG. 8A, the escape flow path and the drain are provided in the horizontal direction, but the present invention is not limited to this and may be provided in the vertical direction. The drain 16 can also be used when the initial portion of the sample flowing through the detection flow channel 12 is not used as a detection target and the sample in the initial portion is removed from the detection flow channel 12. Furthermore, the sample in the detection flow path 12 or the drain 16 can be easily taken out by removing the cover 5.
[0034]
Next, with reference to FIG. 9, a description will be given of a method in which the parallel light 31 is incident on the detection flow path 12 from the light source device 3 and the detection device 4 performs detection. The specimen to which the reagent is added is projected with parallel light 31 in the detection flow path 12. The detection device 4 measures the color of the specimen that changes due to a reaction or the like. Usually, when performing detection using light in the detection flow path 12, the detection light is incident on the detection flow path 12 perpendicularly. Here, by making the parallel detection light 31 incident on the detection flow path 12 provided on the flow path substrate 1, the distance through which the parallel light 31 passes through the sample in the detection flow path 12 is increased. The signal / noise ratio (S / N ratio) can be greatly improved. As the light source of the light source device 3, a laser, a light emitting diode, a light, a lamp light source, or the like can be used, and the light from the light source may be narrowed by an optical fiber or the like.
[0035]
According to the chemical analyzer according to the embodiment of the present invention, by providing inflow channels having different cross-sectional areas, inflow channels having different crossing positions, and inflow channels having different angles, it is possible to achieve stable and uniform mixing in the mixing unit. Can be possible. In particular, in a field where the mixing ratio is as large as 1:10 to 1: 100 and strict accuracy of the ratio is required, the flow in the mixing section is stable and accurate even with different mixing ratios. Mixing can be enabled.
[0036]
(Other embodiments)
Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
[0037]
For example, the fine channel mixing unit 11 according to the embodiment of the present invention has different inflow channels with different cross-sectional areas shown in FIG. 4, inflow channels with different crossing positions shown in FIG. 5, and different angles shown in FIG. You may have the structure which combined each difference of the inflow flow path. For example, the cross-sectional area ratio of the first inflow path 19a and the second inflow path 19b is changed, and the angle of the first inflow path 19a with respect to the outflow path 20 is α, and the second inflow with respect to the outflow path 20 The angle of the flow path 19b can be set to β. Many combinations are conceivable depending on the mixing volume ratio, specific gravity, amount, and the like of the sample to be mixed.
[0038]
As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
[0039]
【The invention's effect】
According to the present invention, it is possible to provide a chemical analyzer that enables stable and uniform mixing of different samples when different samples are mixed at different mixing ratios.
[Brief description of the drawings]
FIG. 1 is a perspective view of a chemical analysis apparatus according to an embodiment of the present invention.
FIG. 2 is a top view of a flow path substrate according to an embodiment of the present invention.
3A is a top view of a reagent insertion hole according to an embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along line AA in FIG. 3A.
FIG. 4 is an enlarged view of a mixing unit according to the embodiment of the present invention (No. 1).
FIG. 5 is an enlarged view of a mixing unit according to the embodiment of the present invention (part 2).
FIG. 6 is an enlarged view of a mixing unit according to the embodiment of the present invention (No. 3).
7A is a top view of a flow path switching unit according to an embodiment of the present invention, and FIG. 7B is a cross-sectional view taken along line BB in FIG. 7A.
8A is a top view of a drain portion according to an embodiment of the present invention, and FIG. 8B is a cross-sectional view taken along the line CC of FIG. 8A.
FIG. 9 is a cross-sectional view of a detection flow channel according to the embodiment of the present invention.
FIG. 10 is a perspective view of a conventional μ-TAS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,101 Flow path board | substrate 1a 1st flow path board | substrate 1b 2nd flow path board | substrate 1c 3rd flow path board | substrate 3 Light source device 4 Detection apparatus 5 Cover 6 Sheet 6a Sheet removal part 11 Mixing part 12 Detection flow path 13, 113 Sample insertion hole 13a Reagent insertion hole 13b Specimen insertion hole 15 Channel switching unit 16 Drain 19 Inflow channel 19a First inflow channel 19b Second inflow channel 20 Outflow channel 21 Extruding rod 22 Through hole 23 For air venting Hole 31 Parallel light 100 Fine channel 100a Mixing unit 100b Reaction unit 100c Separation unit 100d Detection unit 100e Inflow channel 116 Waste liquid unit

Claims (7)

流路基板に形成され1つの試料が流入する第1の流入流路と、
前記流路基板に形成され他の試料が流入する第2の流入流路と、
前記第1の流入流路と前記第2の流入流路から流入される前記2つの異なる試料を混合する混合部と、
前記混合部において混合される試料を流出する流出流路と、
前記流出流路において流出される試料が流され、前記流出流路に交差して配置され、前記流路基板の端面から前記流流路に貫通する検出流路と、
前記流路基板の端面において前記検出流路に張り合わされ、光透過性を有するカバーと、
前記流路基板に形成され、前記第1の流入流路に前記1つの試料を流すための第1の試料挿入孔及び前記第2の流入流路に前記他の試料を流すための第2の試料挿入孔と、
前記第1の試料挿入孔の上部に接着された変形可能な第1のシート及び前記第2の試料挿入孔の上部に接着された変形可能な第2のシートと、
前記第1のシートの上部から前記第1の試料挿入孔よりも細い凸状の第1の押し出し用棒を前記第1の試料挿入孔に差し込み、前記第1の押し出し用棒により前記第1のシート越しに前記1つの試料を前記第1の流入流路に押し出すことにより流し、更に前記第2のシートの上部から前記第2の試料挿入孔よりも細い凸状の第2の押し出し用棒を前記第2の試料挿入孔に差し込み、前記第2の押し出し用棒により前記第2のシート越しに前記他の試料を前記第2の流入流路に押し出すことにより流す試料挿入装置と、
を備えることを特徴とする化学分析装置。
A first inflow channel formed on the channel substrate and into which one sample flows;
A second inflow channel formed on the channel substrate and into which another sample flows;
A mixing unit for mixing the two different samples flowing in from the first inflow channel and the second inflow channel;
An outflow channel for flowing out the sample to be mixed in the mixing section;
Sample flowing out in the outflow channel is flowed, is arranged to cross the outflow channel, the detection flow path through the flow exiting the flow passage from the end face of the channel substrate,
A cover that is attached to the detection flow path at an end surface of the flow path substrate and has light transmittance;
A first sample insertion hole formed on the flow channel substrate for flowing the one sample through the first inflow channel and a second for flowing the other sample through the second inflow channel. A sample insertion hole;
A deformable first sheet adhered to an upper portion of the first sample insertion hole and a deformable second sheet adhered to an upper portion of the second sample insertion hole;
From the upper part of the first sheet, a convex first extruding rod narrower than the first sample inserting hole is inserted into the first sample inserting hole, and the first extruding rod is used to insert the first extruding rod. The one sample is allowed to flow through the sheet by being pushed out into the first inflow channel, and a convex second extruding rod that is narrower than the second sample insertion hole is further formed from the upper part of the second sheet. A sample insertion device that is inserted into the second sample insertion hole, and flows by pushing the other sample through the second sheet through the second sheet by the second push-out rod,
A chemical analysis device comprising:
前記流出流路は、前記第1の流入流路の断面積と前記第2の流入流路の断面積を加えたものに等しい断面積を有することを特徴とする請求項1に記載の化学分析装置。  2. The chemical analysis according to claim 1, wherein the outflow channel has a cross-sectional area equal to a sum of a cross-sectional area of the first inflow channel and a cross-sectional area of the second inflow channel. apparatus. 前記第1の流入流路の中心軸と前記第2の流入流路の中心軸とが交わる点が、前記第2の流入流路の中心軸と前記流出流路の中心軸とが交わる点に対してずれていることを特徴とする請求項1又は2に記載の化学分析装置。  The point where the center axis of the first inflow channel and the center axis of the second inflow channel intersect is the point where the center axis of the second inflow channel and the center axis of the outflow channel intersect The chemical analysis apparatus according to claim 1, wherein the chemical analysis apparatus is deviated from the chemical analysis apparatus. 前記第1の流入流路の前記流出流路に対する角度が前記第2の流入流路の前記流出流路に対する角度と異なることを特徴とする請求項1〜3のいずれか1項に記載の化学分析装置。  The chemistry according to any one of claims 1 to 3, wherein an angle of the first inflow channel with respect to the outflow channel is different from an angle of the second inflow channel with respect to the outflow channel. Analysis equipment. 前記検出流路は前記流出流路に対して立体的に交差し、前記検出流路と前記流出流路とは前記流路基板に形成された貫通孔により結ばれていることを特徴とする請求項1〜のいずれか1項に記載の化学分析装置。The detection flow path sterically intersects the outflow flow path, and the detection flow path and the outflow flow path are connected by a through hole formed in the flow path substrate. Item 5. The chemical analysis device according to any one of Items 1 to 4 . 前記検出流路の端面に前記流出流路からこの検出流路の端面まで前記試料を充填するためのドレインを更に備えたことを特徴とする請求項1〜のいずれか1項に記載の化学分析装置。The chemistry according to any one of claims 1 to 5 , further comprising a drain for filling the sample from the outflow channel to the end surface of the detection channel on an end surface of the detection channel. Analysis equipment. 前記ドレインには空気抜き用孔を更に備えることを特徴とする請求項1〜のいずれか1項に記載の化学分析装置。Chemical analysis apparatus according to any one of claims 1 to 6 wherein the drain, characterized by further comprising a vent hole.
JP2002284463A 2002-09-27 2002-09-27 Chemical analyzer Expired - Fee Related JP3781709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284463A JP3781709B2 (en) 2002-09-27 2002-09-27 Chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284463A JP3781709B2 (en) 2002-09-27 2002-09-27 Chemical analyzer

Publications (2)

Publication Number Publication Date
JP2004117308A JP2004117308A (en) 2004-04-15
JP3781709B2 true JP3781709B2 (en) 2006-05-31

Family

ID=32278022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284463A Expired - Fee Related JP3781709B2 (en) 2002-09-27 2002-09-27 Chemical analyzer

Country Status (1)

Country Link
JP (1) JP3781709B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030089A (en) * 2004-07-20 2006-02-02 Toshiba Corp Biological material treating kit
EP2490005A1 (en) * 2011-02-18 2012-08-22 Koninklijke Philips Electronics N.V. Microfluidic resistance network and microfluidic device
JP5814567B2 (en) * 2011-03-07 2015-11-17 浜松ホトニクス株式会社 Sample observation apparatus and sample observation method

Also Published As

Publication number Publication date
JP2004117308A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US10159978B2 (en) Flow control in microfluidic systems
EP0890094B1 (en) Microfabricated diffusion-based chemical sensor
KR100876064B1 (en) Fluid analysis device in which fluid is controlled
US7223371B2 (en) Microfluidic channel network device
JP4673149B2 (en) Method of using microchip, microchannel, and microchip
US20090155125A1 (en) Microchip
JP6676611B2 (en) Microfluidic chip, method for manufacturing the same, and analyzer using the same
US20060073599A1 (en) Microfabricated diffusion-based chemical sensor
US20090232708A1 (en) Microchip
CN101868730B (en) Microfluidic chip for analysis of fluid sample
WO1997039338A9 (en) Microfabricated diffusion-based chemical sensor
WO2002023161A1 (en) Microfluidic devices for rotational manipulation of the fluidic interface between multiple flow streams
WO2008047875A1 (en) Microanalysis measuring apparatus and microanalysis measuring method using the same
JP2006300741A (en) Micro flow passage for optical measurement, and micro fluid chip
JP3888632B2 (en) Micromixer, sample analysis kit and manufacturing method thereof
JP2009287971A (en) Microchip
JP3781709B2 (en) Chemical analyzer
JP2009121912A (en) Microchip
KR100967414B1 (en) Microchannel for merging of multiple droplets and method of generating quantitatively merged droplets using the same
CN109746063B (en) Micro-droplet detection system
US20090291025A1 (en) Microchip And Method Of Using The Same
JP3754038B2 (en) Flow control device and flow control system
JP2005227250A (en) Biochemical analysis method and biochemical analyzer
JP6017793B2 (en) Microchip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees